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Abstract: A vibroacoustic analysis toolkit for launch vehicle telemetry was refactored as a 
service architecture using Globus Toolkit 4.0. We grid-enabled two tools in the analysis flow, 
managing their remote execution workflow from a desktop client. We examine the performance 
of the tools and the processing time for the entire tool chain. The results indicate that coordinated 
communication and execution scheduling as part of workflow management can significantly 
improve overall efficiency. Our experience also shows that the service-oriented architecture 
approach, using grid computing tools, can provide a more flexible system design, in addition to 
improved performance and increased utilisation of resources. 

Keywords: vibroacoustic telemetry analysis; grid service performance. 

Reference to this paper should be made as follows: Bentow, B., Dodge, J., Homer, A.,  
Moore, C.D., Keller, R.M., Lee, C., Thomas, M., Presley, M., Seidel, J., Davis, R. and Betser, J. 
(2008) ‘Grid-enabling a vibroacoustic analysis toolkit’, Int. J. High Performance Computing and 
Networking, Vol. 5, No. 3, pp.168–178. 

Biographical notes: Brian Bentow received the BS in Computer Science from Harvey Mudd 
College in 2005. He is currently Manager of Product Development at InstaMed in Irvine, 
California, which develops software for the healthcare industry. 

Jonathan Dodge received the BS in Computer Science from Harvey Mudd College in 2005. 

Aaron Homer received the BS in Computer Science from Harvey Mudd College in 2005. He is a 
software developer at Laserfiche in Long Beach, California. 

Christopher D. Moore received the BS in Physics from Harvey Mudd College in 2005. He has 
since worked at Northrop Grumman’s Navigation Systems Division in Woodland Hills, CA 
developing embedded systems for sensor fusion applications. 

Robert M. Keller received the BS and MS Degrees from Washington University, and the PhD 
from the University of California, Berkeley. He has been on the faculty at Princeton University, 
the University of Utah, and the University of California, Davis prior to joining Harvey Mudd 
College, where he is a Professor and Director of the Computer Science Clinic. His research 
includes contributions to parallel computing, languages, and music software, among others. 

Craig Lee is a Senior Scientist at The Aerospace Corporation and has worked in parallel and 
distributed computing for the last 25 years. He has conducted DARPA and NSF sponsored 
research in the areas of grid computing, optimistic models of computation, active networks, and 
distributed simulations, in collaboration with USC, UCLA, Caltech, ANL, and the College of 
William and Mary. He is on the steering committees for Grid XY and CCGrid and has served as 
a panelist for the NSF, DOE, NASA, and INRIA. He has published over 50 technical works, 
including four book chapters and seven edited volumes and issues. He is currently serving as 



 Grid-enabling a vibroacoustic analysis toolkit 169 

President of the Open Grid Forum. He has a PhD in Computer Science from the University of 
California, Irvine. 

Mark Thomas is a member of the Technical Staff at the Aerospace Corporation, and is currently 
pursuing a combined MS in Computer Science and MBA at the University of California,  
Los Angeles. Mark is an expert on Grid Computing using the Globus tools and established the 
hardware and software infrastructures for the Enterprise Source Software environment at the 
Aerospace Corporation. His other interests include high performance computing using 
heterogeneous processor architectures. He holds a BS in computer science from the University of 
California at Berkeley. 

Matthew Presley is a Senior Project Leader at the Aerospace Corporation researching distributed 
computing, including service-oriented architectures and transparent distributed execution of 
applications. He received a BS Mathematics from Harvey Mudd College and a PhD in Computer 
Science from UCLA where he worked on the verification of parallel discrete event simulation 
engines. He has worked at Jet Propulsion Laboratories and Computer Sciences Corporation 
developing simulations and simulation technology. As Chief Scientist of Agari Mediaware,  
he led a team creating distributed middleware for integrating rich media applications. 

Jorge Seidel is an Engineering Manager in the Computer Systems Research Department at the 
Aerospace Corporation. His research interests include high performance computing, including the 
use of FPGAs nodes in computing clusters; computational wireless networks; and open source 
development. In addition to presenting a tutorial on open source at the Ground Systems 
Architecture Workshop he has taught the introduction to logic design course at USC. He holds a 
BS in Electrical Engineering from the University of Utah and an MS in Computer Engineering 
from the University of Southern California. 

Robert Davis is a Project Leader in the Advanced Information Systems Technology Department 
at The Aerospace Corporation. He spent the 15 years of his career performing research in 
information systems and distributed computing and developing software applications for 
telemetry analysis, project management, and an Enterprise Service Bus. He holds a BS in 
Mathematics from Harvey Mudd College and a MS in Computer Science from UC Davis. 

Joseph Betser is a Senior Project Leader for Strategic Planning, Knowledge Management, and 
Business Development with the Aerospace Corporation. He served as a DARPA PI for 
networking and information assurance and authored multiple publications in these areas.  
He received multiple commendations including the GPS Program Recognition Award, and 
awards for serving as a Program Chair and General Co-Chair of the Ground System Architectures 
Workshop (GSAW). He served as Program Chair for multiple IFIP/IEEE Symposia , and received 
international citations from the IEEE and IFIP for leading global activities. He holds a BS in 
Aerospace Engineering, MS and PhD Degrees in Computer Science, and an executive MBA  
from UCLA. 

