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ABSTRACT
Faced with several AI-powered sequential decision-making sys-
tems, how might someone choose on which to rely? For example,
imagine car buyer Blair shopping for a self-driving car, or devel-
oper Dillon trying to choose an appropriate ML model to use in
their application. Their first choice might be infeasible (i.e., too
expensive in money or execution time), so they may need to select
their second or third choice. To address this question, this paper
presents: 1) Explanation Resolution, a quantifiable direct measure-
ment concept; 2) a new XAI empirical task to measure explanations:
“the Ranking Task”; and 3) a new strategy for inducing controllable
agent variations—Mutant Agent Generation. In support of those
main contributions, it also presents 4) novel explanations for se-
quential decision-making agents; 5) an adaptation to the AAR/AI
assessment process; and 6) a qualitative study around these devices
with 10 participants to investigate how they performed the Ranking
Task on our mutant agents, using our explanations, and structured
by AAR/AI. From an XAI researcher perspective, just as mutation
testing can be applied to any code, mutant agent generation can be
applied to essentially any neural network for which one wants to
evaluate an assessment process or explanation type. As to an XAI
user’s perspective, the participants ranked the agents well overall,
but showed the importance of high explanation resolution for close
differences between agents. The participants also revealed the im-
portance of supporting a wide diversity of explanation diets and
agent “test selection” strategies.
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1 INTRODUCTION
Explaining episodic decisions is a significant challenge with much
ongoing XAI research (e.g., [9, 21]). Explaining decisions in se-
quential domains is even more challenging, as decisions must be
explained in relationship to previous ones (and possible future ones).
Still more challenging is explaining decisions in sequential domains
with the goal of enabling users to go beyond picking the “best”
agent—to partially ordering agents with respect to some (set of)
properties.

For example, imagine car buyer Blair trying to select among self-
driving cars. Blair may perceive the best performer as too expensive,
delayed, etc. Similarly, developer Dillon may decide among off-the-
shelf MLmodels to incorporate into an application, e.g., as described
in Hill et al. [31]. Dillon might not use a standard benchmark-
leading model because its API may be intimidating, underlying
model difficult to comprehend, or execution too costly. Thus, while
Blair and Dillon may not need to fully order all candidates, they
might create a shortlist for some, in case they have to resort to their
second or third choice. Such a ranking process requires the assessor
to consider and compare available agents, thinking critically about
their strengths and weaknesses.

Researchers have investigated a wide variety of stakeholders
who might be assessing the properties of AI [17, 44]. In fact, as the
ACM code of ethics points out in item 1.1, “...all people are stake-
holders in computing.” Although not every human is necessarily
in-the-loop, anyone could be. One way to support diverse humans
assessing AI is via explanation. As Hoffman et al. write: “By hy-
pothesis, explanations that are good and are satisfying to users enable
users to develop a good mental model.” [32].
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Figure 1: Hypothetical Matchmaking Rating (MMR) chart in a game showing the distribution of players’ skill, akin to figures
from Vinyals et al. [96] or Robertson et al. [77]. The background line is the whole player population, and the stars correspond
to the true skill levels of a collection of agents to assess. It may be possible to differentiate theMMRproperty of an expert from
a beginner (Orange and Blue) simply from watching them once because of the large gap. Meanwhile, resolving the difference
between two experts (Orange and Green) is much more difficult, and may require explanation. As the agents become more
similar (Orange and Pink), they may become impossible for humans to rank, even with explanations.

Given an explanation, is ranking agents for such purposes viable
for humans like Blair andDillon? The answermay depend on a prop-
erty we term explanation resolution, based on microscopy’s concept
of resolution, defined1 as “the shortest distance between two points
on a specimen that can still be distinguished by the observer...as sep-
arate entities”. Thus, an explanation with high resolution should
enable an observer to distinguish not only agents that greatly differ
(e.g., Beginner vs. Expert in Figure 1), but also agents that do not
(e.g., the two top agents)—ideally in a prospective fashion, before
large amounts of performance data are available.

We propose that explanation resolution can be empirically
measured—and that doing so enables evaluation of explanations’
support of use-cases such as Blair’s and Dillon’s. More generally,
measuring explanation resolution also enables XAI researchers to
empirically compare alternative explanation strategies on the basis
of how well each can reveal differences among agents.

Tomeasure explanation resolution empirically requires a suitable
empirical task. To that end, this paper first introduces the Ranking
Task, an XAI empirical assessment task for use-cases involving hu-
mans doing (partial) ordering. Using this task, XAI empiricists can
measure participants’ efficacy in ranking the agents with scoring
mechanisms such as how many agents a participant ranked exactly
correctly and how “far off” a participant’s ranking of an agent was
from its true rank.

Ranking occurs with respect to one or more properties, such as
winningness, fairness, etc. If the desired property can be manipu-
lated in a controllable fashion, XAI empiricists can cleanly measure
the quality of an explanation and/or assessment process by its abil-
ity to expose that such manipulation has occurred. To address this
need, we introduce Mutant Agent Generation, a manipulation ap-
proach inspired by software engineering’s comparisons of different
test suites via Mutation Testing [8, 16, 68].

Using the Ranking Task and Mutant Agent Generation, we con-
ducted a qualitative study to investigate how participants would
rank six sequential decision-making agent mutations playing MNK
games (a generalization of Tic-Tac-Toe). To support participants’

1https://www.microscopyu.com/microscopy-basics/resolution

ranking, we created three novel explanations designed for use in
sequential domains. To loosely structure the participants’ inves-
tigation, we adapted a process called After-Action Review for AI
(AAR/AI) [20, 42, 55] to support assessment at the granularity of
games. Our aim was to glean from participants their efficacy at the
Ranking Task; which explanations they relied upon to perform it;
how they went about comparatively assessing the different agents;
and how they invested their limited time to perform these compar-
isons.

This paper offers the following main contributions:
(1) Explanation Resolution, a quantifiable direct measurement

concept;
(2) Ranking Task, enabling XAI researchers to measure expla-

nation resolution; and
(3) Mutant Agent Generation, allowing controllable variation

among agents for systematic empirical investigation.
In support of the main contributions, we also contribute:

(4) Novel explanations supporting sequential decision-making
agents;

(5) Adaptation of AAR/AI to a higher level of granularity (games
instead of decisions); and

(6) Qualitative empirical investigation into how participants
performed the Ranking Task on agents produced via Mutant
Agent Generation, using the explanations we provided and
scaffolded by AAR/AI.

2 BACKGROUND
2.1 Explanations and Users’ Mental Models
Hoffman et al. hypothesized that a “good mental model will enable
[users] to develop appropriate trust in the AI...” [32]. Those authors
enumerated a number of mental model elicitation strategies (de-
tailed in [32]’s Table 4). Among them, many are qualitative, (e.g.,
Think Aloud or Interview techniques), while others are more quan-
titative (e.g., Retrospection or Prediction Tasks).

However, users have little foundation on which to build a mental
model if unable to inspect system behavior. Many ML systems ap-
pear as opaque boxes, with little explanation as to why the system
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provides outputs [48]. The role of explanations is to make such
boxes less opaque. Explanations have been shown to improve men-
tal models [48, 49], satisfaction (in the colloquial sense, the user’s
self-reported feeling) [2, 40], and understanding—particularly in
low expertise observers [103]. Still other research shows that expla-
nations are not necessarily a panacea. For example, some research
showed less dramatic effects, as the overall structure of participant
mental models went largely unchanged, though it did seem to help
dispel misconceptions [92].

In order to inform a mental model given potentially complex
explanations, including charts and figures, participants may support
acquiring transferable knowledge [75] via “self-explanations.” In
particular, learners employing less successful strategies rely heavily
on examples, struggling to self-explain [13]. However, participants’
willingness to engage with the explanation will be moderated by
individual differences—which makes measuring such differences
important. For example, research shows that some prefer superficial
explanations, while others prefer explanations that support more
deliberative reasoning [23, 45].

2.2 Explaining in Sequential Domains
Most work in XAI does not focus on sequential domains, a gap
which leaves extensive work byAI researchers largely unharnessed.
For example, AI researchers have long studied domains like Chess,
Shougi, and Go, recently reaching performance exceeding the best
humans [85, 86]. As Reeves et al. [74] put it, “Game expertise... is
constantly concerned with ‘why that now,’ ‘where can I go from here,’
‘what next,’... familiar concerns for those who study the sequential or-
dering of human action.” In Real-Time Strategy (RTS) games, Deep-
Mind’s AlphaStar agent has achieved sustained top notch perfor-
mance over a whole ladder season deployed with humans [96, 97].
Explaining RTS actions remains a challenge, though Metoyer et
al. [57] studied how expert-novice pairs do it. More recently, Pen-
ney et al. [67] examined how professional commentators and lab
participants behaved in an effort to inform explanation design. For
example, Madumal et al. [54] created RTS explanations by extract-
ing paths from a causality graph.

Selecting action/states to observe is a specific challenge for se-
quential domains. Hayes and Shah applied predicates to a set of
states, succinctly summarizing a mapping to that set [29]. Applying
predicates at the trajectory level (as opposed to state) can help group
low level actions into more abstract subtasks (e.g. a car “changing
lanes”) [35]. Another approach from Huang et al. [34] seeks to se-
lect states via criticality (max_action - average_action). Amir and
Amir [4] offer a different name (importance) for a slightly different
function (max - min).

Summarizing the policy globally poses unique challenges in se-
quential domains. Zahavy et al. [105] used a large t-SNE plot to
navigate the state space. Another strategy, modifying reward func-
tions to train modified policies allows predicate testing to explain
actions [94]. Olson et al. [62] analyzed policy trajectories by gener-
ating counterfactuals for critical states. Other promising strategies
explaining policies globally: extracting automata [100], rules [60],
or decision trees [106].

2.3 “Testing” AI
AI and ML systems have some important terminological differences
from traditional software systems that bear clarifying. For example,
Groce et al. [26] argue that an AI system is itself a “program”, but
with no source code. The learned program may have come from
a flawless AI algorithm, but the learning process could still intro-
duce faults, e.g., from biased training data. Those authors write
that the meaning of identifying and correcting a fault in such a
source-less program, “must be parametrized with respect to the fault-
correction method(s) available.” [26]. Thus, traditional software in-
terventions like fixing a line of code are not necessarily meaningful;
instead ML/AI systems offer different correction techniques. For
example, Goodfellow et al.’s Chapter 11 [25] recommends: “Visu-
alize the model in action, Visualize the worst mistakes, Reason about
software using training and test error, Fit a tiny dataset, Compare
back-propagated derivatives to numerical derivatives, and Monitor
histograms of activations and gradient.” [25]. However, this list of
interventions assumes the assessor has deep ML/AI knowledge.

In light of the uniqueness of the machine learning pipeline [31],
some analysis tools allow the user to inspect each element of the
pipeline. One of these, GAN Lab by Kahng et al. [39] is intended
for instructional purposes. Another, ModelTracker by Amershi et
al. [3], supports debugging by inspecting system performance at the
example level. Conversely, some tools treat the system as opaque,
splitting outputs into groups and comparing performance between
the different cohorts [38]. Other techniques that operate on opaque
boxes include: LIME [76], inspection of predictions [46, 53], test
selection [26, 83], and counterfactuals [98].

Interactive tools are a very recent alternative to opaque box
explanations. Though they are often published per information
visualization literature, they offer some of the more powerful mech-
anisms for inspecting complicated ML systems. Some are for in-
structional purposes, (e.g. [39]), but others are state-of-the-art sys-
tems [11, 37, 63]. More recently, these techniques have been applied
to models for data scientists [33].

Neural networks are among the hardest systems to test, recent
work shows that modern networks still succumb to relatively simple
image manipulations, meant to mimic graffiti on stop signs [22].
Carlini et al. also demonstrated adversarial examples which can
cause a “network to incorrectly classify images by changing only the
lowest order bit of each pixel.” [10]. To address these challenges,
researchers have devised a number of strategies, surveyed by Gilpin
et al. [24]. One is rendering the network more interpretable while
attempting to maintain performance [12, 51]. Another is to verify
networks, surveyed by Melis et al. [56]. One of the most recent
describes DeepTest [90], which attempts to use image processing
for data augmentations. These extra images achieve greater “neuron
coverage” [66], which is analogous to “code coverage” from software
engineering.

2.4 Humans Assessing AI, Qualitatively
In software engineering, a complement to testing is code inspection:
qualitatively checking the system’s reasoning to find flaws. As
Kulesza et al. pointed out, an analogous AI inspection approach
would check the explanations themselves [48, 50].
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Figure 2: How the agent makes a decision, showing nouns in black boxes, verbs on arrows, and the data involved above each
step in the pipeline. The process begins with a board, which gets converted to a board tensor, then passed into the CNN. The
CNN outputs an outcome probability tensor, which is then scored, resulting in a position scorematrix. After enforcing domain
constraints on the score matrix, we softmax the scores, and sample from the resulting distribution to select a position. Parts
in cyan activate only during training.

To support humans assessing AI, some argue for the impor-
tance of systematic process. Toward that end, some researchers have
turned to techniques humans use to assess humans. After-Action
Review (AAR) is one of several such process-oriented approaches
for human assessment of humans [81]. The AAR was devised by the
U.S. Army [59, 93], but sees continued use [7, 28, 78]. AAR has been
adapted for use in other domains, such as medical treatment [79],
emergency preparedness [15], fire fighting [36] and AI via a variant
known as AAR/AI [20, 55].

