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ABSTRACT: Budget-related decisions in sponsored search auctions are recognized as a 
structured decision problem rather than a simple constraint. Budget planning over sev-
eral coupled campaigns (e.g., substitution and complementarity) remains a challenging 
but important task for advertisers. In this paper, we propose a dynamic multicampaign 
budget planning approach using optimal control techniques, with consideration of the 
substitution relationship between advertising campaigns. A three-dimensional measure of 
substitution relationships between campaigns is presented, namely, the overlapping degree 
in terms of campaign contents, promotional periods, and target regions. We also study 
some desirable properties and possible solutions to our budget model. Computational 
simulations and experiments are conducted to evaluate our model using real-world data 
from practical campaigns in sponsored search auctions. Experimental results show that 
(1) our approach outperforms the baseline strategy that is commonly used in practice; 
(2) coupled campaigns with a higher overlapping degree in between reduce the optimal 
total budget level, then reduce the optimal payoff, and reach the budgeting cap earlier 
than those with a less overlapping degree; and (3) the advertising effort can be seriously 
weakened by ignoring the degree of overlapping between campaigns.

KEY WORDS AND PHRASES: Advertising campaigns, budget planning decision analysis, 
online advertising, operations research in marketing, optimal control, sponsored search, 
sponsored search auctions.

Sponsored search auctions have become the most successful online mar-
keting model (www.iab.net/media/file/IABInternetAdvertisingRevenue 
ReportFY2012POSTED.pdf), accounting for 46.3 percent of revenues of online 
advertisements in 2012 (http://papers.ssrn.com/sol3/papers.cfm?abstract_
id=1544580/). More and more advertisers are choosing sponsored search 
auctions to promote their products or services [14]. Sponsored search auctions 
form the dominating revenue resource for major search engine companies 
(e.g., Google gained 92.7 percent of its revenues from search advertisements 
in the first quarter of 2013). One of the most difficult tasks for advertisers is 
effectively determining and allocating the optimal level of advertising budget 
in search advertisements.

Budget is an endogenous factor in search advertisements, heavily constrain-
ing other advertising strategies [24]. Moreover, budget-related decisions in 
sponsored search auctions are recognized as a structured decision problem, 
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rather than a simple constraint [29]. Specifically, throughout the entire life 
cycle of search advertising campaigns, there exist three intertwined budget 
decisions: allocation across search markets [27], temporal distribution over a 
series of slots (e.g., day) [28], and adjustment of the remaining budget (e.g., 
the daily budget) [30]. This work considers the following decision scenario: An 
advertiser has several campaigns in a search market (e.g., Google Adwords). 
Given that the advertising budget in a search market is determined (by a 
brand manager), how does the advertiser make budgeting plans for these 
campaigns simultaneously over time in order to maximize global advertising 
performance?

There have been some research efforts investigating budget-related deci-
sions in search auctions. Most of these have either taken the budget as the 
constraint for other advertising strategies [2, 17] or allocated the budget over a 
set of keywords [21]. However, these works have not been directly operation-
ally suitable to practical paradigms because they ignore the search advertising 
structure, game rules, and functionality provided by major search engines. 
As observed by Tull et al. [23] and Fischer et al. [9], profit improvement from 
better allocation strategies is much higher than from improving the overall 
budget.

Budget planning over several campaigns remains a challenging but utterly 
important task for advertisers in search auctions, for several reasons. First, 
search marketing environments are essentially dynamic, and advertisers usu-
ally have insufficient knowledge and time to track and adjust various adver-
tising decisions. Second, an advertiser’s campaigns are rarely independent of 
one another. As with the case among products [5], there are relationships (e.g., 
complementarity and substitution) between advertising campaigns, which 
leads to cross-elasticities. For example, for a retailing advertiser, a campaign 
featuring smart phones might have some substitution effects on another 
featuring cheap cell phones, and vice versa. Third, the complex structure of 
search advertising markets and campaigns is composed of many factors. For 
example, Jansen et al. [15] noted that the return on advertising dollars varies 
by average ranking position of the advertisement. The complex advertising 
structure clouds multicampaign budgeting decisions.

The objective of this research is to explore the dynamic budget planning 
problem for several campaigns coupled with substitution relationships in spon-
sored search auctions. In this paper, we formulate the multicampaign budget 
planning problem as an optimal control process under a finite time horizon. 
First, we present a measure of substitution relationship between advertising 
campaigns by considering the overlapping degree (O) from three dimensions: 
campaign contents, promotional periods, and target regions. By “overlapping 
degree,” we refer to the degree to which target markets (or audiences) of two 
campaigns overlap each other in search advertisements. Intuitively, it is defined 
as the probability that search users (e.g., potential customers) issuing queries 
with keywords in campaign j can also be reached by campaign j′. Second, we 
propose a random-walk-based approach for the ad overlapping degree (γ) 
with respect to campaign contents in the context of a directed keyword graph: 
The higher the ad overlapping degree between two campaigns, the more 
advertising effort is weakened. Third, we provide a feasible solution to our 
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budget planning model and study some of the model’s desirable properties. 
Furthermore, we also conduct computational simulations and experiments to 
validate and evaluate our budget planning approach, using real-world data 
collected from logs and reports of practical campaigns.