 

1 Introduction 

Space launches are costly, high-risk, multi-discipline 
endeavors, and mission payloadsmust be carefully 
engineered to ensure success. Simply surviving the launch is 
an important hurdle since satellite payloads are subjected to 
intense mechanical vibration and acoustic noise. In order to 
monitor, understand, and better predict this environment, 
The Aerospace Corporation is developing a Java-based tool 
suite called Vibroacoustic Intelligent System for Predicting 
Environments, Risk, and Specifications (VISPERS) that has 
tools to allow analysts to clean-up, filter and analyse 
vibroacoustic data (Bradford et al., 2002). Certain 
components of VISPERS are compute-intensive, however, 
and performance could be improved by parallelising those 
applications and running them on whatever resources are 
available. It would also be very useful to allow multiple 
telemetry analysts to use the tools in an interactive fashion 
and process data from different launches simultaneously. 

Hence, it was decided to investigate the implementation of 
VISPERS as a gridenabled service-oriented architecture to 
achieve these goals. 

This paper reports on the continuing project to 
gridenable VISPERS and achieve enhanced performance 
and functionality by using the Globus Toolkit (http://www-
unix.globus.org/toolkit/docs/3.2) to produce gVISPERS.  
We focus on two major service components, gTACT and 
gVAIL, which will be presented in detail shortly.  
Earlier work on gVAIL was reported in Bentow  
et al. (2005). That work was based on Globus 3.2.1 since 
Globus 4.0 was not available when the project was started. 
Now, however, all gVISPERS code, including gVAIL,  
is based on Globus 4.0. 

We begin by discussing telemetry collection and the 
general VISPERS toolkit. We then present the gTACT and 
gVAIL services. This gives us the opportunity to make 
some observations and record some lessons learned about  
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Globus 3.2.1 vs. 4.0. We then present performance data for 
gVAIL, gTACT, and the combined toolkit prior to making 
some concluding remarks. 

2 Telemetry collection and VISPERS 

When a spacecraft is launched it contains many  
sensors, including accelerometers to measure vibration and 
microphones to measure acoustic noise. The data provided  
by these sensors is converted from analog to digital, then 
consolidated into a single stream of digital data and sent by 
radio to Telemetry Data Receiving Stations (TDRS) along 
the path of the spacecraft, as illustrated in Figure 1.  
This telemetry stream will be picked up by the nearest 
receiving station, but will likely include static and other 
anomalies. For example, the signal may briefly disappear 
(drop out) due to the antenna on the spacecraft rotating 
away from the receiving station. 

Figure 1 Telemetry collection 

 

The data that VISPERS is used to analyse is provided by all 
of the telemetry stations along the flight path, both fixed 
stations and temporary stations on aircraft or ships.  
The multiple telemetry streams are placed in files in  
a telemetry database. Once there, they need to be scrubbed 
for noise, and consolidated into a single, best data stream 
prior to final processing. It is possible that hundreds of 
telemetry streams may have to consolidated and analysed to 
identify episodes of excessive vibration during launch. 

This sequence of steps is illustrated in Figure 2.  
(Note that simple line arrows are used to represent 
interactions that involve primarily small amounts of control 
information, while block arrows are used to indicate 
interactions with significant amounts of data.) For historical 
reasons, the user client is called the Time History Editor 
which has a graphical user interface allowing the user to 
view and modify telemetry data files, known as time 
histories, to look for anomalies. From this desktop client,  
an analyst can select telemetry streams from the telemetry 
database front-end. Typically many telemetry streams are 

sent to Telemetry Alignment and Consolidation Tool 
(gTACT) and combined into a single, continuous waveform. 
A relatively small amount of alignment information is 
returned to the client. The client then uses this information 
to run VISPERS Artificial Intelligence Laboratory (gVAIL) 
and analyse possible episodes of interest. We note that once 
the best alignments are determined, less data must be 
retrieved from the telemetry database and realigning it is 
trivial. More importantly, however, we note that gTACT and 
gVAIL can be run in either order. An analyst may want  
to run gVAIL first to roughly identify areas of interest prior 
to getting an exact alignment with gTACT. Hence, for 
gVISPERS to be most useful in the general case, it must be 
possible to run gTACT and gVAIL interactively. 

Figure 2 The gVISPERS workflow 

 

The ultimate goal is, of course, to help engineers design 
parts that are unlikely to break in this severe environment.  
In addition to gTACT and gVAIL, tools are available to 
look for maximum vibrational episodes, analyse damage to 
the telemetry stream edit streams by hand, and construct 
Probability Density Functions (PDFs) for later comparison. 
Since these additional functions are not as compute-
intensive, they still reside within the Time History Editor. 
We now describe gTACT and gVAIL in more detail. 

