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Abstract

“In what circumstances would you want this AI to make decisions on your

behalf?” We have been investigating how to enable a user of an Artificial

Intelligence-powered system to answer questions like this through a series of

empirical studies, a group of which we summarize here. We began the series by

(a) comparing four explanation configurations of saliency explanations and/or

reward explanations. From this study we learned that, although some configura-

tions had significant strengths, no one configuration was a clear “winner.” This
result led us to hypothesize that one reason for the low success rates Explainable

AI (XAI) research has in enabling users to create a coherent mental model is

that the AI itself does not have a coherent model. This hypothesis led us to

(b) build a model-based agent, to compare explaining it with explaining a

model-free agent. Our results were encouraging, but we then realized that par-

ticipants' cognitive energy was being sapped by having to create not only a men-

tal model, but also a process by which to create that mental model. This

realization led us to (c) create such a process (which we term After-Action Review

for AI or “AAR/AI”) for them, integrate it into the explanation environment,

and compare participants' success with AAR/AI scaffolding vs without it. Our

AAR/AI studies' results showed that AAR/AI participants were more effective

assessing the AI than non-AAR/AI participants, with significantly better preci-

sion and significantly better recall at finding the AI's reasoning flaws.
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INTRODUCTION

In recent years, Explainable Artificial Intelligence (XAI) has begun to focus on the actionability of explanations. Each
explanation has its own strengths and weaknesses, but for some users' tasks an explanation's particular strengths might
not be valuable or its weaknesses might be critical.
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For our research team, the kind of actionability we seek is explanations enabling a user to assess a particular AI's
suitability for performing tasks on behalf of that user. Since we have been working in the context of Real-Time Strategy
(RTS) games, the outcome we seek is for the user to be able to answer this question: “In what circumstances would you
want the agent to play this game on your behalf?” This paper summarizes multiple empirical investigations of how we
might achieve this outcome, and what they together revealed.

STUDY 1: EXPLAINING THE 4-TOWERS RTS GAME

How should reinforcement learning (RL) agents explain themselves to domain experts attempting to assess an AI's suit-
ability, if these domain experts are not trained in AI? To investigate this question, we conducted a 124-participant
experiment and measured their mental models by: (a) their ability to predict the AI's actions and (b) a written
“rulebook” of how they think the AI made its decisions. We did this to compare participants' mental models of an RL
agent in the context of a simple RTS game. Our goal was to compare participants' mental models of the AI agent under
four configurations of explanations: (Control) no explanations; (Saliency) saliency maps, which explain the AI's
focus of attention; (Reward) reward-decomposition bars, which explain the AI's predictions of future types of rewards;
and (Everything) both Saliency and Rewards. These explanations are shown in Figure 1.

To compare these explanation configurations, we designed a between-subject controlled lab study to measure differ-
ences in how people would respond to different combinations of explanations in a RTS game. In order to control the
space of possible actions, we built our own game, which we refer to as the 4-Towers game. In the 4-Towers game,

FIGURE 1 The 4-Towers interface used for participants in the “Everything” treatment1
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the agent controlled a kite-shaped tank, placed in the middle of four quadrants (Figure 1, top left). The agent had to
decide which of the four quadrants it would attack. Its goal was to maximize its score.

Our 124 participants took a hands-on tutorial to learn how the game worked and how to navigate the system. They
then worked their way through 14 decisions the agent made. At each decision point, participants attempted to predict
the agent's next decision, and then saw the decision and the explanation and commented on them. At the end of the
two-hour session, participants attempted to describe how the agent works. Full details of the study set-up and game can
be found in Anderson et al.1

We measured participants' efficacy with the decisions both by analyzing their written descriptions using a rubric to
arrive at mental model scores and by their success rates at predicting the AI's next decision. Our results showed that a
combined explanation that included saliency and reward bars was needed to achieve a statistically significant difference
in participants' mental model scores over the no-explanation treatment (Figure 2). For participants' abilities to predict
the agent's next decisions, the reward explanation's presence was more helpful than a saliency map's presence, but par-
ticipants in every treatment had highly inconsistent results (Figure 3).

MOVING TO MODEL-BASED EXPLANATIONS

The 4-Towers results suggest that there was no single “best” explanation able to properly accommodate the participants'
diversity and the decision situations' diversity. We speculated that a possible reason might be an inherent difficulty of a
human creating a coherent mental model of an AI that does not itself have a coherent model.

