
How the Experts Do It: Assessing and Explaining Agent
Behaviors in Real-Time Strategy Games

Jonathan Dodge, Sean Penney, Claudia Hilderbrand, Andrew Anderson, Margaret Burnett
Oregon State University

Corvallis, OR; USA
{ dodgej, penneys, minic, anderan2, burnett }@eecs.oregonstate.edu

ABSTRACT
How should an AI-based explanation system explain an agent’s
complex behavior to ordinary end users who have no back-
ground in AI? Answering this question is an active research
area, for if an AI-based explanation system could effectively
explain intelligent agents’ behavior, it could enable the end
users to understand, assess, and appropriately trust (or distrust)
the agents attempting to help them. To provide insights into
this question, we turned to human expert explainers in the
real-time strategy domain —“shoutcasters” — to understand
(1) how they foraged in an evolving strategy game in real
time, (2) how they assessed the players’ behaviors, and (3)
how they constructed pertinent and timely explanations out
of their insights and delivered them to their audience. The
results provided insights into shoutcasters’ foraging strategies
for gleaning information necessary to assess and explain the
players; a characterization of the types of implicit questions
shoutcasters answered; and implications for creating explana-
tions by using the patterns and abstraction levels these human
experts revealed.

CCS Concepts
•Human-centered computing → Empirical studies in HCI;
•Computing methodologies → Intelligent agents;

Author Keywords
Explainable AI; Intelligent Agents; RTS Games; StarCraft;
Information Foraging

INTRODUCTION
Real-time strategy (RTS) games are becoming popular arti-
ficial intelligence (AI) research platforms. A number of fac-
tors have contributed to this trend. First, RTS games are a
challenge for AI because they involve real-time adversarial
planning within sequential, dynamic, and partially observable
environments [25]. Second, AI advancements made in the
RTS domain can be mapped to real world combat mission

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CHI 2018, April 21–26, 2018, Montréal, QC, Canada.
Copyright © 2017 ACM ISBN 978-1-4503-5620-6/18/04 ...$15.00.
http://dx.doi.org/10.1145/3173574.3174136

planning and execution such as an AI system trained to control
a fleet of drones for missions in simulated environments [36].

People without AI training will need to understand and ulti-
mately assess the decisions of such a system, based on what
such intelligent systems recommend or decide to do on their
own. For example, imagine “Jake,” a domain expert trying
to make an educated decision about whether or not to use an
intelligent agent. Ideally, an interactive explanation system
could help Jake assess whether and when the AI is making
its decisions “for the right reasons,” so as to ward off “lucky
guesses” and legal/ethical concerns (see [15]).

Scenarios like this are the motivation for a burgeoning area
of research referred to as “Explainable AI,” where an auto-
mated explanation device presents an AI system’s decisions
and actions in a form useful to the intended audience — here,
Jake. There are recent research advances in explainable AI, as
we discuss in the Related Work section, but only a few focus
on explaining complex strategy environments like RTS games
and fewer draw from expert explainers. To help fill this gap,
we conducted an investigation in the setting of StarCraft II, a
popular RTS game [25] available to AI researchers [38].

We looked to “shoutcasters,” who are commentators for e-
sports like RTS games. In StarCraft e-sports, two players
compete while the shoutcasters provide real-time commentary.
Shoutcasters are helpful to investigate for explaining AI agents
in real time to people like Jake for two reasons. First, they face
an assessment task — similar to Jake’s. Specifically, they must
1) discover the actions of the player, 2) make sense of them and
3) assess them, particularly if they discover good, bad, or un-
orthodox behavior. They must do all this while simultaneously
constructing an explanation of their discoveries.

Second, shoutcasters are expert explainers. As communication
professionals, they are paid to inform an audience they cannot
see or receive feedback/questions from. Hoffman & Klein [11]
researched five stages of explanation, looking at how expla-
nations are formed from observation of an event, generating
one or more possible explanations, judging the plausibility
of said explanations, and either resolving or extending the
explanation. Their findings help to illustrate the complexity
of shoutcasters’ task, due to its abductive nature of explaining
the past and anticipating the future. In short, shoutcasters must
anticipate and answer the questions the audience are not able
to ask, all while passively watching the video stream.

CHI 2018 Paper CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 562 Page 1

Because shoutcasters explain in parallel to gathering their
information, we guided part of our investigation using In-
formation Foraging Theory (IFT) [29], which explains how
people go about their information seeking activities. It is based
on naturalistic predator-prey models, in which the predator
(shoutcaster) searches patches (parts of the information envi-
ronment) to find prey (evidence of players’ decision process)
by following the cues (signposts in the environment that seem
to point toward prey) based on their scent (predator’s guess
at how related to the prey a cue is). IFT constructs have been
used to explain and predict people’s information-seeking be-
havior in several domains, such as understanding navigations
through web sites or programming and software engineering
environments [5, 8, 9, 18, 23, 26, 27, 28, 33]. However, to our
knowledge, it has not been used before to investigate explain-
ing RTS environments like StarCraft.

Using this framework, we investigated the following research
questions (RQs). RQ1-RQ2 investigate the information needs
of shoutcasters as human assessors, like our target user
Jake. (Because shoutcasters may not have access to the play-
ers’/agents’ internal reasoning, this perspective is especially
pertinent to model-agnostic XAI, which ignores internals to
achieve generality; e.g., [10, 14, 30]):
RQ1 The What and the Where: What information do shout-

casters seek to generate explanations, and where do they
find it?

RQ2 The How: How do shoutcasters seek the information
they seek?

We then used RQ3-RQ4 to investigate shoutcasters in their
role as expert explainers:
RQ3 The Questions: What implicit questions do shoutcasters

answer and how do they form their answers?
RQ4 The Explanations: What relationships and objects do

shoutcasters use when building their explanations?

BACKGROUND AND RELATED WORK
Our work draws upon mental models in XAI. Mental models,
defined as “internal representations that people build based on
their experiences in the real world,” enable users like “Jake”
(our target user) to predict system behavior [24]. Kulesza et
al. [17] found those who adjusted their mental models most in
response to explanations of AI (a recommender system) were
best able to customize recommendations. Further, participants
who improved their mental models the most found debugging
more worthwhile and engaging.

Building upon this finding, Kulesza et al. [16] then identified
principles for explaining (in a “white box” fashion) to users
how a machine learning system makes its predictions more
transparent to the user. Participants’ quality of mental models
increased by up to 52% in user studies with a prototype fol-
lowing these principles, and along with these improvements
came better ability to customize the intelligent agents. Kapoor
et al. [12] also showed that explaining AI increased user satis-
faction and interacting with the explanations enabled users to
construct classifiers that were more aligned with target prefer-
ences. Bostandjiev et al.’s work on a music recommendation
system [2] found that explanation led to a remarkable increase
in user-satisfaction with their system.

Another important underpinning for our work is what people
want explained. Lim & Dey [20] conducted an influential
investigation into information demanded from context-aware
intelligent systems. They categorized users’ information needs
into various “intelligibility types,” and investigated which
types provided the most benefit to user understanding. Among
these types were “What” questions (What did the system do?),
“Why” questions (Why did the system do X?), and so on. We
draw upon these results in this paper to categorize the kinds of
questions that shoutcasters’ explanations answered.