3 gVISPERS components 

3.1 gTACT 

As noted above, telemetry is received at many different 
ground stations at different times depending on a launch 
vehicle’s trajectory. The harsh launch environment may also 
cause severe noise and data drop-outs in the telemetry 
signal. The result is a set of fragmented telemetry streams 
that somehow need to be consolidated into a single 
waveform for analysis. Hence, the purpose of TACT is to 
align a series of waveforms with some amount of 
chronological overlap and consolidate them into a single, 
contiguous waveform. 

The TACT algorithms provide excellent opportunities 
for parallelisation. gTACT, the grid-enabled version of 
TACT, was implemented to take advantage of some of these 
opportunities. There are two main algorithms TACT uses to 
align waveforms called Diff and Slide. Only the more 
compute-intensive algorithm, Slide, was implemented for 
gTACT and is discussed here. 
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Given a region of overlap between a reference 
waveform ref and the chronologically next waveform next, 
the Slide algorithm takes a small region of points from  
ref refRegion and compares it to a region of points of the 
same length in next. Starting from some index x within  
the chronological overlap, Slide will calculate the absolute 
difference between refRegion and the region of length 
refRegion.size starting at index x in next. This process will 
be repeated for some range of indices [x, y] in the overlap 
region. Slide then returns the index at which the absolute 
difference was minimal. One can think of this process as 
taking refRegion and sliding it along a track region in next, 
storing the index in next at which the minimum absolute 
difference is located as it goes. At the end of this process, 
the index in next is converted into a time offset from  
ref based on the sample rate, among other factors, and the 
waveforms can then be aligned accordingly. 

Each of the absolute difference calculations are 
completely independent of one another: each calculation  
can produce an absolute difference and an offset. The results 
of these independent calculations need only be compared  
at the end of analysis to find the lowest absolute  
difference. As such, it is possible to spread these  
potentially very numerous calculations across several 
analysing nodes. 

3.2 gVAIL 

Given a telemetry stream (aligned or not), an analyst  
wants to look for anomalies which may represent excessive 
vibroacoustic events, or may represent simple errors 
introduced in the telemetry collection process. If the analyst 
decides an anomaly is an error, it may be possible to ‘fix’ 
the error. VISPERS AI Lab (VAIL) uses artificial 
intelligence techniques, specifically neural nets, to locate 
anomalies in the telemetry streams and suggest ways to fix 
them to the human analyst. VAIL looks at the data stream 
by doing a DSP analysis, and one or more neurons fire 
when an anomaly is detected. If the human analyst agrees 
on the location and type of anomaly, the behaviour of those 
neurons is reinforced as necessary. VAIL then suggests a fix 
for the anomaly from several possible tools based on the 
choice the human analyst has made for similar anomalies  
in the past. 

VAIL is extremely compute-intensive. Not only does it 
look at (do a DSP analysis of) every point in the waveform 
and the neighbourhood around that point, but different 
neurons look for different anomalies (noise spikes,  
data dropout, DC drift or signal bleed-through to name just 
a few) so it is useful to split VAIL’s computation across 
multiple machines. This task is facilitated by VAIL’s highly 
parallelisable algorithm. Because VAIL’s analysis on one 
part of a file is independent of its analysis on another part of 
the file, a task can be divided so that each machine analyses 
a separate section of a data file. To leverage the 
computational power of machines across heterogeneous 
networks, it is advantageous to employ grid computing, 
distributed computing that allows computational resources 

to be shared across disparate networks and organisations 
(Foster and Kesselman, 2004). 

3.3 Service scheduler 

Both gTACT and gVAIL are available to the analyst 
through the gVISPERS Time History Editor client.  
To run instances of these services, however, the client  
requires a scheduler service, an analyser factory service,  
a node information publisher service, and Globus’  
index service (http://www-unix.globus.org/toolkit/docs/3.2/ 
infosvcs/ws/key/index.html). The client submits analyses to 
the scheduler service, which queries Globus’ index service 
to find out which nodes are available. The scheduler  
(or resource broker) then decides which node should 
perform which part of the analysis. Currently, it makes this 
decision using a round-robin algorithm in which each node 
is assigned an equal amount of work, defined by the number 
of data points the node is to analyse. Each node runs both 
the analyser service, which provides an interface into the 
TACT or VAIL code, as well as the node information 
publisher service. 

In the earlier Globus 3.2.1 version of gVAIL, the node 
information publisher exposed a Service Data Element 
(SDE) called gVAILNodeInfo and caused the index 
service to subscribe to this SDE. The scheduler would use 
the SDE’s originator attribute to determine the node’s 
IP address and its goodUntil attribute to determine 
whether the node is available. In the Globus 4.0 version, 
which is based on the Web Services Resource Framework  
(WSRF) (http://www.oasis-open.org/com-mittees/tchome. 
php?wgabbrev=wsrf), these SDEs have become resource 
properties. In the future, more information will be published 
through resource properties, such as the node’s load, which 
the scheduler could use to implement a more effective 
resource brokering algorithm. 