To investigate whether an AI with a model of itself would improve our ability to explain the AI to humans, we
needed a model-based agent and an environment in which the agent should operate. A model-based RL agent learns an
explicit model of the environment dynamics (in the form of a search tree for our agent), and it plans its actions via a
look-ahead tree search. In contrast, a model-free agent does not explicitly learn a model.

Thus, we created a new environment based on StarCraft 2; specifically, a Tug-of-War environment and a model-
based RL agent that works in this environment. We then iteratively prototyped and evaluated several variants of visual
explanations and user workflow supports. This section summarizes the game and agents we created,2,3 which we then
used in the remainder of the studies described in this paper.

FIGURE 2 The 4-Towers participants' final mental model scores for the four treatments

FIGURE 3 Percentage of 4-Towers participants who successfully predicted the AI's next move at each decision point (DP), prior to

receiving any explanation.1 Bar colors denote treatment (from left to right): Control, Saliency, Rewards, and Everything, for each of the DPs

(14 DPs presented here). Participants' results varied markedly for the different situations these DPs captured, and there is no evidence that

any of the treatments' participants got better over time. All error bars SE¼ σ=
ffiffiffi

n
pð Þ are under 10%
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Game environment: Tug-of-War. The environment we created is a two-player adversarial environment requiring real-
time strategic decision making (Figure 4). We created the game using a StarCraft 2 game editor. The game involves a
mixture of managing an economy while making offensive/defensive military decisions. Each player can take an action
(e.g., purchases resources) at the end of each 30-second wave. In our environment, the players are AI agents.

Model-based RL agent architecture. We used a model-based architecture that resembles the one used by AlphaZero for
Go, Chess, and Shogi.4 In particular, the agent uses the following three learned components to conduct a game-tree sea-
rch at each decision point to select an action:

• Learned model. This model enables predicting the next state given the current history and actions of the two players.
It makes predictions every 30 seconds.

• Action ranker. A score is calculated for each possible action in a game state, which allows actions to be ranked. Our
agent uses this ranking whenever it decides to prune actions from consideration during the tree search.

• Learning value function. The value function estimates the value of a state, which is used to estimate leaf values in our
tree search.

Explanations and explanation interface. The rationale for each decision made by our model-based agent is completely
captured by the search tree constructed for that decision. In this sense, the full search tree constitutes a sound and com-
plete explanation5 of the agent's decision making process. However, it is challenging to visualize the model's huge tree
structure that will enable a human user to understand any one decision the agent made. After multiple iterations of
design and testing with users, we arrived at a visualization showing the look-ahead tree structure in Figure 5.

From a user's perspective, the initial interaction begins in the game navigation interface, which allows the user to
navigate a game replay (Figure 4). At any decision point, the user can choose to enter the explanation interface to see
the multiple possible actions the agent considered, and why it chose the one it chose (Figure 5). (Note: We iterated
through multiple versions for our studies; the figure shows the most recent version.) Specifically, the figure shows the
game state at the user-selected decision point as the root of the tree (top left). Its child nodes are a subset of possible
actions the agent could take from that state. Users can navigate this tree to review the AI's reasoning process.

STUDY 2: MODEL-FREE VS MODEL-BASED EXPLANATIONS

Using the new StarCraft-based prototype, we designed a qualitative study to compare how 22 human participants would
react to model-based vs model-free explanations of a RL agent. Participants were university students with no expertise
in AI or machine learning, but with at least some experience with RTS games. Participants in the two treatments (11 in
model-free vs 11 in model-based) used the same underlying explanation interface, except that the model-free

FIGURE 4 The game replay interface for users to watch the game in action
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explanation's lack of a model of the future meant it did not have a search tree, which amounted to displaying a tree of
depth 1. Participants were tasked with making sense of the agents (assisted by the explanations we provided them) in
order to assess the agents. We summarize the study's results here; for details, see Dodge et al..2

For purposes of comparing model-free with model-based explanations, we defined the concept of an explanation-
informed statement to be a participant's statement that is both (a) informed by an explanation and (b) about the AI's
reasoning process at some decision point. Such statements are in contrast to statements that are only about the AI's
behavior, or about how the human thinks the AI should behave, or pure speculation (not drawing upon the explana-
tions) about the AI's reasoning. We categorized these explanation-informed statements into the three types shown in
Table 1.

