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ePeriodicity: Mining Event Periodicity from
Incomplete Observations

Zhenhui Li, Member, IEEE, Jingjing Wang, and Jiawei Han, Fellow, IEEE

Abstract—Advanced technology in GPS and sensors enables us to track physical events, such as human movements and
facility usage. Periodicity analysis from the recorded data is an important data mining task which provides useful insights into the
physical events and enables us to report outliers and predict future behaviors. To mine periodicity in an event, we have to face
real-world challenges of inherently complicated periodic behaviors and imperfect data collection problem. Specifically, the hidden
temporal periodic behaviors could be oscillating and noisy, and the observations of the event could be incomplete.
In this paper, we propose a novel probabilistic measure for periodicity and design a practical algorithm, ePeriodicity, to detect
periods. Our method has thoroughly considered the uncertainties and noises in periodic behaviors and is provably robust to
incomplete observations. Comprehensive experiments on both synthetic and real datasets demonstrate the effectiveness of our
method.
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1 INTRODUCTION

Periodicity is one of the most common phenomena in
the physical world. Animals often have yearly migra-
tion patterns; students usually have weekly schedules
for classes; and the usage of bedroom, toilet, and
kitchen could have daily periodicity, just to name a
few. Nowadays, with the rapid development of GPS
and mobile technologies, it becomes much easier to
monitor such events. For example, cellphones enable
us to track human activities [2], GPS devices attached
to animals help the scientists to study the animal
movement patterns [3], and sensors allow us to mon-
itor the usage of rooms and facilities [4].

Data collected from these devices provides a valu-
able resource for ecological study, environmental pro-
tection, urban planning and emergency response. An
observation of an event defined in this paper is a
boolean value, that is, whether an event happens or
not. An important aspect of analyzing such data is to
detect true periods hidden in the observations.

Unfortunately, period detection for an event is a
challenging problem, due to the limitations of data
collection methods and the inherent complexity of periodic
behaviors.

To illustrate these difficulties, let us first take a
look at Figure 1. Suppose we have observed the
occurrences of an event at timestamps 5, 18, 26, 29,
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Fig. 1. Incomplete observations.

48, 50, 67, and 79. The observations of the event
at other timestamps are not available. It is certainly
not an easy task to infer the period directly from
these incomplete observations. In fact, the issue with
incomplete observations is a common problem in data
collected from GPS and sensors. For example, a bird
can only carry small sensors with one or two reported
locations in three to five days. And the locations of
a person may only be recorded when he uses his
cellphone. Moreover, if a sensor is not functioning or a
tracking facility is turned off, it could result in a large
portion of missing data. Therefore, we usually have
incomplete observations, which are unevenly sampled and
have large portion of missing data. Traditional periodicity
analysis methods, such as Fourier transform and auto-
correlation [5], [6], [7], [3], usually require the data
to be evenly sampled, that is, there is an observation
at every timestamp. Even though some extensions of
Fourier transform have been proposed to handle un-
even data samples [8], [9], they are still not applicable
to the case with very low sampling rate.

Second, the periodic behaviors could be inherently
complicated and noisy. A periodic event does not nec-
essarily happen at exactly the same timestamp in each
periodic cycle. For example, the time that a person
goes to work in the morning might oscillate between
8:00 to 10:00. Noises could also occur when the “in
office” event is expected to be observed on a weekday
but fails to happen.

In this paper, we propose a novel algorithm for
event period detection, ePeriodicity, which can handle
all the aforementioned difficulties occurring in data
collection process and periodic behavior complexity
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Fig. 2. Illustration example of our method.

in a unified framework. The basic idea of ePeriodicity
is illustrated in Example 1.

EXAMPLE 1. Suppose an event has a period T = 20 and
we have eight observations of the event. If we overlay the
observations with the correct period T = 20, we can see
in Figure 2 that most of the observations concentrate in
time interval [5 : 10]. However, if we overlay the points
with a wrong period, say T = 16, we cannot observe such
clusters.

As suggested by Example 1, we could segment the
timeline using a potential period T and summarize
the observations over all the segments. If most of
the observations fall into some time intervals, such
as interval [5 : 10] in Example 1, T is likely to be the
true period. In this paper, we formally characterize
such likelihood by introducing a probabilistic model
for periodic behaviors. The model naturally handles
the oscillation and noise issues because the occurrence
of an event at any timestamp is now modeled with a
probability. Next, we propose a new measure for peri-
odicity based on this model. The measure essentially
examines whether the distribution of observations is
highly skewed w.r.t a potential period T . As we will
see later, even when the observations are incomplete,
the overall distribution of observations, after overlaid
with the correct T , remains skewed and is similar to
the true periodic behavior model.