The sequence of steps taken when the user submits an 
analysis is depicted in Figure 3. The steps are as follows: 

1 when the user tells the client to begin an analysis,  
the client talks to the scheduler, telling it which data  
file the user wants to analyse 

2 the scheduler queries the index service, asking  
for a list of machines available to perform analyses 

3 the index service responds with the list of nodes 

4 the scheduler decides which node should perform 
which part of the analysis and passes this information  
on to the client 

5 the client tells the analyser service on each node  
to perform its assigned portion of the analysis 

6 each node spawns off an instance of the analyser 
service to perform the analysis, sending status messages 
to the client to keep it informed of the node’s progress 

7 when the node indicates that it has finished, the client 
requests the results 

8 the node sends the results to the client. 
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Figure 3 gVISPERS service interactions during an analysis 

 

4 Design considerations 

4.1 Service model vs. job model 

The primary objective of the project was to determine  
the feasibility of using the Globus Toolkit to grid-enable 
applications in a production environment. Consequently,  
the authors looked at both the job (http://www.globus. 
org/toolkit/docs/3.2/gram/key/index.html) and service  
models (The Open Grid Services Architecture, 2005) for  
grid-enabling an application. Eventually, however, the 
service model was chosen. 

The models differ in a number of ways, but most 
important for this project are their inter-node 
communication mechanisms. In the job model,  
the process sending information outputs it to stdout,  
which is sent to the receiving node. This node must  
then parse the stream of text. Using the Web Service  
Resource Framework (http://www.oasis-open.org/com-
mittees/tchome.php?wgabbrev=wsrf) and Web Services 
Notification (WSN) (http://www.oasis-open.org/ 
committees/tchome. php?wgabbrev=wsn), nodes can 
communicate through either grid service function calls or 
through resource properties. Grid services may publish 
resource properties, and other services can subscribe to 
them. Subscribers may be notified when the property’s 
value changes. 

The service model has many advantages over the  
job model that make it a more attractive candidate for  
grid-enabling VAIL. It is desirable to have nodes send status 
messages to the client as they are performing an analysis, 
and property notifications work well for sending such small 
messages. As discussed in the next section, properties are 
also useful when the client retrieves results. Also, the 
service model is more object-orientated and can be used to 
grid-enable existing Java applications more seamlessly than 
the job model. 

As an aside, it is important to note that the job model 
does have some advantages over the service model.  
It has been used more extensively, so more third party 
schedulers and tools are available for it. Also, the job 
component of Globus has gone through many more stable 
releases and has been more thoroughly tested. 

4.2 Grid communication 

Using grid services, Globus provides support for 
communication between different parts of the grid  
through three different mechanisms: function calls, property 
exposure, and property-based notifications. Each has 

advantages and disadvantages, and gVISPERS utilises  
all three. 

4.2.1 Function calls 

Globus provides support for function calls according to the 
standard grid service model: function (method) names for 
the grid service are exposed and can be invoked directly by 
the client. When the client makes a remote function call on 
the service, the service performs some computation and 
returns a value. The primary limitation of function calls is 
that the essential nature of most grid applications calls for  
a high degree of concurrency, while function calls block. 
This can be dealt with by using threading either on the 
client, the service, or possibly some combination of the two. 
The Time History Editor client uses function calls to invoke 
the scheduler and accepts the blocking behaviour, since it 
needs the scheduling results before it can proceed. It needs 
to communicate with multiple analyser services in parallel, 
however, so threading must be used for this. For the sake of 
simplicity, gTACT and gVAIL use threading exclusively on 
the service end. The client makes a function call that returns 
immediately to start the analysis. Once the analysis is 
started on the grid nodes, the other two mechanisms are 
utilised for further communication. 

4.2.2 Property exposure 

Globus 3.2.1 supported the notion of SDEs which became 
resource properties in GT4. Resource properties behave 
essentially like public fields in a object. In this case, the 
service itself is the object. The service can store data in 
them, and the client can retrieve that data. Clients can also 
set the values of properties, although gTACT and gVAIL do 
not utilise this feature. An analyser service stores the results 
it generates in a resource property. Once the client 
determines that a service has completed its analysis  
(see next section for how), it retrieves the results from the 
appropriate property associated with the service. 

4.2.3 Notifications 

In addition to simply storing and exposing data, resource 
properties form the basis for notifications in Globus 4.0. 

To receive notifications, the client subscribes to 
individual properties on a specific service. The service can, 
at any time, notify all listeners of a change to its properties, 
even if no change has actually taken place. These are push 
notifications in that the data stored in the property is sent to 
the client with the notification. Pull notifications differ in 
that the only data sent is a notice indicating that a change 
has occurred. gTACT and gVAIL use notifications to keep 
the client up-to-date on the status of the services, including 
completion. 

4.3 Reliable index service 

The difficulties originally faced with a reliable index  
service in GT3 have been resolved by the new index service 
implementation in GT4 (http://www-unix.globus.org/ 
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toolkit/docs/4.0/ common/key/index. html). GT3’s index 
service required the implementers of the gVAIL code  
to add a dynamic resubscription method to their 
gvail_nodeinfopublisher service in order to ensure accurate 
service creation and destruction. This was necessary since, 
once a service was published to the GT3 index service, there 
were issues in removing it even after the service had died. 
The gVAIL team implemented this by using the SDE 
gooduntil attribute, which any querying service would check 
to see if that service had yet expired and which the dynamic 
resubscription mechanism would periodically refresh. 