Other research confirms that explanations containing certain
intelligibility types make a difference in user attitude towards
the system. For example, findings by Cotter et al. [6] showed
that justifying why an algorithm works (but not on how it
works) were helpful for increasing users’ confidence in the
system — but not for improving their trust. Other work shows
that the relative importance of the intellibility types may vary
with the domain; for example, findings by Castelli et al. [3] in
the domain of smart homes showed a strong interest in “What”
questions, but few of the other intellibility types.

Constructing effective explanations of AI is not straightfor-
ward, especially when the underlying AI system is complex.
Both Kulesza et al. [16] and Guestrin et al. [30] point to a
potential trade-off between faithfulness and interpretability
in explanation. The latter group developed an algorithm that
can explain (in a “black box” or “model-agnostic” fashion)
predictions of any classifier in a faithful way, and also approx-
imate it locally with an interpretable model. They described a
fidelity-interpretability trade-off, in which making an expla-
nation more faithful was likely to reduce its interpretability,
and vice versa. However, humans manage this trade-off by
accounting for many factors, such as the audience’s current
situation, their background, amount of time available, etc. One
goal of the current study is to understand how expert human
explainers, like our shoutcasters, manage this trade-off.

In the domain of assessing RTS intelligent agents, Kim et
al. [13] invited 20 experienced players to assess the skill lev-
els of AI bots playing StarCraft. They observed that human
rankings were different in several ways to a ranking computed
from the bots’ competition win rate, because humans weighed
certain factors like decision-making skill more heavily. The
mismatch between empirical results and perception scores
may be because AI bots that are effective against each other
proved less effective against humans.

Cheung et al. [4] studied StarCraft from a different perspec-
tive, that of non-participant spectators. Their investigations
produced a set of nine personas that helped to illuminate who
these spectators are and why they watch. Since shoutcasters are
one of the personas, they discussed how shoutcasters affect the
spectator experience and how they judiciously decide how and
when to reveal different types of information, both to entertain
and inform the audience. Another contingent of researchers is
working toward applying machine learning to automatically
summarize different aspects of sports, potentially assisting
sportscasters or shoutcasters in their work. Two examples are
automatically generating e-sports statistics [35], and automati-
cally extracting football play diagrams from raw video [34].

CHI 2018 Paper CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 562 Page 2

Tournament Shoutcasters Players Game
1 2017 IEM Katowice ToD and PiG Neeb vs Jjakji 2
2 2017 IEM Katowice Rotterdam and Maynarde Harstem vs TY 1
3 2017 GSL Season 1 Code S Artosis and tasteless Soo vs Dark 2
4 2016 WESG Finals Tenshi and Zeweig DeMuslim vs iGXY 1
5 2017 StarLeague S1 Premier Wolf and Brendan Innovation vs Dark 1
6 2016 KeSPA Cup Wolf and Brendan Maru vs Patience 1
7 2016 IEM Geonggi Kaelaris and Funka Byun vs Iasonu 2
8 2016 IEM Shanghai Rotterdam and Nathanias ShowTime vs Iasonu 3
9 2016 WCS Global Finals iNcontroL and Rotterdam Nerchio vs Elazer 2
10 2016 DreamHack Open Leipzig Rifkin and ZombieGrub Snute vs ShowTime 3

Table 1. Summary of StarCraft 2 games studied. Please consult our supplementary materials for transcripts and links to videos.

Finally, future attempts to generate automated shoutcasting
from replays, using data such as the corpus reported in this pa-
per, could use dialog evaluation systems (e.g., [21]) to assess
the quality of the generated shoutcasters.

The closest work to our own is Metoyer et al.’s [22] investiga-
tion into the vocabulary and language structure of explaining
RTS games. In their study, novices and experts acted in pairs;
the novice watched the expert play and asked questions, while
the expert thought aloud and answered them. They developed
qualitative coding schemes of the content and structure of the
explanations the expert players offered. In this paper, we drew
upon these coding schemes, with slight modifications. The
complete code sets are available in the on-line supplemental
materials [7]. Our work differs from all of these works in that
our explainers are expert communicators about the game (not
participant players, programmers, or end users). Our work is
also the first to apply IFT to XAI.

METHODOLOGY
In order to study high quality explanations and capable players,
we considered only games from professional tournaments
denoted as “Premier” by TeamLiquid1 and also filtered out
irrelevant utterances, as described later in this section. We
selected 10 matches from the “Premier” pool available with
video on demand from professional StarCraft 2 tournaments
from 2016 and 2017 (Table 1). Professional matches have
multiple games, so we randomly selected one game from each
match for analysis. 16 distinct shoutcasters2 appeared across
the 10 videos, with two casters3 commentating each time.

The rest of this section explains our qualitative coding method-
ology. In general, we measured rigor using an inter-rater
reliability (IRR) rate of 80% over 20% of the data by 2 coders
using the Jaccard index, which is the size of the intersection of
the codes divided by the size of the union. We exceeded 20%
of the data when we needed more test iterations for agreement
or when we had to subset the coding. If a codeset was too com-
plex to do in one pass, we coded subcategories. We simplified
calculations with different data-subset sizes to “>20%.”

First we coded for relevance. Shoutcasters should both inform
and entertain, so they fill dead air time with jokes. To filter
out irrelevant utterances, two researchers independently coded

1http://wiki.teamliquid.net/starcraft2/Premier_Tournaments
2Shoutcasters “confirmed” each others’ quality in their consistency
of utterance type and content (Figure 5).
3Here, caster pair (caster or pair for short) differentiates our observed
individuals from the population of shoutcasters as a whole.

32% of statements in the corpus as relevant or irrelevant to
explaining the game. We achieved a 95% inter-rater reliability.
Then, the researchers split up and coded the rest of the corpus.

Research questions RQ1 and RQ2 investigated how the cast-
ers seek information onscreen, so we used IFT constructs to
discover the types of information casters sought and how they
unearthed it. For RQ1 (the patches in which they sought in-
formation), we simply counted the casters’ navigations among
patches. Changes in the display screen identified most of
these4 for us automatically. For RQ2 (how they went about
their information foraging), we coded the 110 instances of
caster navigation by the context where it took place, based
on player actions — Building, Fighting, Moving, Scouting —
or simply caster navigation. Two researchers independently
coded 21% of the data in this manner, with IRR of 80%. After
achieving IRR, one researcher coded the remainder of the data.

For RQ3 (implicit questions the shoutcasters answered), we
coded the casters’ utterances by the Lim & Dey [20] questions
they answered. We added a judgment code to capture caster
evaluation on the quality of actions. The complete code set
will be detailed in the RQ3 Results section. Using this code
set, two researchers independently coded 34% of the 1024
explanations in the corpus, with 80% inter-rater reliability
(Jaccard). After achieving IRR, the researchers split up the
remainder of the coding.