The AAR/AI process works by taking the human assessor
through a range of assessment perspectives, like: “what happened?”,
“why?”, and “how can we do better?”. It does so in a loop, starting
with set-up and concluding with learning formalization, specifically
the steps are [20, 55]: Define rules, Explain objectives, Review what
was supposed to happen, Identify what happened, Examine why,
Formalize learning, and Formalize learning from the whole session.
Khanna et al. [42] showed that human participants assessed more
effectively when using AAR/AI with explanations, compared to
when using the same explanations without the AAR/AI process.
Specifically, they observed that participants using AAR/AI found
more bugs, with higher precision than their counterparts who did
not. This result is consistent with a meta-analysis of AAR-based
methods, observing (on average) a large practical effect [41]. Our
experiment includes an adaptation of AAR/AI.

3 THE EXPLANATIONS; AND THE AGENTS
THAT GENERATE THEM

Section 2 pointed to significant work to explain an AI agent, but
few such explanations are aimed at comparing multiple agents’
logic. In this section, we describe the three interactive explanations
we created to empower participants to comparatively assess our
agents, which work as described in Figure 2.

Figure 3 will show the explanations’ environment2. The control
panel is on the left, the game board at the top right, and the expla-
nation just below the game board. This arrangement of explanation
and state juxtaposes them—making our designs more generaliz-
able, though possibly harder to use than if we had superimposed
them [14]. The three explanations appear in Figures 3, 4, and 5; each
with the same board state and mouse position (yellow highlighted
square in Figure 3).

3.1 The Agent
The agent generating these explanations has a convolutional
neural network tasked with predicting outcome tuples O =

(Win%,Loss%,Draw%) for each square, given only theM ×N board
(Figure 2). The network has an input layer with 2 channels (the
agent’s pieces are always in channel one, the opponent’s in channel
two). Thus, the network input tensor has dimensionM × N × 2.

Provided for context and never visible in the interface, the agents’
internal structure was: The input tensor goes through 5 convolu-
tional layers, each with kernel size 3 (only the third layer uses a
stride, set at 2), followed by 2 fully connected layers, and ending
with a sigmoid layer. Next, the fully connected linear layers com-
press the tensor to a vector of lengthM × N , which is expanded to
its final shape. The output shape is (M ×N ×O), whereO is the set
of outcomes—in this case a 3-element vector. The network uses the
ReLU activation function throughout.

To select actions, the agent starts with a forward pass on the
network. Then, armed with predicted outcomes from the network,
the agent uses them in a generalized value function (proposed by
Sutton et al. [87], though still used, e.g., [52]). Our agent’s scoring
function is defined as: (Win% − Loss%). Last, it applies a Gumbel-
softmax function to the scores, before sampling from the resulting
distribution to pick a near-max valued action. This softmax has a

2Our program is written in Python, with dependencies for GUI elements (wx-
Python [88]), graphics (OpenGL [84]), and neural networks (PyTorch [65]). Full imple-
mentation: https://github.com/dodgej/RankingMutants
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Control Panel, described
in the Supplemental Doc.

Game Board, between the two selected agents (Pink and 
Green) with yellow highlight at the user-selected square.

Scores Through-Time Explanation, in which each decision 
gets a column, and each move’s score appears in that 

column. Figures 4 and 5 show the other two explanations.

Figure 3: The environment, showing the Scores Through-Time explanation (Section 3.2). The control panel (left) allowed par-
ticipants to pick agents, an explanation type to view, and step through the games The game board (top) shows where X (pink)
and O (green) moved, and the highlighted X’s show that X got 4-in-a-row, thereby winning the game. The Scores Through-
Time explanation (callout, right) answers the question “at each step, how did the pink (X) agent score each move? The one
it chose (pink) at each step is always near the top-scorer. The user’s cursor is on the yellow-highlighted game board square,
which similarly highlights the scores corresponding to that move in the explanation. Figures 4 and 5 show the other two
explanations.

temperature parameter, used to mediate the explore/exploit tradeoff
during training. Afterwards, we maintain 0.1 temperature so the
agents encode a probabilistic policy, and games are not deterministic
given a pair of agents. Consult our Supplemental Documents for
more details.

For the backward pass, we compute L1Loss between the net-
work’s output and the target values. To compute targets, we do
uniform random sampling on decisions available at the current
state, with 10 rollouts per decision to estimate value. We then com-
pute proportions of win, loss, and draw from the results of the game
rollouts—these values become regression targets. This formulation
makes the learning problem difficult, but provides explanation in-
formation about all decisions with a single forward pass, making
our agent easily run at interactive rates on consumer hardware.

3.2 Explanation 1: Scores Through-Time
(StTime)

This explanation emphasizes the time dimension of the data, at-
tempting to answer: “At each decision, how did the agent score each
square?”

The Scores Through-Time (StTime) explanation uses time as the
X-axis, and whenever the agent being assessed makes a decision,
a new column appears with the agent’s scoring of every potential
square at that decision. For example, at decision 11 in Figure 3 the
Pink X player’s highest-scoring square was also the one it took (in
pink).

In each column, one rectangle is the same color as the agent
(Pink) which depicts the agent’s scoring of the square it selected.
Other rectangles show the agent’s scorings of the 35 not-selected
squares on the 36-square board, including illegal decisions. (If the
agent is well trained, the illegal decisions are assigned very low

scores.) Hovering over any gameboard square highlights its scoring
for every decision through time. Hovering over any scoring in the
explanation highlights the squares on the gameboard associated
with that score. If the participant moves the game forward one step,
the explanation adds a new column for that decision point.

3.3 Explanation 2: Scores On-the-Board
(OnBoard)

This explanation emphasizes the relationship between the time and
space dimensions of the data, at the cost of adding complexity from
using multiple charts. Thus, it attempts to answer: “How good is
this move at different points in time?”

The Scores On-the-Board (OnBoard) explanation divides the
StTime explanation to give each decision its own chart instead
of combining all decisions into one chart. Each grid element is an
StTime chart for one decision, intended to ease comparison [91]. For
example, the top left chart in Figure 4 shows the agent’s perception
of its likelihood of winning if it placed an X in the top left square
at any prior decision.

Each chart contains its own StTime explanation for that square,
with the same coordinate axes and decision number labels. Thus,
the far left of each chart represents the score X gave that particular
square at the first decision.

Meanwhile, the far right represents the score X gave to the same
square at the most recent decision. Hovering on any gameboard
square highlights the explanation corresponding to that square.
Hovering over any of the decision’s explanations highlights the
gameboard square—clarifying the spatial alignment of the grids of
pieces and charts. Moving the game forward one step adds one new
data point to each chart for the most recent decision.
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Figure 4: The Scores On-the-Board Explanation. Each move gets a small chart of Scores Through-Time, with occupied squares
colored by the agent’s color (pink and green; yellow indicates the square highlighted in Figure 3). Figure 3 uses our old name
for this explanation.

Figure 5: The Scores Best-to-Worst Explanation. Each decision results in a single sorted data series, which are identified by
color (pink is the most recent, then grey colors from dark to light).

3.4 Explanation 3: Scores Best-to-Worst (BtoW )
This explanation emphasizes the value dimension of the data, at-
tempting to answer: “At each decision, how did the agent score
each square?”

The Scores Best-to-Worst (BtoW ) explanation reframes the
focus—onto options (game squares) instead of time. Given that
at each decision, selecting an action requires considering multiple
actions, and a single episode contains multiple decisions, storing
all the values results in a tensor with both space dimension and
time dimension. BtoW explanation cuts along the space dimension.

BtoW has the same Y-axis as the other explanations, but the
X-axis is no longer time. Instead it represents the best-to-worst
ordering of scores for each square at a single decision. In this expla-
nation, each decision point generates a single data series, at first
shown in the agent’s color. Each data series contains the scores of
every square on the board—even illegal ones—meaning each con-
tains 36 rectangles. Since BtoW shows the scores in best-to-worst
order, the leftmost rectangle corresponds to the square the agent felt
to be best at the decision that just occurred, and the rightmost rec-
tangle the worst. Hovering over any gameboard square highlights

the scores associated with that square in every data series associ-
ated at all previous decision points. However, only the rectangles
that are the same color as the agent are interactive—hovering them
causes a gameboard square to be highlighted. Due to the sorting,
if a user wants to find a specific decision, they may need to hover
over some score and/or squares. Moving the game forward one step
causes a new colored series to appear, the colored series from the
last decision turn dark gray, and older scores become lighter.

4 METHODOLOGY
To investigate how participants would go about the Ranking Task
with the explanations we have just presented, we conducted an
in-person think-aloud study with 10 participants. Our RQs were:

RQ1: How did participants do on the Ranking Task?
RQ2: How many explanations and which ones did participants

use when foraging for information in our interface?
RQ3: How did participants select which agents to assess while

ranking?
RQ4: How did participants invest their time while ranking?
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Agent Name Noise SD Targeted Layer Tournament Results [W, L, D] Win% vs RandomAgent
#1Agent - - [4470, 530, 0] 98.2%
#2Agent 0.1 2 [3811, 1189, 0] 94.2%
#3Agent 0.1 3 [2712, 2288, 0] 92.9%
#4Agent 1 5 [2017, 2982, 1] 73.0%
#5Agent 1 4 [1474, 3514, 12] 81.4%
#6Agent 1 1 [503, 4484, 13] 48.0%

(a) Overall summary, aggregated tournament results, and Win% versus an agent selecting squares randomly (1000 games).
Agents are named byWin% rank; for example #1Agent had the highest Win%. Tournament results are [Wins, Losses, Draws]
from the perspective of the agent listed in the row.

#2Agent #3Agent #4Agent #5Agent #6Agent
#1Agent [726, 274, 0] [837, 163, 0] [967, 33, 0] [965, 35, 0] [975, 25, 0]
#2Agent [668, 332, 0] [940, 60, 0] [965, 35, 0] [964, 36, 0]
#3Agent [526, 474, 0] [913, 87, 0] [778, 222, 0]
#4Agent [592, 408, 0] [858, 141, 1]

(b) Upper diagonal of matchup matrix, showing results from Table 1a broken down per pair of agents.

Table 1: Ground truth, results from large round-robin tournament.

After receiving IRB approval, we recruited participants by post-
ing flyers around the community. All our participants gender iden-
tified3 as either woman (6) or man (4), and had ages ranging from
20-68. They had a variety of academic backgrounds: twoArt, two CS,
one English, one Finance, and four different kinds of engineering.
Four were associated with a branch of the military.

4.1 The Domain
Our domain was MNK games, primarily because of the strong
empirical controls it afforded. MNK games are a generalization of
Tic-Tac-Toe (3-3-3), with which most people are familiar. In MNK
games, each player alternates placing their piece (X or O) in an
attempt to put their pieces in a sequence of length K on a board of
sizeM × N . In our study, we used 9-4-4, in which a player tries for
a sequence of length 4 on a 9 × 4 board.

Because MNK games have simple and known transition models,
we programmed a strong simulator which encodes in 2 bits the
3 states of each square—opponent controlled, friendly controlled,
empty. Further, the position tree has a bounded depth because
eventually the board will fill. This allowed us to estimate the quality
of non-terminal states using random rollouts, a property AlphaGo
utilized [85].

Other researchers have used MNK (e.g., [1]), partially because
“people’s intuitive priors (three-in-a-row is good) happen to be cor-
rect” [95]. While the Go domain has a similar representation, MNK
rules are much simpler, making it well-suited for HCI studies.

4.2 Manipulating agent “quality”: Mutant
Agent Generation

In Section 1, we pointed to the need to systematically control
our manipulation—here, agent quality—which we accomplished
through mutating the agent in controlled ways. First, we trained

3We asked, “What gender (if any) do you identify yourself by (check all that apply)?”
and offered the following options: Man, Woman, Non-Binary, Self-Report, and Prefer
not to state [80]

an agent to serve as the base agent. To do so, we pitted the CNN
agent against a random one, used an Adam optimizer learning rate
at .0001, regularized at .00001, and played games. After 125,000
games the agent was able to defeat a random agent 98.2% of the
time (Table 1a). While nowhere near optimal, this level of perfor-
mance was sufficient for our study because the network provided
outputs accurate enough for sensible explanations.

Next, we used the base agent to generate mutant agents in the
following way:

(1) Copy the neural network found in the base agent.
(2) Pick a layer in the neural network.
(3) To the network weights found on that layer, add Gaussian

noise withmean = 0 and varying SD (we used [.01, .1, 1, 10]).
(4) Save the noisified weights.

Applying this process to our six-layer network with four noise
parameter values created 24 agents, from which we chose five
that spread evenly to join the base agent in the pool participants
observed (as shown in Table 1a; each step down the ranking equals
≈700 fewer wins).

4.3 Procedure
We conducted a think-aloud study, one participant at a time, in
our lab. Participants’ task was to rank 6 agents according to which
they “think is the ‘best’ agent to the one that’s the ‘worst’.” To obtain
ground truth, we used a large round-robin tournament in which
the agents played against each other (Table 1b), as in Kim et al. [43].
Participants did not know the ground truth. We randomized assign-
ment of “jersey colors”, which also served as the agent’s “public”
name: Orange, Pink, Green, Vermilion, Sky, and Blue (Figure 3
shows accessible colors from [102]).