Combining the use of Virtual Organisations (VOs) with 
the WSRF-compliant GT4 index service, this was no longer 
a problem in the updated code. Each analyser  
node had its own Globus container running and, therefore,  
its own index service. Local grid services (i.e., the  
NodeInfoPublisher Services and the AnalyzerServices) were 
published first to these local index services which were,  
in turn, themselves subscribed to a central index service 
(http://www.globus.org/toolkit/docs/4.0/info/WSMDSSamp
les.html). The central index service could then be 
configured to refresh these index service subscriptions 
periodically (the default being ten minutes), at which point 
all non-existent services would be weeded out and removed. 

5 gVISPERS performance 

Since gVISPERS is a continuing development project 
involving different teams, its components have been built 
and tested in different environments as feasible. The earliest 
work was done on gVAIL (Bentow et al., 2005) with 
subsequent work being done on gTACT. For completeness, 
we present basic performance information for gVAIL done 
under GT 3.2.1 which focuses on the performance of the 
gVAIL function rather than that of the Globus Toolkit.  
For gTACT, however, we investigate its performance in the 
context of being a GT4 service. We also present data for the 
use of the gTACT and gVAIL services together under GT4. 

5.1 gVAIL performance 

To test gVAIL’s performance, it was deployed on four 
2.8 GHz Pentium 4 machines with 640 MB RAM running  
Red-hat Linux 9. Each machine ran Globus Toolkit 3.2.1  
(web service base only) from a local drive. After this initial 
deployment, another 16 machines (2.8 GHz Pentium 4’s 
with 1 GB RAM) that form part of a cluster computer at 
Harvey Mudd College were added. These machines used 
Redhat Enterprise Linux and the same versions of  
Globus mentioned above. All 20 machines were connected 
via 100 Mbps ethernet switches to a 1 Gbps ethernet 
backbone. Globus was placed on a network drive shared 
among all 16 machines, and data files were distributed on 
the shared drive. (When running these experimental 
systems, we cannot read data directly from the operational 
telemetry database. Hence, for our experimental goals here, 
we assume that the client has staged data close to the service 
hosts since we wish to focus on the performance of the grid 

services and ignore for now any front-end database 
operations.) 

Software testing was performed using 
gVAILBatchMod-eClient, a special client designed to 
perform many consecutive gVAIL analyses. 
gVAILBatchModeClient reads an XML configuration file 
that describes the analyses to be run. It then executes each 
analysis sequentially. 

A few factors that affect the runtime of gVAIL should 
be noted. First, VAIL uses short circuit evaluation to 
determine if a particular point can be identified as an 
anomaly, so the overall runtime is dependent on the number 
of anomalies in a file. Thus, if one node receives an unfair 
number of anomalies, it will take much longer than the rest 
of the nodes, delaying completion of the analysis. Finally, in 
order to minimise the systematic error that may be 
introduced by repeatedly using the same machine, the 
scheduler randomly selected which nodes to use. 

Four data files with varying total points and anomalous 
points were analysed using a variable number of nodes.  
The characteristics of these files are shown in Table 1.  
The number of nodes ranged from one to 20 in increments 
of one, and for each number of nodes, each file was 
analysed 20 times. Finally, a serial VAIL analysis was 
performed on each file 40 times to establish a performance 
baseline. 

Table 1 Characteristics of the sample files 

 Total points Anomalous points 
File 1 3,200,000 72 
File 2 1,784,000 640 
File 3 1,783,993 629 
File 4 219,071 813 

The speedup curves for all files using 1–20 nodes are shown 
in Figure 4. Speedup was computed by using the serial 
VAIL performance. For each file, this serial performance 
was 150, 81, 210 and 17 s, respectively. 

As expected, analysing the smaller file using gVAIL on 
one node was slower than analysing it using serial VAIL. 

However, analysing any other file using gVAIL on one  
node was slightly faster on average than using serial VAIL. 
This is not statistically significant, however, because the 
baseline measurement’s standard deviation in all cases 
nearly encompasses the standard deviation of the one node 
point. 

Files 2 and 3 show similar results. This is expected 
because they contain comparable numbers of both total  
data points and anomalous points. However, note that  
File 2’s absolute runtime is much lower due to the type and 
distribution of anomalies. For testing purposes, File 2 was 
generated artificially so that it would have an even 
distribution of anomalies. Thus, when the scheduler divides 
up the file based on number of points, it more evenly 
divides the actual work. 

During the analyses of File 4, it started to behave 
erratically as the number of nodes increased beyond eight.  
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This behaviour was also seen, to a lesser degree, in the other 
waveforms. Part of this is due to the large number  
of back-to-back analyses performed. The erratic analyses 
were performed after 200 back-to-back analyses, and the 
performance of the grid degraded noticeably over time 
unless the nodes were restarted periodically. The period 
required varied with the size of the file. For instance, with 
the large file, services begin to fail at the file load stage after 
approximately 80 analyses. With the smaller file, services 
began to fail at this stage after approximately 500 analyses. 
The dependence on file size suggests that garbage collection 
is not working perfectly. It is also likely that some of the 
erratic behaviour was caused by load on the cluster nodes 
from other projects. Load on the nodes would produce more 
pronounced aberrations as the number of nodes utilised 
increased. 

