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ABSTRACT

This workshop’s call for participation poses the question: What
should be in an explanation? One route toward answering this
question is to turn to theories of how humans try to obtain
information they seek. Information Foraging Theory (IFT) is
one such theory. In this paper, we present lessons we have
learned about how IFT informs Explainable Artificial Intelli-
gence (XAI), and also what XAl contributes back to IFT.
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INTRODUCTION

Explainable AI (XAI) is burgeoning to help ordinary users
understand their intelligent agents’ behavior — but many fun-
damental questions remain in order to achieve this goal. This
paper describes our recent progress toward one such question:
What should be in an explanation?

We have been working to answer this question in a domain
often used for Al research, namely Real-Time Strategy (RTS)
games, from two sides. First, to understand what a high-
quality supply of explanations might contain, we conducted a
qualitative analysis of the utterances of expert explainers [2].
Second, to understand demand for explanations in the same
domain, we conducted a user study [10] to understand the
questions participants formulated when assessing an intelligent
agent playing the popular RTS game StarCraft II [9]. Here,
we focus on the latter study.

There have been previous explorations into what should be in
an XAl explanation [1, 6, 7, 8, 14, 15], but few such explo-
rations draw upon theories of how humans problem-solve. We
used Information Foraging Theory (IFT) [12] to help fill this
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gap and approach our investigation. IFT is based on a predator-
prey model [12]. Grounded in prior work about how people
seek information [3, 11], we used StarCraft II to investigate
how both the expert explainers (suppliers) and our participants
(“demanders”) would navigate the information environment
as they sought to make sense of a game while it unfolded.

In the RTS domain, players compete for control of territory
by fighting for it. Each player raises an army to fight their
opponents, which takes resources and leads players to build
Expansions (new bases) to gain more resources. Players also
can use resources to create Scouting units, which lets them
learn about their enemies’ movements to enable Fighting in a
strategic way. For a more in-depth explanation of the domain,
refer to [9].

In our user study [10] investigating this domain, we gave 20
experienced StarCraft II players a game replay file! to analyze
and asked them to record whatever they thought were key deci-
sion points (i.e., any “event which is critically important to the
outcome of the game”) during the match. Participants worked
in pairs, allowing us to keep them talking by leveraging the
social convention of conversing about their collaborative task.
Because we wanted to understand how the participants go
about assessing an intelligent agent’s decisions, we told them
that one of the players in the game was under Al control. How-
ever, this was not true; both players were human professionals.

'We used game 3 of this match (http://lotv.spawningtool.com/
23979/) from the IEM Season XI - Gyeonggi tournament.
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Figure 1. A screenshot from our study, with participants anonymized
(bottom right corner). Superimposed red boxes point out: (1, bot-
tom left) the Minimap, a birds-eye view enabling participants navigate
around the game map; (2: top left) a drop-down menu to display the
Production tab for a summary of build actions in progress; (3, middle
right) Time Controls to rewind/forward or change speed.
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The participants’ main task was to assess the AI’s capabilities.
To do so, the participants replayed the game using the built-in
StarCraft tool, shown in Figure 1, which offers the ability to
observe the previously recorded events. The tool provided
functionality to freely navigate with the camera, pause/rewind
with time controls, and drill down into various aspects of the
game state, helping participants decide how the Al was doing.

After participants finished the main task, we conducted a ret-
rospective interview in two parts. In both parts, we asked
participants questions about things they had said and done,
while pointing them out in the video we had just made of those
participants working on the task. In the first part, we navigated
to each decision point they identified and asked why it was
so important. In the second part, we asked about selected
navigations using questions based on previous work [11], such
as “What about that point in time made you stop there?”. A
more detailed methodology can be found in [10].

WHAT WE’VE LEARNED SO FAR: IFT — XAl

Things we’ve learned from studying Prey

In IFT, predators seek prey, which are the pieces of information
in the environment they they think they need. In the context
of XAlI, such prey are evidence of the agents decision process,
which are then used to create explanations for agents’ actions.

To investigate the information participants were trying to ob-
tain, we analyzed the questions that they asked each other.
We categorized their questions according to the Lim-Dey in-
telligibility types [7], which separate questions into What,
What-Could-Happen, Why-Did, Why-Didn’ t, and How-To.
We also added a Judgment intelligibility type to capture when
participants sought a quality judgment.

Although most previous XAI research has found Why to be
highly demanded information, our participants rarely sought
Why or Why-Didn’t information. Instead, our participants
showed a strong preference for asking What questions.

What was so interesting about What? The participants’ What
information seeking was about finding out more about state
than they currently knew. Our participants did so primarily in
three categories: drill down, higher level, and temporal.