For RQ4 (explanation content), we drew content coding rules
from Metoyer et al. [22]’s analysis of explaining Wargus
games and added some codes to account for differences in
gameplay and study structure. (For ease of presentation, in
this paper we use the terms “numeric quantity” and “indefi-
nite quantity” instead of their terms “identified discrete” and
“indefinite quantity”, respectively.) Two researchers indepen-
dently coded the corpus, one category at a time (e.g., Objects,
Actions, ...), achieving an average of 78% IRR on more than
20% of the data in each category. One researcher then finished
coding the rest of the corpus. Since all data sources are public,
we have provided all data and coding rules in supplementary
materials to enable replicability and support further research.

RESULTS

RQ1 Results: What information do shoutcasters seek to
generate explanations, and where do they find it?
We used two frameworks to investigate casters’ information
seeking behaviors. We turned to the Performance, Environ-
4But if a caster points at something to bring the other’s attention to
it—but does not have the mouse—the viewer can’t see it.

CHI 2018 Paper CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 562 Page 3

http://wiki.teamliquid.net/starcraft2/Premier_Tournaments

Figure 1. A screenshot from an analyzed game, modified to highlight the patches available to our casters: HUD [1, bottom] (Information about current
game state, e.g., resources held, income rate, supply, and upgrade status); Minimap [2, lower left] (Zoomed out version of the main window); “Tab”
[3, top left] (Provides details on demand, currently set on “Production”); Workers killed [4, center left] (Shows that 9 Red workers have died recently);
Popup [5, center] (visualizations that compare player performance, usually shown briefly). Regions 3 and 5 will be detailed in Figures 3 and 4.

ment, Actuators, Sensors (PEAS) model [31] to situate what
information casters sought in a common framework for con-
ceptualizing intelligent agents. We drew from Information
Foraging Theory (IFT) to understand where casters did their
information seeking, beginning with the places their desired in-
formation could be found. These places are called information
“patches” in IFT terminology.

Table 2 columns 1 and 2 show the correspondence between
PEAS constructs and patches in the game that the casters in
our data actually used. Performance measures showed as-
sets, resources, successes, and failures, e.g., Figure 1 region 4
(showing that Blue has killed 9 of Red’s workers) and region 5
(showing that Blue has killed 19 units to Red’s 3, etc.). Table 2
shows that casters rarely consulted performance measures, es-
pecially those that examined past game states. However, they
discussed basic performance measures available in the HUD
(Figure 1 region 1), which contained present state information,
e.g., resources held or upgrade status.

The Environment where the agent is situated is the game state
(map, structures, units, etc.) shown in Figure 1’s main window.
We label as Environment any of the patches in Table 2, such
as the Units tab, that show all the game state data, regardless
of whether the players or casters have observed it.

Sensors helped the agent collect information about the envi-
ronment and corresponded to the local vision area provided
by individual units themselves in our domain. Figure 1 region
2 (Minimap) shows a “bird’s eye view” of the portion of the
environment observable by the Sensors. Casters used patches
containing information about Sensors very often, with Min-

imap and Vision Toggles being among the most used patches
in Table 2. The casters had “superpowers” with respect to Sen-
sors (and performance measures) — their interface allowed
full observation of the environment, whereas players could
only partially observe it. The casters extensively used the
Minimap and the Vision Toggle as they were the only ways
for casters to peer through the players’ sensors.

Actuators were the means for the agents to interact with their
environment, such as building a unit. Figure 1 region 3 (Pro-
duction Tab) shows some of the Actuators the player was
using, namely that Player Blue was building 5 types of ob-
jects, whereas Red was building 8. Casters almost always kept
visualizations of actions in progress on display. RTS actions
had a duration, meaning that when a player took an action,
time passed before its consequence had been realized. The
Production tab’s popularity was likely due to the fact that it is
the only stable view of information about actuators and their
associated actions.

In fact, prior to the game in our corpus, Pair 3 had this ex-
change, which demonstrated their perception of the production
tab’s importance to doing their job,

Pair 3a: “What if we took someone who knows literally
nothing about StarCraft, just teach them a few phrases
and what everything is on the production tab?”
Pair 3b:“Oh, I would be out of a job.”

Implications for an interactive explainer
Abstracting beyond the StarCraft components to the PEAS
model revealed a pattern of the casters’ behaviors with impli-
cations for future explanation systems, which we characterize

CHI 2018 Paper CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 562 Page 4

Patch Name State Agg. U
sa

ge

Pa
ir

1

Pa
ir

2

Pa
ir

3

Pa
ir

4

Pa
ir

5

Pa
ir

6

Pa
ir

7

Pa
ir

8

Pa
ir

9

Pa
ir

10

Performance

Units Lost popup: Shows count and resource value of the units
each player has lost.

Past High 6 2 2 1 1

Units Lost tab: Same as above, but as a tab. Past High 5 1 1 1 1 1
Income tab: Provides resource gain rate. Present High 2 1 1
Income popup: Shows each player’s resource gain rate and
worker count.

Present High 2 1 1

Army tab: Shows supply and resource value of currently held
non-worker units.

Present High 1 1

Income Advantage graph: Shows time series data comparing
resource gain rate.

Past High 1 1

Units Killed popup: Essentially the opposite of the Units Lost
popup

Past High 1 1

Environment
Units tab: Shows currently possessed units. Present Low 51 1 2 2 10 1 13 20 2
Upgrades tab: Like Units tab, but for upgrades to units and
buildings.

Present Low 5 1 3 1

Structures tab: Like Units tab, but buildings. Present Low 2 1 1
Actuator Production tab: Shows the units, structures, and upgrades that

are in progress, i.e. have been started, but are yet to finish.
Present Low Preferred (by choice) “always-on” tab, not counted

Sensor Minimap: Shows zoomed out map view Present Med Too many to count
Vision Toggle: Shows only the vision available to one of the
players.

Present Low 36 5 8 1 2 1 5 1 7 5 1

Table 2. This table illustrates description, classification, and usage rates of the patches and enrichment operations we observed casters using. Each
patch is classified by: 1. The part of the PEAS model that this patch illuminates best (column 1), 2. whether it examines past or present game states
(column 3), and 3. degree to which the patch aggregates data in its visualization (column 4). The remaining columns show total usage counts, as well as
per caster pair usage. Note that there are additional patches passively available (Main Window and HUD) which do not have navigation properties.

as: “keep your Sensors close, but your Actuators closer.” This
aligns with other research, showing that real-time visualization
of agent actions can improve system transparency [39].

However, these results contrast with the explanation systems
that tend to prioritize Performance measures. Our results
instead suggest that an explanation system should prioritize
useful, readily accessible information about what an agent
did or can do (Actuators) and of what it can see or has seen
(Sensors).

RQ2 Results: The How: How do shoutcasters seek the
information they seek?
Section RQ1 discussed the What and Where (i.e., the content
casters sought and locations where they sought it.) We then
considered how they decided to move among these places,
summarized in Table 2.

The casters’ foraging moves seemed to follow a common for-
aging “loop” through the available information patch types: an
Actuators-Environment-Performance loop with occasional for-
ays over to Sensors (Figure 2). Specifically, the casters tended
to start at the “always-on” Actuator-related patches of current
state’s actions in-progress; then when something triggered
a change in their focus, they checked the Environment for
current game state information and occasionally Performance
measures of past states. If they needed more information along
the way, they went to the Sensors to see through a player’s
eyes. We will refer to this process as the “A-E-P+S loop.”