Figure 4 gVAIL speedup 

 

However, most of the contribution to increasing runtime 
seems to be communication costs, as demonstrated by 
Figure 5. Also, from Figure 5 it is possible to observe that 
the communications time is file size independent. Thus, a 
more advanced scheduler for future work in this project 
might consider how to balance communication cost with 
analysis cost for more efficiency. 

Figure 5 gVAIL communication times 

 

Overall, grid-enabling VAIL increased its performance. 
Moreover, the number of nodes at which speedup reaches  
a plateau varies with file size and anomaly distribution,  
as expected. 

5.2 gTACT performance 

The gTACT service uses essentially the same structure as 
gVAIL but our interest here is examining the end-to-end 
performance of the service call chain from the client’s 
perspective, rather than a service’s internal performance. 
Hence, we used netlogger (Tierney. and Gunter, 2003) from 
Lawrence Berkeley Lab to instrument both the client and 
server machines and collect timestamped event log files to 
do this analysis. The causal chains of events in these log 
files can be plotted as lifelines that graphically illustrate the 
relative performance of each step of the call chain. 

The gTACT experiments were run on seven machines. 
One was a 2.4 GHz Pentium 4 with 1 GB RAM and  
a 75 GB hard drive running Red Hat 3.4.4-2. The six  
other machines were 2.4 GHz Celerons, each with 512 MB 
of RAM and a 40 GB hard drive running Red Hat Linux 
3.3.3–7. These machines were connected by 100 Mbs 
ethernet. Reasonable clock synchronisation was 
accomplished using the Network Time Protocol. 

We examine the gTACT service invocation performance 
using three data sets as shown in Table 2. These data sets 
are of different sizes and are called small, medium, and 
large. (These designations are only relevant for this paper.) 
We give the total number of points in each file and also the 
number of overlap points since this is what will actually 
drive the TACT analyser performance. 

Table 2 Characteristics of additional sample files 

 Total points Overlap points 
Small 122,412 5,000 
Medium 604,348 10,000 
Large 3,023,999 730,000 

 

The lifelines for gTACT service invocations on these  
three files are shown in Figure 6. All events occur in 
BEGIN-END pairs which define time epochs that have the 
following meanings: 

• Analysis. This epoch spans the entire gTACT service 
invocation from the client side including the return of 
results, i.e., the the time offset between the waveforms. 

• Client.setup. During this epoch, local client-side 
variables are set and the Globus notification facility is 
initiated. 

• Analysis.setup. Here two waveforms are read from disk  
and the overlap region between them is found. 

• Scheduling. During this epoch, the client contacts the 
SchedulerService and retrieves a list of available 
analyser nodes and assigns a range of points in the 
overlap region for each to analyse. 



 Grid-enabling a vibroacoustic analysis toolkit 175 

• Communication. Here the client contacts the 
AnalyzerService on each node and initiates an actual 
analysis, i.e., the AnalyzerService starts a thread. 

• Client.Waiting. Finally the client waits for notifications 
from the analyser threads that were initiated in the 
Communication phase. This epoch is complete  
when all analysers have notified the client that  
they are done and have returned their results. 

Figure 6 gTACT lifelines 

 

We note that the events gTact.Analysis.BEGIN and 
gTact.Client.Setup.BEGIN are not actually plotted 
since these event times are essentially zero and we are using 
a log scale on the time axis. 

Along with the invocation event chain, individual  
TACT analyser executions are also shown at the top  
of the chart with the tact.analyzer.BEGIN and 
tact.analyzer.END events. For each data set, seven 
analysers are run. Also, rather than letting the client 
machine become idle during analyses, this machine was 
made available for scheduling one analyser. 

Clearly, for the small data set, the service invocation 
overhead dominates the execution time. Over a 16.3 s 
epoch, the analysers are running for less than seven seconds. 
While each analysers runs about two seconds, it takes  
about 8 s to get the first one started. The scheduling and 
communication functions take the most time, at about  
4.9 and 7.9 s, respectively. 

For the medium and large data sets, however, the real 
work being done by the analysers comes to dominate the 
end-to-end execution time. The analysis setup, scheduling 
and communication times are all relatively constant, while 
the analysers run much longer. The first analysers start up 
between eight and ten seconds and continue to run for 
approximately 30 and 1978 s, respectively. 

While service invocation overhead is non-trivial, we see 
that it is quickly dominated by the analyser execution times 
when the data size exceeds roughly half a million points. 
We also note that the TACT function can be parallelised by 
both decomposing a single alignment over several nodes, 
and by performing multiple alignments simultaneously. 
Hence, while the service invocation overhead is non-trivial, 
there is clearly sufficient parallelism in the TACT function 
to amortise the overhead with suitably sized data sets.  
More to the point, though, TACT (and VAIL) are suitable 

for use in a service architecture allowing for tremendous 
flexibility with regards to user environments. 

