
168 Int. J. High Performance Computing and Networking, Vol. 5, No. 3, 2008

Copyright © 2008 Inderscience Enterprises Ltd.

Grid-enabling a vibroacoustic analysis toolkit

Brian Bentow, Jonathan Dodge, Aaron Homer,
Christopher D. Moore and Robert M. Keller
Harvey Mudd College,
Claremont, California, USA
E-mail: bbentow@cs.hmc.edu
E-mail: jdodge@cs.hmc.edu E-mail: ahomer@cs.hmc.edu
E-mail: cdmoore@cs.hmc.edu E-mail: keller@cs.hmc.edu

Craig Lee*, Mark Thomas, Matthew Presley,
Jorge Seidel, Robert Davis and Joseph Betser
The Aerospace Corporation,
El Segundo, California, USA
E-mail: lee@aero.org E-mail: mathomas@aero.org
E-mail: presley@aero.org E-mail: seidel@aero.org
E-mail: robdavis@aero.org E-mail: betser@aero.org
*Corresponding author

Abstract: A vibroacoustic analysis toolkit for launch vehicle telemetry was refactored as a
service architecture using Globus Toolkit 4.0. We grid-enabled two tools in the analysis flow,
managing their remote execution workflow from a desktop client. We examine the performance
of the tools and the processing time for the entire tool chain. The results indicate that coordinated
communication and execution scheduling as part of workflow management can significantly
improve overall efficiency. Our experience also shows that the service-oriented architecture
approach, using grid computing tools, can provide a more flexible system design, in addition to
improved performance and increased utilisation of resources.

Keywords: vibroacoustic telemetry analysis; grid service performance.

Reference to this paper should be made as follows: Bentow, B., Dodge, J., Homer, A.,
Moore, C.D., Keller, R.M., Lee, C., Thomas, M., Presley, M., Seidel, J., Davis, R. and Betser, J.
(2008) ‘Grid-enabling a vibroacoustic analysis toolkit’, Int. J. High Performance Computing and
Networking, Vol. 5, No. 3, pp.168–178.

Biographical notes: Brian Bentow received the BS in Computer Science from Harvey Mudd
College in 2005. He is currently Manager of Product Development at InstaMed in Irvine,
California, which develops software for the healthcare industry.

Jonathan Dodge received the BS in Computer Science from Harvey Mudd College in 2005.

Aaron Homer received the BS in Computer Science from Harvey Mudd College in 2005. He is a
software developer at Laserfiche in Long Beach, California.

Christopher D. Moore received the BS in Physics from Harvey Mudd College in 2005. He has
since worked at Northrop Grumman’s Navigation Systems Division in Woodland Hills, CA
developing embedded systems for sensor fusion applications.

Robert M. Keller received the BS and MS Degrees from Washington University, and the PhD
from the University of California, Berkeley. He has been on the faculty at Princeton University,
the University of Utah, and the University of California, Davis prior to joining Harvey Mudd
College, where he is a Professor and Director of the Computer Science Clinic. His research
includes contributions to parallel computing, languages, and music software, among others.

Craig Lee is a Senior Scientist at The Aerospace Corporation and has worked in parallel and
distributed computing for the last 25 years. He has conducted DARPA and NSF sponsored
research in the areas of grid computing, optimistic models of computation, active networks, and
distributed simulations, in collaboration with USC, UCLA, Caltech, ANL, and the College of
William and Mary. He is on the steering committees for Grid XY and CCGrid and has served as
a panelist for the NSF, DOE, NASA, and INRIA. He has published over 50 technical works,
including four book chapters and seven edited volumes and issues. He is currently serving as

 Grid-enabling a vibroacoustic analysis toolkit 169

President of the Open Grid Forum. He has a PhD in Computer Science from the University of
California, Irvine.

Mark Thomas is a member of the Technical Staff at the Aerospace Corporation, and is currently
pursuing a combined MS in Computer Science and MBA at the University of California,
Los Angeles. Mark is an expert on Grid Computing using the Globus tools and established the
hardware and software infrastructures for the Enterprise Source Software environment at the
Aerospace Corporation. His other interests include high performance computing using
heterogeneous processor architectures. He holds a BS in computer science from the University of
California at Berkeley.

Matthew Presley is a Senior Project Leader at the Aerospace Corporation researching distributed
computing, including service-oriented architectures and transparent distributed execution of
applications. He received a BS Mathematics from Harvey Mudd College and a PhD in Computer
Science from UCLA where he worked on the verification of parallel discrete event simulation
engines. He has worked at Jet Propulsion Laboratories and Computer Sciences Corporation
developing simulations and simulation technology. As Chief Scientist of Agari Mediaware,
he led a team creating distributed middleware for integrating rich media applications.

Jorge Seidel is an Engineering Manager in the Computer Systems Research Department at the
Aerospace Corporation. His research interests include high performance computing, including the
use of FPGAs nodes in computing clusters; computational wireless networks; and open source
development. In addition to presenting a tutorial on open source at the Ground Systems
Architecture Workshop he has taught the introduction to logic design course at USC. He holds a
BS in Electrical Engineering from the University of Utah and an MS in Computer Engineering
from the University of Southern California.

Robert Davis is a Project Leader in the Advanced Information Systems Technology Department
at The Aerospace Corporation. He spent the 15 years of his career performing research in
information systems and distributed computing and developing software applications for
telemetry analysis, project management, and an Enterprise Service Bus. He holds a BS in
Mathematics from Harvey Mudd College and a MS in Computer Science from UC Davis.