Information Foraging Theory (IFT) explains why people (in-
formation predators) leave one patch to move to another, such
when the casters left Actuator patches. According to IFT,
predators choose navigations as cost/benefit decisions, based
on the value of information in the patch a predator is already in

Actuators

Environment

Performance

SensorsCue: ? Goal: assess scouting

Cue: Units separating,
 fighting likely over

Cue: Units co-located,
impending combat likely

Figure 2. The A-E-P+S loop was a common information foraging strat-
egy some casters used in foraging for agent behavior. It starts at the Ac-
tuators, and returns there throughout the foraging process. If a caster
interrupted the loop, they usually did so to return to the Actuators.

versus the value per cost of going to another patch [29]. Stay-
ing in the same patch is generally the least expensive, but when
there is less value to be gained by staying versus moving to
another patch, the predator moves to the other patch. However,
the predator is not omniscient: decisions are based upon the
predator’s perception of the cost and value that other patches
will actually deliver. They form these perceptions from both
their prior experience with different patch types [27] and from
the cues (signposts in their information environment) that point
toward content available in other patches.

Certain types of cues tended to trigger a move for the casters.
Impending combat was the most common cue triggering a
move from the Actuators type (Production tab) to the Envi-
ronment type (Units tab) — i.e., from A to E in the A-E-P+S
loop. In Figure 2, the co-location of opposing units served as
the cue. This cue indicated imminent combat, which led to
caster navigation to a new patch to illuminate the environment.
In fact, combat cues triggered navigations to the Units tab
most frequently, accounting for 30 of the 51 navigations there
(Table 2).

CHI 2018 Paper CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 562 Page 5

Figure 3. The Units Lost tab (left image) shows the number of units lost
and their total value, in terms of resources spent, for both players. In
this example from Pair 2, we see that Blue Player (top) has lost merely
2800 minerals worth of units so far in this game, while Red has lost more
than 7000. The Units Killed popup (right image) allows shoutcasters to
quickly compare player performance via a “tug-of-war” visualization.
In this example from Pair 1, as we see that Blue Player (left) has killed
19 units, while Red has killed merely 3. The main difference between
these two styles of visualization is that the tab offers more options and
information depth to “drill down” into.

Figure 4. The Production tab, showing the build actions currently in
progress for each player. Each unit/structure type is represented by
a glyph (which serves as a link to navigate to that object), provided a
progress bar for duration, and given the number of objects of that type.
Thus, we can see that Blue Player (top row) is building 5 different types
of things, while Red (bottom row) is building 4 types of things. The Struc-
tures, Upgrades, and Units tab look fairly similar to the Production tab.

Interestingly, this cue type was different from the static cues
most prior IFT research has used. Cues tended to be static
decorations (text or occasionally images) in previous IFT in-
vestigations that label a navigation device, like a hyperlink
or button that leads to another information patch. In contrast,
cues like the onset of combat are dynamic and often did not
provide an affordable direct navigation. However, cues like
this were considered cues because they “provide users with
concise information about content that is not immediately
available” [29]. They suggested high value in another location
— in the case of combat, the Units tab.

Combat ending was a dynamic cue that triggered a move
to a Performance measure. 10 of the 13 navigations to a
past-facing Performance measure (via tab or popup), occurred
shortly after combat ended as a form of “after-action review”
(Table 2). Occasionally, the shoutcasters visited other Perfor-
mance patches, such as the Income, Units Lost, and Army tabs,
to demonstrate reasons why a player had accrued an in-game
lead, or the magnitude of that lead (7 navigations). However,
signs of completed fighting were the main cues for visiting a
Performance patch.

The most common detour out of the A-E-P part of the loop
to a Sensor patch was to enrich the information environment
via the Vision Toggle (36 navigations, Table 2). The data did
not reveal exactly what cue(s) led to this move, but the move
itself had a common theme: to assess scouting operations.
The casters used the Vision Toggle to allow themselves to
see the game through the eyes of only one of the players,
but their default behavior was to view the game with ALL

vision. This provided the casters with the ability to observe
both players’ units and structures simultaneously. Toggling
the Vision Sensor in this way enabled them to assess what
information was or had been gathered by each player via their
scouting actions (29 of the 36 total Vision Toggles), since an
enemy unit would only appear to the player’s sensors if they
had a friendly unit (e.g., a scout) nearby. Toggling the vision
Sensor was the second most common patch move.

Besides the act of following cues, IFT has another foraging
operation: enriching their information environment to make
it more valuable or cost-efficient [29]. The aforementioned
Vision Toggle was one example of this, and another was when
casters added on information visualizations derived from the
raw data, like Performance measure popups or other basic
visualizations. Two examples of the data obtained through this
enrichment are shown in Figure 3.

These Performance measures gave the shoutcasters at-a-glance
information about the ways one player was winning. The
most commonly used tab, for example, the Units Lost tab
(Figure 3), showed the number of units lost and their total
value, in terms of resources spent. This measure achieves “at a
glance” by aggregating all the data samples together by taking
a sum; derived values like this allow the visualization to scale
to large data sets [32]. However, Table 2 indicates that the
lower data aggregation patches were more heavily used. The
casters used the Production tab to see units grouped by type,
as Figure 4 shows, so type information was maintained with
only positional data lost. This contrasts with the Minimap
(medium aggregation), in which type information is discarded
but positional information maintained at a lower granularity.
The casters used Performance measure patches primarily to
understand present state data (HUD), but these patches were
also the only way to access past state information (Table 2).

Implications for an interactive explainer
These results have several implications for automated explana-
tion systems in this domain. First, the A-E-P+S loop and how
the casters traversed it reveals priority and timing implications
for automated explanation systems. For example, the cues that
led them to switch to different information patches could also
be cues in an automated system about the need to avail differ-
ent information at appropriate times. For example, our casters
showed a strong preference for actuator information as “steady
state” visualization, but preferred performance information
upon conclusion of a subtask.

Viewing the casters’ behaviors through the dual lens of PEAS
+ IFT has implications for not only the kinds of patches that
an explanation system would need to provide, but also the cost
to users of not providing these patches in a readily accessible
format. For example, PEAS + IFT revealed a costly foraging
problem for the casters due to the relative inaccessibility of
some Actuator patches.

There is no easily accessible mechanism in StarCraft by which
they could navigate to an Actuator patch with fighting or scout-
ing actions in progress. Instead, the only way the casters could
get access to these actions was via painstaking camera place-
ment. The casters made countless navigations to move the

CHI 2018 Paper CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 562 Page 6

Figure 5. Frequency of Lim & Dey questions answered by casters, with
one line per caster pair. Y-Axis represents percentages of the utterances
which answered that category of question (X-Axis). Note how casters
structured answers consistently.

camera using the Minimap, traditional scrolling, or via tabs
with links to the right unit or building.