Experimental results show that (1) our approach outperforms the baseline 
strategy that is commonly used in practice; (2) the overlapping degree (O) 
between campaigns has serious effects on optimal budget strategy; (3) the 
advertising effort can be seriously weakened if an advertiser ignores the over-
lapping degree between campaigns while making advertising decisions; (4) the 
case with higher ad overlapping degree (γ) leads to lower optimal budget level 
and earlier reaching of the budgeting cap; and (5) the higher the overlapping 
degree, the less optimal is the payoff that can be obtained.

The contributions of this work can be summarized as follows: (1) We 
propose a dynamic multicampaign budget planning model for coupled cam-
paigns with substitution relationships in sponsored search auctions and study 
some desirable properties and possible solutions. (2) We define the concept 
of campaign overlapping degree (O) to measure the substitution relationship 
between advertising campaigns from three dimensions: campaign contents, 
promotional periods, and target regions. (3) We conduct computational simu-
lations and experiments to validate the proposed budget planning model 
and its identified properties with real-world data from sponsored search 
campaigns.

The remainder of this paper is organized as follows: The next section pro-
vides a literature review. In the following section, we propose a measure of 
three-dimensional relationship between campaigns, and then, based on it, 
provide a budget planning strategy for several campaigns in sponsored search 
auctions. Next, we discuss some desirable properties and provide a feasible 
solution for our model. We also report experimental results to validate norma-
tive findings from our model and discuss managerial insights from our work 
as well as its shortcomings. Finally, we discuss future research directions.

Literature Review

Search renders advertising less important, perhaps even irrelevant, and allows 
a company to take temporary possession of a competitor’s brand at a lower 
cost [3]. In sponsored search campaigns, advertisers bid on key phrases that 
relate to products or services that they provide and that they believe searchers 
will submit to the search engine. These key phrases provide the link between 
the results provided from the advertiser and the queries submitted by potential 
customers, who are the searchers on the Web search engines. Searchers submit 
queries to the search engines that match a key phrase, and the correspond-
ing set of results is displayed on the search engine results page. Although 
published research is sparse, reports indicate that about 15 percent of search 
engine clicks occur on these keyword advertisements [16].

The keyword cost for the advertiser is determined via online auctions. The 
specific cost can be in continual flux, as the amount that an advertiser must 
bid to get an ad to display depends on the overall demand for that key phrase 
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at a given time. The amount that an advertiser is willing to bid depends on 
the perceived possible value of the customer’s converting (i.e., taking some 
desired action, such as purchasing a product). Several advertisers typically 
bid on the same key phrases simultaneously, so the online auction and bid 
price can be quite dynamic. The search advertising platforms provide adver-
tisers an assortment of tools to effectively manage their bids, control risk, and 
maximize opportunity.

The sponsored results on the search engine results page are usually shown 
above the organic results listing (i.e., the north position), to the right of the 
organic results listing (i.e., the east position), and below the organic results 
listing (i.e., the south position). The specific display method depends on the 
search engine, as some engines may not use all three positions. The spon-
sored-results-ranking listing depends on the bid price, the other bids in the 
auction, and a quality score (which is determined by several factors, includ-
ing bid amount, click-through history, and landing page relevance to the ad, 
although this formula varies somewhat by search engine). Given these factors, 
the sponsored search process is a complex integration of business processes, 
information technology, and information processing, making it an exciting 
area for multidisciplinary study.

The sponsored search results are normally textual in nature and consist of a 
short headline, two diminutive lines of text describing the product or service, 
and a hyperlink that points to the advertiser’s landing page (i.e., an advertiser-
designated Web page). The predominant keyword advertising model is pay 
per click (PPC), in which an advertiser pays the search engine only if a searcher 
actually clicks on the displayed ad hyperlink. So, the impression of an ad does 
not monetarily cost the advertiser. The advertising budget is determined by 
several important factors, such as the click-through rate (CTR) and the cost 
per click (CPC).

The sponsored search process can be extremely complex, and this brief 
overview cannot do it justice. The interested reader is referred to review articles 
of the search process (e.g., [17, 19]).

Search advertisers, especially those from small and medium enterprises, 
have budget constraints, of course. Thus, how to effectively allocate the limited 
advertising budget is a critical issue in search auctions. Under the umbrella 
term budget optimization, many research efforts have investigated how to 
place bids over a set of keywords to maximize the number of clicks expected 
for advertisers for a given budget [10, 20]. Feldman et al. [10] studied how to 
spread a given budget over keywords to gain maximal revenues and proposed 
a two-bid uniform bidding strategy. Muthukrishnan et al. [20] explored the 
problem using stochastic models.

Due to the dynamic nature of search auction markets, various optimal 
programming algorithms have been used to find optimal solutions for budget 
allocation. The search process for optimal budget allocation strategies can be 
modeled as an optimal programming problem, and optimal control theory 
has been used to study the optimal budget allocation problem, either over 
keywords [21] or among Web portals [11]. Results from Liu et al. [19] show 
that price elasticities of the CTR and response functions are key factors for 
budget decisions, and investing in more keywords under a certain threshold 
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can help improve advertisers’ profits. Xu et al. [26] investigated the interplay 
between organic and sponsored listings, finding that the presence of organic 
listings can alter a business’s bidding incentives. Fruchter and Dou [11] uti-
lized dynamic programming techniques to derive an analytical solution to the 
optimal budget allocation problem, and their conclusions indicate that budget 
allocation strategies rely nonlinearly on the targeted audiences, average CTRs, 
and adverting effectiveness of Web sites. Thus, advertisers are advised to 
allocate more of their budget to specialized Web portals in order to maximize 
click volumes in the long term.