As Table 1 shows, the 11 participants in the model-based treatment generated more explanation-informed state-
ments than the 11 participants in the model-free treatment did. This was also true of each type of explanation-informed
statement: model-based participants made about three times as many explanation-informed observations, about twice
as many explanation-informed inferences, and about twice as many explanation-informed bug reports, as model-free
participants did. Finally, the differences in individual participants who contributed one or more explanation-informed
statements were consistent with the above statement-count differences. Specifically, twice as many model-based unique
participants (10/11) made explanation-informed statements as model-free participants (5/11) did.

Together, these results show consistent evidence of the model-based participants basing more understanding on the
explanations than the model-free participants did. We view these results, along with the qualitative results detailed in
Dodge et al.,2 as encouraging evidence of the efficacy of model-based explanations, so we continued with the model-
based context for the investigations we describe next.

MULTIPLE STUDIES: AFTER-ACTION REVIEW FOR AI

As we considered the diverse ways by which participants did or did not engage with the explanations in the above
study, we began to realize that they were having not only to build mental models of the AI agents, but also to build a
process/workflow by which to do it. This realization led us to hypothesize that if we provided a process to scaffold the
explanations, participants might use more effective processes to make use of the explanations.

Toward that end, we devised a new workflow to support users' ability to gain actionable insights from XAI explana-
tions. We term the process AAR/AI2,6—After-Action Review for AI. AAR/AI's inspiration, the manual After-Action
Review process, was devised by the US Army in the mid-1970s,7 and has been a success in various branches of the mili-
tary. After-Action Reviews have also been adapted for other domains including medical treatments,8 transportation
services,9 and fire-fighting.10

FIGURE 5 Explanation interface to visualize the reasoning process of the reinforcement learning agent. For the state shown (State #8),

it shows a number of possible actions (eg, purchasing an Immortal) and the predicted next states for these actions as a tree structure. States

are “thumbnail” images of game states as per Figure 4
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AAR/AI is a process for application domain experts to use in assessing whether and under which circumstances to
rely upon an AI agent. We envision AAR/AI to be suitable for sequential domains, guiding the human through a series
of steps to evaluate an AI agent's actions using explanations. AAR/AI is a flexible framework that can be tailored to the
setting and granularity desired. Our first realization of it was as a seven-step process, which are conducted with a
human Facilitator and one or more human Assessors as follows: (a) The Facilitator defines the domain. (b) The Facili-
tator explains the agent's objective. Steps 3-6 constitute an “inner loop” for each decision to be assessed: (c) The Facilita-
tor reviews what was supposed to happen at this decision. (d) An Assessor identifies what actually happened at this
decision. (e) An Assessor describes why it happened. (f) An Assessor formalizes learning from this decision. (g) Finally,
an Assessor formalizes learning holistically from every decision they analyzed.

The AAR/AI study series

We began our investigation of AAR/AI with a series of formative studies,2,6 in which humans were trying to assess
whether and when they would trust the AI agent to play on their behalves. We then ran a summative study.

For the formative studies, our overall research question was:

RQ1. What are the strengths and weaknesses of guiding human assessment using AAR/AI?

The studies gathered qualitative data and were set in early variants of our model-based explanations in the Tug-of-
War game described in Section 3. We began with a low-fidelity prototype, because our goal was to inform design deci-
sions about the system we would need to build. The format of the earliest study was a think-aloud study involving
11 participants, with one participant per study session. We collected participants' verbalizations and written responses
to the AAR/AI questions throughout their sessions, as well as their detailed behavior data. (Descriptions of the method-
ologies we used for some of these studies can be found in Dikkala et al.11 and Dodge et al.2)

In the earliest study, we “implemented” the explanation system with only predrawn explanation images.
(Figure not shown here; however, Figure 5 shows the final version of the explanation after it evolved further.) The
AAR/AI process scaffolding was a set of index cards on which participants answered the AAR/AI questions. We asked
the AAR/AI questions at every third decision point of a 22 decision point Tug-of-War game (Section 3). For example,
for AAR/AI step 3, we asked at the beginning of a decision point: “What do you think should happen in the next three
rounds?” After participants wrote down their answers, they watched the next three rounds, at which point we asked
them to “briefly explain what happened in the past three rounds” (Figure 6). Later studies in the formative series used
prototypes with higher fidelity, eventually with the AAR/AI questions embedded in the computer prototype.