However, despite all these navigation affordances, sometimes
the casters were unable to place the camera on all the actions
they needed to see.

For example, at one point when Pair 4 had the camera on a
fight at Xy’s base, a second fight broke out at DeMuslim’s
base, which they completely missed:

Pair 4a: <surprised, noticing something amiss>
“Xy actually killed the 3rd base of DeMuslim.”
...<the pair tries to figure what must have happened>...
Pair 4b: “Oh my god, you’re right Alex.”
Pair 4a: “Yeah, it was killed during all that action.”

RQ3 Results: What implicit questions do shoutcasters
answer and how do they form their answers?
We considered how the shoutcasters gathered and assessed
information for the first two research questions. We now shift
focus to the explanations themselves.

Much of the prior research into explaining agent behavior
starts at some kind of observable effect and then explains
something about that effect or its causes [12, 16, 19, 37]. Most
such observable effects are the result of player actions in RTS
games, and recall from RQ1 that the casters spent most of their
information-gathering effort examining the players’ Actuators
to discover and understand actions.

The casters used the information they gained to craft expla-
nations to answer implicit questions (i.e., questions their au-
dience “should be” wondering) about player actions. Thus,
drawing from prior work about the nature of questions people
ask about AI, we coded the 1024 casters’ explanations using
the Lim & Dey “intelligibility types” [20].

The shoutcasters were remarkably consistent (Figure 5) in
the types of implicit questions they answered. As Table 3
sums up, casters overwhelmingly chose to answer What, with
What-could-happen and How-to high on their list. (The
total is greater than 1024 because explanations answered mul-
tiple questions and/or fit into multiple categories.)

These results surprised us. Whereas Lim & Dey [19] found
that Why was the most demanded explanation type from users,
the casters rarely provided Why answers. More specifically, in

the Lim & Dey study, approximately 48 of 250 participants,
(19%) demanded a Why explanation. To contrast with our
study, only 27 of the casters’ 1024 utterances (approximately
3%) were Why answers.

Discussion and implications for an interactive explainer
Why so few Whys? Should an automated explainer, like our
shoutcasters, eschew Why explanations, in favor of What?

One possibility is that the casters delivered exactly what their
audience wanted, and thus the casters’ distribution of explana-
tion types was well chosen. After all, the casters were experts
paid to provide commentary for prestigious tournaments, so
they would know their audience well. The expertise level
of the audience may have been fairly high, because the tour-
nament videos were available only on demand (as opposed
to broadcast like some professional sports) at websites that
casual audience members may not even know about. If a
well-informed audience expected the players to do exactly
what they did, their expectations would not be violated, which,
according to Lim & Dey, suggests less demand for Why [19].
This suggests that the extent to which an automated explainer
needs to emphasize Why explanations may depend on both the
expertise of the intended audience, which drives their expec-
tations, and the agent’s competence, which drives failure to
meet reasonable expectations.

However, another possibility is that the audience really did
want Why explanations, but the casters rarely provided them
because of the time they required — both theirs and the audi-
ence’s. The shoutcasters explained in real time as the players
performed their actions. It takes time to understand the present,
predict the future, and link present to future; and spending
time in these ways reduces the time allowable for explaining
interesting activities happening in present. The corpus showed
casters interrupting themselves and each other as new events
transpired, as they tried to keep up with the time constraints.
This also has implications to the audience’s workflow, because
it takes time for the audience to mentally process shoutcast-
ers’ departures from the present, particularly when interesting
actions continuously occur.

Even more critical to an explanation system, Why questions
also tend to require extra effort (cognitive or computing re-
sources), because they require connecting two time slices:

Pair 10: “After seeing the first phoenix [flying unit] and,
of course, the second one confirmed, Snute is going to
invest in a couple spore crawlers [air defense structure].”

The casters had to connect past information (scouting the
phoenix) with a prediction of the future (investing in spore
crawlers) in this example.

Answering Why-didn’t questions was even rarer than answer-
ing Why questions (Table 3). Like Why questions, Why-didn’t
questions required casters to make a connection between pre-
vious game state and a potential current or future game state.
For example, Pair 2: “The probe [worker unit] already left a
while ago, so we knew it wasn’t going to be a pylon [support
structure] rush..” Why-didn’t answers’ rarity is consistent
with the finding that understanding a Why-didn’t explanation
requires even more mental effort than a Why explanation [20].

CHI 2018 Paper CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 562 Page 7

Code Freq Description Example
What 595 What the player did or anything about game state “The liberators are moving forward as well”
What-could- 376 What the player could have done or what will happen “Going to be chasing those medivacs away”
happen
How-to 233 Explaining rules, directives, audience tips, high level strategies “He should definitely try for the counter attack right away”
*How-good/bad- 112 Evaluation of player actions “Very good snipe there for Neeb”
was-that-action
Why-did 27 Why the player performed an action “...that allowed Dark to hold onto that 4th base, it allowed

him to get those ultralisks out”
Why-didn’t 6 Why the player did not perform an action “The probe already left a while ago, so we knew it wasn’t

going to be a pylon rush”
Table 3. Utterance type code set, slightly modified from the schema proposed by Lim & Dey. The asterisk denotes the code that we added,
How-good/bad-was-that-action because the casters judged actions based on their quality.

As for an interactive explanation system, supporting Why ques-
tions requires solving both a temporal credit assignment prob-
lem (determining the effect of an action taken at a particular
time on the outcome) and a structural one (determining the
effect of a particular system element on the outcome). See [1]
for an accessible explanation of these problems.

The casters found a potentially “satisficing” approximation
of Why, a combination of What and What-could-happen,
the two most frequent explanation types. Their What answers
explained what the player did, what happened in the game, and
description of the game state. These were all things happening
in the present, and did not require the additional cognitive
steps required to answer Why or Why-didn’t, which may have
contributed to its high frequency. Further, the audience needed
this kind of “play-by-play” information to stay informed about
the game’s progression; for example, Pair 4: “This one hero,
marine [inexpensive unit], is starting to kill the vikings [flying
unit].” When adding on What-could-happen, casters were
pairing What with what the player will or could do, i.e., a
hypothetical outcome. For example,

Pair 1: “...if he gets warning of this he’ll be able to get
back up behind his wall in.”

Although answering the question What-could-happen re-
quired predicting the future, it did not also require the casters
to tie together information from past and future.

The other two frequent answers, How-good/bad-was-that-
action and How-to, also sometimes contained “why” infor-
mation. Casters judged an action for How-good/bad-was-
that-action, e.g.: Pair 1: “Nice maneuver from Jjakji, he
knows he can’t fight Neeb front on right now, he needs to
go around the edges.” Casters gave the audience tips and
explained high level strategies for How-to. For example,
consider this rule-like explanation, which implies “why” the
player used a particular army composition: Pair 10: “Roach
[and] ravager [long range unit] in general is really good...”

The next rule-like How-to example is an even closer approxi-
mation to “why” information. Pair 8: “Obviously when there
are 4 protoss units on the other side of the map, you need to
produce more zerglings [inexpensive unit], which means even
fewer drones [worker unit] for Iasonu.”