Joseph Betser is a Senior Project Leader for Strategic Planning, Knowledge Management, and
Business Development with the Aerospace Corporation. He served as a DARPA PI for
networking and information assurance and authored multiple publications in these areas.
He received multiple commendations including the GPS Program Recognition Award, and
awards for serving as a Program Chair and General Co-Chair of the Ground System Architectures
Workshop (GSAW). He served as Program Chair for multiple IFIP/IEEE Symposia , and received
international citations from the IEEE and IFIP for leading global activities. He holds a BS in
Aerospace Engineering, MS and PhD Degrees in Computer Science, and an executive MBA
from UCLA.

1 Introduction

Space launches are costly, high-risk, multi-discipline
endeavors, and mission payloadsmust be carefully
engineered to ensure success. Simply surviving the launch is
an important hurdle since satellite payloads are subjected to
intense mechanical vibration and acoustic noise. In order to
monitor, understand, and better predict this environment,
The Aerospace Corporation is developing a Java-based tool
suite called Vibroacoustic Intelligent System for Predicting
Environments, Risk, and Specifications (VISPERS) that has
tools to allow analysts to clean-up, filter and analyse
vibroacoustic data (Bradford et al., 2002). Certain
components of VISPERS are compute-intensive, however,
and performance could be improved by parallelising those
applications and running them on whatever resources are
available. It would also be very useful to allow multiple
telemetry analysts to use the tools in an interactive fashion
and process data from different launches simultaneously.

Hence, it was decided to investigate the implementation of
VISPERS as a gridenabled service-oriented architecture to
achieve these goals.

This paper reports on the continuing project to
gridenable VISPERS and achieve enhanced performance
and functionality by using the Globus Toolkit (http://www-
unix.globus.org/toolkit/docs/3.2) to produce gVISPERS.
We focus on two major service components, gTACT and
gVAIL, which will be presented in detail shortly.
Earlier work on gVAIL was reported in Bentow
et al. (2005). That work was based on Globus 3.2.1 since
Globus 4.0 was not available when the project was started.
Now, however, all gVISPERS code, including gVAIL,
is based on Globus 4.0.

We begin by discussing telemetry collection and the
general VISPERS toolkit. We then present the gTACT and
gVAIL services. This gives us the opportunity to make
some observations and record some lessons learned about

170 B. Bentow et al.

Globus 3.2.1 vs. 4.0. We then present performance data for
gVAIL, gTACT, and the combined toolkit prior to making
some concluding remarks.

2 Telemetry collection and VISPERS

When a spacecraft is launched it contains many
sensors, including accelerometers to measure vibration and
microphones to measure acoustic noise. The data provided
by these sensors is converted from analog to digital, then
consolidated into a single stream of digital data and sent by
radio to Telemetry Data Receiving Stations (TDRS) along
the path of the spacecraft, as illustrated in Figure 1.
This telemetry stream will be picked up by the nearest
receiving station, but will likely include static and other
anomalies. For example, the signal may briefly disappear
(drop out) due to the antenna on the spacecraft rotating
away from the receiving station.

Figure 1 Telemetry collection

The data that VISPERS is used to analyse is provided by all
of the telemetry stations along the flight path, both fixed
stations and temporary stations on aircraft or ships.
The multiple telemetry streams are placed in files in
a telemetry database. Once there, they need to be scrubbed
for noise, and consolidated into a single, best data stream
prior to final processing. It is possible that hundreds of
telemetry streams may have to consolidated and analysed to
identify episodes of excessive vibration during launch.

This sequence of steps is illustrated in Figure 2.
(Note that simple line arrows are used to represent
interactions that involve primarily small amounts of control
information, while block arrows are used to indicate
interactions with significant amounts of data.) For historical
reasons, the user client is called the Time History Editor
which has a graphical user interface allowing the user to
view and modify telemetry data files, known as time
histories, to look for anomalies. From this desktop client,
an analyst can select telemetry streams from the telemetry
database front-end. Typically many telemetry streams are

sent to Telemetry Alignment and Consolidation Tool
(gTACT) and combined into a single, continuous waveform.
A relatively small amount of alignment information is
returned to the client. The client then uses this information
to run VISPERS Artificial Intelligence Laboratory (gVAIL)
and analyse possible episodes of interest. We note that once
the best alignments are determined, less data must be
retrieved from the telemetry database and realigning it is
trivial. More importantly, however, we note that gTACT and
gVAIL can be run in either order. An analyst may want
to run gVAIL first to roughly identify areas of interest prior
to getting an exact alignment with gTACT. Hence, for
gVISPERS to be most useful in the general case, it must be
possible to run gTACT and gVAIL interactively.

Figure 2 The gVISPERS workflow

The ultimate goal is, of course, to help engineers design
parts that are unlikely to break in this severe environment.
In addition to gTACT and gVAIL, tools are available to
look for maximum vibrational episodes, analyse damage to
the telemetry stream edit streams by hand, and construct
Probability Density Functions (PDFs) for later comparison.
Since these additional functions are not as compute-
intensive, they still reside within the Time History Editor.
We now describe gTACT and gVAIL in more detail.

3 gVISPERS components

3.1 gTACT

As noted above, telemetry is received at many different
ground stations at different times depending on a launch
vehicle’s trajectory. The harsh launch environment may also
cause severe noise and data drop-outs in the telemetry
signal. The result is a set of fragmented telemetry streams
that somehow need to be consolidated into a single
waveform for analysis. Hence, the purpose of TACT is to
align a series of waveforms with some amount of
chronological overlap and consolidate them into a single,
contiguous waveform.

The TACT algorithms provide excellent opportunities
for parallelisation. gTACT, the grid-enabled version of
TACT, was implemented to take advantage of some of these
opportunities. There are two main algorithms TACT uses to
align waveforms called Diff and Slide. Only the more
compute-intensive algorithm, Slide, was implemented for
gTACT and is discussed here.