We then ran a quantitative study to compare the effectiveness of participants using the AAR/AI process with expla-
nations against that using the same explanations but without AAR/AI. The participants were domain-knowledgeable
users, and the task was to localize the AI's naturally occurring reasoning “bugs” (reasoning flaws). Due to COVID-19,

TABLE 1 Three classes of explanation-informed statements we used for coding participant responses, and the number of statements for

the MF (model-free) vs MB (model-based) treatment2

Type Description Example from our study MF MB

Explanation-
informed
observation

Participant strictly interprets the explanation “The friendly AI bought one baneling
predicting that the opponent marines would
increase”

7 23

Explanation-
informed
inference

Participant forms or adjusts their mental model
explanation, judge the explanation

“The AI is thinking ahead of how to win the
game in the shortest number of rounds”

9 16

Explanation-
informed bug
report

Participant identifies flaw/bug in agent's reasoning
from explanation OR finds explanation confusing

“Only two immortals were created. Prediction
of marines was wrong”

4 9

Total 20 48
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we conducted sessions over teleconference (Zoom) and a browser-based custom combination of the platform (game and
explanation system described in Section 3, including AAR/AI features for the AAR/AI treatment). The participants
were experienced with RTS games but had no AI or machine learning (ML) background. For this study, our overall
research question was:

RQ2. Given an AI agents and explanations of its actions, can domain-knowledgeable users find an AI
agent's reasoning flaws more effectively with or without the AAR/AI process?

Results

These studies produced three key findings.

Result 1: Encouraging a diversity of perspectives

One finding from these studies was that AAR/AI encouraged participants to think about the AI agent from multiple
perspectives. When categorized according to the Lim-Dey intelligibility types,12 participants' remarks showed evidence
of thinking about the agent via all of the Lim-Dey intelligibility types (Table 2). Further, the particular intelligibility
type(s) considered were different for the different AAR/AI questions, suggesting that each question helped move partic-
ipants to a new way of thinking about the AI's behavior. For example, responses to the “what do you think should hap-
pen…” AAR/AI question (top row) were mainly of the What-Could intelligibility type; responses to the “Why”
questions landed fairly evenly across the Why-Did, Input, Model, and Output intelligibility types; and responses to the
“What changes” AAR/AI question landed mainly in the How-To intelligibility type. Other research has shown each
intelligibility type has its own advantages and disadvantages (eg, 13,14), so we see the diversity of perspectives that
AAR/AI seemed to elicit as a particular strength of AAR/AI.

Result 2: The role of “active” learning

Traditional after-action reviews rest on active engagement by the assessors, and the same is needed with AAR/AI users.
A key element of our strategy to promote users' active engagement in AAR/AI was to ask the user to predict the AI
agent's action before the action—and before any explanation of that action. Our reason for this strategy was to engage

FIGURE 6 AAR/AI questionnaire. Participants are asked to describe “what happened” by answering to a series of questions, after they

filled out the AAR/AI questions on predicting “what was supposed to happen” and watch the game
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the user in second-guessing the agent and thinking about what would be the right action, rather than to passively go
along with whatever the agent did. We did not isolate this element of the interface to see its impact alone, but the data
suggest that the AAR/AI interface did engage the participants.

One way this came out was in the self-explanations our participants verbalized. Creating a mental model is one kind
of (human) learning, and one of the pillars of learning effectively is self-explaining.15 One example of this phenomenon
was the following participant's verbalization: “I think the aim of the AI is to increase the number of minerals, and then go
to the last one that is immortals, so that they can make a great damage to the nexus.”

Another way of thinking about participants' mental models, self-explanations, and learning is through Bloom's Tax-
onomy.16 This taxonomy is a well-known set of levels of (human) learning mastery in education. Applying it to our par-
ticipants' learning, understanding, and self-explaining of the AI can be seen in Table 3. All participants achieved level
5 at least once during the study, and all except one achieved level 6.

Result 3: High recall in finding “bugs”

The AAR/AI approach greatly helped domain-knowledgeable users find reasoning flaws made by AI agents. In our
quantitative study on discovering these flaws, participants in the AAR/AI treatment reported a significantly larger num-
ber of problem reports than participants in the non-AAR/AI treatment (13.2 vs 6.3, p < .0001). To investigate the valid-
ity of their problem reports, we used two metrics, recall and precision, commonly used in machine learning—recall
measures how many of the 10 bugs were correctly detected by the participants and precision measures the proportion
of problem reports that were actually bugs. Participants in the AAR/AI treatment achieved significantly higher recall
and precision. Figure 7 illustrates these results.