In promotional activities, the optimal level of advertising budget for a 
single product depends on its margin and the advertising elasticity of demand. 
However, a retailing advertiser has to decide which product to promote and 
the optimal budget to spend over a broad product range [7], where cross-
elasticities exist among products due to relationships of complementarity and 
substitution [4, 5]. Xu et al. [25] reported that it may not always be optimal for 
a business to bid for the highest position. Doyle and Saunders [5] explored the 
problem of budget optimization across a broad product range and derived 
a closed-form allocation solution and rules based on the semilog response 
model. Hosanagar and Abhishek presented an analytical model to compute 
the optimal bids for keywords in a sponsored search campaign (http://
papers.ssrn.com/sol3/papers.cfm?abstract_id=1544580/). Fischer et al. [9] 
proposed a budget allocation method for breaking down a global marketing 
budget into individual budgets at the country–product–marketing–activity 
level. They derived a simple but valuable heuristic rule for budget allocation, 
accounting for dynamics in marketing effects and product growth. Athey and 
Ellison [1] formulated a bidding model that incorporates the consumer as a 
searcher. Jansen and Schuster [13] showed that consumers follow a buying 
funnel approach to e-commerce searching.

These prior works on multiproduct budget decisions provide valuable clues; 
however, they cannot directly fit multicampaign budget planning problems, 
for three reasons. First, the first-class objects of budget decisions are different. 
These prior works focus on products, whereas our work concerns campaigns 
in sponsored search auctions. The decision factors are quite distinct from each 
other. Second, a one-to-one relationship does not necessarily exist between 
products and advertising campaigns. Third, the marketing environment of 
search auctions is dynamic and complex. So, it is necessary to fit search adver-
tising scenarios by introducing inherent factors of sponsored search auctions 
(e.g., the dynamical advertising effort and quality score), because more search 
engines have adopted quality-based ranking and pricing mechanisms. To the 
best of our knowledge, this is the first research effort in this direction.

The Substitution Relationship Between Advertising 
Campaigns

In this section, we first provide a measure of substitution relationship between 
advertising campaigns in sponsored search auctions, taking into account 
three factors: campaign contents, promotional intervals, and target regions. 
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substitution, in our context, refers to the phenomenon wherein two campaigns 
do not enhance but rather weaken, the influence of each other in the overlap-
ping periods, regions, and contents. The opposite concept is complementarity, 
which refers to the phenomenon in which two campaigns enhance the influence 
of each other in the overlapping periods, regions, and contents. This research 
focuses on the substitution relationship between advertising campaigns, 
because it is a common but critical problem for retailing advertisers, which 
usually have to decide how to promote a spectrum of products with similar 
functions. (The complementarity relationship between campaigns and its ef-
fects on advertising decisions are beyond the scope of this work.)

The measure of substitution relationship serves as the basis for multicam-
paign budget planning as proposed in the section “Multicampaign Budgeting 
over Time.” The notations used in this paper are listed in Table 1.

A Three-Dimensional Measure of Substitution Relationship

In sponsored search auctions, an advertiser usually has to simultaneously 
manipulate several campaigns in a search market. A campaign is composed 
of several ad groups consisting of a set of keywords and one or more ad cop-
ies and is assigned a promotional interval and a set of target regions. In this 
sense, the overlapping degree between campaigns can be represented with a 
three-dimensional vector: campaign contents (e.g., keywords and phrases), 
promotional intervals, and target regions. It is observed that the overlapping 
degree O(j, j′) between two campaigns j and j′ is zero if there does not exist 
overlap from any single dimension. Therefore, the overlapping degree O(j, j′) 
can be given as the product of overlaps from these three dimensions,

 O( j, j′) = It( j, j′) × Is(j, j′) × γ (j, j′), (1)

Table 1. List of Notations.

Notation

Bmarket The overall advertising budget allocated to a search market
Tj The promotional period of campaign j, Tj = [Tj,start , Tj,end]
dt,s The number of query demands (relevant to the advertiser) in region s at time t
θj,t,s The campaign j ’s market share in region s at time t
bj,t,s The budget segment for campaign j in region s at time t ; j = 1, 2, ..., m ; s = 1, 2, ..., n
cj,t,s The (average) click through rate (CTR) of campaign j in region s at time t
vj,t The (average) value per click (VPC) of campaign j at time t
αj,t,s The advertising elasticity of campaign j in region s at time t
ω(k, k′) The direct appearance probability of keyword k′ under the condition that keyword k 

appears in a query
O(j, j ′) The overlapping degree between campaign j and campaign j ′ in region s at time t
γ(j, j ′) The ad overlapping degree between campaign j and campaign j ′
ρ The response constant
q The (advertiser’s) quality score
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where It and Is represent the temporal indicator function (e.g., promotional 
intervals) and the spatial indicator function (e.g., target regions), respectively, 
and γ (j, j ′) is the overlapping degree in terms of campaign contents. In this 
paper, we call γ (j, j′) the ad overlapping degree, which is modeled as an ap-
pearance probability based on a random walk approach.

Let us denote the indicator function Ia(x) as follows:
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Then, we give the temporal indicator and the spatial indicator based on the 
above function.