Before the main task, we gave participants a tutorial on the game,
agents, and explanation, then conducted pre-task questionnaires
collecting participant information and the first two AAR/AI steps,
which define rules and agent objectives.
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P01 P02 P03 P04 P05 P06 P07 P08 P09 P10
#1Agent Loss ↓ ↓ ↓↓↓

#2Agent Loss ↓ ↓↓ ↑ ↑ ↑

#3Agent Loss ↓ ↓↓ ↑ ↑ ↓ ↓ ↑

#4Agent Loss ↓↓ ↓ ↓ ↑ ↑ ↓↓ ↑

#5Agent Loss ↑↑ ↑↑ ↑ ↑↑ ↑ ↓

#6Agent Loss ↑ ↑ ↑

Total Ranking Loss 6 4 4 0 4 4 4 4 0 8
Pigeonhole Score 2 4 2 6 2 2 2 3 6 0

Table 2: Each participant’s losses per agent, with agents ordered by their true rank in the first column. The arrows (↑, ↓) indicate
how much worse or better participants thought each agent was than their true rank. Losses of only 1 (highlighted in light
gray) show where a participant was off by only one rank. Dark gray cells highlight where a participant’s ranking of that agent
differed from the agent’s true rank by more than one. As the table’s prevalence of light colors show, overall the participants
were not far off in their rankings.

During the main task, the participant stepped a game through
its decisions to its conclusion while thinking aloud about the two
agents’ performances. The researcher then provided the AAR/AI
questions on paper, but posed at the granularity of entire games in-
stead of individual decisions as per prior work [20, 55]. The AAR/AI
questions asked (1) what happened in the last game; (2) what
good/bad/interesting things they observed; (3) whether/how the
explanation helped them understand why that AI did the things it
did; and (4) changes they recommend in the AI’s decisions. They
then rated both agents.

These forms were a valuable data collection artifact for us, but
also served as memos participants wrote to themselves. If partic-
ipants expressed confusion about what to write, the researcher
mentioned that they would be retaining that form for reference,
and encouraged them to write anything they might want to remem-
ber later.

After completing a form, the researcher asked if the participant
was, “...ready to do a preliminary (re)ranking, OR if they wanted to
see more games—and if so, what configuration?”. This portion of the
study delivers AAR/AI steps 4 and 5 because the contents of our
form cover4 What and Why. Filling out the form is itself a learning
formalization step, delivering Step 6.

Whenever the participant was ready to submit a final answer,
they stopped the timers; then we conducted a short interview about
their experience. The creation of the ranking delivers the formaliza-
tion described in AAR/AI Step 7, intended to cover all observations
in the session.

At the conclusion of the study, we compensated participants $20
USD, then asked if they wanted to know the “right answer.” Every-
one did, so we showed them the data found in Table 1a and revealed
the randomized mapping between public and private names.

All of our study materials, including the scripted procedure and
the source code for the system they used, are available in the Supple-
mental Documents accompanying this paper. Among these details
is a list of slight changes we made to the interface during data
collection (e.g., implementing the rewind slider, changing colors,
bug fixes, etc).

4We chose to omit Step 3 in an effort to streamline the process and because it was not
very meaningful at the game/agent level (i.e. What was supposed to happen? It was
supposed to win).

0
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1

#1Agent #2Agent #3Agent #4Agent #5Agent #6Agent

Figure 6: The fraction of participants (y-axis) who correctly
ranked each agent. The U shape points out how much more
successful participants were with the top/bottom agents
than with the middle agents.

5 RESULTS RQ1: HOWWELL DID
PARTICIPANTS RANK THE AGENTS?

Two participants ranked the agents perfectly, and several others
also had a fair degree of success on the Ranking Task. We measured
their success using two metrics.

The first metric, the Margin Ranking Loss5, measures how close
participants came to a perfect ranking. The Margin Ranking Loss
computes for each agent |rankp − rankt |, where rankp is the rank
that the participant assigned the agent, and rankt is its true rank
(Table 1a).

Table 2 depicts each agent’s losses with the number of arrows
(↓, ↑) in each cell. The direction indicates when participants ranked
the agent too high (↑) or low (↓), and the sum of the number of
arrows per column shows each participant’s total loss. For exam-
ple, P01 incurred a loss of 1 for #3Agent by ranking it 4th . Since
there are 6 arrows in P01’s column, their total loss was 6. Of partic-
ipants’ 31 losses, 23 were “off-by-one” errors (a single ↑ or ↓), half
of which were adjacent agent rankings swapped, such as P06 and
P07 swapping #1Agent with #2Agent.

The second metric of participant success was the number of
agents they placed into the correct rank (maximum: 6). We call

5https://pytorch.org/docs/stable/generated/torch.nn.MarginRankingLoss.html
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Figure 7: Timelines of each participant’s events, with minutes into the main task on the X-axis. The top 3 rows (blue) show
participants’ interactions with the explanation. The middle 3 rows (green) show which explanation is currently visible. The
bottom 3 rows (purple) show participants’ interactions with game state (e.g., changing which agents are playing, which game,
or advancing through game states). The text summaries show the number of instances of each event (Count) and the percentage
of the participant’s total task time spent in that event (Time%).

this the “pigeonhole score,” per the mathematical pigeonhole prin-
ciple [30]. Each participant’s pigeonhole score is the number of
empty cells per column in Table 2.

While Table 2 emphasizes pigeonhole success by participant, Fig-
ure 6 emphasizes participant pigeonhole success by agent. As the
figure shows, the top and bottom agents were easiest for partici-
pants, with 7 participants ranking them correctly. The most difficult
were #3Agent and #4Agent, with only 3 participants ranking one
or both correctly. This illustrates the importance of considering
explanation resolution Section 1—participants might not need fine
explanation resolution to differentiate the top agent from the bot-
tom, but may need high-resolution explanations to differentiate
agents like #3Agent and #4Agent.

P09: “I’m pretty confident with [which agent] is at the top
and...bottom, but these middle guys are a little fussier.”

6 RESULTS RQ2: WHICH EXPLANATION
TYPE(S)?

We had expected participants to try out all three explanation types.
If, over time, a participant still had not tried an explanation type,

the researcher would request they do so between games to encour-
age exposure to each one. However, as Figure 7 shows, not every
participant spent much time with every explanation. For example,
P03 refused to use OnBoard because they had decided during the
tutorial that OnBoard was too busy. P04 remained steadfastly with
StTime, explaining that StTime felt familiar due to similarities to
visualizations found in sports. As Figure 7 shows, P04 and P05 gave
only token glances at explanations other than StTime.

6.1 Participants’ Explanation Diets
We can view participants’ explanation choices through Information
Foraging Theory’s [70] concept of diets—the selection of informa-
tion types that an information forager chooses to consume. For-
agers’ information goals determine their “ideal” diets, but what they
actually consume depends on what is available in the environment.
We noticed three such dietary patterns.

P04’s and P05’s explanation diets steadily consisted of only one
explanation type throughout the task. Piorkowski et al.’s work on in-
formation foraging diets termed this the Repeat dietary pattern [69].
Figure 8 summarizes participants’ usage patterns that were detailed
in Figure 7, and both starkly reveal the Repeat diet pattern for P04
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Figure 8: Charts of participant usage behaviors for each explanation type.

and P05. One interpretation is that these participants stayed with
StTime explanation because it kept giving them value. For example,
after using StTime for about 5 minutes:

P04: “[#1Agent]’s gauge of win probability is flawed. It could
guarantee a win earlier.”

P04 remained with StTime for more than an hour after that.
We term a second diet pattern, apparent in both Figure 7 and

Figure 8, the Serial Repeat dietary pattern. In this pattern, a partici-
pant would remain with the same explanation type for a fairly long
period of time (at least 10 minutes) before switching to another ex-
planation type, where they would remain for a long period of time
before switching again. The Serial Repeat dietary pattern was very
common; half of the participants followed it: P02, P03, P08, P09, and
P10. The pattern is visually apparent for each of these participants
in Figure 7. Figure 8a shows that each of these five participants
spent >=25% of their time in one explanation type and >=25% in
another, corroborating these five participants’ serial consumption
of different explanation types.

The third dietary pattern we observed is reminiscent of Pi-
orkowski et al.’s Oscillate pattern. In this pattern, a participant
would start with one explanation type, then rapidly consult another
explanation type to understand the phenomenon from a new per-
spective, then return to their first explanation type, and so on, in a
series of rapid switches back and forth. Participants P01 and P06
followed this pattern often (Figure 7). As P01 explained:

P01: “OnBoard revealed consistent mis-scoring of obvious de-
fensive moves. BtoW: at first, yellow seemed like it was think-
ing correctly about its offense, got appropriately pessimistic
when missed defensive moves.”

6.2 Which explanation types?
Figure 8b shows participants’ total usage for each explanation type.
As that figure shows, no single explanation type outshone the
others; rather, participants’ preferences varied widely.

Participants also exhibited varying degrees of preference. For
example, participants P09 and P10, both of whom followed the Serial
Repeat dietary pattern, exhibited only weak preferences between
the type they used the most vs. the type they used second-most.
In contrast, P04 (Repeat pattern), P05 (Repeat pattern), and P06
(Repeat and Oscillate patterns) exhibited very strong preferences,
each focusing almost entirely on a single explanation—but differing
on which explanation that was.

Some participants particularly liked StTime and BtoW , with 3-5
participants using each of these two types the majority of the time,
so we discuss those two explanation types first.

6.2.1 Scores Through-Time. The strengths participants saw in
StTime were clarity, the explanation’s progression over time, and
ease of finding information. The main weakness they called out
related to its handling of the many overlapping datapoints, which
we had attempted to handle using alpha blending.
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Figure 9: This ESPN chart shows analysts’ estimates of two baseball teams’ win probability over time, sampled near the end of
the game (Source: https://www.espn.com/mlb/game/_/gameId/401229397). P04 said the StTime explanation felt familiar, due
to similarity with sports charts like this.

P09: “...these columns are more clearly a separate step, so I
know this was ‘the third move that [#2Agent] made’. ”
P05: “The StTime module helps analyze steps & chronological
order.”
P10: “And since the columns went with each turn horizontally,
it was a little easier to follow as the game progressed.”
P09: “[StTime] still has that grey shading, which gets a little
weird.”

P04 called out an advantage of the StTime explanationwe had not
expected: it reminded them of sports visualizations. For example,
Figure 9 shows an ESPN visualization with the same data types on
the axes, quantifies the range in the same way, and is updated with
each in-game event. The main difference is that StTime (Figure 3)
attempts to show the win probability for all actions, as opposed to
just the one that occurred.

6.2.2 Scores Best-to-Worst. Three participants heavily used BtoW .
Participants’ remarks suggest that it may have been particularly
useful in making comparisons—both among decisions and agents—
but some found it confusing.

P02: “This BtoW move explanation helped in comparing the
possible moves as they are on the same line for a particular
decision.”
P06: “Its <current agent’s> graph [BtoW] similar to
[#4Agent].”
P09: “I just find it confusing to read. ”

One advantage that P01 and P07 observed was BtoW ’s ability to
reveal agents’ “pessimistic” expectations.

P01: “[#5Agent] eventually took advantage of opportunities
it built over time. It made a defensive move along the way.
[#6Agent]’s BtoW view revealed utter pessimism very low.”
P01: “BtoW: at first, [#3Agent] seemed like it was thinking
correctly about its offense, got appropriately pessimistic when
missed defensive moves.”
P07: “[#3Agent] has losing on all the turns but had multiple
points where they could’ve had good chances.”

6.2.3 Scores On-the-Board. Explanation type OnBoard was no par-
ticipant’s clear favorite as per usage time or counts, but it seemed
to play a key supporting role for some participants. Participants
P01, P06, P07, and P08 all used OnBoard as their second-choice
explanation, using it 10–30% of the time. In particular, P01 and
P06, who both used the BtoW explanation the most (66% and 85%,
respectively), brought up the OnBoard explanation as often as they
brought up BtoW (13 and 11 instances each, respectively, in Fig-
ure 7).

P06: “The OnBoard/BtoWwere similar to [#6Agent] (they both
lost).”

P06: “Started using OnBoard → lost a little confidence in
[#4Agent] when looking at OnBoard.”

P01: “[#1Agent] seemed to have better diagonal defense than
horizontal as per OnBoard.”

P01: “OnBoard revealed consistent mis-scoring of obvious de-
fensive moves [for #3Agent].”
One advantage participants particularly cited for OnBoard

seemed to stem from the graph being “clean”—the colors map con-
sistently to the agent colors and OnBoard is the only explanation in
our group that is free of overlap. But others pointed to the difficulty
of knowing where to look at any particular time.

P09: “There wasn’t as much visual noise, like with the other
things where there were different shades of grey indicating
how old things were, it was just here’s a little dot, and this
represents a move. It just seemed cleaner I guess.”

P08: “Visually you could see how each one was doing.”

P10: “ ...its [OnBoard] just less easily decipherable in a quick
glance.”