 Grid-enabling a vibroacoustic analysis toolkit 171

Given a region of overlap between a reference
waveform ref and the chronologically next waveform next,
the Slide algorithm takes a small region of points from
ref refRegion and compares it to a region of points of the
same length in next. Starting from some index x within
the chronological overlap, Slide will calculate the absolute
difference between refRegion and the region of length
refRegion.size starting at index x in next. This process will
be repeated for some range of indices [x, y] in the overlap
region. Slide then returns the index at which the absolute
difference was minimal. One can think of this process as
taking refRegion and sliding it along a track region in next,
storing the index in next at which the minimum absolute
difference is located as it goes. At the end of this process,
the index in next is converted into a time offset from
ref based on the sample rate, among other factors, and the
waveforms can then be aligned accordingly.

Each of the absolute difference calculations are
completely independent of one another: each calculation
can produce an absolute difference and an offset. The results
of these independent calculations need only be compared
at the end of analysis to find the lowest absolute
difference. As such, it is possible to spread these
potentially very numerous calculations across several
analysing nodes.

3.2 gVAIL

Given a telemetry stream (aligned or not), an analyst
wants to look for anomalies which may represent excessive
vibroacoustic events, or may represent simple errors
introduced in the telemetry collection process. If the analyst
decides an anomaly is an error, it may be possible to ‘fix’
the error. VISPERS AI Lab (VAIL) uses artificial
intelligence techniques, specifically neural nets, to locate
anomalies in the telemetry streams and suggest ways to fix
them to the human analyst. VAIL looks at the data stream
by doing a DSP analysis, and one or more neurons fire
when an anomaly is detected. If the human analyst agrees
on the location and type of anomaly, the behaviour of those
neurons is reinforced as necessary. VAIL then suggests a fix
for the anomaly from several possible tools based on the
choice the human analyst has made for similar anomalies
in the past.

VAIL is extremely compute-intensive. Not only does it
look at (do a DSP analysis of) every point in the waveform
and the neighbourhood around that point, but different
neurons look for different anomalies (noise spikes,
data dropout, DC drift or signal bleed-through to name just
a few) so it is useful to split VAIL’s computation across
multiple machines. This task is facilitated by VAIL’s highly
parallelisable algorithm. Because VAIL’s analysis on one
part of a file is independent of its analysis on another part of
the file, a task can be divided so that each machine analyses
a separate section of a data file. To leverage the
computational power of machines across heterogeneous
networks, it is advantageous to employ grid computing,
distributed computing that allows computational resources

to be shared across disparate networks and organisations
(Foster and Kesselman, 2004).

3.3 Service scheduler

Both gTACT and gVAIL are available to the analyst
through the gVISPERS Time History Editor client.
To run instances of these services, however, the client
requires a scheduler service, an analyser factory service,
a node information publisher service, and Globus’
index service (http://www-unix.globus.org/toolkit/docs/3.2/
infosvcs/ws/key/index.html). The client submits analyses to
the scheduler service, which queries Globus’ index service
to find out which nodes are available. The scheduler
(or resource broker) then decides which node should
perform which part of the analysis. Currently, it makes this
decision using a round-robin algorithm in which each node
is assigned an equal amount of work, defined by the number
of data points the node is to analyse. Each node runs both
the analyser service, which provides an interface into the
TACT or VAIL code, as well as the node information
publisher service.

In the earlier Globus 3.2.1 version of gVAIL, the node
information publisher exposed a Service Data Element
(SDE) called gVAILNodeInfo and caused the index
service to subscribe to this SDE. The scheduler would use
the SDE’s originator attribute to determine the node’s
IP address and its goodUntil attribute to determine
whether the node is available. In the Globus 4.0 version,
which is based on the Web Services Resource Framework
(WSRF) (http://www.oasis-open.org/com-mittees/tchome.
php?wgabbrev=wsrf), these SDEs have become resource
properties. In the future, more information will be published
through resource properties, such as the node’s load, which
the scheduler could use to implement a more effective
resource brokering algorithm.

The sequence of steps taken when the user submits an
analysis is depicted in Figure 3. The steps are as follows:

1 when the user tells the client to begin an analysis,
the client talks to the scheduler, telling it which data
file the user wants to analyse

2 the scheduler queries the index service, asking
for a list of machines available to perform analyses

3 the index service responds with the list of nodes

4 the scheduler decides which node should perform
which part of the analysis and passes this information
on to the client

5 the client tells the analyser service on each node
to perform its assigned portion of the analysis

6 each node spawns off an instance of the analyser
service to perform the analysis, sending status messages
to the client to keep it informed of the node’s progress

7 when the node indicates that it has finished, the client
requests the results

8 the node sends the results to the client.

172 B. Bentow et al.

Figure 3 gVISPERS service interactions during an analysis

4 Design considerations

4.1 Service model vs. job model

The primary objective of the project was to determine
the feasibility of using the Globus Toolkit to grid-enable
applications in a production environment. Consequently,
the authors looked at both the job (http://www.globus.
org/toolkit/docs/3.2/gram/key/index.html) and service
models (The Open Grid Services Architecture, 2005) for
grid-enabling an application. Eventually, however, the
service model was chosen.

The models differ in a number of ways, but most
important for this project are their inter-node
communication mechanisms. In the job model,
the process sending information outputs it to stdout,
which is sent to the receiving node. This node must
then parse the stream of text. Using the Web Service
Resource Framework (http://www.oasis-open.org/com-
mittees/tchome.php?wgabbrev=wsrf) and Web Services
Notification (WSN) (http://www.oasis-open.org/
committees/tchome. php?wgabbrev=wsn), nodes can
communicate through either grid service function calls or
through resource properties. Grid services may publish
resource properties, and other services can subscribe to
them. Subscribers may be notified when the property’s
value changes.