The Temporal Indicator Function

Let tj and tj ′ denote promotion intervals of campaign j and campaign j ′, re-
spectively. The temporal indicator function is given as

 It( j, j′) = Itj 
(t)Itj ′

(t).

The Spatial Indicator Function

Similarly, let sj and sj ′ be target regions of campaign j and campaign j′, respec-
tively. The spatial indicator function is given as

 Is( j, j′) = Isj
(s)Isj ′

(s).

The Ad Overlapping Degree

The ad overlapping degree (γ) indicates how much advertising efforts overlap 
between two campaigns in sponsored search auctions. Let Kj and Kj ′ be key-
word sets of campaigns j and j′, respectively. We can obtain frequent item sets 
of keywords in Kj ∪ Kj ′ from keyword tools provided by major search engines 
(e.g., Google AdWords Keyword Tool, shown in Figure 1). The frequent item 
set is a popular concept in data mining. By definition, each item set will occur 
at least as frequently as a predetermined minimum support. In our context, 
the frequent item set of keywords is a set of keywords used by search users at 
least once. Let nk denote the number of frequent item sets including keyword 
k, and nk,k ′ denote the number of frequent item sets including both keyword k 
and keyword k′. Thus, the direct appearance probability of k′ under the condi-
tion that keyword k appears in a query issued by search users is 
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Let E represent the edge set of the directed graph K. On the one hand, if 
ωk,k′ > 0, then e(k, k′) ∈ E. In other words, there exists a direct edge from keyword 
k to keyword k′. But when there does not exist a direct edge, but a directed 
path from k to k′, we develop a random walk approach [6] to compute the 
indirect appearance probability, ωind, that is, the probability starting from k to 
hit k′ in the keyword network. It is given as

 ωind(k, k′) = P(lk = k′) = Σr : e(k,r)∈Eβk,rµk,r P(lr = k′), (3)

where P(lk = k′) represents the probability of starting at keyword k to hit key-
word k′, βk,r = IE(e(k, r)) is an indicator function given as

βk r

 e k r E
,

,
,

=
( ) ∈




1
0

if
otherwise

and uk,r is the transition probability from keyword k to keyword r, which is 
equal to ωdir(k, r) if βk,r = 1, and 0 otherwise.

We construct a directed graph of keywords (e.g., K) relevant to a given 
advertiser (or the advertiser’s promotional products or services) on which 
the edge weight is represented by the appearance probability from k to k′, for 

Figure 1. Google AdWords Key Word Tool Showing Suggestions for 
Key Phrase “Digital Camera”

Note: Screenshot from https://adwords.google.com/o/KeywordTool/.
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example, ω(k, k′). That is, if a(k, k′) > 0, there exists a directed edge/path from 
keyword k to keyword k′.

Then,

 
ζ ωj j

K K
k k
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represents the probability that search users (e.g., potential customers) issu-
ing with keywords in campaign j can also be reached by campaign j′, and 
ζ(j, j′) ∈ [0, 1].

We define the ad overlapping degree between two campaigns as 
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where dj and dj′ represent the query demands of campaign j and j′, 
respectively.

An Illustrative Example

Next, we provide an example to illustrate the computation process of the 
overlapping degree between two campaigns in sponsored search auctions.

Suppose an advertiser has two campaigns (denoted Camp-1 and Camp-2) in 
a search market. The promotional intervals of Camp-1 and Camp-2 are t1 and 
t2, respectively, and the target regions of Camp-1 and Camp-2 are s1 = {s1, s2} 
and s2 = {s2, s3}, respectively, as shown in Figure 2(a). The query demands of 
Camp-1 and Camp-2 are d1 = 30 and d2 = 45, respectively. Figure 2(b) describes 
co-occurrence relationships among keywords of Camp-1 and Camp-2; the 
number for a keyword represents the number of frequent item sets including 
the keyword, and the number for the link between two keywords represents 
the number of frequent item sets including both of these keywords.

Next, we illustrate the computational process of the ad overlapping degree 
between Camp-1 and Camp-2.

Step 1: Compute It (Camp-1, Camp-2) and Is(Camp-1, Camp-2)

From Figure 2(a), we can get

I Camp-1 Camp-2
 t T T

t ,( ) =
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1
0

1 2if
otherwise

and

I Camp-1 Camp-2
 s s

s ,
.

( ) =
∈{ }




1
0

2if
otherwise
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Step 2: Construct a Directed Keyword Graph

From Figure 2(b), we can get

na = 20, nb = 10, nc = 30, nd = 15, ne = 5, na,c = 10, na,d = 5,  
nb,d = 3, nb,e = 1, nc,d = 2.

The direct appearance probability can be computed according to 
Equation (2):

ω ωa c
a c

a
c a

a c

c

N

N
 

N

N,
,

,
,. , ,= = = =0 5

1
3

Figure 2. (a) Promotional Intervals of Camp-1 and Camp-2; (b) Co-
Occurrence Relationships Among Key Words in Camp-1 and Camp-2

(a)

(b)
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We can construct a directed graph of these keywords with the direct appear-
ance probability as the edge weight, as shown in Figure 3(a). As shown in 
the figure, although there does not exist a direct edge between some pairs of 
keywords (e.g., a and e, b and c), we can at least find a directed path between 
them. Thus, we can compute the indirect appearance probability according 
to Equation (3):

ω ω ω ω ω ωa e a d a c c d d b b e, , , , , , . . . .= +( ) = + ×





× × =0 25 0 5
1

15
0 2 0 1

17
33000

,

ω ω ω ω ω ωe a e b b d d a d c c a, , , , , , . .= +( ) = × × + ×





=0 2 0 3
1
3

2
15

1
3

17
750

,,

ω ω ω ω ωb c b d d a a c d c, , , , , . . . ,= +( ) = × × +





=0 3
1
3

0 5
2

15
0 09

ω ω ω ω ωc b c a a d c d d b, , , , , . . . .= +( ) = × +





× =
1
3

0 25
1

15
0 2 0 03

We can obtain a directed graph with the appearance probability as the edge 
weight, as shown in Figure 3(b).