P01: “Some of the patterns in the OnBoard view were standing
out to me as potentially meaningful, but not in a way I could
capitalize.”
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P01: ⊗⊗⊗×⊗ P02: ⊗×⊗⊗⊗⊗ P03: ⊗×⊗⊗×⊗#⊗

P04: ####⊗#⊗⊗⊗⊗ P05: #⊗⊗×⊗#⊗⊗ P06: ××××⊗⊗

P07: #⊗#⊗⊗⊗⊗⊗⊗⊗⊗ P08: ×⊗⊗⊗⊗⊗×⊗⊗×× P09: ⊗⊗#×⊗×#⊗⊗⊗#×

P10: #⊗#⊗⊗

Figure 10: How participants selected agents to assess throughout themain task, expressed as the red path through thematchup
matrices, as expressed by the “New Game” data on Figure 7. Participants’ path steps in these matrices are: × (vertical in the
matrix) changes the X-agent.⃝ (horizontal) changes the O-agent. ⊗ (diagonal) changes both agents. Size of the red dot reflects
how long (# games) a participant stayed with the same pairing.

6.3 Implications for Interactive XAI and for
XAI Empirical Methods

Our results do not suggest that any of these explanation types alone
were the explanation of choice for a majority of participants. Some
participants seemed to use all three types in almost equal amounts,
whereas others used multiple types as complements—so no one
type was able to fit all. This echoes earlier findings by Anderson et
al. [5], who reported similar effects in a different domain with dif-
ferent explanation types (Saliency vs. Rewards vs. both vs. neither).
Since our explanations and domain are both different from Ander-
son et al.’s, the similarity of these results suggests more generally
that “one size does not fit all” may be a finding that is not specific
to particular explanations or domains. This in turn suggests that
interactive XAI systems may need to support users who wish to
flexibly switch among multiple explanation types at will, or view
multiple simultaneously.

From a research methods perspective, XAI empirical studies of-
ten are designed to compare different kinds of explanations as single
treatments vs. a control of no explanations, to understand which
of several explanations is best. However, our results suggest that

such designs do not take into account individuals whose workflow
includes using multiple explanations as complementary tools. In
order to capture possible effects here, XAI researchers may benefit
from a design using a full ablation of explanations. Unfortunately,
fully ablating features causes the number of treatments to grow as
a factorial in feature count. Latin Square experimental designs (see
Section 5.3 in [47]) may be a useful strategy to reduce this empirical
cost.

7 RESULTS RQ3: WHICH AGENTS TO ASSESS,
AND HOW?

Ranking involves comparing one agent against another. If we view
each such comparison as a test, choosing agent pairings is analogous
to a test selection problem.

Figure 10 illustrates how participants selected agent pairings
over time. In a pairing, the X-player is the agent explaining itself
(eXplaining agent, or X-agent), and the O-player is their Opponent
(O-agent). Whenever a game ended, most participants tended to
favor changing both the X-agent and the O-agent—diagonal moves
in the figure (and ⊗ beneath the chart). However, some participants,
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Figure 11: Two of six stumps drawn by P09 to assist in finalizing ranking. Each of these was initially created after P09 had
generated a hypothesized final ranking, and written in that order. Then, using this artifact, P09 selected a few more agent
pairs to assess before declaring the task complete.

such as P04 and P10, held the X-agent fixed for quite awhile, as
indicated by many horizontal lines in the figure (O-agent changes,
shown with ⃝ beneath the chart). Other participants such as P06
and P08 did the opposite, holding the O-agent fixed while changing
the X-agent (indicated by many vertical lines and × beneath the
chart).

7.1 Keeping Agent Pairs Synchronized
We had expected participants to take a “single-threaded” approach:
start a game (“thread”), see that game through to completion, an-
swer the AAR/AI questions, then move on to another game—in
essence terminating the first thread. All of the participants did this
except one, who instead used a “multi-threaded” approach.

P06 maintained multiple game threads simultaneously. P06 did
so by opening each X-agent’s tab, creating a game with identical
settings for each, then stepping two decisions in every game in
synchrony. Since changing tabs changed both the game and the
X-agent—analogous to sleeping the thread—the result was that P06
could inspect an explanation (usually BtoW , but often OnBoard) for
the last decision from each agent, then look at the same explanation
style for the last decision for the next agent, and so on. P06 con-
tinued in this way throughout the study session, allowing exactly
two decisions each time and cycling through all the game threads
to examine each X-agent’s explanation, synchronously across all
the threads. In following these threads, P06 switched the X-agent a
total of 357 times (Figure 7)—over 20 times as many as the second
most frequent (P08’s 17 X-agent switches).

An advantage of P06’s approach is that it held the variable of
time fixed across all games, ensuring commensurate states in terms
of progress through the game. P06 also held fixed the O-agent and
turn order (O-agent playing first), which had the effect of holding
fixed the difficulty the X-agent faced. By holding as many variables
as possible fixed, P06 had a more equivalent basis of comparison
among the different agents than other participants did.

This means of comparison helped P06 resolve a misconception.
Upon seeing each X-agent’s first explanation, P06 hypothesized to
the researcher that seeing a high slope in the BtoW explanation
indicated that the X-agent was good. However, upon seeing the

explanation evolve after several decisions, P06 was able to identify
that hypothesis as incorrect.

7.2 Sampling Uniformly vs Focusing on the
King of the Hill

Several participants opted for a fairly uniform distribution of games
assessing each agent: P01 did so mostly using BtoW , P03 using
StTime and BtoW , and P05 mostly used StTime. Some of these par-
ticipants ran out of time, but P05 submitted rankings early.

In contrast, some participants used a process reminiscent of
Selection Sort—look for what might be the best X-agent, verify its
“bestness” against several O-agents, eliminate it from consideration,
and repeat. Figure 10 evidences this for P04’s perusal of the StTime
explanations via their many horizontal moves in the top row. P10
used all three explanation types to follow the same process as P04:

P10: “At this point, in my opinion it is pretty clear cut that
Orange and Blue are the smartest... This is how I would start
at least: I would pit all of them against Blue, and switch which
one goes first, and do at least one game each way like that, just
to see what the other agents do against what I consider to be
the smartest agent.”

7.3 “Build-your-own” visuals
Two participants built their own visuals to track their progress
beyond what they wrote on the AAR/AI forms along the way. For
example, having solidified a ranking from initial observations in-
volving all three explanation types, P09 drew a forest of six stumps,
each with a different agent at the root (Figure 11). The stump ap-
peared sideways, so the children were ordered by the hypothesized
ranking, each containing a possible O-agent, with match results
next to it if available. With this visual arrangement, P09 quickly
determined blind spots and evaluated which wins were hard fought.
With this method, P09 achieved a perfect ranking.

P08 kept a similar list of which agent won games—but omitted
recording the losers. Later this omission seemed to cause confusion,
as P08 conflated an agent that was too bad towinwith the “untested”
agents.
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Figure 12: The number of games each participant observed (x-axis) and how long they watched each game on average (y-axis).
The numbers are their PID numbers. Since they had 2 hours to complete their task, participants had to generate strategies
to maximize the value of the information they received per time cost. Four participants watched as many games as possible
(ManyGames strategy ), thereby having less time to spend per game (median: 03:10), but instead viewedmore games (median:
13). Five participants watched each game carefully (ThoroughGames strategy ) so had time for fewer games. One participant
watched few games, but did not spend long on them (8) (Alternate strategy ). The dashed line represents a theoretical maxi-
mum within 2 hours.

P08: “I want to know a little more about [#6Agent]... [#6Agent]
has never won anything
<Researcher: Is that because it is bad or because you haven’t
watched it?>
I think I haven’t watched it ”

However, P08 was wrong, #6Agent had been in 3 of the 7 games
P08 had observed.

7.4 Implications for Interactive AI
Achieving the synchronization of agent-pairings that P06 sought
was straightforward: P06 simply controlled the order in which they
used the different interface affordances. However, our implemen-
tation of the AAR/AI component was not perfectly suited to this
approach. We triggered the AAR/AI questions whenever partic-
ipants finished a game (Section 4), but for P06’s multi-threading
strategy, AAR/AI’s Step 6 “Formalize Learning” would have been
more appropriate after every cycle of comparing all the agents for a
decision. By mandating the formalization of learning occurring after
each game instead of each workflow cycle as it naturally occurred,
it is likely we disrupted P06’s process. An open question for design-
ers of interactive XAI+AAR/AI systems is: how to devise ways to
trigger AAR/AI’s learning formalization steps in ways appropriate
to the current user’s strategy?

In Section 5 we showed that it is not equally difficult to rank
each item in the Ranking Task. Uniform sampling approaches aimed
more at each ranking being equally difficult—thus needing equal
attention. Users like thesemay benefit from features that guide them
toward discovering, tracking, and quantifying agents performing
very similarly, to help direct their attention to these more difficult
portions of the Ranking Task. Similarly, King of the Hill approaches
might benefit from such affordances by finding the best agent faster.

The fact that two participants built their own visuals suggests
a need to give users a way to track their progress. One possibility
would be to include a matchup matrix in the interface similar to
Figure 10, supplemented by optional annotation/commenting capa-
bilities. Then, for example, an updated matrix could appear after
each game summarizing results observed thus far and clicking a
cell could be an alternative interaction to select a pair of agents to
assess.

8 RESULTS RQ4: HOW DID PARTICIPANTS
INVEST THEIR TIMEWHILE RANKING?

Filling the matchup matrix from Section 7 would have taken O(n2)
games—but participants only had 2 hours for the task. The time
limit added constraints on choices for howmany games participants
saw from each pairing, and how long to spend per game.

8.1 Invest in Many Games
ManyGames participants spent less time per game
(≤ Median(Avд. Duration)) so as to see more games
(> Median(# Games)) (Figure 12) . Four participants invested this
way—including the two who ranked perfectly (P04 & P09). On
average,ManyGames investors had an average pigeonhole score of
4.25, and they incurred lower losses (avg. = 2) than their peers.

ManyGames investors also seemed to gain a robustness against
“underdog” victories6 warping their rankings. To illustrate, P04
observed 34 games, 24% ofwhichwere underdog victories, including
the best agent (#1Agent) losing to the worst (#6Agent)! Despite this,
P04 ranked all agents perfectly, possibly because they observed

6In Table 1b, an underdog victory is where a lower-ranked agent wins against a
higher-ranked opponent (i.e., #3Agent defeating #1Agent).
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+

Human assessor, with tools

Single Agent

Acceptance/Rejection

OR

(a) Acceptance testing: Provided one input
item, assessors determine fitness “for the pur-
pose.” [27].

+

Human assessor, with tools

Agent A Agent B

A   OR   B

Pairwise Comparison

(b) Comparison testing: Provided two input
items (as in [38]), assessors determine “which
is better.”

+

Human assessor, with tools

Agent A Agent B Agent M

{C, M,…A}

A ranking of the agents

(c) Ranking (our proposal): Providedmany in-
put items, assessors fully order them.

Figure 13: Three notional views of measuring the quality of explanation systems. Note that each takes as input an agent and
situation (e.g. the agent has a wall adjacent), allowing the human to rank/accept with respect to a different property (e.g. speed
or win count).

#1Agent defeat #6Agent in 4 additional games. P09 also ranked
the agents perfectly, and when asked about what they would do if
given more time, their response was to repeat observations:

P09: “I might replay a few of them that I have already played,
just to see if I get the same results.”

8.2 Invest Thoroughly in Games
Five participants spent more time per game7 (>
Median(Avд. Duration)) but in turn saw fewer games
(≤ Median(# Games)). ThoroughGames participants had an
average pigeonhole score of 2 and incurred higher losses (avg. 5.6)
than their peers.

The ThoroughGames investors also seemed susceptible to under-
dog victories, and at least one seemed aware of it:

P10: “[#1Agent] might have been smarter, I’ve only seen it in
one game... I kinda wish I could have seen it in one more.”

Here, P10 ranked the best agent as third, having only observed it
lose to #3Agent, with #3Agent as the explaning agent.

Still, an advantage of the ThoroughGames approach is that these
participants reflected more deeply on the explanations:

P02: “At 11th move, the Orange agent have not selected the
best move which would result in winning for the agent.”
P01: “Pink had very low scores for obvious defensive moves
that it missed.”
P10: “Blue seemed to rank all moves properly, except the last
[winning move] which it still didn’t rank as 100%”

7Their games did not take more steps; there was no significant difference in steps/game
across the participants (ANOVA, F(9,101)=0.297, p=.974).

8.3 Implications for XAI research
Participants’ trade-offs between maximizing the number of games
observed (ManyGames) or the time spent per game (Thor-
oughGames) were reminiscent of Rader et al.’s [72] methods of
improving transparency in an intelligent system: 1) repeated expe-
riences with a system and 2) explanations into the system’s thinking.
This raises a potential conflict with the XAI researchers’ goals: How
do we collect good data about our explanations from participants
who just want to use the system and ignore the explanation?

To illustrate, while we previously highlighted how forthcom-
ing ThoroughGames investors seemed as research participants,
we had some difficulty obtaining high quality written data from
ManyGames investors. Concretely, only 1 of 4 ManyGames in-
vestors had a written response we coded as Explanation Inter-
pretation. Further, ManyGames investors often declined or replied
“Nothing” when asked what information present in the explanation
helped them (3 times on average)—despite evidently hovering and
seeming to look at it. This suggests XAI researchers may want to
rely on data sources which are not self-reported to improve data
quality from people like ourManyGames investors, e.g., using direct
and indirect measures like eye tracking or the ranking task.