The service model has many advantages over the
job model that make it a more attractive candidate for
grid-enabling VAIL. It is desirable to have nodes send status
messages to the client as they are performing an analysis,
and property notifications work well for sending such small
messages. As discussed in the next section, properties are
also useful when the client retrieves results. Also, the
service model is more object-orientated and can be used to
grid-enable existing Java applications more seamlessly than
the job model.

As an aside, it is important to note that the job model
does have some advantages over the service model.
It has been used more extensively, so more third party
schedulers and tools are available for it. Also, the job
component of Globus has gone through many more stable
releases and has been more thoroughly tested.

4.2 Grid communication

Using grid services, Globus provides support for
communication between different parts of the grid
through three different mechanisms: function calls, property
exposure, and property-based notifications. Each has

advantages and disadvantages, and gVISPERS utilises
all three.

4.2.1 Function calls

Globus provides support for function calls according to the
standard grid service model: function (method) names for
the grid service are exposed and can be invoked directly by
the client. When the client makes a remote function call on
the service, the service performs some computation and
returns a value. The primary limitation of function calls is
that the essential nature of most grid applications calls for
a high degree of concurrency, while function calls block.
This can be dealt with by using threading either on the
client, the service, or possibly some combination of the two.
The Time History Editor client uses function calls to invoke
the scheduler and accepts the blocking behaviour, since it
needs the scheduling results before it can proceed. It needs
to communicate with multiple analyser services in parallel,
however, so threading must be used for this. For the sake of
simplicity, gTACT and gVAIL use threading exclusively on
the service end. The client makes a function call that returns
immediately to start the analysis. Once the analysis is
started on the grid nodes, the other two mechanisms are
utilised for further communication.

4.2.2 Property exposure

Globus 3.2.1 supported the notion of SDEs which became
resource properties in GT4. Resource properties behave
essentially like public fields in a object. In this case, the
service itself is the object. The service can store data in
them, and the client can retrieve that data. Clients can also
set the values of properties, although gTACT and gVAIL do
not utilise this feature. An analyser service stores the results
it generates in a resource property. Once the client
determines that a service has completed its analysis
(see next section for how), it retrieves the results from the
appropriate property associated with the service.

4.2.3 Notifications

In addition to simply storing and exposing data, resource
properties form the basis for notifications in Globus 4.0.

To receive notifications, the client subscribes to
individual properties on a specific service. The service can,
at any time, notify all listeners of a change to its properties,
even if no change has actually taken place. These are push
notifications in that the data stored in the property is sent to
the client with the notification. Pull notifications differ in
that the only data sent is a notice indicating that a change
has occurred. gTACT and gVAIL use notifications to keep
the client up-to-date on the status of the services, including
completion.

4.3 Reliable index service

The difficulties originally faced with a reliable index
service in GT3 have been resolved by the new index service
implementation in GT4 (http://www-unix.globus.org/

 Grid-enabling a vibroacoustic analysis toolkit 173

toolkit/docs/4.0/ common/key/index. html). GT3’s index
service required the implementers of the gVAIL code
to add a dynamic resubscription method to their
gvail_nodeinfopublisher service in order to ensure accurate
service creation and destruction. This was necessary since,
once a service was published to the GT3 index service, there
were issues in removing it even after the service had died.
The gVAIL team implemented this by using the SDE
gooduntil attribute, which any querying service would check
to see if that service had yet expired and which the dynamic
resubscription mechanism would periodically refresh.

Combining the use of Virtual Organisations (VOs) with
the WSRF-compliant GT4 index service, this was no longer
a problem in the updated code. Each analyser
node had its own Globus container running and, therefore,
its own index service. Local grid services (i.e., the
NodeInfoPublisher Services and the AnalyzerServices) were
published first to these local index services which were,
in turn, themselves subscribed to a central index service
(http://www.globus.org/toolkit/docs/4.0/info/WSMDSSamp
les.html). The central index service could then be
configured to refresh these index service subscriptions
periodically (the default being ten minutes), at which point
all non-existent services would be weeded out and removed.

5 gVISPERS performance

Since gVISPERS is a continuing development project
involving different teams, its components have been built
and tested in different environments as feasible. The earliest
work was done on gVAIL (Bentow et al., 2005) with
subsequent work being done on gTACT. For completeness,
we present basic performance information for gVAIL done
under GT 3.2.1 which focuses on the performance of the
gVAIL function rather than that of the Globus Toolkit.
For gTACT, however, we investigate its performance in the
context of being a GT4 service. We also present data for the
use of the gTACT and gVAIL services together under GT4.

5.1 gVAIL performance

To test gVAIL’s performance, it was deployed on four
2.8 GHz Pentium 4 machines with 640 MB RAM running
Red-hat Linux 9. Each machine ran Globus Toolkit 3.2.1
(web service base only) from a local drive. After this initial
deployment, another 16 machines (2.8 GHz Pentium 4’s
with 1 GB RAM) that form part of a cluster computer at
Harvey Mudd College were added. These machines used
Redhat Enterprise Linux and the same versions of
Globus mentioned above. All 20 machines were connected
via 100 Mbps ethernet switches to a 1 Gbps ethernet
backbone. Globus was placed on a network drive shared
among all 16 machines, and data files were distributed on
the shared drive. (When running these experimental
systems, we cannot read data directly from the operational
telemetry database. Hence, for our experimental goals here,
we assume that the client has staged data close to the service
hosts since we wish to focus on the performance of the grid

services and ignore for now any front-end database
operations.)

Software testing was performed using
gVAILBatchMod-eClient, a special client designed to
perform many consecutive gVAIL analyses.
gVAILBatchModeClient reads an XML configuration file
that describes the analyses to be run. It then executes each
analysis sequentially.