Step 3: Compute γ(Camp-1, Camp-2)

According to Figure 3(b), we can get

ζ
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=
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.

Then, we can compute the ad overlapping degree between Camp-1 and 
Camp-2 according to Equation (5):

(a)

(b)

Figure 3. (a) The Initial Directed Key Word Graph; (b) The Final 
Directed Key Word Graph
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Step 4: Compute O(Camp-1, Camp-2)

According to Equation (1), we can obtain the overlapping degree between 
Camp-1 and Camp-2 as follows:
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Camp 1 Camp 2

Camp 1 Camp 2 Camp 1 Camp 2 Camp 1

,

, ,
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= ( ) ( ) γ ,,
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Camp 2-
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0 1950
0

1 2 2if
otherwise

Multicampaign Budgeting over Time

Next, we establish a budget planning model for coupled campaigns with 
substitution relationships in sponsored search auctions.

The Objective

Suppose the advertiser aims to maximize the total payoff from advertising 
activities. Let dt,s denote the total number of query demands (relevant to an 
advertiser’s promotion activities) in a search market in region s at time t, θt,s de-
note the advertiser’s market share in region s at time t, and θj,t,s denote the seg-
ment of the advertiser’s market share by campaign j in region s at time t. Then, 
the number of potential query demands that can be obtained by campaign j 
in region s at time t is dt,sθj,t,s. Let cj,t,s denote the (average) CTR of campaign j 
in region s at time t, vj,t denote the (average) value per click of campaign j at 
time t, and bj,t,s denote the budget segment for campaign j in region s at time 
t. Then, the total payoff for the advertiser can be represented as

e d c b dtrt
t s j t s j t s j t j t sTjs Sjj

m
−

∈=
−( )∫∑∑ , , , , , , , , ,θ υ

1

where e–rt is the discount factor and m is the number of advertising campaigns. 
Note that the value per click is not a proprietary factor, which is usually com-
puted independently of spatial information (e.g., regions).
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The Response Function

The advertising response function is introduced as a formula to compute 
the cumulative advertising effect for an individual advertiser. In sponsored 
search markets, an advertiser can make changes to advertising content and 
strategy at any time in an advertising campaign. In addition, sponsored search 
advertising has flexibility in terms of keyword selection, bid determination, 
budget allocation, and advertising schedule, which affects the effectiveness 
of the advertising budget. To fit search advertising scenarios, Yang et al. [27] 
extended a variation of the Vidale-Wolfe advertising response function as given 
in Sethi [22] by introducing the dynamical advertising effort u and quality 
score q. The Vidale-Wolfe model and its variations can precisely describe the 
process of how sales evolve over time in response to advertising. The response 
function in search markets is given as

 d dt qu b t sj t s j t sθ ρ θ, , , ,, , ,= ( ) −1

where ρ is the response constant and q is the quality score. The response 
constant ρ denotes the effectiveness of advertising, for example, response 
to advertising that acts positively on the unsold market share. In sponsored 
search auctions, an advertiser’s quality score q has significant influences on 
the capacity to gain market share. Specifically, a higher quality score entitles 
an advertiser to pay less for each click, so the same amount of advertising 
budget can result in more market share than that of other advertisers with 
lower quality scores. The advertising effort u(b,t,s) represents the effective part 
of advertising budget b. We explore this further in the section “The Budget 
Planning Model: Solution and Properties.”

The Budget Constraint

Let Bmarket denote the overall advertising budget allocated to a given search 
market; then, the present value of total advertising budgets (or expenditures) 
under a finite time horizon should not exceed it. That is, 

e b t Brt
j t sTjs Sjj

m
−
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≤∫∑∑ , , .d market

1

The Budget Planning Model

In summary, the multicampaign budget planning problem can be formulated as 
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. .
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(6)
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where bj,t,s is the control variable, ub,t,s is a function of bj,t,s (see the next section), 
and θj,t,s is the state variable.

The Budget Planning Model: Solution and Properties

An advertiser’s campaigns in a search market may overlap each other in terms 
of promotional intervals and target regions but nevertheless not be identical. 
This makes it difficult to solve the budget planning model shown in Equa-
tion (6) because of the variety of overlapping degrees between campaigns 
and nonuniform descriptions of state variables and control variables. In this 
section, we study some desirable properties of our budget planning model and 
discuss possible solutions. Note that we focus on the case with two campaigns 
in this work. However, our approach can also be applied to cases with more 
campaigns, with some adaptations.