5.3 Concatenated service performance 

Another important aspect of service-oriented computing is 
the concatenation of service invocations. gTACT and 
gVAIL will be run successively with data being transferred 
between them through the client. While this data will be 
relatively small, it is still important to quantify and 
understand the overhead of transferring it through the client 
and the possible benefits of doing a ‘third-party’ transfer 
directly between the gTACT and gVAIL hosts. 

To investigate this issue, we will run both services on 
the data sets identified in Table 2. We will, however, 
simplify the event chain we are examining as shown  
in Figure 7 giving the lifeline for a typical service 
concatenation on the small data set. In this plot, each  
service has a BEGIN-END event pair with an analysis  
START-FINISH event pair within it. The BEGIN-END 
event pair is the total service execution time on the client 
side while the analysis START-FINISH event pair brackets 
the start of the first and the completion of the last of seven 
analysers. Hence, one can easily determine how much start-
up and completion overhead each service has, and the time 
between the completion of the TACT analysers and the start 
of the VAIL analysers. 

Figure 7 A concatenated gTACT and gVAIL lifeline  
for the small data set 

 

When examining service concatenation for the larger data 
sets, however, such lifeline plots become difficult to read 
since they can span several orders of magnitude with long 
and short intervals interspersed. Hence, we plot the data as 
shown in Figure 8 giving the start, analysis, and end 
time epochs for each data set. We plot the gTACT analysers 
against the number of overlap points, while we plot the 
gVAIL analysers against the total number of points. We see 
that for both service start-up and completion, there are  
no trends related to the number of data points involved. 
Some variability is seen which is reasonably due to network 
delays. For both of the analysers, however, the execution 
does increase, and quite dramatically in the case of gTACT. 
Hence, for the larger data sets, the analysis time dominates 
the service overhead. While the service overhead is larger 
than expected, it is still tolerable. 
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When interpreting these results, we must remember 
several gVISPERS design choices. The start-up time 
includes the SchedulerService time for the discovery and 
scheduling of analysers. Assuming that the output of one 
analyser does not affect the selection and scheduling 
requirements of a subsequent analyser, it should be possible 
to schedule the gVAIL analyses without waiting for the 
gTACT analysers to complete, thus improving performance. 
We note that it may also be advantageous to create  
a scheduling dependency where the gTACT and gVAIL 
analysers hosts are very ‘close’ together over the network, 
or are even the same hosts. Observing such a dependency, 
however, would create a co-scheduling issue which carries 
its own overhead. We must also remember that the raw 
telemetry data is read by the analyser hosts while primarily 
control information is issued by the client. This greatly 
reduces the client-server communication requirements.  
In the scenario where multiple gVISPERS clients are 
requesting many data sets, the bandwidth demand for raw 
telemetry data could become an issue. 

Figure 8 Concatenated gTACT and gVAIL performance 

 

6 Related work 

This paper has focused on the support of telemetry 
processing using grid technology. We point out, however,  
that the term grid telemetry has been applied to the 
monitoring of grids themselves, such as Grid2003 (which 
has become the Open Science Grid) (Mambelli et al., 2004). 
The ‘distant measuring’, or telemetry, of a distributed 
infrastructure, such as a grid, is certainly not unreasonable 
but is clearly not the meaning intended here. However, 
given that the traditional uses of telemetry involve 
monitoring remote and possibly distributed systems, the 
application of grid technology to this field is completely 
appropriate. This has already been recognised by 
organisations with significant telemetry needs such as 
NASA (Hinke, 2004). 

A fundamental design issue for such monitoring systems 
is how ‘far up’ the telemetry chain can grid technology  
be deployed. This project has dealt with telemetry that  

has already landed in a telemetry database. It is not 
unreasonable that ‘the grid’ could be pushed closer  
to the system, and sensors, of interest. The DAME project 
(Austin et al., 2005), for instance, collects sensor data from 
in-service jet engines for maintenance and reliability 
analyses. While this data is currently downloaded after the 
aircraft has landed, the fact that network connectivity during 
flight is becoming commonplace means that such engine 
sensors could actually be on-line (even though it will 
probably remain more attractive for the airline to sell the 
available bandwidth to passengers to check their email and 
surf the web). In general, the notion of integrating grids, 
instruments, sensors and sensor networks offers significant 
benefits and has always been a prominent concept in the 
grid community. The Common Instrument Middleware 
Architecture (CIMA) is endeavouring to develop a web 
services-based architecture along with a sensor ontology  
to facilitate grid-sensor interactions (McMullen et al., 2005). 
The notion of integrating grids and sensors can also be 
extended to grids and remote sensing using on-orbit, 
satellite-based sensors (Gasster et al., 2006). 

We mentioned that VISPERS services will, in practice, 
be used interactively, even though such interactive use was 
not the focus of this paper. For investigations into 
interactive grid use, we can point to projects involving 
interactive graphics (Kumar et al., 2003) and computational 
steering (Ali et al., 2004; Pickles et al., 2005). 