A few factors that affect the runtime of gVAIL should
be noted. First, VAIL uses short circuit evaluation to
determine if a particular point can be identified as an
anomaly, so the overall runtime is dependent on the number
of anomalies in a file. Thus, if one node receives an unfair
number of anomalies, it will take much longer than the rest
of the nodes, delaying completion of the analysis. Finally, in
order to minimise the systematic error that may be
introduced by repeatedly using the same machine, the
scheduler randomly selected which nodes to use.

Four data files with varying total points and anomalous
points were analysed using a variable number of nodes.
The characteristics of these files are shown in Table 1.
The number of nodes ranged from one to 20 in increments
of one, and for each number of nodes, each file was
analysed 20 times. Finally, a serial VAIL analysis was
performed on each file 40 times to establish a performance
baseline.

Table 1 Characteristics of the sample files

 Total points Anomalous points
File 1 3,200,000 72
File 2 1,784,000 640
File 3 1,783,993 629
File 4 219,071 813

The speedup curves for all files using 1–20 nodes are shown
in Figure 4. Speedup was computed by using the serial
VAIL performance. For each file, this serial performance
was 150, 81, 210 and 17 s, respectively.

As expected, analysing the smaller file using gVAIL on
one node was slower than analysing it using serial VAIL.

However, analysing any other file using gVAIL on one
node was slightly faster on average than using serial VAIL.
This is not statistically significant, however, because the
baseline measurement’s standard deviation in all cases
nearly encompasses the standard deviation of the one node
point.

Files 2 and 3 show similar results. This is expected
because they contain comparable numbers of both total
data points and anomalous points. However, note that
File 2’s absolute runtime is much lower due to the type and
distribution of anomalies. For testing purposes, File 2 was
generated artificially so that it would have an even
distribution of anomalies. Thus, when the scheduler divides
up the file based on number of points, it more evenly
divides the actual work.

During the analyses of File 4, it started to behave
erratically as the number of nodes increased beyond eight.

174 B. Bentow et al.

This behaviour was also seen, to a lesser degree, in the other
waveforms. Part of this is due to the large number
of back-to-back analyses performed. The erratic analyses
were performed after 200 back-to-back analyses, and the
performance of the grid degraded noticeably over time
unless the nodes were restarted periodically. The period
required varied with the size of the file. For instance, with
the large file, services begin to fail at the file load stage after
approximately 80 analyses. With the smaller file, services
began to fail at this stage after approximately 500 analyses.
The dependence on file size suggests that garbage collection
is not working perfectly. It is also likely that some of the
erratic behaviour was caused by load on the cluster nodes
from other projects. Load on the nodes would produce more
pronounced aberrations as the number of nodes utilised
increased.

Figure 4 gVAIL speedup

However, most of the contribution to increasing runtime
seems to be communication costs, as demonstrated by
Figure 5. Also, from Figure 5 it is possible to observe that
the communications time is file size independent. Thus, a
more advanced scheduler for future work in this project
might consider how to balance communication cost with
analysis cost for more efficiency.

Figure 5 gVAIL communication times

Overall, grid-enabling VAIL increased its performance.
Moreover, the number of nodes at which speedup reaches
a plateau varies with file size and anomaly distribution,
as expected.

5.2 gTACT performance

The gTACT service uses essentially the same structure as
gVAIL but our interest here is examining the end-to-end
performance of the service call chain from the client’s
perspective, rather than a service’s internal performance.
Hence, we used netlogger (Tierney. and Gunter, 2003) from
Lawrence Berkeley Lab to instrument both the client and
server machines and collect timestamped event log files to
do this analysis. The causal chains of events in these log
files can be plotted as lifelines that graphically illustrate the
relative performance of each step of the call chain.

The gTACT experiments were run on seven machines.
One was a 2.4 GHz Pentium 4 with 1 GB RAM and
a 75 GB hard drive running Red Hat 3.4.4-2. The six
other machines were 2.4 GHz Celerons, each with 512 MB
of RAM and a 40 GB hard drive running Red Hat Linux
3.3.3–7. These machines were connected by 100 Mbs
ethernet. Reasonable clock synchronisation was
accomplished using the Network Time Protocol.

We examine the gTACT service invocation performance
using three data sets as shown in Table 2. These data sets
are of different sizes and are called small, medium, and
large. (These designations are only relevant for this paper.)
We give the total number of points in each file and also the
number of overlap points since this is what will actually
drive the TACT analyser performance.

Table 2 Characteristics of additional sample files

 Total points Overlap points
Small 122,412 5,000
Medium 604,348 10,000
Large 3,023,999 730,000

The lifelines for gTACT service invocations on these
three files are shown in Figure 6. All events occur in
BEGIN-END pairs which define time epochs that have the
following meanings:

• Analysis. This epoch spans the entire gTACT service
invocation from the client side including the return of
results, i.e., the the time offset between the waveforms.

• Client.setup. During this epoch, local client-side
variables are set and the Globus notification facility is
initiated.

• Analysis.setup. Here two waveforms are read from disk
and the overlap region between them is found.

• Scheduling. During this epoch, the client contacts the
SchedulerService and retrieves a list of available
analyser nodes and assigns a range of points in the
overlap region for each to analyse.

 Grid-enabling a vibroacoustic analysis toolkit 175

• Communication. Here the client contacts the
AnalyzerService on each node and initiates an actual
analysis, i.e., the AnalyzerService starts a thread.

• Client.Waiting. Finally the client waits for notifications
from the analyser threads that were initiated in the
Communication phase. This epoch is complete
when all analysers have notified the client that
they are done and have returned their results.

Figure 6 gTACT lifelines

We note that the events gTact.Analysis.BEGIN and
gTact.Client.Setup.BEGIN are not actually plotted
since these event times are essentially zero and we are using
a log scale on the time axis.