The Case with Two Campaigns

Consider the case in which an advertiser manipulates two campaigns in a 
search market. First, the objective function of the budget planning model, 
formulated in Equation (6), can be written as

e I t I s d c b dtrt
Tj Sj t s j t s j t s j t j t s

T

s Sj

−

∈=
( ) ( ) −( )∫∑ , , , , , , , , .θ υ

0
1

22

∑

Second, similarly, the budget constraint becomes 

e I t I s b dt Brt
Tj Sj j t s

T

s Sj

−
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( ) ( ) ≤∫∑∑ , , .market0

1

2

Third, the advertising effort depends on whether the two campaigns are 
independent of each other. According to Little [18], there is an exponential 
relationship between the budget b and the advertising effort u : u = bα, where 
α denotes the advertising elasticity, which is fixed as a constant in traditional 
advertisements [8].

In the first case, the two campaigns are mutually independent of each other, 
that is, γj, j ′ = 0. Then, the advertising effort can be given as

u b t s bj t s

j t s

j
, , , ,

, ,( ) = ( )∑
α

,

where bj,t,s represents the budget for campaign j at time t in region s and αj,t,s 
denotes the advertising elasticity of campaign j at time t in region s.

In the second case, the two campaigns are not independent of each other, 
that is, γj, j ′ > 0. The substitution relationship between the campaigns leads to 
crossover effects. This causes part of the budget to be wasted and weakens the 
advertising effect. The advertising effort can then be given as 

u b t s b O j j bj t s

j t s

j t s

j t s

jj
, , , ,, ,

, ,
, ,

, ,( ) = ( ) − ′( )( )∑∑
α α

,
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where O(j, j ′) denotes the proportion of the allocated budget (for these two 
campaigns) for which the advertising effort is weakened.

Drawing on the preceding discussion, the budget planning model, formu-
lated in Equation (6), for the case with two campaigns can be given as
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(7)

The optimal solution of Equation (7) is b*
j,t,s, which represents the opti-

mal budget strategy allocated to campaign j in region s at time t. Then, the 
optimal budget allocated to campaign j in a finite time horizon (e.g., t) is 
Σs∫0

te–rtb*
j,t,sdt.

The objective function and budget constraint in Model (7) is a special case 
of the two campaigns in Model (6), as discussed previously. Similarly, u(b, t, s) 
in Model (7) is also a special case of Model (6). 

We next explore a theoretical solution and properties of Model (7) that 
could provide valuable insights into how to make decisions regarding search 
advertising budgets.

Properties

From the prior analysis, we can develop the following theorem:

Theorem 1: If the total budget Bmarket is less than
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the optimal budget allocation strategy is 
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If the total budget Bmarket is larger than
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the optimal budget allocation strategy is to invest

e I t I s b I t I s b dtrt
T S T S
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*
,
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in the search advertising market.

Theorem 1 provides solutions for the cases with and without budget con-
straints. This theorem can also be justified because the marginal return on the 
optimal budget strategy is equivalent to (or approaching) zero at

e I t I s b I t I s b dtrt
T S T S

T

s S

−

∈
( ) ( ) + ( ) ( )( )∫∑ 1 1 0 1 2 2 0 20 ,

*
,

* ,

beyond which the residual budget cannot yield additional revenues. In other 
words, there exists a producer equilibrium in the case without budget con-
straints, which is equivalent to the payoff supremum in the case with budget 
constraints.

Corollary 1: let u * be the optimal payoff of model (7), and u
_
 be the payoff 

corresponding to strategies b|1 and b|2, where b|1 and b|2 are optimal solutions, 
ignoring the overlapping degree in terms of campaign contents between two 
campaigns; then, u * > u

_
.

Corollary 1 indicates that, if an advertiser makes budget planning decisions 
over two (or more) campaigns independently (i.e., ignoring the overlapping 
degree), the optimal payoff will decrease. One possible reason is that the adver-
tising effort is more or less weakened when the overlapping degree between 
campaigns, that is, O > 0. The overlapping degree between campaigns heav-
ily influences the optimal budget strategy and corresponding payoff. Thus, 
advertisers must take the overlapping degree into account when making 
budget decisions in sponsored search auctions.

Simulations and Experimental Validation

In this section, we design computational simulations and experiments to 
validate the proposed model and its identified properties. Our experimental 
evaluation focuses on the following twofold purpose: First, we intend to 
verify the necessity to consider the overlapping degree (O) in the budget 
planning approach for several campaigns, and we evaluate our approach 
by comparing it with a baseline strategy that is commonly used in prac-
tice. Second, we prove some desirable properties of our budget model as 
discussed previously. Specifically, we evaluate our budget planning model 
with respect to the ad overlapping degree (γ) and the budgeting level and 
then determine their influences on the optimal budget strategy and the cor-
responding payoff. Next, we provide details about our experimental setup 
and some key results.
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Data Description

We collect real-world data from search advertising campaigns by an e-business 
advertiser promoting services across two search markets during the period 
from September 2008 to August 2010. From this data, we collect information 
about the advertiser’s total advertising budget (B) and relevant budget deci-
sions across these two markets, clicks generated from the advertisements, the 
average CPC, and search users’ activities on the Web site, and so on. Some 
relevant parameters for our method can be obtained from the statistics derived 
from past sponsored search campaigns: (1) The potential search demand in a 
search market can be obtained from keyword research tools provided either 
by major search engines or by third-party companies such as WordTracker. 
(2) The value per click and the proportion of effective clicks in a search market 
can be estimated from historical reports and logs of advertising campaigns 
and the advertiser’s proprietary information. Specifically, the value per click 
is computed as (price – cost) * sales/clicks. The former two factors (i.e., prices 
and cost of a product or service) are provided by the advertiser, and the latter 
two factors (i.e., sales and clicks) can be obtained from the search advertising 
report and Web logs. (3) Due to business secrecy and self-protection issues from 
search engines, it is impossible to obtain the necessary information to compute 
the quality score. Thus, we measure an advertiser’s quality score q according 
to the relevance between the text in the advertisement and the corresponding 
landing page, using text-mining techniques. The relevance between the ad 
text and the landing page can be measured using the cosine function. (4) The 
advertising elasticity α is instantiated as the normalized profit per unit cost 
(e.g., the advertiser’s ability to make budget decisions).