9 DISCUSSION
9.1 What Good Is the Ranking Task?
We devised the Ranking Task to fill gaps in existing catalogs of
empirical XAI tasks, e.g., those surveyed by Hoffman et al. [32].
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Figure 14: Distributions of participants’ average ratings (y-axis) of the 6 agents’ expertise (x-axis). Notice that in Figure 6,
participants’ accuracy ranking the agents was U-shaped, but participants’ in-situ ratings of the agents expertise here was
more aligned with the agent quality (i.e., participants rated 6-MNL worst, and #1Agent best).

For example, Anderson et al. [5] reported situations in which
asking participants to predict an agent’s next decision produced
very noisy results. High variability in feature/action space may be
one possible noise source in the prediction task. Once this space
is big enough, the probability that a participant selects the correct
action becomes vanishingly small [19]. Prediction tasks can benefit
from “partial credit” for when the participant’s chosen action is
“close”, although defining action similarity remains challenging. The
Ranking Task avoids this issue by acting at higher granularity than
individual actions.

Figure 13 illustrates measuring advantages the Ranking Task
brings to XAI researchers. Acceptance testing (left) [27] is challeng-
ing to ground truth, as it can be difficult to define criteria for the
assessor’s acceptance. Comparison testing (middle) [38] resolves
most of the problems obtaining ground truth, but remains a low
resolution measure (1-bit). Ranking (right) can be ground-truthed
in a manner similar to comparison testing, and provides a higher
resolution measurement of an assessor’s ability to differentiate
agents.

Random guessing at Comparison testing will be 50% correct,
which makes scientific inference hard without large sample sizes.
Meanwhile, applying MarginRankingLoss to participant rankings
“puts more marks on the ruler” in terms of allowing more precise
measurement. The output from this loss function is 0 for the perfect
ranking, ranging up8 to a function ∈ Θ(n2) for n agents. Thus, our
loss describes a direct measure of participants’ performance at the
task, as opposed to relying on self-reported data.

However, perhaps there are other ways to generate a ranking,
rather than requesting one explicitly. For example, at the end of each
game, participants were asked to rank the expertise of both agents
in the game on a scale of 1 (novice player) to 5 (expert player). After
averaging participants’ expertise scores for each of the 6 agents,
8The empty ranking for n agents has loss n(n+1)

2 , though the worst loss we could
find using responses including all agents exactly once was ⌊ 12n

2 ⌋, for the backwards
ranking.

Figure 14 illuminates another possibility: inducing a ranking based
on participants’ in-situ ratings along the way. In particular, the
averages of participants’ along-the-way expertise scores (Likert
1–5) were more reflective of the true ranking of the agents, which
raises the question of the best way to solicit the ranking: at task
end, incrementally along the way, or some combination?

9.1.1 Case Study: Calculating Explanation Resolution. Our study
was not designed for comparative statistics, but to demonstrate
calculation of explanation resolution, we proceed in this case
study as though it was. A comparative study would have assigned
explanation-type treatments; here we approximate this by binning
participants into an explanation-type treatment if they used that
type at least half as often as that participant’s most-used. Table 3
shows the results of binning this way and the average losses across
participants associated with each treatment. We interpret this value
as a direct measure of explanation resolution. With this interpreta-
tion, wewould conclude thatOnBoard+BtoW had theworst (lowest)
explanation resolution, and that StTime had the highest. (N.B., this
computation is strictly for demonstration purposes.)

9.2 The Ranking Task as an instance of “The
Coaches’ Problem”?

We find it useful to consider human analogs to problems found in
evaluating AI, so we propose The Coaches’ Problem—“Given a set
of players on the roster, how do we pick which ones should start?”.
When humans approach this problem with human players, they are
often potential-oriented, not results-oriented (“Will this player help
us win games in the future?” vs “Did this player help us win games
in the past?”). This means that coaches evaluate beyond the stat
sheets—e.g., mechanics, attitude, or injury risk.

Consider that in the Coaches’ Problem, humans must often pick
before big data is available. Thus, they observe settings such as drills
and scrimmages—smaller data than the full season. And so, coaches
find themselves predicting big data from small, much as AI assessors
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“Treatment” Participants Average Loss, (AKA “Explanation Resolution”)
StTime [P03, P04, P05, P07] 3.5

OnBoard [ ]
BtoW [P06] 4

StTime+OnBoard [ ]
StTime+BtoW [P02] 4

OnBoard+BtoW [P01] 6
StTime+OnBoard+BtoW [P08, P09, P10] 4

Table 3: Case Study calculation of explanation resolution for an ablation of our three explanations.We used the loss instead of
the pigeonhole score because of the relationship to the microscopy resolution definition discriminating neighboring points.

must. Just as better drills will allow coaches greater insight with
only limited observations, so too will better explanations improve
the insight of AI assessors.

Further, both coaching and AI are often organizational efforts
conducted within limited time constraints, elevating the importance
of boundary objects. For example, artifacts to support collaborative
work (boundary objects) might help a single manager digest infor-
mation from many scouts. Additionally, boundary objects might
also assist scouts recalling past observations (collaborating with
past/future self). To be concrete, we observe that artifacts proposed
for AI evaluation (e.g., Model Cards [58]) bear significant resem-
blance to reports found in various sports9, so perhaps these two
communities can learn from each other.

9.3 The Ranking Task vs. AutoML
One might argue that automating the application of ML to real
world problems, (AutoML [89]) reaches straight for the large scale
past-facing evaluation data that we use for “ground truth” (e.g.,
Figure 2 in Wang et al. [99] shows ranked models). However, Au-
toML approaches tend to train multitudes of models, running many
tests on each—sometimes daunting given the cost to train recent
enormous models (e.g., [6] estimates GPT-3 cost $10M). Here, hu-
mans determining models’ deployment-worthiness via explanation
might be cheaper than running parallel training processes.

We view limiting the need for training as one of the most impor-
tant interventions to reduce AI costs—both carbon andmonetary. As
such, under the mutant agent generation workflow described in this
paper, measuring a new explanation does not require a new training
process. Similarly, we chose a challenge domain with relatively low
computing overhead, e.g., as opposed to Atari domains [61]. Lastly,
because our tasks do not require an optimal agent, we did not need
to train the agent very long, e.g. little hyperparameter tuning, short
training jobs on few machines. As a result, our total compute bud-
get was on the order of 100s of kW (running 2-3 regular desktop
computers for several days).

9.4 Why Mutant Agent Generation?
Mutant Agent Generation offers a very low cost tool to create a
potentially large number of agents of controllably differing quality,
to support an AI testing methodology.

One source of inspiration is literature on mutation testing, first
published in 1978 [16], but still used today [68]. In mutation testing,

9E.g., https://sports.yahoo.com/nfl/players/31934/situational

the first step is to generate mutants by manipulating the source
code many times (e.g. replacing a “+” with “-”), each time creating
a different mutant. Then, the quality of a testing methodology can
be measured by the number of detected and “killed” mutants. Thus,
we can similarly measure the efficacy of a “test suite” for AI—the
person-machine team of human plus explanation—by ability to
detect the presence of mutation in an agent.

Some source code mutations are harder to kill than others
(e.g., replacing > with ≥ might trigger problems rarely). Similarly,
adding very small amounts of noise to the network weights induces
an agent encoding a policy similar to the original10; while large
amounts of noise will produce an essentially random agent. Table 1a
illustrates that the most damaged agent is on par with a random
one, and that “Low” noise agents are the least damaged.

Researchers have investigated a variety of other manipulations
for AI systems. As an example, instead of mutating agents, diverse
agents often arise as a natural result of training, and can be used
for comparison. Huang et al. [34, 35] used this strategy, finding it
assisted human assessment by selecting more informative states.
Other properties researchers have manipulated include opaque-
ness [71], complexity [71], fairness [21], and more.

Of course, there are more controllable manipulations available,
such as choosing a specific set of neurons that seem correlated
to some desired feature [73]. However, such manipulations are
labor-intensive to implement because each must account for factors
such as domain, task, architecture, etc. In contrast, an advantage of
mutant agent generation is applicability to essentially any neural
network11 with little development effort12, similar to howmutation
testing can be applied in semi-automated ways [82] to essentially
any source code.

10 THREATS TO VALIDITY
Every study has threats to validity [101]—in reviewing ours, we
follow Yin’s approach [104].

First, our findings may not generalize well. Qualitative studies
like ours recruit small sample sizes to analyze individual partici-
pants in depth. As such, the strength of qualitative studies lies in
revealing unforeseen, unreported phenomena. Beyond the small

10In the limit SD → 0, the Gaussian becomes the Delta function, which would result
in no change to the weights or policy because the mean is 0.
11It may be applicable even beyond neural networks. For example, we envision anal-
ogous techniques for other types of models, such as noisifying feature weights in a
linear regressor.
12The short function “noisifySelf” in the CNNAgent; see provided source code for an
example.
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sample size, other factors that preclude generalization are: focus-
ing on a single task, domain, agent architecture, and agent pool
generation strategy.

Another threat to generalizability is the MNK domain itself,
which is not a common AI challenge domain. Many studies that
investigate sequential decision-making agents instead use games
like StarCraft (surveyed inOntanon et al. [64]). However, StarCraft’s
complexity adds costs to the tutorial or participant sampling, since
some experience is required. Further, episodes are long (15–60min)
and difficult to experimentally control due to the player-controlled
camera [67]. Lastly, although good agents exist [96], they are not
publicly available. The best alternative agents are heterogeneous
competition submissions (as in Kim et al. [43]), making explanation
difficult. Meanwhile, the compute required to train quality StarCraft
agents is infeasible for most researchers [18].

We selected MNK for several reasons. First, most people have
familiarity with Tic-Tac-Toe (the 3-3-3 instance of MNK)—including
all of our participants. Even without familiarity, training time is
minimal because the games are simple. The shortness of the game
enables the comparison needed to rank, since participants had time
to watch multiple agents play. MNK also gives experimenters a
high degree of control, e.g. varying task difficulty, both in terms of
participant foraging difficulty and in terms of strategic complexity—
by simply adjusting M, N, and K.

Still, MNK games bring the threat that they were perhaps too
easy, and therefore not representative of ranking tasks that might
arise in the real world. For example, MNK games could be solved
by other strategies (e.g. value iteration or search). However, by
studying how people assess neural networks in our toy domain, we
can better prepare for more complicated problems.

One component absent from our interface is the capability to
perform a “big data” analysis on the agents. Although this is an
important piece of an agent assessment interface, we eliminated
it from our study because (1) we established ground truth with
that information, and so could not reveal it; and (2) we aim for
explanation systems like ours to assess systems where “big data”
cannot necessarily illuminate the best agent automatically, e.g.,
when large-scale deployment data is expensive to collect and/or
nonexistent.

Our use of mutant agents raises another threat: mutant agent
generation is not ecologically valid. Mutants might appropriately
model random errors, but perhaps not systematic errors typical
in ML applications. In future work, we could assess this threat
by comparing our explanations’ ability to point out differences in
various agent pools, e.g. mutated agents vs. agents sampled from
historical training configurations [34].

Another threat is that we asked participants to accomplish only
one XAI task with only our novel explanations. Alternatives might
have allowed us to compare with prior work, e.g, if participants had
additionally performed tasks and/or used explanations from prior
literature. However, we wanted to observe participants over time
as they focused on the novel aspects of our task and explanations.

Finally, we did not control how participants went about their
task, so each experienced something different. We designed the
investigation without this control so as to observe their uncon-
strained behavior, but the lack of controls adds another threat to
generalizability.

11 CONCLUSION
We investigated how 10 participants went about a new empirical
task—the Ranking Task. Toward this end, we created three expla-
nation types, scaffolded them with an adaptation of the AAR/AI
process, and introduced a way to control agent variation—Mutant
Agent Generation. This approach is a computationally efficient,
controllable, simple, and general way to select a pool of agents that
are more/less similar, by changing the amount of noise and number
of agents to rank.

Our participants:
• ...ranked the agents well overall, but showed the importance
of a concept we term explanation resolution for close differ-
ences between agents (Section 5). Fortunately, researchers
can measure this quantity to reveal where an explanation
type is (in)adequate (Section 9.1.1).

• ...were diverse in both the explanation types they used, and
how they combined them into an information diet. The re-
sults suggest that single-explanation approaches may mal-
nourish users who thrive on a multi-explanation diet.

• ...approached agent “test selection” (agent pairing selection)
in at least four different ways: (1) synchronizing different
agent pairs playing the same game, (2) sampling uniformly,
(3) focusing on the “king of the hill”, or (4) building their own
visualizations to maintain results. Each group’s success (or
lack thereof) suggests the need for new affordances enabling
users to track their progress through the Ranking Task.

• ...traded off number of games to observe vs. how much time
to invest in each game in different ways, some favoring the
former (ManyGames) and others favoring the latter (Thor-
oughGames). A strength ManyGames participants exhibited
was increased resilience to underdog victory anomalies.

In addition, an important takeway for XAI researchers is that
our results suggest that use of the Ranking Task can help reveal
important nuances in XAI explanations’ ability to support users’ in
their understanding of intelligent agents.

P09: “I ranked Orange [#3Agent] above Vermilion [#4Agent]
just because as I was looking at Orange’s decision making pro-
cess in the graphs it made a lot of sense to me, so thats why I
put Orange above Vermilion.”