Along with the invocation event chain, individual
TACT analyser executions are also shown at the top
of the chart with the tact.analyzer.BEGIN and
tact.analyzer.END events. For each data set, seven
analysers are run. Also, rather than letting the client
machine become idle during analyses, this machine was
made available for scheduling one analyser.

Clearly, for the small data set, the service invocation
overhead dominates the execution time. Over a 16.3 s
epoch, the analysers are running for less than seven seconds.
While each analysers runs about two seconds, it takes
about 8 s to get the first one started. The scheduling and
communication functions take the most time, at about
4.9 and 7.9 s, respectively.

For the medium and large data sets, however, the real
work being done by the analysers comes to dominate the
end-to-end execution time. The analysis setup, scheduling
and communication times are all relatively constant, while
the analysers run much longer. The first analysers start up
between eight and ten seconds and continue to run for
approximately 30 and 1978 s, respectively.

While service invocation overhead is non-trivial, we see
that it is quickly dominated by the analyser execution times
when the data size exceeds roughly half a million points.
We also note that the TACT function can be parallelised by
both decomposing a single alignment over several nodes,
and by performing multiple alignments simultaneously.
Hence, while the service invocation overhead is non-trivial,
there is clearly sufficient parallelism in the TACT function
to amortise the overhead with suitably sized data sets.
More to the point, though, TACT (and VAIL) are suitable

for use in a service architecture allowing for tremendous
flexibility with regards to user environments.

5.3 Concatenated service performance

Another important aspect of service-oriented computing is
the concatenation of service invocations. gTACT and
gVAIL will be run successively with data being transferred
between them through the client. While this data will be
relatively small, it is still important to quantify and
understand the overhead of transferring it through the client
and the possible benefits of doing a ‘third-party’ transfer
directly between the gTACT and gVAIL hosts.

To investigate this issue, we will run both services on
the data sets identified in Table 2. We will, however,
simplify the event chain we are examining as shown
in Figure 7 giving the lifeline for a typical service
concatenation on the small data set. In this plot, each
service has a BEGIN-END event pair with an analysis
START-FINISH event pair within it. The BEGIN-END
event pair is the total service execution time on the client
side while the analysis START-FINISH event pair brackets
the start of the first and the completion of the last of seven
analysers. Hence, one can easily determine how much start-
up and completion overhead each service has, and the time
between the completion of the TACT analysers and the start
of the VAIL analysers.

Figure 7 A concatenated gTACT and gVAIL lifeline
for the small data set

When examining service concatenation for the larger data
sets, however, such lifeline plots become difficult to read
since they can span several orders of magnitude with long
and short intervals interspersed. Hence, we plot the data as
shown in Figure 8 giving the start, analysis, and end
time epochs for each data set. We plot the gTACT analysers
against the number of overlap points, while we plot the
gVAIL analysers against the total number of points. We see
that for both service start-up and completion, there are
no trends related to the number of data points involved.
Some variability is seen which is reasonably due to network
delays. For both of the analysers, however, the execution
does increase, and quite dramatically in the case of gTACT.
Hence, for the larger data sets, the analysis time dominates
the service overhead. While the service overhead is larger
than expected, it is still tolerable.

176 B. Bentow et al.

When interpreting these results, we must remember
several gVISPERS design choices. The start-up time
includes the SchedulerService time for the discovery and
scheduling of analysers. Assuming that the output of one
analyser does not affect the selection and scheduling
requirements of a subsequent analyser, it should be possible
to schedule the gVAIL analyses without waiting for the
gTACT analysers to complete, thus improving performance.
We note that it may also be advantageous to create
a scheduling dependency where the gTACT and gVAIL
analysers hosts are very ‘close’ together over the network,
or are even the same hosts. Observing such a dependency,
however, would create a co-scheduling issue which carries
its own overhead. We must also remember that the raw
telemetry data is read by the analyser hosts while primarily
control information is issued by the client. This greatly
reduces the client-server communication requirements.
In the scenario where multiple gVISPERS clients are
requesting many data sets, the bandwidth demand for raw
telemetry data could become an issue.

Figure 8 Concatenated gTACT and gVAIL performance

6 Related work

This paper has focused on the support of telemetry
processing using grid technology. We point out, however,
that the term grid telemetry has been applied to the
monitoring of grids themselves, such as Grid2003 (which
has become the Open Science Grid) (Mambelli et al., 2004).
The ‘distant measuring’, or telemetry, of a distributed
infrastructure, such as a grid, is certainly not unreasonable
but is clearly not the meaning intended here. However,
given that the traditional uses of telemetry involve
monitoring remote and possibly distributed systems, the
application of grid technology to this field is completely
appropriate. This has already been recognised by
organisations with significant telemetry needs such as
NASA (Hinke, 2004).

A fundamental design issue for such monitoring systems
is how ‘far up’ the telemetry chain can grid technology
be deployed. This project has dealt with telemetry that

has already landed in a telemetry database. It is not
unreasonable that ‘the grid’ could be pushed closer
to the system, and sensors, of interest. The DAME project
(Austin et al., 2005), for instance, collects sensor data from
in-service jet engines for maintenance and reliability
analyses. While this data is currently downloaded after the
aircraft has landed, the fact that network connectivity during
flight is becoming commonplace means that such engine
sensors could actually be on-line (even though it will
probably remain more attractive for the airline to sell the
available bandwidth to passengers to check their email and
surf the web). In general, the notion of integrating grids,
instruments, sensors and sensor networks offers significant
benefits and has always been a prominent concept in the
grid community. The Common Instrument Middleware
Architecture (CIMA) is endeavouring to develop a web
services-based architecture along with a sensor ontology
to facilitate grid-sensor interactions (McMullen et al., 2005).
The notion of integrating grids and sensors can also be
extended to grids and remote sensing using on-orbit,
satellite-based sensors (Gasster et al., 2006).