Drill down Whats usually involved participants spatially nav-
igating around the map, sometimes opening up objects or
menus to access more detailed game state information. E.g.
“Is the human building any new stuff now?” The second cat-
egory, higher-level Whats, involved trying to abstract a little
above the details, to gain a higher level of understanding of
the game state. E.g. “What’s going on over there?” The third
category, temporal Whats, involved finding out more about
differences or similarities in state over time. E.g. “When did
he start building...?”

Finally, to investigate whether our distribution of What vs.
Why results were reasonably representative for this domain,
we compared our participants’ questioning (i.e., explanation
demand) against the answers (explanation supply) produced by
professional explainers in this domain, namely shoutcasters

ZShoutcasters are sportscasters for e-sports. They perform a similar
sort of analysis as our participants were doing, but with the added

[2]. The results showed that the shoutcasters’ commentaries in
StarCraft games [2] matched well with the above explanation
demands. In particular, shoutcasters’ utterances were mostly
about the What intelligibility type, with very few utterances
of the Why or Why-Didn’t types. Further, the shoutcasters
were remarkably consistent with each other in frequency of
using each intelligibility type. The consistency between the
supply-side and demand-side results offers evidence that in
the RTS domain, What explanation content is more in demand
than Why or Why-Didn’t.

Implications: Taken together, these results show that in this
domain, participants placed very high value on state informa-
tion — but not always at the same granularity, and not always
restricted to a single moment in time. How an XAI system can
satisfy these explanation needs may not be straightforward,
but one of our findings suggests a way forward: Shoutcasters
may be usable as a gold standard. That is, the remarkable
similarity between the frequency of shoutcasters’ utterances
(supply) and participants’ desired prey (demand) for most in-
telligibility types suggests that XAl explanation systems in the
RTS domain may be able to model their explanation content,
timing, and construction, around shoutcasters’ explanations.

Things we’ve learned from studying Paths

In IFT, prey exists within some patch(es), and the forager
navigates between patches by following paths, made up of
one or more links. Investigating the paths participants used
revealed a great deal of information about the kinds of costs
they can incur in the RTS domain when seeking information.

Traditionally, IFT looks at the navigation cost to get to a
patch (here, explanation), usually in number of clicks, and
the cognitive cost of absorbing the necessary information in
the patch once there. These costs are relevant to XAl too, but
our investigation discovered participants incurred significant
cognitive effort in both path discovery and path triage.

Why so expensive? Professional RTS players perform several
hundred actions per minute (APM), and each such action po-
tentially destroys or updates the available foraging paths. This
produces an information environment in which foraging paths
are numerous, rapidly updating, and have limited lifespan.
Thus, our participants were faced with many more potentially
useful foraging paths than they could possibly follow, and had
to spend significant effort just choosing a path.

Some coped with these costs by adhering to a single foraging
path throughout the task, rewinding rarely. These participants
minimized their cognitive costs of choosing, but paid a high
information cost, because by not following other paths, they
missed out on potentially explanatory information. Others
chose not to pay this information cost, and instead paid a
navigation cost by often rewinding and pausing to spatially
explore. Rewinding also incurs substantial cognitive cost, as
more context information must be tracked — but that extra
context may provide useful explanatory power.

constraint that they must analyze and explain the game in real-time,
so they cannot pause or rewind.



Pair 10 rer ° o e
Pair 9 loo!
Pair 8
Pair 7
Pair 6
Pair 5
Pair 4
Pair 3
Pair 2 A ;
Pair 1 éo-b ot ' .

0:00 2:00 4:.00 6:00 8:00 10:00 12:00 14:00 16:00

° o

Figure 2. Dots show the Building-Expansion decision points each par-
ticipant pair (y-axis) identified over time (x-axis). Red lines show when
Expansion events actually occurred. (Participants noticed most of them.)
The red box shows where Pair 4 failed to notice an event they likely
wanted to note, based on their previous and subsequent behavior.

Interestingly, when costs of choice were low, participants’ ex-
planation seeking followed fairly traditional foraging patterns.
For example, early in the game, participants scrutinized the
game objects carefully and in detail — a sharp contrast to
late in the game when many more game objects and foraging
paths were present. This could suggest that as the information
environment grows in complexity, users in this domain will
seek explanations at a higher level of abstraction (i.e., a group
of units as opposed to a single unit).

Implications: XAl explanation system would benefit from
incorporation of an explanation recommender. Such a recom-
mender could take into account both the human cognitive cost
of considering too many paths when few can be followed, and
the information cost of neglecting some path too long. For
example, if the domain is well known to an explanation system
a priori, such a recommender may help guide users (reducing
their cognitive cost of choosing) to the explanations that are
the most important (reducing the information cost of missing
important explanatory information). In this case, it appears we
know Expansions are important before any analysis occurs.