CONCLUDING REMARKS

Our empirical journey ultimately led us to the realization that consuming AI's explanations is a learning activity for
humans. Thus, rather than viewing explanations as objects to be delivered to humans, we have come to see XAI as a
particular type of education—educating human users on how to accomplish some particular tasks involving under-
standing this AI agent.

This education-oriented view of XAI brings new insights from the results of the studies reported here. For example,
it raises the question of which learning goals a set of explanations targets. In education, learning goals determine how
to measure students' attainment of those goals. For XAI, an explanation system's learning goals can help empiricists
choose appropriate measures of explanations' efficacy. For example, if the learning goal is to enable humans to interpret

TABLE 2 Lim-Dey categorization of participant responses to each AAR/AI question2
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"What do you think should happen in the next 3 rounds?" 

(Before watching them)

2 71 16 1 0 0 24 6 2 122

"Could you briefly explain about what actually happened in 

these past three rounds?" (After watching them)

13 6 2 6 18 2 53 12 74 186

"Why do you think the rounds happened the way they 

did?"

2 6 3 1 32 2 24 31 30 131

"Why do you think the Friendly AI did what it did?" (After 

seeing the explanation)

2 8 8 0 55 1 60 27 36 197

"What changes would you make in the decisions made by 

the Friendly AI to improve it?"

3 8 56 2 2 0 38 3 2 114

sum 22 99 85 10 107 5 199 79 144 750
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an AI, then an interpretation-oriented measure (e.g., Figure 2) may be more appropriate than a prediction-oriented
measure (e.g., Figure 3).

Another insight derives from ways educators adjust their pedagogy for the particular content being taught, the
particular audience being targeted, and for multiple forms of delivery needed to accommodate diverse humans'
learning styles (eg, reading, hearing, doing). This insight suggests that no particular explanation is likely to be
“best” for all situations a particular AI encounters, or for all users trying to interpret that AI (consistent with
Figure 3's results). The same insight also suggests that bringing elements of education's active learning techniques
may greatly enhance humans' ability to acquire adequate mental models of how the AI works, as in our results on
keeping the users active (Section 5's “Result 2”) and in recent work on interactive visualization for deep learning
education.17-19

Perhaps most important, the education perspective highlights the importance of scaffolding explanations with a pro-
cess, such as AAR/AI, by which humans can work through explanations. A corollary to this insight further suggests the
importance of such processes in serving a diversity of learning styles and perspectives. AAR/AI's ability to do so, as
illustrated in Table 2, may have been key to the high Bloom-taxonomy levels achieved by the AAR/AI participants and
the significantly higher effectiveness of AAR/AI compared to non-AAR/AI (Figure 7). Together, these insights from an
education perspective suggest that AI explanations' potential may be limited in XAI approaches that treat explanations
as producible/consumable objects. A more promising future for XAI may lie in creating explanations as education expe-
riences for diverse individuals.
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FIGURE 7 Participants' recall (left) and precision (right). AAR/AI participants performed significantly better than non-AAR/AI

participants with both measures

TABLE 3 Bloom's taxonomy applied to the AAR/AI participants

Bloom's level and description16 Example observations from our AAR/AI participants

1. Remembering: Have students acquired the
ability to correctly recall information?

(Many examples of very basic knowledge)

2. Understanding: Can students understand the
information they have learned to recall?

(Many examples of very basic knowledge)

3. Applying: Can students apply their newly
learned knowledge?

“I …like it how <the explanation diagram> is, because like I could try to draw my
own conclusions from it”

4. Analyzing: Can students see patterns and make
inferences about a problem?

“So we have almost same amount of health on top and bottom. So, for them to
defeat us … they have to focus on either one of these. So I guess they will focus
more on bottom, because they have to save them…”

5. Evaluating: Do (can) students take a stand or
decision, and justify it?

(watches the replay) “This is gonna be sad. … Yep. It's all downhill from here.
(after watching the replay) Uh, the friendly AI lost, uh, due to their
misinvestment in the top row, um, and only increasing their baneling count,
which only works at melee range which is ineffective…”

6. Creating: Can students create a new point of
view?

“…I feel that the friendly's will invest in marines, especially more in the top row,
since it is more damage…”

Note: The first two levels are very basic, so we provide examples at only the higher levels. All participants reached Level 5, and all except one participant
reached Level 62
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