The frequent item sets of keywords in these two campaigns can be obtained 
from keyword tools provided by major search engines (e.g., Google AdWords). 
Based on this information, we can construct a directed keyword graph with 
the appearance probability as the edge weight. The ad overlapping degree 
(i.e., γ = 0.11) can be obtained with the algorithm provided in Equation (5) We 
also do some approximate treatments on the statistical data in order to provide 
intelligible experimental settings. Finally, we generate data sets from historical 
advertising logs to support computational experiments to verify properties of 
our budget allocation method. 

Experimental Results and Analysis

In the following experiments, we take a search advertising scenario: An 
advertiser manipulates two campaigns that are delivered during different 
promotional intervals (one from September 1 to September 20, 2009; another 
from September 10 to September 30, 2009) and in the same target regions. The 
total advertising budget for these two campaigns is set at 3,000 units.

The Overlapping Degree O

The first experiment concerns the necessity to consider the overlapping degree 
(O) when formulating a budgeting plan for multiple campaigns in a search 
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market. We implement our multicampaign budget planning approach (MCBP) 
as provided in the section “The Budget Planning Model: Solution and Proper-
ties” as two strategies: with (MCBP-O) and without (MCBP-I) consideration 
of the overlapping degree among campaigns. The MCBP-I can be viewed as 
a baseline strategy for our approach. A second baseline strategy is the AVER-
AGE strategy, commonly used in practical advertising campaigns. It allocates 
the budget averagely between campaigns and then over time. The optimal 
budget and the optimal payoff are illustrated in Figures 4 and 5, respectively. 
From Figures 4 and 5, we can see the following:

1. The optimal (total) budget allocated to these two campaigns 
by these three strategies (MCBP-O, MCBP-I, and AVERAGE) is 
1,847.17, 2,459.08, and 3,000.00 respectively. Correspondingly, the 
optimal payoff (i.e., the net profit) is 2,363.70, 2,340.06, and 2,270.74, 
respectively.

2. The AVERAGE strategy obtains 0.757 payoff per unit budget (i.e., 
the ratio between the optimal payoff and the total budget). The 
MCBP-O strategy obtains 1.280 payoff per unit budget, and the 
MCBP-I strategy obtains 0.952 payoff per unit budget.

3. Both the MCBP-O and MCBP-I strategies outperform the AVERAGE 
strategy in terms of payoff per unit budget (69.09 percent and 25.76 
percent, respectively), which illustrates that our multicampaign 
budget planning approach can help advertisers to increase the over-
all payoff.

Figure 4. The Optimal Budget over Time by These Three Strategies, 
MCBP-O, MCBP-I, and AVERAGE
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Figure 5. The Optimal Payoff over Time by These Three Strategies, 
MCBP-O, MCBP-I, and AVERAGE

4. The payoff per unit budget is increased 34.45 percent by consider-
ing the overlapping degree (O) between campaigns. This can be 
explained by the fact that the advertising effort is weakened when 
the overlapping degree between campaigns exists (i.e., O > 0). The 
situation might become even worse if the advertiser ignores the 
overlapping degree between campaigns while making budget plan-
ning decisions in sponsored search auctions.

The Ad Overlapping Degree

In the second experiment, we evaluate the influence of the ad overlapping 
degree (γ) on the optimal budget and the corresponding payoff. We compute 
optimal budgets and corresponding payoffs under different settings of ad 
overlapping degrees. That is, the spatial and temporal overlapping degrees 
are kept fixed (as in the advertising scenario), and the ad overlapping de-
grees are assigned different values (i.e., γ = 0.0, γ = 0.1, γ = 0.2). Optimal 
budgets and corresponding payoffs over time in these three settings are 
illustrated in Figures 6 and 7, respectively. From Figures 6 and 7, we can 
see the following:

1. For the case with the higher ad overlapping degree (γ), the optimal 
budget is lower when the campaign overlapping degree O > 0 (i.e., 
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there exist some overlaps between campaigns) and becomes higher 
when the overlapping degree O = 0 (i.e., there are no overlaps be-
tween campaigns). This phenomenon can be explained by the fact 
that, in the case with the larger γ, more advertising effort is weak-
ened and the optimal budget is less. In other words, it is easier to 
reach the optimal budgeting level in the case with the larger γ. 

2. Concerning the optimal payoff, the case with the larger γ is slightly 
larger at the initial period, and then its increasing speed becomes 
lower when the overlapping degree O > 0. One possible reason is 
that the case with a larger γ allocates more budget to advertising 
campaigns when O = 0 (from 1st to 10th); thus, it gets a bit more 
payoff at the initial stage. When O > 0 (from 11th to 20th), both its 
optimal budget and payoff are lower, and its increasing speed of 
payoff becomes slower. Then, during the period from 21st to 30th, 
the case with larger γ again allocates more of the budget to advertis-
ing campaigns, but the accumulated payoff is kept lower due to the 
poor performance in the previous stages.