This paper was also interested in the performance  
of the Globus Toolkit from the application level. We were 
primarily interested in how long it takes to initiate a service 
and a pair of services. While this did give us insight into 
how the Globus ‘overhead’ would affect end-to-end 
application performance, it is certainly possible to perform a 
more detailed analysis of the entire Globus service 
invocation sequence. Such as analysis is reported in Torres 
(2005) where an early version of GT4 was integrated with  
a Java Instrumentation Suite allowing detailed timelines to 
be recorded for Java client and server threads in the SOAP 
interaction sequence. This level of analysis would be useful 
for tuning GT4 implementations but is generally too 
detailed for evaluating impact on applications. 

Besides analysing individual service invocations, it is 
also possible to evaluate aggregate throughput performance. 
Such throughput performance is thoroughly investigated in 
this Masters Thesis (Raicu, 2005). This work developed  
the Distributed Performance (DiPerf) analysis tool and was 
used to compare performance between multiple versions of 
the Globus Toolkit for operations including the GRAM, 
GridFTP, and grid services creation and invocation.  
Such throughput performance analysis would be very 
interesting for gVISPERS, especially when multiple  
gVIS-PERS clients are invoking multiple analysis on shared 
cluster resources. We will consider such work when the 
gVIS-PERS user base requires it. 

This project was also forced to consider the differences 
between GT3 and GT4 in both performance and 
functionality. The DiPerf study cited above examined 
throughput performance for several Globus versions.  
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The performance and functionality of other Globus  
services, such as the MDS, have also been systematically 
examined (Schopf et al., 2006). Other experiences  
at the application level in moving from GT3 to GT4  
have also been reported. One example is given by the Grid 
Execution Management for Legacy Code Architectures 
(GEMLCA) project (Delaitre, 2005). Since many projects 
were facing this issue, the UK e-Science project issued a 
report (Harmer et al., 2005) looking at specific issues for 
specific parts of the toolkit. While some parts were 
relatively unaffected, application code re-factoring  
could be necessary if certain built-in OGSI classes were 
used that changed under the WSRF structure. In some cases, 
scripts could be used to convert between the GT3 and  
GT4 service forms. A basic how-to guide for such 
conversions is available (Harmer and McCabe, 2005) and a 
book is now available for GT4 programming (Sotomayor 
and Childers, 2005). 

7 Future work 

Clearly from the human analyst’s perspective, the goal is to 
provide a simple-to-use toolkit that has superior capabilities 
and performance. They need to flexibly select sensor data, 
process it using a variety of tools, and quickly arrive  
at the desired analytical conclusions. Besides the two 
computationally intensive services discussed here, other 
tools are in use and in development that will facilitate with 
data clean-up. Hence, the goal is to make the entire data 
clean-up process run seamlessly from data acquisition using 
dbFront, through anomaly removal and the consolidation of 
multiple telemetry streams into one good stream. Once that 
stream is created, individual analysis tools can be invoked, 
the results analysed, and, if necessary, the data can be  
re-scrubbed based on those results. 

This user scenario clearly points to the need to integrate 
a end-user workflow engine into the gVISPERS client.  
This would enable analysts to compose their own tool chain 
executions to serve their specific requirements. This would 
also make it more feasible for an analyst to include more 
telemetry streams in their analyses and use the shared 
corporate resources more effectively. Each computational 
service could be allocated to appropriate resources 
depending on the associated computational intensity and 
desired time-to-solution. With a service architecture 
approach, multiple gVISPERS clients could be serviced 
simultaneously. At this point, throughput analysis would 
become much more necessary. 

8 Conclusion 

Grid-enabling VISPERS using Globus Toolkit is a viable 
way to improve performance and provide enhanced 
capabilities. We have shown, for example, that using as few 
as 11 grid nodes, gVAIL’s runtime improved by a factor of 
eight. The service architecture approach also provides 
valuable flexibility with good performance when used with 
suitably sized data sets. 

Since the start of this project, the Globus Alliance 
officially migrated to Globus Toolkit 4 which adopts the 
WSRF standards family in order to implement grid  
services. Though the differences were primarily syntactical,  
a significant effort was put forth updating the Globus 
Toolkit 3 OGSI code to its WSRF analog. As was noted in 
an earlier paper (Bentow et al., 2005), programming  
a Globus grid service still has a significant learning curve, 
especially when attempting to utilise Globus-provided tools 
from within the service’s code (e.g., the index service).  
This difficulty continues to be caused by a lack of adequate 
documentation. 

In the larger context, however, our experience also 
shows that the service-oriented architecture approach, using 
grid computing tools, can provide a more flexible system 
design, in addition to improved performance and increased 
utilisation of resources. With proper communication and 
execution scheduling, performance and utilisation could be 
improved even further. We also wish to emphasise that  
a workflow management engine is being integrated  
with the Time History Editor that will allow the flexible 
control of all toolkit services, include gTACT and gVAIL. 
Once this is done, we will thoroughly investigate the  
use of integrated communication and execution scheduling. 
Clearly we expect to have a powerful yet flexible system 
that can process more data more quickly than previously 
possible, enabling a greater understanding of the launch 
vehicle environment. 
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