We mentioned that VISPERS services will, in practice,
be used interactively, even though such interactive use was
not the focus of this paper. For investigations into
interactive grid use, we can point to projects involving
interactive graphics (Kumar et al., 2003) and computational
steering (Ali et al., 2004; Pickles et al., 2005).

This paper was also interested in the performance
of the Globus Toolkit from the application level. We were
primarily interested in how long it takes to initiate a service
and a pair of services. While this did give us insight into
how the Globus ‘overhead’ would affect end-to-end
application performance, it is certainly possible to perform a
more detailed analysis of the entire Globus service
invocation sequence. Such as analysis is reported in Torres
(2005) where an early version of GT4 was integrated with
a Java Instrumentation Suite allowing detailed timelines to
be recorded for Java client and server threads in the SOAP
interaction sequence. This level of analysis would be useful
for tuning GT4 implementations but is generally too
detailed for evaluating impact on applications.

Besides analysing individual service invocations, it is
also possible to evaluate aggregate throughput performance.
Such throughput performance is thoroughly investigated in
this Masters Thesis (Raicu, 2005). This work developed
the Distributed Performance (DiPerf) analysis tool and was
used to compare performance between multiple versions of
the Globus Toolkit for operations including the GRAM,
GridFTP, and grid services creation and invocation.
Such throughput performance analysis would be very
interesting for gVISPERS, especially when multiple
gVIS-PERS clients are invoking multiple analysis on shared
cluster resources. We will consider such work when the
gVIS-PERS user base requires it.

This project was also forced to consider the differences
between GT3 and GT4 in both performance and
functionality. The DiPerf study cited above examined
throughput performance for several Globus versions.

 Grid-enabling a vibroacoustic analysis toolkit 177

The performance and functionality of other Globus
services, such as the MDS, have also been systematically
examined (Schopf et al., 2006). Other experiences
at the application level in moving from GT3 to GT4
have also been reported. One example is given by the Grid
Execution Management for Legacy Code Architectures
(GEMLCA) project (Delaitre, 2005). Since many projects
were facing this issue, the UK e-Science project issued a
report (Harmer et al., 2005) looking at specific issues for
specific parts of the toolkit. While some parts were
relatively unaffected, application code re-factoring
could be necessary if certain built-in OGSI classes were
used that changed under the WSRF structure. In some cases,
scripts could be used to convert between the GT3 and
GT4 service forms. A basic how-to guide for such
conversions is available (Harmer and McCabe, 2005) and a
book is now available for GT4 programming (Sotomayor
and Childers, 2005).

7 Future work

Clearly from the human analyst’s perspective, the goal is to
provide a simple-to-use toolkit that has superior capabilities
and performance. They need to flexibly select sensor data,
process it using a variety of tools, and quickly arrive
at the desired analytical conclusions. Besides the two
computationally intensive services discussed here, other
tools are in use and in development that will facilitate with
data clean-up. Hence, the goal is to make the entire data
clean-up process run seamlessly from data acquisition using
dbFront, through anomaly removal and the consolidation of
multiple telemetry streams into one good stream. Once that
stream is created, individual analysis tools can be invoked,
the results analysed, and, if necessary, the data can be
re-scrubbed based on those results.

This user scenario clearly points to the need to integrate
a end-user workflow engine into the gVISPERS client.
This would enable analysts to compose their own tool chain
executions to serve their specific requirements. This would
also make it more feasible for an analyst to include more
telemetry streams in their analyses and use the shared
corporate resources more effectively. Each computational
service could be allocated to appropriate resources
depending on the associated computational intensity and
desired time-to-solution. With a service architecture
approach, multiple gVISPERS clients could be serviced
simultaneously. At this point, throughput analysis would
become much more necessary.

8 Conclusion

Grid-enabling VISPERS using Globus Toolkit is a viable
way to improve performance and provide enhanced
capabilities. We have shown, for example, that using as few
as 11 grid nodes, gVAIL’s runtime improved by a factor of
eight. The service architecture approach also provides
valuable flexibility with good performance when used with
suitably sized data sets.

Since the start of this project, the Globus Alliance
officially migrated to Globus Toolkit 4 which adopts the
WSRF standards family in order to implement grid
services. Though the differences were primarily syntactical,
a significant effort was put forth updating the Globus
Toolkit 3 OGSI code to its WSRF analog. As was noted in
an earlier paper (Bentow et al., 2005), programming
a Globus grid service still has a significant learning curve,
especially when attempting to utilise Globus-provided tools
from within the service’s code (e.g., the index service).
This difficulty continues to be caused by a lack of adequate
documentation.

In the larger context, however, our experience also
shows that the service-oriented architecture approach, using
grid computing tools, can provide a more flexible system
design, in addition to improved performance and increased
utilisation of resources. With proper communication and
execution scheduling, performance and utilisation could be
improved even further. We also wish to emphasise that
a workflow management engine is being integrated
with the Time History Editor that will allow the flexible
control of all toolkit services, include gTACT and gVAIL.
Once this is done, we will thoroughly investigate the
use of integrated communication and execution scheduling.
Clearly we expect to have a powerful yet flexible system
that can process more data more quickly than previously
possible, enabling a greater understanding of the launch
vehicle environment.

References
Ali, A., Anjum, A., Bunn1, J., Cavanaugh, R., van Lingen, F.,

McClatchey, R., Newman, H., Steenberg, C., Thomas, M.,
Willers, I. and Zafar, M.A. (2004) ‘Job interactivity using a
steering service in an interactive grid analysis environment’,
Computing in High Energy and Nuclear Physics
(CHEP 2004).