3. For the three cases, γ = 0.0, 0.1, and 0.2, the optimal total budget 
allocated is 2,459.077, 2,281.055, and 2,099.736, respectively. The 
corresponding optimal payoff is 2,717.684, 2,642.951, and 2,572.598, 
respectively. Obviously, the case with the larger γ leads to a lower 
level of optimal budget and optimal payoff. An interesting phe-
nomenon is that the corresponding payoff per unit budget is 1.105, 

Figure 6. Optimal Budgets over Time with Different Gammas
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Figure 7. Optimal Payoffs over Time with Different Gammas

1.159, and 1.225, respectively—that is, the payoff per budget unit is 
larger in the case with the larger γ. A possible reason is that, in the 
case with the larger γ, the optimal budget is smaller but is effectively 
distributed and spent during the promotional period. This is also in 
accordance with the law of diminishing marginal utility. However, 
with respect to the optimal payoff, advertisers should prefer the case 
with the smaller γ.

The Budgeting Level B

The third experiment illustrates the relationship between the optimal total 
budgeting level and the optimal payoff of these two campaigns with different 
settings of the ad overlapping degree (γ), as in the second experiment. The 
optimal payoff at different budgeting levels is illustrated in Figure 8. From 
Figure 8, we can see the following:

1. The optimal payoff grows steadily until reaching the budget cap 
where the marginal payoff (i.e., the change in additional payoff) is 
zero when the total budget increases. In other words, there exists 
a budgeting cap in the case with unlimited budget. The case with 
larger γ arrives at the budgeting cap earlier, where investing more 
than the optimal budget will not lead to an increase in optimal 
payoff. 
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2. The optimal payoff in the case with the larger γ is always less than 
that of cases with a smaller γ.

Discussion

Our work provides valuable managerial insights to advertisers for budget 
planning for coupled campaigns in search auctions. First, advertisers usually 
pay less attention to relationships and cross-effects between their own mul-
tiple campaigns in a search market, probably due to the fact that it is not easy 
to measure and manipulate the overlapping degree (O). This work provides 
an explicit measure for the substitution relationships between campaigns in 
sponsored search auctions. Second, this research indicates that the overlap-
ping degree between campaigns has serious effects on optimal budget strate-
gies at the campaign level. In practice, advertisers should try to reduce the 
overlapping degree by optimizing advertising structures and contents. Our 
substitution measure provides a quantitative approach to computing the effects 
in this process. Third, the larger the overlapping degree between campaigns, 
the more the advertising effort is weakened and the optimal payoff is less. In 
this sense, in the case that the overlapping degree is minimized, advertisers 
should correspondingly determine the optimal budgets over campaigns and 
make budget planning decisions by using the proposed approaches in order 
to maximize the expected payoff. Fourth, our normative findings of multicam-
paign budget planning can also provide valuable insights for similar decision 

Figure 8. Optimal Payoff at Different Budgeting Levels
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scenarios of advertising budget allocation, such as advertising campaigns 
across several markets or across different media (or channels).

However, we also realize some shortcomings of our work. First, in this 
work, we propose a measure of substitution relationship between campaigns. 
It is necessary to develop a generic measure of relationships (including both 
substitution and complementarity) between campaigns and to explore cross-
over effects among campaigns in sponsored search auctions. In contrast to 
the substitution relationship, which weakens advertising effects, the comple-
mentarity relationship involves two campaigns enhancing the influence 
of each other, which might lead to higher optimal budgets. Second, the ad 
overlapping degree (γ) takes a graph composed using keywords included in 
the advertiser’s campaigns to compute the appearance probability. However, 
such a graph represents only a small segment of the set of keywords of interest 
used by potential customers. Third, this work models spatial and temporal 
relationships with the indicator function, while ignoring spatial relationships 
and carryover effects over time. Fourth, our work considers the case for an 
advertiser with two campaigns. As noted, the case with three or more cam-
paigns leads to more complicated relationships, and thus it demands more 
flexible budget planning strategies.

Conclusions and Future Work

In this paper, we present a multicampaign budget planning approach us-
ing optimal control techniques and carried out under a finite time horizon. 
Our model takes into account the overlapping degree (i.e., the substitution 
relationship) between campaigns in search auctions, with respect to three 
dimensions: target regions, promotional periods, and campaign contents. We 
discuss some desirable properties and possible solutions to our budget model. 
Computational experimental studies are made to evaluate our model and its 
identified properties. Experimental results show that the overlapping degree 
between campaigns has serious effects on budgeting decisions and advertis-
ing performance, and a higher overlapping degree weakens the advertising 
effort and thus diminishes optimal budgets and payoffs.

More studies on budget-related decisions in sponsored search auctions are 
needed. We are in the process of extending our model in the following direc-
tions: (1) spatial heterogeneity and relationships to capture spatial effects on 
advertising decisions and performance; (2) the complementarity relationship 
between campaigns and its effects on budgeting decisions; (3) more flexible 
budgeting strategies for the case with three or more campaigns in sponsored 
search auctions; and (4) extension of the analysis to include multiple advertis-
ers within the same business sector of this research.
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