The casters are giving a rule in this case: given a general game
state (protoss units on their side of the map) the player should
perform an action (produce zerglings). However, the example
does more; it also implies a Why answer to the question “Why

isn’t Iasonu making more drones?” Since this implied answer
simply relates the present to a rule or best practice, it was
produced at much lower expense than a true Why answer that
required tying past events to the present.

Mechanisms casters used to circumvent the need for disrup-
tive and resource-intensive Why explanations, such as using
How-to, may also be ways to alleviate the same problems in
explanation systems.

RQ4 Results: What relationships and objects do shout-
casters use when building their explanations?
To inform future explanation systems’ content by expert expla-
nations — the patterns of nouns, verbs, and adjectives/adverbs
in these professionally crafted explanations — we drew upon
a code set from prior work [22] (see the Methodology section).
Table 4 shows how much caster pairs used each of these types
of content, grouping the objects (nouns) in the first group of
columns, then actions (verbs), and then properties (adjectives
and adverbs). Table 5 shows how the casters’ explanations
used these concepts together, i.e., which properties they paired
with which objects and actions.

The casters’ explanation sentences tended to be noun-verb con-
structions, so we began with the nouns. The most frequently
described objects were fighting object , production object , and
enemy , with frequencies of 49%, 34%, and 16%, respectively
(Figure 4). (This is similar to results from [22], where produc-
tion, fighting, and enemy objects were the three most popular
object subcodes.) As to the actions (“verbs”), the casters
mainly discussed fighting (40%) and building (23%). It is not
surprising that the casters frequently discussed fighting , since
combat skills are important in StarCraft [13], and producing is
often a prerequisite to fighting . This may suggest that, in RTS
environments, an explanation system may be able to focus on
only the most important subset of actions and objects, without
needing to track and reason about most of the others.

The casters were quite strategic in how they put together these
nouns and verbs with properties. The casters’ used particu-
lar properties with these nouns and verbs to paint the bigger
picture of how the game was going for each player, and how
that tied to the players’ strategies. We illustrate in the next
subsections a few of the ways casters communicated about
player decisions — succinctly enough for real time.

CHI 2018 Paper CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 562 Page 8

Table 4. Occurrence frequencies for each code, as a percent of the total number of utterances in the corpus. From left to right: Object (pink), Action
(orange), Spatial (green), Temporal (yellow), and Quantitative (blue) codes. The casters were consistent about kinds of the content they rarely included,
but inconsistent about the kinds of content they most favored.

“This part of the map is mine!”: Spatial properties
RTS players claim territory in battles with the arrangement of
their military units, e.g.:

Pair 3: “He’s actually arcing these roaches [ranged unit]
out in such a great way so that he’s going to block any-
thing that’s going to try to come back.”

As the arrangement column of Table 5 shows, the objects that
were used most with arrangment were fighting objects (12%,
72 instances) and enemy, (10%, 26 instances). Note that
arrangement is very similar to point/region, but at a smaller
scale; Arrangement of production object , such as exactly
where buildings are placed in one’s base, appeared to be less
significant, co-occurring only 5% of the time.

The degree to which an RTS player wishes to be aggressive
or passive is often evident in their choice of what distance
to keep from their opponent, and the casters often took this
into account in their explanations. One example of this was
evaluation of potential new base locations.

Pair 5: “...if he takes the one [base] thats closer that’s
near his natural [base], then it’s close to Innovation so
he can harass.”

Here, the casters communicated the control of parts of the map
by describing bases as a region , and then relating two regions
with a distance . The magnitude of that distance then informed
whether the player was able to more easily attack. Of the cast-
ers’ utterances that described distance along with production
object , 27 out of 44 referred to the distance between bases or
moving to/from a base.

“When should I...”: Temporal properties
Casters’ explanations often reflected players’ priorities for
allocating limited resources. One way they did so was using

Table 5. Co-Occurrence Matrix. Across rows: Object (pink, top rows)
and Action (orange, bottom rows) codes. Across columns: Spatial
(green, left), Temporal (yellow, center), and Quantitative (blue, right).
Co-occurrence rates were calculated by dividing the intersection of the
subcodes by the union.

speed properties: Pair 4: “We see a really quick third [base]
here from XY, like five minutes third.” Since extra bases provide
additional resource gathering capacity, the audience could
infer that the player intended to follow an “economic” strategy,
as those resources could have otherwise been spent on military
units or upgrades. This contrasts with the following example,
Pair 8: “He’s going for very fast lurker den.. [unit production
building].” The second example indicated the player’s intent to
follow a different strategy: unlocking stronger units (lurkers).
Speed co-occurred with building/producing most often (12%,
36 instances).

CHI 2018 Paper CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 562 Page 9

“Do I care how many?”: Quantitative properties
We found it surprising how often the casters described quanti-
ties without numbers. In fact, the casters often did not even
include type information when they described the players’
holdings, instead focusing on comparative properties (Table 5).
For example, Pair 1: “There is too much supply for him to
handle. Neeb finalizes the score here after a fantastic game.”
Here, “supply”5 is so generic, we do not even know what kind
of things Neeb had — only that he had “too much” of it.

In contrast, when the casters discussed cheap military units,
like “marines” and “zerglings,” they tended to provide type
information, but about half of their mentions still included no
precise numbers. Perhaps it was a matter of the high cost to get
that information: cheap units are often built in large quantities,
so deriving a precise quantity is often very tedious. Further,
adding one weak unit that is cheap to build has little impact on
army strength, so getting a precise number may not have been
worthwhile — i.e. the value of knowing precise quantities is
low. Consider the following example, which quantified the
army size of both players vaguely, using indefinite quantity
properties: Pair 6: “That’s a lot of marines and marauders
[heavy infantry unit] and not enough stalkers [mobile unit].”

Workers are a very important unit in the RTS domain. Con-
sistent with this importance, workers are the only unit where
the casters were automatically alerted to their death (Figure 1,
region 4), and are also available at a glance on the HUD
(Figure 1, region 1). Correspondingly, the casters often gave
precise quantities of workers (a production object). Workers
(workers, drones, scvs, and probes) had 46 co-occurrences
with numeric quantities , but only 12 with indefinite quantities
(e.g., lot, some, few). Pair 2: “...it really feels like Harstem is
doing everything right, and [yet] somehow ended up losing 5
workers.”

Implications for an interactive explainer
These results have particularly important implications for inter-
active explanation systems with real-time constraints. Namely,
the results suggest that an effective way to communicate about
strategies and tactics is to modify the critical objects and ac-
tions with particular properties that suggest strategies. This
not only affords a succinct way to communicate about strate-
gies and tactics (fewer words) but also a lighter load for the
audience than attempting to build and process a rigorous ex-
planation of strategy.

Specifically, spatial properties can communicate beyond the ac-
tual properties of objects to strategies themselves; e.g., casters
used distance to point out plans to attack or defend. Tempo-
ral properties can be used in explanations of strategies when
choices in resource allocation determines available strategies.