ACKNOWLEDGMENTS
This material is based upon work supported by DARPA #N66001-
17-2-4030 and joint support by NSF and USDA-NIFA under #2021-
67021-35344.

REFERENCES
[1] Abdel-Hafiz Abdoulaye, Vinasetan Ratheil Houndji, Eugène C. Ezin, and Gael

Aglin. 2018. Generic Heuristic for the mnk-games. In African Conference on
Research in Computer Science (Stellenbosch, South Africa) (CARI ’18). 265–275.
https://www.cari-info.org/Actes-2018/p276-286.pdf

[2] S. Amershi, M. Cakmak, W. Knox, and T. Kulesza. 2014. Power to the people:
The role of humans in interactive machine learning. AI Magazine 35, 4 (2014),
105–120.

[3] Saleema Amershi, Max Chickering, Steven Drucker, Bongshin Lee, Patrice
Simard, and Jina Suh. 2015. ModelTracker: Redesigning Performance Analysis
Tools for Machine Learning. In Proceedings of the Conference on Human Factors in
Computing Systems (CHI 2015) (proceedings of the conference on human factors
in computing systems (chi 2015) ed.). ACM - Association for Computing Ma-
chinery. https://www.microsoft.com/en-us/research/publication/modeltracker-
redesigning-performance-analysis-tools-for-machine-learning/

208

https://www.cari-info.org/Actes-2018/p276-286.pdf
https://www.microsoft.com/en-us/research/publication/modeltracker-redesigning-performance-analysis-tools-for-machine-learning/
https://www.microsoft.com/en-us/research/publication/modeltracker-redesigning-performance-analysis-tools-for-machine-learning/


How Do People Rank Multiple Mutant Agents? IUI ’22, March 22–25, 2022, Helsinki, Finland

[4] Dan Amir and Ofra Amir. 2018. HIGHLIGHTS: Summarizing Agent Behavior to
People. In Proceedings of the 17th International Conference on Autonomous Agents
and MultiAgent Systems. International Foundation for Autonomous Agents and
Multiagent Systems, 1168–1176.

[5] Andrew Anderson, Jonathan Dodge, Amrita Sadarangani, Zoe Juozapaitis, Evan
Newman, Jed Irvine, Souti Chattopadhyay, Alan Fern, and Margaret Burnett.
2019. Explaining Reinforcement Learning to Mere Mortals: An Empirical Study.
In Proceedings of the 28th International Joint Conference on Artificial Intelligence
(Macao, China) (IJCAI’19). AAAI Press, Palo Alto, CA, USA, 1328–1334. http:
//dl.acm.org/citation.cfm?id=3367032.3367221

[6] Nathan Benaich and Ian Hogarth. 2020. State of AI Report. https://www.stateof.
ai/

[7] Ralph Brewer, Anthony Walker, E. Ray Pursel, Eduardo Cerame, Anthony Baker,
and Kristin Schaefer. 2019. Assessment of Manned-Unmanned Team Perfor-
mance: Comprehensive After-Action Review Technology Development. In 2019
International Conference on Human Factors in Robots and Unmanned Systems
(Washington D.C., USA) (AHFE ’19). Springer Nature Switzerland AG, Cham,
CHE, 119–130.

[8] Timothy A Budd, Richard J Lipton, Richard DeMillo, and Frederick Sayward.
1978. The design of a prototype mutation system for program testing. In
Managing Requirements Knowledge, International Workshop on. IEEE Computer
Society, 623–623.

[9] Carrie J. Cai, Jonas Jongejan, and Jess Holbrook. 2019. The Effects of Example-
based Explanations in a Machine Learning Interface. In Proceedings of the 24th
International Conference on Intelligent User Interfaces (Marina del Ray, California)
(IUI ’19). ACM, New York, NY, USA, 258–262. https://doi.org/10.1145/3301275.
3302289

[10] Nicholas Carlini and David Wagner. 2016. Towards Evaluating the Robustness
of Neural Networks. arXiv:1608.04644 [cs.CR]

[11] Nan-Chen Chen, Jina Suh, Johan Verwey, Gonzalo Ramos, Steven Drucker,
and Patrice Simard. 2018. AnchorViz: Facilitating Classifier Error Dis-
covery through Interactive Semantic Data Exploration. In Proceedings
of the 23th International Conference on Intelligent User Interfaces. ACM,
269–280. https://www.microsoft.com/en-us/research/publication/anchorviz-
facilitating-classifier-error-discovery-interactive-semantic-data-exploration/

[12] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter
Abbeel. 2016. Infogan: Interpretable representation learning by information
maximizing generative adversarial nets. In Advances in neural information pro-
cessing systems. 2172–2180.

[13] Michelene T.H. Chi, Miriam Bassok, Matthew W. Lewis, Peter Reimann, and
Robert Glaser. 1989. Self-Explanations: How Students Study and Use Examples
in Learning to Solve Problems. Cognitive Science 13, 2 (4 1989), 145–182. https:
//doi.org/10.1207/s15516709cog1302_1

[14] Michael Correll, Dominik Moritz, and Jeffrey Heer. 2018. Value-Suppressing
Uncertainty Palettes. Association for Computing Machinery, New York, NY,
USA, 1–11. https://doi.org/10.1145/3173574.3174216

[15] Robert Davies, Elly Vaughan, Graham Fraser, Robert Cook, Massimo Ciotti,
and Jonathan E. Suk. 2019. Enhancing Reporting of After Action Reviews of
Public Health Emergencies to Strengthen Preparedness: A Literature Review
and Methodology Appraisal. Disaster Medicine and Public Health Preparedness
13, 3 (june 2019), 618–625. https://doi.org/10.1017/dmp.2018.82

[16] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. 1978. Hints on Test Data Selection:
Help for the Practicing Programmer. Computer 11, 4 (April 1978), 34–41. https:
//doi.org/10.1109/C-M.1978.218136

[17] Shipi Dhanorkar, Christine T. Wolf, Kun Qian, Anbang Xu, Lucian Popa, and
Yunyao Li. 2021.WhoNeeds to KnowWhat,When?: Broadening the Explainable AI
(XAI) Design Space by Looking at Explanations Across the AI Lifecycle. Association
for Computing Machinery, New York, NY, USA, 1591–1602. https://doi.org/10.
1145/3461778.3462131

[18] Jonathan Dodge. 2021. Position: Who Gets to Harness (X)AI? For Billion-Dollar
Organizations Only. In IUI Workshops.

[19] Jonathan Dodge and Margaret Burnett. 2020. Position: We Can Measure XAI
Explanations Better with “Templates”. In IUI Workshops.

[20] Jonathan Dodge, Roli Khanna, Jed Irvine, Kin-Ho Lam, Theresa Mai, Zhengx-
ian Lin, Nicholas Kiddle, Evan Newman, Andrew Anderson, Sai Raja, Caleb
Matthews, Christopher Perdriau, Margaret Burnett, and Alan Fern. 2021. After-
Action Review for AI (AAR/AI). ACM Transactions on Interactive Intelligent
Systems (2021), 33 pages. http://web.engr.oregonstate.edu/~burnett/Reprints/
TIIS21_AARAI-accepted-preprint.pdf (To Appear).

[21] Jonathan Dodge, Q. Vera Liao, Yunfeng Zhang, Rachel K. E. Bellamy, and Casey
Dugan. 2019. Explaining Models: An Empirical Study of How Explanations
Impact Fairness Judgment. In Proceedings of the 24th International Conference on
Intelligent User Interfaces (Marina del Ray, California) (IUI ’19). ACM, New York,
NY, USA, 275–285. https://doi.org/10.1145/3301275.3302310

[22] Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati, Chaowei
Xiao, Atul Prakash, Tadayoshi Kohno, and Dawn Xiaodong Song. 2018. Robust
Physical-World Attacks on Deep Learning Visual Classification. 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (2018), 1625–1634.

[23] Philip M Fernbach, Steven A Sloman, Robert St Louis, and Julia N Shube. 2012.
Explanation fiends and foes: How mechanistic detail determines understanding
and preference. Journal of Consumer Research 39, 5 (2012), 1115–1131.

[24] Leilani H. Gilpin, David Bau, Ben Z. Yuan, Ayesha Bajwa, Michael Specter, and
Lalana Kagal. 2018. Explaining Explanations: An Overview of Interpretability
of Machine Learning. In 5th IEEE International Conference on Data Science and
Advanced Analytics, DSAA 2018, Turin, Italy, October 1-3, 2018. 80–89. https:
//doi.org/10.1109/DSAA.2018.00018

[25] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT
Press. http://www.deeplearningbook.org.

[26] A. Groce, T. Kulesza, C. Zhang, S. Shamasunder, M. Burnett, W. Wong, S. Stumpf,
S. Das, A. Shinsel, F. Bice, and K. McIntosh. 2014. You Are the Only Possible
Oracle: Effective Test Selection for End Users of Interactive Machine Learning
Systems. IEEE Transactions on Software Engineering 40, 3 (March 2014), 307–323.
https://doi.org/10.1109/TSE.2013.59

[27] Brian Hambling and Pauline van Goethem. 2013. User acceptance testing: a
step-by-step guide. BCS Learning and Development, Swindon. http://cds.cern.
ch/record/1619552

[28] Samer Hanoun and Saeid Nahavandi. 2018. Current and Future Methodologies
of After Action Review in Simulation-based Training. In 2018 Annual IEEE
International Systems Conference (SysCon) (Vancouver, BC, CAN) (SysCon ’18).
IEEE, New York, NY, USA, 1–6.

[29] Bradley Hayes and Julie A Shah. 2017. Improving robot controller transparency
through autonomous policy explanation. In Proceedings of the 2017 ACM/IEEE
International Conference on Human-Robot Interaction. ACM, 303–312.

[30] IN Herstein. 1969. Topics in Algebra-Walthan.
[31] C. Hill, R. Bellamy, T. Erickson, and M. Burnett. 2016. Trials and tribulations

of developers of intelligent systems: A field study. In 2016 IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC). 162–170. https:
//doi.org/10.1109/VLHCC.2016.7739680

[32] Robert R. Hoffman, Shane T. Mueller, Gary Klein, and Jordan Litman. 2018.
Metrics for Explainable AI: Challenges and Prospects. CoRR abs/1812.04608
(2018). arXiv:1812.04608 http://arxiv.org/abs/1812.04608

[33] Fred Hohman, Andrew Head, Rich Caruana, Robert DeLine, and Steven M.
Drucker. 2019. Gamut: A Design Probe to Understand How Data Scientists
Understand Machine Learning Models. In Proceedings of the 2019 CHI Conference
on Human Factors in Computing Systems (Glasgow, Scotland Uk) (CHI ’19). ACM,
New York, NY, USA, Article 579, 13 pages. https://doi.org/10.1145/3290605.
3300809

[34] Sandy H. Huang, Kush Bhatia, Pieter Abbeel, and Anca D. Dragan. 2018. Es-
tablishing Appropriate Trust via Critical States. IROS (Oct 2018). https:
//doi.org/10.1109/IROS.2018.8593649

[35] Sandy H. Huang, David Held, Pieter Abbeel, and Anca D. Dragan. 2017. Enabling
Robots to Communicate Their Objectives. CoRR abs/1702.03465 (2017).

[36] Andrew Ishak and Elizabeth Williams. 2017. Slides in the Tray: How Fire Crews
Enable Members to Borrow Experiences. Small Group Research 48, 3 (March
2017), 336–364. https://doi.org/10.1177/1046496417697148

[37] Minsuk Kahng, Pierre Y. Andrews, Aditya Kalro, and Duen Horng Chau. 2018.
ActiVis: Visual Exploration of Industry-Scale Deep Neural Network Models.
IEEE Transactions on Visualization and Computer Graphics 24 (2018), 88–97.

[38] Minsuk Kahng, Dezhi Fang, and Duen Horng (Polo) Chau. 2016. Visual Ex-
ploration of Machine Learning Results Using Data Cube Analysis. In Pro-
ceedings of the Workshop on Human-In-the-Loop Data Analytics (San Fran-
cisco, California) (HILDA ’16). ACM, New York, NY, USA, Article 1, 6 pages.
https://doi.org/10.1145/2939502.2939503

[39] Minsuk Kahng, Nikhil Thorat, Duen Horng (Polo) Chau, Fernanda B. Viégas, and
Martin Wattenberg. 2019. GAN Lab: Understanding Complex Deep Generative
Models using Interactive Visual Experimentation. IEEE Trans. Vis. Comput.
Graph. 25, 1 (2019), 310–320.

[40] Ashish Kapoor, Bongshin Lee, Desney Tan, and Eric Horvitz. 2010. Interactive
optimization for steering machine classification. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. ACM, 1343–1352.

[41] Nathanael L Keiser and Winfred Arthur Jr. 2020. A meta-analysis of the effec-
tiveness of the after-action review (or debrief) and factors that influence its
effectiveness. Journal of Applied Psychology (2020).

[42] Roli Khanna, Jonathan Dodge, Andrew Anderson, Rupika Dikkala, Jed Irvine,
Zeyad Shureih, Kin-ho Lam, Caleb R. Matthews, Zhengxian Lin, Minsuk Kahng,
Alan Fern, and Margaret Burnett. 2021. Finding AI’s Faults with AAR/AI: An
Empirical Study. ACM Transactions on Interactive Intelligent Systems (2021). To
Appear.