Austin, J., Davis, R., Fletcher, M., Jackson, T., Jessop, M.,
Liang, B. and Pasley, A. (2005) ‘DAME: searching large data
sets within a grid enabled engineering application’,
in Parashar, M. and Lee, C.A. (Eds.): Proceedings of the
IEEE, Vol. 93, No. 3, March, pp.496–509.

Bentow, B., Dodge, J., Homer, A., Moore, C., Keller, R.,
Presley, M., Davis, R., Seidel, J., Lee, C. and Betser, J. (2005)
‘Grid-enabling a vibroacoustic analysis application’,
6th International Workshop on Grid Computing, Seattle,
Washington, USA, 13–14 November, pp.33–39.

Bradford, K.B., Wong, D. and Bartosisk, J. (2002)
‘The vibroacoustic intelligent system for predicting
environments, reliability and specifications (VISPERS)’,
Proceedings of the Ninth International Congress on Sound
and Vibration, Orlando, Florida, USA, July, pp.486–493.

Delaitre, T. (2005) Experiences with Migrating GEMLCA from
GT3 to GT4, UK Globus Week, 4–8 April, http://www.
nesc.ac.uk/esi/events/519/talks.cfm.

Foster, I. and Kesselman, C. (Eds.) (2004) The Grid 2,
Morgan Kaufmann, USA.

Gasster, S., Lee, C. and Palko, J. (2006) ‘Grid computing for
remote sensing data and data analysis’, in Plaza, A.J. and
Chang, C. (Eds.): High-Performance Computing in Remote
Sensing, Chapman & Hall/CRC, October 2007.

178 B. Bentow et al.

Harmer, T. and McCabe, J. (2005) GT3.2 to GT4 Migration: A
First HowTo, Belfast e-Science Center, http://www.qub.
ac.uk/escience/howtos

Harmer, T., Stell, A. and McBride, D. (2005) UK Engineering
Task Force, Globus Toolkit Version 4 Middleware
Evaluation, UK Technical Report UKeS-2005-03,
http://www.nesc.ac.uk/technicalpapers/UKeS-2005-03.pdf

Hinke, T. (2004) ‘Grid technology as a cyberinfrastructure for
earth science applications’, NASA Fourth Earth Science
Technology Conference, Palo Alto.

Kumar, R., Talwar, V. and Basu, S. (2003) ‘A resource
management framework for interactive grids’, 12th IEEE
International Symposium on High Performance Distributed
Computing (HPDC-12), Seattle, Washington, USA.

Mambelli, M., Kim, B., Legrand, I., Fisk, I., Weigand, J.,
Grundhoefer, R., Quick, R., Hicks, J., Green, M., Gardner, R.,
Zahn, A., Prescott, C., Rodriguez, P. and Avery P. (2004)
‘Grid2003 monitoring, metrics, and grid cataloging system’,
Computing in High Energy and Nuclear Physics (CHEP
2004), http://griddev.uchicago.edu/download/grid3/ doc.pkg/
presentations/chep04-490-g3mon.pdf

McMullen, D., Bramley, R., Chiu, K., Huffman, J., Devidithya, T.,
Huffman, K., Lu, W., Tilak, S. and Peralman, L. (2005)
Instruments and Sensors on the Grid: Issues and Challenges,
GlobusWORLD, Boston, MA, USA.

Pickles, S., Haines, R., Pinning, R. and Porter, A. (2005)
‘A practical toolkit for computational steering’, Phil. Trans.
R. Soc., Vol. 363, No. 1833, pp.1843–1853, http://www.
realitygrid.org

Raicu, I. (2005) A Performance Study of the Globus Toolkit and
Grid Services via DiPerf, an Automated Distributed
Performance Testing Framework, Masters Thesis, University
of Chicago, Chicago, Illinois, USA, May.

Schopf, J., D’Arcy, M., Miller, N., Pearlman, L., Foster, I. and
Kesselman, C. (2006) Monitoring and Discovery in a Web
Services Framework: Functionality and Performance of
Globus Toolkit MDS4, Argonne National Laboratory MCS
Preprint # ANL/MCS-P1315-0106, Submitted to HPDC-15.

Sotomayor, B. and Childers, L. (2005) Globus Toolkit 4:
Programming Java Services, Morgan Kaufman/Elsevier,
December, Burlington, MA, USA, http://www.gt4book.com

The Open Grid Services Architecture (2005) Version 1.0, Global
Grid Form Document GFD-I.030, 29 January,
http://www.ggf.org/documents/GWD-I-E/GFD-I.030.pdf

Tierney, B. and Gunter, D. (2003) ‘NetLogger: a toolkit for
distributed system performance tuning and debugging’,
in Goldszmidt, G.S. and Schönwälder, J. (Eds.): Proceedings
of the IFIP/IEEE Eighth International Symposium on
Integrated Network Management (IM 2003), Vol. 246 of IFIP
Conference Proceedings Kluwer, pp.97–100.

Torres, J. (2005) GT4 Instrumentation and Evaluation Project,
http://personals.ac.upc.edu/torres/GT4.pdf

Websites
Globus Toolkit 3.2.1 Documentation, http://www-unix.globus.org/

toolkit/docs/3.2
GRAM: Key Concepts, http://www.globus.org/ toolkit/docs/3.2/

gram/key/index.html
GT4.0 Common Runtime Components, http://www-

unix.globus.org/toolkit/docs/4.0/ common/key/index.html
OASIS Web Services Notification (WSN) TC, http://www.

oasis-open.org/committees/tchome. php?wgabbrev=wsn
OASIS Web Services Resource Framework (WSRF)

TC, http://www.oasis-open.org/com-mittees/tchome.php?
wgabbrev=wsrf

The Globus MDS, http://www.globus.org/toolkit/docs/4.0/info/
WSMDSSamples.html

WS Information Services: Key Concepts, http://www-unix.globus.
org/toolkit/docs/3.2/infosvcs/ws/key/index.html