Finally, an interactive explanation system could use the quanti-
tative property results to help ensure alignment in the level of
abstraction used by the human and the system. For example,
a player can abstract a quantity of units into a single group
or think of them as individual units. Knowing the level of

5“Supply” is used in an overloaded fashion here, while looking at
military units, as opposed to the traditional definition — maximum
army size the player can have at one time.

abstraction the human players use in different situations can
help an interactive explanation system choose the level of ab-
straction that will meet human expectations. Using properties
in these strategic ways may enable an interactive explanation
system to meet its real-time constraints while at the same time
improving its communicativeness to the audience.

CONCLUSION
The results of our study suggest that explaining intelligent
agents to humans has much to gain from looking to the human
experts. The expert explainers in our case — RTS shoutcasters
— revealed implications into what, when, and how human
audiences of such systems need explanations, and how real-
time constraints can come together with explanation-building
strategies. Among the results we learned were:
RQ1 Investigating the what’s and where’s of casters’ real-

time information foraging to assess and understand the
players showed that the most commonly used patches of
the information environment were the Actuators (“A” in
the PEAS model). This suggests that explanation systems
that currently support only Performance measures should
consider also presenting information from the Actuators
and Sensors.

RQ2 The how’s of casters’ foraging revealed a common pat-
tern, which we termed the A-E-P+S loop, and the most
common cues and triggers that led shoutcasters to move
through this loop. Future explanation systems may be well-
served to prioritize and recommend explanations according
to this loop and its triggers.

RQ3 As model explainer, the casters revealed strategies for
“satisficing” with explanations that may not have precisely
answered all the questions the audience had in mind, but
were feasible given the time and resource constraints in
effect when comprehending, assessing, and explaining, all
in real time as play progresses. These strategies may be
likewise applicable to interactive explanation systems.

RQ4 The detailed contents of the casters’ explanations re-
vealed patterns of how they paired properties (“adjectives
and adverbs”) with different objects (“nouns”) and actions
(“verbs”). Interactive explanation systems may be able to
leverage these patterns to communicate succinctly about
an agent’s tactics and strategies.

Ultimately, both shoutcasters’ and explanation systems’ jobs
are to improve the audience members’ mental model of the
agents’ behavior. As Cheung, et al. [4] put it, “...commentators
are valued for their ability to expose the depth of the game.”
Hopefully, future explanation systems will be valued for the
same reason.

ACKNOWLEDGMENTS
This work was supported by DARPA #N66001-17-2-4030 and
NSF #1314384. Any opinions, findings and conclusions or
recommendations expressed are the authors’ and do not neces-
sarily reflect the views of NSF, DARPA, the Army Research
Office, or the US government.

REFERENCES
1. Adrian K Agogino and Kagan Tumer. 2004. Unifying

temporal and structural credit assignment problems. In

CHI 2018 Paper CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 562 Page 10

Proceedings of the Third International Joint Conference
on Autonomous Agents and Multiagent Systems-Volume 2.
IEEE Computer Society, 980–987.

2. Svetlin Bostandjiev, John O’Donovan, and Tobias
Höllerer. 2012. TasteWeights: A visual interactive hybrid
recommender system. In Proceedings of the Sixth ACM
Conference on Recommender Systems. ACM, 35–42.

3. Nico Castelli, Corinna Ogonowski, Timo Jakobi, Martin
Stein, Gunnar Stevens, and Volker Wulf. 2017. What
happened in my home?: An end-user development
approach for smart home data visualization. In
Proceedings of the 2017 CHI Conference on Human
Factors in Computing Systems. ACM, 853–866.

4. Gifford Cheung and Jeff Huang. 2011. Starcraft from the
stands: Understanding the game spectator. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’11). ACM, New
York, NY, USA, 763–772. DOI:
http://dx.doi.org/10.1145/1978942.1979053

5. Ed H Chi, Peter Pirolli, Kim Chen, and James Pitkow.
2001. Using information scent to model user information
needs and actions and the web. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems. ACM, 490–497.

6. Kelley Cotter, Janghee Cho, and Emilee Rader. 2017.
Explaining the news feed algorithm: An analysis of the
“News Feed FYI” blog. In Proceedings of the 2017 CHI
Conference Extended Abstracts on Human Factors in
Computing Systems. ACM, 1553–1560.

7. Jonathan Dodge et al. 2018. Supplemental materials:
How the experts do it: Assessing and explaining agent
behaviors in real-time strategy games. web site. (2018).
Retrieved December 28, 2017 from
http://web.engr.oregonstate.edu/~burnett/

XAI-CHI2018-rebuilt_supplementary_materials/.

8. Scott D. Fleming, Chris Scaffidi, David Piorkowski,
Margaret Burnett, Rachel Bellamy, Joseph Lawrance, and
Irwin Kwan. 2013. An information foraging theory
perspective on tools for debugging, refactoring, and reuse
tasks. ACM Transactions on Software Engineering and
Methodology (TOSEM) 22, 2 (2013), 14.

9. Wai-Tat Fu and Peter Pirolli. 2007. SNIF-ACT: A
cognitive model of user navigation on the world wide
web. Human-Computer Interaction 22, 4 (2007),
355–412.

10. Alex Groce, Todd Kulesza, Chaoqiang Zhang, Shalini
Shamasunder, Margaret Burnett, Weng-Keen Wong,
Simone Stumpf, Shubhomoy Das, Amber Shinsel, Forrest
Bice, and others. 2014. You are the only possible oracle:
Effective test selection for end users of interactive
machine learning systems. IEEE Transactions on
Software Engineering 40, 3 (2014), 307–323.

11. Robert R Hoffman and Gary Klein. 2017. Explaining
explanation, part 1: theoretical foundations. IEEE
Intelligent Systems 32, 3 (2017), 68–73.

12. Ashish Kapoor, Bongshin Lee, Desney Tan, and Eric
Horvitz. 2010. Interactive optimization for steering
machine classification. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems.
ACM, 1343–1352.

13. Man-Je Kim, Kyung-Joong Kim, SeungJun Kim, and
Anind K Dey. 2016. Evaluation of starcraft artificial
intelligence competition bots by experienced human
players. In Proceedings of the 2016 CHI Conference
Extended Abstracts on Human Factors in Computing
Systems. ACM, 1915–1921.

14. Josua Krause, Adam Perer, and Kenney Ng. 2016.
Interacting with predictions: Visual inspection of
black-box machine learning models. In Proceedings of
the 2016 CHI Conference on Human Factors in
Computing Systems (CHI ’16). ACM, New York, NY,
USA, 5686–5697. DOI:
http://dx.doi.org/10.1145/2858036.2858529

15. Cliff Kuang. 2017. Can AI be taught to explain itself?
New York Times, (2017). Retrieved December 26, 2017
from https://www.nytimes.com/2017/11/21/magazine/
can-ai-be-taught-to-explain-itself.html.

16. Todd Kulesza, Margaret Burnett, Weng-Keen Wong, and
Simone Stumpf. 2015. Principles of explanatory
debugging to personalize interactive machine learning. In
Proceedings of the 20th International Conference on
Intelligent User Interfaces. ACM, 126–137.

17. Todd Kulesza, Simone Stumpf, Margaret Burnett, and
Irwin Kwan. 2012. Tell me more? The effects of mental
model soundness on personalizing an intelligent agent. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. ACM, 1–10.