[43] M. Kim, K. Kim, S. Kim, and A. K. Dey. 2018. Performance Evaluation Gaps in a
Real-Time Strategy Game Between Human and Artificial Intelligence Players.
IEEE Access 6 (2018), 13575–13586.

[44] Alexandra Kirsch. 2017. Explain to whom? Putting the User in the Center of
Explainable AI. In CEx@AI*IA.

[45] Gary Klein, Louise Rasmussen, Mei-Hua Lin, Robert R Hoffman, and Jason
Case. 2014. Influencing preferences for different types of causal explanation of
complex events. Human factors 56, 8 (2014), 1380–1400.

209

http://dl.acm.org/citation.cfm?id=3367032.3367221
http://dl.acm.org/citation.cfm?id=3367032.3367221
https://www.stateof.ai/
https://www.stateof.ai/
https://doi.org/10.1145/3301275.3302289
https://doi.org/10.1145/3301275.3302289
https://arxiv.org/abs/1608.04644
https://www.microsoft.com/en-us/research/publication/anchorviz-facilitating-classifier-error-discovery-interactive-semantic-data-exploration/
https://www.microsoft.com/en-us/research/publication/anchorviz-facilitating-classifier-error-discovery-interactive-semantic-data-exploration/
https://doi.org/10.1207/s15516709cog1302_1
https://doi.org/10.1207/s15516709cog1302_1
https://doi.org/10.1145/3173574.3174216
https://doi.org/10.1017/dmp.2018.82
https://doi.org/10.1109/C-M.1978.218136
https://doi.org/10.1109/C-M.1978.218136
https://doi.org/10.1145/3461778.3462131
https://doi.org/10.1145/3461778.3462131
http://web.engr.oregonstate.edu/~burnett/Reprints/TIIS21_AARAI-accepted-preprint.pdf
http://web.engr.oregonstate.edu/~burnett/Reprints/TIIS21_AARAI-accepted-preprint.pdf
https://doi.org/10.1145/3301275.3302310
https://doi.org/10.1109/DSAA.2018.00018
https://doi.org/10.1109/DSAA.2018.00018
http://www.deeplearningbook.org
https://doi.org/10.1109/TSE.2013.59
http://cds.cern.ch/record/1619552
http://cds.cern.ch/record/1619552
https://doi.org/10.1109/VLHCC.2016.7739680
https://doi.org/10.1109/VLHCC.2016.7739680
https://arxiv.org/abs/1812.04608
http://arxiv.org/abs/1812.04608
https://doi.org/10.1145/3290605.3300809
https://doi.org/10.1145/3290605.3300809
https://doi.org/10.1109/IROS.2018.8593649
https://doi.org/10.1109/IROS.2018.8593649
https://doi.org/10.1177/1046496417697148
https://doi.org/10.1145/2939502.2939503


IUI ’22, March 22–25, 2022, Helsinki, Finland Dodge, et al.

[46] Josua Krause, Adam Perer, and Kenney Ng. 2016. Interacting with Predictions:
Visual Inspection of Black-box Machine Learning Models. In Proceedings of
the 2016 CHI Conference on Human Factors in Computing Systems (San Jose,
California, USA) (CHI ’16). ACM, New York, NY, USA, 5686–5697. https://doi.
org/10.1145/2858036.2858529

[47] Robert Kuehl. 2000. Design of experiments : statistical principles of research
design and analysis / Robert O. Kuehl. SERBIULA (sistema Librum 2.0) (01 2000).

[48] Todd Kulesza, Margaret Burnett, Weng-Keen Wong, and Simone Stumpf. 2015.
Principles of explanatory debugging to personalize interactive machine learning.
In Proceedings of the 20th International Conference on Intelligent User Interfaces.
ACM, 126–137.

[49] Todd Kulesza, Simone Stumpf, Margaret Burnett, Weng-KeenWong, Yann Riche,
Travis Moore, Ian Oberst, Amber Shinsel, and Kevin McIntosh. 2010. Explana-
tory debugging: Supporting end-user debugging of machine-learned programs.
In Visual Languages and Human-Centric Computing (VL/HCC), 2010 IEEE Sym-
posium on. IEEE, 41–48.

[50] Todd Kulesza,Weng-KeenWong, Simone Stumpf, Stephen Perona, RachelWhite,
Margaret M Burnett, Ian Oberst, and Andrew J Ko. 2009. Fixing the program
my computer learned: Barriers for end users, challenges for the machine. In
Proceedings of the 14th international conference on Intelligent user interfaces.
187–196.

[51] Xiaodan Liang, Liang Lin, Xiaohui Shen, Jiashi Feng, Shuicheng Yan, and Eric P
Xing. 2017. Interpretable Structure-Evolving LSTM. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 1010–1019.

[52] Zhengxian Lin, Kin-Ho Lam, and Alan Fern. 2021. Contrastive Explanations
for Reinforcement Learning via Embedded Self Predictions. In International
Conference on Learning Representations. https://openreview.net/forum?id=
Ud3DSz72nYR

[53] Scott M Lundberg and Su-In Lee. 2017. A unified approach to interpreting model
predictions. In Advances in Neural Information Processing Systems. 4765–4774.

[54] Prashan Madumal, Tim Miller, Liz Sonenberg, and Frank Vetere. 2019. Explain-
able Reinforcement Learning Through a Causal Lens. CoRR abs/1905.10958
(2019). arXiv:1905.10958 http://arxiv.org/abs/1905.10958

[55] Theresa Mai, Roli Khanna, Jonathan Dodge, Jed Irvine, Kin-Ho Lam, Zhengx-
ian Lin, Nicholas Kiddle, Evan Newman, Sai Raja, Caleb Matthews, Christo-
pher Perdriau, Margaret Burnett, and Alan Fern. 2020. Keeping It "Orga-
nized and Logical": After-Action Review for AI (AAR/AI). In Proceedings of
the 25th International Conference on Intelligent User Interfaces (Cagliari, Italy)
(IUI ’20). Association for Computing Machinery, New York, NY, USA, 465–476.
https://doi.org/10.1145/3377325.3377525

[56] Gábor Melis, Chris Dyer, and Phil Blunsom. 2018. On the State of the Art of
Evaluation in Neural Language Models. In ICLR. OpenReview.net.

[57] Ronald Metoyer, Simone Stumpf, Christoph Neumann, Jonathan Dodge, Jill Cao,
and Aaron Schnabel. 2010. Explaining how to play real-time strategy games.
Knowledge-Based Systems 23, 4 (2010), 295–301.

[58] Margaret Mitchell, Simone Wu, Andrew Zaldivar, Parker Barnes, Lucy Vasser-
man, Ben Hutchinson, Elena Spitzer, Inioluwa Deborah Raji, and Timnit Ge-
bru. 2019. Model Cards for Model Reporting. In Proceedings of the Confer-
ence on Fairness, Accountability, and Transparency (Atlanta, GA, USA) (FAT*
’19). Association for Computing Machinery, New York, NY, USA, 220–229.
https://doi.org/10.1145/3287560.3287596

[59] John E. Morrison and Larry L. Meliza. 1999. Foundations of the After Action
Review Process. Technical Report. Institute for Defense Analyses. https://apps.
dtic.mil/docs/citations/ADA368651

[60] W. James Murdoch and Arthur Szlam. 2017. Automatic Rule Extraction from
Long Short Term Memory Networks. ArXiv abs/1702.02540 (2017).

[61] Johan Samir Obando-Ceron and Pablo Samuel Castro. 2021. Revisiting Rainbow:
Promoting more insightful and inclusive deep reinforcement learning research.
In Proceedings of the 38th International Conference on Machine Learning, ICML
2021, 18-24 July 2021, Virtual Event (Proceedings of Machine Learning Research,
Vol. 139), Marina Meila and Tong Zhang (Eds.). PMLR, 1373–1383. http://
proceedings.mlr.press/v139/ceron21a.html

[62] Matthew L Olson, Roli Khanna, Lawrence Neal, Fuxin Li, and Weng-Keen Wong.
2021. Counterfactual state explanations for reinforcement learning agents via
generative deep learning. Artificial Intelligence 295 (2021), 103455.

[63] Matthew L. Olson, Thuy-Vy Nguyen, Gaurav Dixit, Neale Ratzlaff, Weng-Keen
Wong, and Minsuk Kahng. 2021. Contrastive Identification of Covariate Shift in
Image Data. In 2021 IEEE Visualization Conference (VIS). IEEE.

[64] S. Ontañón, G. Synnaeve, A. Uriarte, F. Richoux, D. Churchill, and M. Preuss.
2013. A survey of real-time strategy game AI research and competition in
StarCraft. IEEE Transactions on Computational Intelligence and AI in Games 5, 4
(Dec 2013), 293–311. https://doi.org/10.1109/TCIAIG.2013.2286295

[65] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep

Learning Library. In Advances in Neural Information Processing Systems 32,
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett
(Eds.). Curran Associates, Inc., 8024–8035. http://papers.neurips.cc/paper/9015-
pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

[66] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. DeepXplore. Pro-
ceedings of the 26th Symposium on Operating Systems Principles - SOSP ’17 (2017).
https://doi.org/10.1145/3132747.3132785

[67] Sean Penney, Jonathan Dodge, Claudia Hilderbrand, Andrew Anderson, Logan
Simpson, and Margaret Burnett. 2018. Toward Foraging for Understanding
of StarCraft Agents: An Empirical Study. In 23rd International Conference on
Intelligent User Interfaces (Tokyo, Japan) (IUI ’18). ACM, New York, NY, USA,
225–237.

[68] Goran Petrović and Marko Ivanković. 2018. State of Mutation Testing at Google.
In Proceedings of the 40th International Conference on Software Engineering:
Software Engineering in Practice (Gothenburg, Sweden) (ICSE-SEIP ’18). ACM,
New York, NY, USA, 163–171. https://doi.org/10.1145/3183519.3183521

[69] David J Piorkowski, Scott D Fleming, Irwin Kwan, Margaret M Burnett, Christo-
pher Scaffidi, Rachel KE Bellamy, and Joshua Jordahl. 2013. The whats and
hows of programmers’ foraging diets. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems. 3063–3072.

[70] P. Pirolli. 2007. Information Foraging Theory: Adaptive Interaction with Informa-
tion. Oxford Univ. Press.

[71] Forough Poursabzi-Sangdeh, Daniel G Goldstein, Jake MHofman, Jennifer Wort-
manWortman Vaughan, and HannaWallach. 2021. Manipulating and Measuring
Model Interpretability. Association for Computing Machinery, New York, NY,
USA. https://doi.org/10.1145/3411764.3445315

[72] Emilee Rader, Kelley Cotter, and Janghee Cho. 2018. Explanations as mecha-
nisms for supporting algorithmic transparency. In Proceedings of the 2018 CHI
conference on human factors in computing systems. 1–13.

[73] Ivet Rafegas, Maria Vanrell, Luís A. Alexandre, and Guillem Arias. 2020. Un-
derstanding trained CNNs by indexing neuron selectivity. Pattern Recognition
Letters 136 (2020), 318–325. https://doi.org/10.1016/j.patrec.2019.10.013

[74] Stuart Reeves, Barry Brown, and Eric Laurier. 2009. Experts at Play: Under-
standing Skilled Expertise. Games and Culture 4, 3 (2009), 205–227. https://doi.
org/10.1177/1555412009339730 arXiv:https://doi.org/10.1177/1555412009339730

[75] Alexander Renkl, Robin Stark, Hans Gruber, and Heinz Mandl. 1998. Learning
fromWorked-Out Examples: The Effects of Example Variability and Elicited Self-
Explanations. Contemporary Educational Psychology 23, 1 (Jan. 1998), 90–108.
https://doi.org/10.1006/ceps.1997.0959

[76] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. Why should
I trust you?: Explaining the predictions of any classifier. In Proceedings of the
22nd ACM SIGKDD international conference on knowledge discovery and data
mining. ACM, 1135–1144.

[77] Justus Robertson, Athanasios Vasileios Kokkinakis, Jonathan Hook, Ben Kirman,
Florian Block, Marian F Ursu, Sagarika Patra, Simon Demediuk, Anders Drachen,
and Oluseyi Olarewaju. 2021. Wait, But Why?: Assessing Behavior Explanation
Strategies for Real-Time Strategy Games. In 26th International Conference on
Intelligent User Interfaces (College Station, TX, USA) (IUI ’21). Association for
Computing Machinery, New York, NY, USA, 32–42. https://doi.org/10.1145/
3397481.3450699

[78] Margaret Salter and Gerald Klein. 2007. After Action Reviews: Current Observa-
tions and Recommendations. Technical Report. U.S. Army Research Institute for
the Behavioral and Social Sciences.