Things we’ve learned from studying Scent and Cues

Recall that we requested that participants write down key
decision points. To forage for these, they followed cues, which
are information features connected to links in the environment.
In our study, cues were the same across sessions, because
everyone replayed the same game. Unlike cues, scent is “in
the head” — it is foragers’ assessment of cues’ meaning.

Unfortunately, participants missed information that we suspect
they would have found key, because some cues distracted them.
Our videos showed that what participants were looking at
when they were distracted — the “distractor cues” — tended
to be combat-oriented and affected even simple game states.

For example, in Figure 2, a nearly full decision column sug-
gests that participants tended to agree that this decision was
key. A nearly full participant pair row suggests that this pair
consistently found this fype of decision to be key. Thus, miss-
ing dots (e.g., see the red box) correspond to times when a
participant pair was distracted from a key event.

In fact, the scents emanating from some types of cues seemed
to overpower others consistently. Consider the example in
Figure 3, which shows how Fighting tended to overpower
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Figure 3. (Top:) The Scouting decision points identified by our partic-
ipant pairs (y-axis), with game time on the x-axis. (Bottom:) The Fight-
ing decision points identified, plotted on the same axes. After Fighting
events begin (red line), Scouting decision points are no longer noticed
often — despite important Scouting actions continuing to occur.
Scouting. The top image in the figure shows all of the Scouting
decision points our participants identified, while the bottom
image shows all of the Fighting decision points. The red
line going through both images is the point at which combat
first begins — and also the time when scouting is usually last
noticed, despite being ongoing throughout the game.

Implications: Distractions abound, and may be systematic.
Some facets of the environment may elicit emotional response
and receive undue attention as a result. In this case, partici-
pants preferred investigating Fighting over Scouting.

Another implication relates to an XAl explanation system’s
user interface’s support for human workflow. Paths are easily
forgotten in the presence of interruptions. Each new action
may interrupt the current foraging path, which leads to people
forgetting things — made worse by sheer path quantity. Previ-
ous research has found that To-Do Listing [5] is an effective
strategy to help prevent users from forgetting so much.

WHAT WE'VE LEARNED SO FAR: XAl — IFT

In the previous sections, we focused on things we learned
about XAI by applying IFT to our data set. Now, we turn
the other direction, since this study is the first to apply IFT
to XAl and the RTS domain. The RTS domain presents an
extremely complex and rapidly changing environment, more
so than other IFT environments in the literature like Integrated
Development Environments (IDEs) and web sites [3, 4, 11,
13]. In the RTS domain, hundreds of actions happen each
minute. Further, the environment is continually affected by
actions which do not originate from the forager.

As discussed, our participants were faced with many paths,
and had to rapidly triage which paths to follow. This presents
an interesting IFT challenge. Previous research [11] identi-
fied a “scaling up problem” in IFT — a difficulty estimating
value/cost of distant prey as the path to the prey became long.
In our case, we observed that foraging paths were short, but
since so many paths are available, not much time is available to
make an accurate path value/cost estimate. The current study
reveals a “breadth version” of this scaling problem (Figure 4).
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Figure 4. Conceptual drawing of foraging in the RTS domain vs. pre-
viously studied foraging. (Left): Information environments in prior IFT
literature: the predator considers few paths, but the paths are sometimes
very deep. This figure inspired by an IDE foraging situation in [[11] Fig.
5]. (Right): Foraging in RTS, where most navigation paths are shallow,
but with numerous paths to choose from at the top level.

Turning to prey, in the XAI setting, the prey is evidence of
the agent’s decision process. Establishing trust in an XAI
system requires the user to know how it behaves in many cir-
cumstances. Thus, the prey is “in pieces” — meaning that bits
of it are scattered over many patches. As previous work [11]
has shown, “prey in pieces” creates foraging challenges, be-
cause finding and assembling all the bits can be tedious and
error-prone. In the model-agnostic XAl setting, IFT’s “prey
in pieces” problem becomes even more pronounced, because
of the uncertain relationships between causes/effects, or even
whether the agent will ever behave the same way again.

CONCLUSION

This paper summarizes the first investigation into information
foraging behaviors shown by participants tasked with assess-
ing a RTS intelligent agent. Our formative studies used IFT to
inform XAI and vice versa, by examining both supply (expert
explanations) and demand (user’s questions).

Our use of the IFT lens allows us to leverage results obtained
from applying IFT to non-XAI domains, while also improving
the ability to transport/generalize findings among XAI do-
mains. By connecting XAI to IFT foundations, we can bring
to XAI a real theoretical foundation based on what informa-
tions humans want and how they look for it.
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