18. Sandeep Kaur Kuttal, Anita Sarma, and Gregg Rothermel.
2013. Predator behavior in the wild web world of bugs:
An information foraging theory perspective. In Visual
Languages and Human-Centric Computing (VL/HCC),
2013 IEEE Symposium on. IEEE, 59–66.

19. Brian Y Lim and Anind K Dey. 2009. Assessing demand
for intelligibility in context-aware applications. In
Proceedings of the 11th international conference on
Ubiquitous computing. ACM, 195–204.

20. Brian Y. Lim, Anind K. Dey, and Daniel Avrahami. 2009.
Why and why not explanations improve the intelligibility
of context-aware intelligent systems. In Proceedings of
the SIGCHI Conference on Human Factors in Computing
Systems. ACM, 2119–2128.

21. Diane Litman, Steve Young, M.J.F. Gales, Kate Knill,
Karen Ottewell, Rogier van Dalen, and David Vandyke.
2016. Towards using conversations with spoken dialogue
systems in the automated assessment of non-native
speakers of English. In SIGDIAL Conference. 270–275.

22. Ronald Metoyer, Simone Stumpf, Christoph Neumann,
Jonathan Dodge, Jill Cao, and Aaron Schnabel. 2010.
Explaining how to play real-time strategy games.
Knowledge-Based Systems 23, 4 (2010), 295–301.

CHI 2018 Paper CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 562 Page 11

http://dx.doi.org/10.1145/1978942.1979053
http://web.engr.oregonstate.edu/~burnett/XAI-CHI2018-rebuilt_supplementary_materials/
http://web.engr.oregonstate.edu/~burnett/XAI-CHI2018-rebuilt_supplementary_materials/
http://dx.doi.org/10.1145/2858036.2858529
https://www.nytimes.com/2017/11/21/magazine/can-ai-be-taught-to-explain-itself.html
https://www.nytimes.com/2017/11/21/magazine/can-ai-be-taught-to-explain-itself.html

23. Nan Niu, Anas Mahmoud, Zhangji Chen, and Gary
Bradshaw. 2013. Departures from optimality:
Understanding human analyst’s information foraging in
assisted requirements tracing. In Proceedings of the 2013
International Conference on Software Engineering. IEEE
Press, 572–581.

24. Donald A Norman. 1983. Some observations on mental
models. Mental models 7, 112 (1983), 7–14.

25. S. Ontañón, G. Synnaeve, A. Uriarte, F. Richoux, D.
Churchill, and M. Preuss. 2013. A survey of real-time
strategy game AI research and competition in StarCraft.
IEEE Transactions on Computational Intelligence and AI
in Games 5, 4 (Dec 2013), 293–311. DOI:
http://dx.doi.org/10.1109/TCIAIG.2013.2286295

26. Alexandre Perez and Rui Abreu. 2014. A diagnosis-based
approach to software comprehension. In Proceedings of
the 22nd International Conference on Program
Comprehension. ACM, 37–47.

27. David Piorkowski, Scott D. Fleming, Christopher
Scaffidi, Margaret Burnett, Irwin Kwan, Austin Z Henley,
Jamie Macbeth, Charles Hill, and Amber Horvath. 2015.
To fix or to learn? How production bias affects
developers’ information foraging during debugging. In
Software Maintenance and Evolution (ICSME), 2015
IEEE International Conference on. IEEE, 11–20.

28. David Piorkowski, Austin Z Henley, Tahmid Nabi,
Scott D Fleming, Christopher Scaffidi, and Margaret
Burnett. 2016. Foraging and navigations, fundamentally:
Developers’ predictions of value and cost. In Proceedings
of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering.
ACM, 97–108.

29. Peter Pirolli. 2007. Information foraging theory:
Adaptive interaction with information. Oxford University
Press.

30. Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin.
2016. Why should I trust you?: Explaining the
predictions of any classifier. In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM, 1135–1144.

31. Stuart J. Russell and Peter Norvig. 2003. Artificial
Intelligence: A modern approach (2 ed.). Pearson
Education.

32. Robert Spence. 2007. Information Visualization: Design
for interaction (2Nd Edition). Prentice-Hall, Inc., Upper
Saddle River, NJ, USA.

33. Sruti Srinivasa Ragavan, Sandeep Kaur Kuttal, Charles
Hill, Anita Sarma, David Piorkowski, and Margaret
Burnett. 2016. Foraging among an overabundance of
similar variants. In Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems.
ACM, 3509–3521.

34. David J Stracuzzi, Alan Fern, Kamal Ali, Robin Hess,
Jervis Pinto, Nan Li, Tolga Konik, and Daniel G Shapiro.
2011. An application of transfer to american football:
From observation of raw video to control in a simulated
environment. AI Magazine 32, 2 (2011), 107–125.

35. Adam Summerville, Michael Cook, and Ben Steenhuisen.
2016. Draft-Analysis of the Ancients: Predicting Draft
Picks in DotA 2 using Machine Learning. (2016).
https://aaai.org/ocs/index.php/AIIDE/AIIDE16/paper/

view/14075

36. Katia Sycara, Christian Lebiere, Yulong Pei, Donald
Morrison, and Michael Lewis. 2015. Abstraction of
analytical models from cognitive models of human
control of robotic swarms. In International Conference
on Cognitive Modeling. University of Pittsburgh.

37. Joe Tullio, Anind K Dey, Jason Chalecki, and James
Fogarty. 2007. How it works: A field study of
non-technical users interacting with an intelligent system.
In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. ACM, 31–40.

38. Oriol Vinyals et al. 2017. StarCraft II: A New Challenge
for Reinforcement Learning. Tech Report. (2017).
Retrieved December 22, 2017 from
https://deepmind.com/documents/110/sc2le.pdf.

39. Robert H Wortham, Andreas Theodorou, and Joanna J
Bryson. 2017. Improving robot transparency:real-time
visualisation of robot AI substantially improves
understanding in naive observers, In IEEE RO-MAN
2017. IEEE RO-MAN 2017 (August 2017).
http://opus.bath.ac.uk/55793/

CHI 2018 Paper CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 562 Page 12

http://dx.doi.org/10.1109/TCIAIG.2013.2286295
https://aaai.org/ocs/index.php/AIIDE/AIIDE16/paper/view/14075
https://aaai.org/ocs/index.php/AIIDE/AIIDE16/paper/view/14075
https://deepmind.com/documents/110/sc2le.pdf
http://opus.bath.ac.uk/55793/

	Introduction
	Background and Related Work
	Methodology
	Results
	RQ1 Results: What information do shoutcasters seek to generate explanations, and where do they find it?
	Implications for an interactive explainer

	RQ2 Results: The How: How do shoutcasters seek the information they seek?
	Implications for an interactive explainer

	RQ3 Results: What implicit questions do shoutcasters answer and how do they form their answers?
	Discussion and implications for an interactive explainer

	RQ4 Results: What relationships and objects do shoutcasters use when building their explanations?
	Implications for an interactive explainer

	Conclusion
	Acknowledgments
	References