[79] Taylor Lee Sawyer and Shad Deering. 2013. Adaptation of the US Army’s After-
Action Review for Simulation Debriefing in Healthcare. Simulation in Healthcare
8, 6 (Dec. 2013), 388–397. https://doi.org/10.1097/SIH.0b013e31829ac85c

[80] Morgan Klaus Scheuerman, Katta Spiel, Oliver L Haimson, Foad Hamidi, and
Stacy M Branham. 2020. HCI guidelines for gender equity and inclusivity. UMBC
Faculty Collection (2020). https://www.morgan-klaus.com/gender-guidelines.
html

[81] Martin Schindler and Martin J Eppler. 2003. Harvesting project knowledge: a
review of project learning methods and success factors. International Journal
of Project Management 21, 3 (2003), 219–228. https://doi.org/10.1016/S0263-
7863(02)00096-0

[82] David Schuler and Andreas Zeller. 2009. Javalanche: Efficient Mutation Testing
for Java. In Proceedings of the 7th Joint Meeting of the European Software En-
gineering Conference and the ACM SIGSOFT Symposium on The Foundations
of Software Engineering (Amsterdam, The Netherlands) (ESEC/FSE ’09). As-
sociation for Computing Machinery, New York, NY, USA, 297–298. https:
//doi.org/10.1145/1595696.1595750

[83] Amber Shinsel, Todd Kulesza, Margaret M. Burnett, William Curran, Alex Groce,
Simone Stumpf, and Weng-Keen Wong. 2011. Mini-crowdsourcing end-user
assessment of intelligent assistants: A cost-benefit study. 2011 IEEE Symposium
on Visual Languages and Human-Centric Computing (VL/HCC) (2011), 47–54.

[84] Dave Shreiner and The Khronos OpenGL ARB Working Group. 2009. OpenGL
Programming Guide: The Official Guide to Learning OpenGL, Versions 3.0 and 3.1
(7th ed.). Addison-Wesley Professional.

210

https://doi.org/10.1145/2858036.2858529
https://doi.org/10.1145/2858036.2858529
https://openreview.net/forum?id=Ud3DSz72nYR
https://openreview.net/forum?id=Ud3DSz72nYR
https://arxiv.org/abs/1905.10958
http://arxiv.org/abs/1905.10958
https://doi.org/10.1145/3377325.3377525
https://doi.org/10.1145/3287560.3287596
https://apps.dtic.mil/docs/citations/ADA368651
https://apps.dtic.mil/docs/citations/ADA368651
http://proceedings.mlr.press/v139/ceron21a.html
http://proceedings.mlr.press/v139/ceron21a.html
https://doi.org/10.1109/TCIAIG.2013.2286295
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1145/3132747.3132785
https://doi.org/10.1145/3183519.3183521
https://doi.org/10.1145/3411764.3445315
https://doi.org/10.1016/j.patrec.2019.10.013
https://doi.org/10.1177/1555412009339730
https://doi.org/10.1177/1555412009339730
https://arxiv.org/abs/https://doi.org/10.1177/1555412009339730
https://doi.org/10.1006/ceps.1997.0959
https://doi.org/10.1145/3397481.3450699
https://doi.org/10.1145/3397481.3450699
https://doi.org/10.1097/SIH.0b013e31829ac85c
https://www.morgan-klaus.com/gender-guidelines.html
https://www.morgan-klaus.com/gender-guidelines.html
https://doi.org/10.1016/S0263-7863(02)00096-0
https://doi.org/10.1016/S0263-7863(02)00096-0
https://doi.org/10.1145/1595696.1595750
https://doi.org/10.1145/1595696.1595750


How Do People Rank Multiple Mutant Agents? IUI ’22, March 22–25, 2022, Helsinki, Finland

[85] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneer-
shelvam, Marc Lanctot, et al. 2016. Mastering the game of Go with deep neural
networks and tree search. nature 529, 7587 (2016), 484.

[86] David Silver, ThomasHubert, Julian Schrittwieser, Ioannis Antonoglou,Matthew
Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Grae-
pel, Timothy Lillicrap, Karen Simonyan, and Demis Hassabis. 2018. A general
reinforcement learning algorithm that masters chess, shogi, and Go through
self-play. Science 362, 6419 (2018), 1140–1144. https://doi.org/10.1126/science.
aar6404 arXiv:https://science.sciencemag.org/content/362/6419/1140.full.pdf

[87] Richard Sutton, Joseph Modayil, Michael Delp, Thomas Degris, Patrick Pilarski,
AdamWhite, and Doina Precup. 2011. Horde : A Scalable Real-time Architecture
for Learning Knowledge from Unsupervised Sensorimotor Interaction Cate-
gories and Subject Descriptors. Proceedings of the 10th International Conference
on Autonomous Agents and Multiagent Systems 2.

[88] Hugues Talbot. 2000. WxPython, a GUI Toolkit. Linux J. 2000, 74es (June 2000),
5.

[89] Chris Thornton, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. 2013.
Auto-WEKA: Combined Selection and Hyperparameter Optimization of Clas-
sification Algorithms. In Proceedings of the 19th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (Chicago, Illinois, USA)
(KDD ’13). Association for Computing Machinery, New York, NY, USA, 847–855.
https://doi.org/10.1145/2487575.2487629

[90] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. 2018. DeepTest: Auto-
mated Testing of Deep-neural-network-driven Autonomous Cars. In Proceedings
of the 40th International Conference on Software Engineering (Gothenburg, Swe-
den) (ICSE ’18). ACM, New York, NY, USA, 303–314. https://doi.org/10.1145/
3180155.3180220

[91] Edward Tufte. 1990. Envisioning Information. Graphics Press, USA.
[92] Joe Tullio, Anind K Dey, Jason Chalecki, and James Fogarty. 2007. How it works:

A field study of non-technical users interacting with an intelligent system. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
ACM, 31–40.

[93] U.S. Army. 1993. Training Circular 25-20: A Leader’s Guide to After-Action
Reviews. Technical Report. Department of the Army, Washington D.C., USA.

[94] Jasper van der Waa, Jurriaan van Diggelen, Karel van den Bosch, and Mark A.
Neerincx. 2018. Contrastive Explanations for Reinforcement Learning in terms
of Expected Consequences. CoRR abs/1807.08706 (2018). arXiv:1807.08706
http://arxiv.org/abs/1807.08706

[95] Bas van Opheusden, Gianni Galbiati, Zahy Bnaya, Yunqi Li, and Wei Ji Ma. 2017.
A computational model for decision tree search. In CogSci.

[96] Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, An-
drew Dudzik, Junyoung Chung, David H. Choi, Richard Powell, Timo Ewalds,
Petko Georgiev, Junhyuk Oh, Dan Horgan, Manuel Kroiss, Ivo Danihelka, Aja
Huang, Laurent Sifre, Trevor Cai, John P. Agapiou, Max Jaderberg, Alexander S.
Vezhnevets, Rémi Leblond, Tobias Pohlen, Valentin Dalibard, David Budden,

Yury Sulsky, James Molloy, Tom L. Paine, Caglar Gulcehre, Ziyu Wang, Tobias
Pfaff, Yuhuai Wu, Roman Ring, Dani Yogatama, Dario Wünsch, Katrina McKin-
ney, Oliver Smith, Tom Schaul, Timothy Lillicrap, Koray Kavukcuoglu, Demis
Hassabis, Chris Apps, and David Silver. 2019. Grandmaster level in StarCraft
II using multi-agent reinforcement learning. Nature 575, 7782 (2019), 350–354.
https://doi.org/10.1038/s41586-019-1724-z

[97] Oriol Vinyals, David Silver, et al. 2019. AlphaStar: Mastering the Real-Time
Strategy Game StarCraft II. https://deepmind.com/blog/alphastar-mastering-
real-time-strategy-game-starcraft-ii/.

[98] Sandra Wachter, Brent D. Mittelstadt, and Chris Russell. 2017. Counterfactual
Explanations without Opening the Black Box: Automated Decisions and the
GDPR. ArXiv abs/1711.00399 (2017).

[99] Dakuo Wang, Justin D. Weisz, Michael Muller, Parikshit Ram, Werner Geyer,
Casey Dugan, Yla Tausczik, Horst Samulowitz, and Alexander Gray. 2019.
Human-AI Collaboration in Data Science: Exploring Data Scientists’ Perceptions
of Automated AI. Proc. ACM Hum.-Comput. Interact. 3, CSCW, Article 211 (Nov.
2019), 24 pages. https://doi.org/10.1145/3359313

[100] Gail Weiss, Yoav Goldberg, and Eran Yahav. 2018. Extracting Automata
from Recurrent Neural Networks Using Queries and Counterexamples. In
Proceedings of the 35th International Conference on Machine Learning (Pro-
ceedings of Machine Learning Research, Vol. 80), Jennifer Dy and Andreas
Krause (Eds.). PMLR, StockholmsmÃ¤ssan, Stockholm Sweden, 5247–5256.
http://proceedings.mlr.press/v80/weiss18a.html

[101] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Bjöorn Reg-
nell, and Anders Wesslén. 2000. Experimentation in Software Engineering: An
Introduction. Kluwer Academic Publishers, Norwell, MA, USA.

[102] Bang Wong. 2011. Points of View: Color Blindness. Nature Methods 8 (May
2011), 441. https://doi.org/10.1038/nmeth.1618

[103] Robert H Wortham, Andreas Theodorou, and Joanna J Bryson. 2017. Improving
robot transparency:real-time visualisation of robot AI substantially improves
understanding in naive observers, In IEEE RO-MAN 2017. IEEE RO-MAN 2017.
http://opus.bath.ac.uk/55793/

[104] Robert K. Yin. 2008. Case Study Research: Design and Methods
(Applied Social Research Methods) (fourth edition. ed.). Sage Pub-
lications. http://www.amazon.de/Case-Study-Research-Methods-
Applied/dp/1412960991%3FSubscriptionId%3D13CT5CVB80YFWJEPWS02%
26tag%3Dws%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%
26creativeASIN%3D1412960991

[105] Tom Zahavy, Nir Ben Zrihem, and Shie Mannor. 2016. Graying the black box:
Understanding DQNs. In Proceedings of the 33rd International Conference on
International Conference on Machine Learning - Volume 48 (New York, NY, USA)
(ICML’16). JMLR.org, 1899–1908. http://dl.acm.org/citation.cfm?id=3045390.
3045591

[106] Jan Ruben Zilke, Eneldo Loza Mencía, and Frederik Janssen. 2016. DeepRED –
Rule Extraction from Deep Neural Networks. In Discovery Science, Toon Calders,
Michelangelo Ceci, and Donato Malerba (Eds.). Springer International Publish-
ing, Cham, 457–473.

211

https://doi.org/10.1126/science.aar6404
https://doi.org/10.1126/science.aar6404
https://arxiv.org/abs/https://science.sciencemag.org/content/362/6419/1140.full.pdf
https://doi.org/10.1145/2487575.2487629
https://doi.org/10.1145/3180155.3180220
https://doi.org/10.1145/3180155.3180220
https://arxiv.org/abs/1807.08706
http://arxiv.org/abs/1807.08706
https://doi.org/10.1038/s41586-019-1724-z
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
https://doi.org/10.1145/3359313
http://proceedings.mlr.press/v80/weiss18a.html
https://doi.org/10.1038/nmeth.1618
http://opus.bath.ac.uk/55793/
http://www.amazon.de/Case-Study-Research-Methods-Applied/dp/1412960991%3FSubscriptionId%3D13CT5CVB80YFWJEPWS02%26tag%3Dws%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D1412960991
http://www.amazon.de/Case-Study-Research-Methods-Applied/dp/1412960991%3FSubscriptionId%3D13CT5CVB80YFWJEPWS02%26tag%3Dws%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D1412960991
http://www.amazon.de/Case-Study-Research-Methods-Applied/dp/1412960991%3FSubscriptionId%3D13CT5CVB80YFWJEPWS02%26tag%3Dws%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D1412960991
http://www.amazon.de/Case-Study-Research-Methods-Applied/dp/1412960991%3FSubscriptionId%3D13CT5CVB80YFWJEPWS02%26tag%3Dws%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D1412960991
http://dl.acm.org/citation.cfm?id=3045390.3045591
http://dl.acm.org/citation.cfm?id=3045390.3045591

	Abstract
	1 Introduction
	2 Background
	2.1 Explanations and Users' Mental Models
	2.2 Explaining in Sequential Domains
	2.3 ``Testing'' AI
	2.4 Humans Assessing AI, Qualitatively

	3 The Explanations; and the Agents that Generate Them
	3.1 The Agent
	3.2 Explanation 1: Scores Through-Time (StTime)
	3.3 Explanation 2: Scores On-the-Board (OnBoard)
	3.4 Explanation 3: Scores Best-to-Worst (BtoW)

	4 Methodology
	4.1 The Domain
	4.2 Manipulating agent ``quality'': Mutant Agent Generation
	4.3 Procedure

	5 Results RQ1: How well did participants rank the agents?
	6 Results RQ2: Which Explanation Type(s)?
	6.1 Participants' Explanation Diets
	6.2 Which explanation types?
	6.3 Implications for Interactive XAI and for XAI Empirical Methods

	7 Results RQ3: Which agents to assess, and how?
	7.1 Keeping Agent Pairs Synchronized
	7.2 Sampling Uniformly vs Focusing on the King of the Hill
	7.3 ``Build-your-own'' visuals
	7.4 Implications for Interactive AI

	8 Results RQ4: How did participants invest their time while ranking?
	8.1 Invest in Many Games
	8.2 Invest Thoroughly in Games
	8.3 Implications for XAI research

	9 Discussion
	9.1 What Good Is the Ranking Task?
	9.2 The Ranking Task as an instance of ``The Coaches' Problem''?
	9.3 The Ranking Task vs. AutoML
	9.4 Why Mutant Agent Generation?

	10 Threats to Validity
	11 Conclusion
	Acknowledgments
	References