In summary, our major contributions are as follows.
(1) We introduce a probabilistic model for periodic
behaviors and a random observation model for in-
complete observations. This enables us to model all
the variations we encounter in practice in a unified
framework. (2) We propose a novel probabilistic mea-
sure for periodicity and design a practical algorithm
ePeriodicity to detect periods directly from the raw
data. We further give rigorous proof of its validity
under both the probabilistic periodic behavior model
and the random observation model. (3) Comprehen-
sive experiments are conducted on both real data and
synthetic data. The results demonstrate the effective-
ness of our method.

The rest of the paper is organized as follows. We
formally define our period detection problem in Sec-
tion 2 and introduce our probabilistic measure for
periodicity in Section 3. Section 4 discusses the imple-
mentaion issues. We report the experimental results

in Sections 5, review related work in Section 6 and
conclude our study in Section 7.

2 PROBLEM FORMULATION

In this section, we formally define the problem of
period detection for events. We first assume that
there is an observation at every timestamp. The case
with incomplete observations will be discussed in
Section 3.2. We use a binary sequence X = {x(t)}n−1t=0

to denote observations. For example, if the event is “in
the office”, x(t) = 1 means this person is in the office
at time t and x(t) = 0 means this person is not in the
office at time t. Later we will refer x(t) = 1 as a positive
observation and x(t) = 0 as a negative observation.

DEFINITION 1 (Periodic Sequence). A sequence X =
{x(t)}n−1t=0 is said to be periodic if there exists some T ∈ Z
such that x(t+ T ) = x(t) for all values of t. We call T a
period of X .

A fundamental ambiguity with the above definition
is that if T is a period of X , then mT is also a period
of X for any m ∈ Z. A natural way to resolve this
problem is to use the so called prime period.

DEFINITION 2 (Prime Period). The prime period of a
periodic sequence is the smallest T ∈ Z such that x(t +
T ) = x(t) for all values of t.

For the rest of the paper, unless otherwise stated, we
always refer the word “period” to “prime period”.

As we mentioned before, in real applications the
observed sequences always deviate from the perfect
periodicity due to the oscillating behavior and noises.
To model such deviations, we introduce a new prob-
abilistic framework, which is based on the periodic
distribution vector defined below.

DEFINITION 3 (Periodic Distribution Vector). We call
a vector pT = [pT0 , . . . , p

T
T−1] other than 0T or 1T , where

pTk ∈ [0, 1],∀k, a periodic distribution vector of length T .

Here, we need to exclude the trivial cases where
pT = 0T or 1T , since they corresponds to constant
sequences and are therefore of little interest to us. In
this paper, we use the periodic distribution vector to
describe the periodicity of any event. The following
example illustrates this concept.
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Fig. 3. (Running Example) Periodic distribution vector
of an event with daily periodicity (T0 = 24).

EXAMPLE 2 (Running Example). As an example, as-
sume that a person has a daily periodicity visiting his
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office during 10am-11am and 2pm-4pm. Such behavior can
be described by the periodic distribution vector shown in
Figure 3, which takes large values at intervals [10:11] and
[14:16] and small but nonzero values at other timestamps.
We use it as a running example throughout this paper.

2.1 A Probabilistic Model for Periodicity
In this paper, we model the observation sequence X
as a sequence generated by some unknown stochastic
process (i.e., a realization of the random process).
In this paper, we use {X(t)} to denote the random
process, with each X(t) being a random variable.

Of course, not all random processes have periodic
behaviors or admit a unique periodic distribution
vector. Therefore, we may ask the following question:
Under what conditions a random process may exhibit
certain periodic behavior which can be captured by a
unique periodic distribution vector?

To answer this question, we need to review the
important concept of ergodicity in probability theory.

DEFINITION 4 (Ergodic Process). Let θ : RN → RN

denote the shift operator. A stationary random process
{Y (t)} is said to be ergodic if either P(Y ∈ A) = 0 or
P(Y ∈ A) = 1 whenever A ⊆ RN is a shift invariant set
(i.e., A = θA).

Note that here P(Y ∈ A) = 0 means that the
probability measure of the set of realizations of {Y (t)}
which fall in the set A is 0. For more detailed explana-
tion of the definition, we refer readers to probability
theory textbooks such as [10]. Most importantly, if a
random process is ergodic, then its statistical proper-
ties (such as its mean and variance) can be deduced
from a single, sufficient long realization of the process.
For our problem, we assume that the occurrence of an
event at a particular timestamp in each period (e.g.,
a person being in his office at 10am for each day)
can be modeled by an ergodic process. Then, the entire
periodic behavior of an event (e.g., a person’s daily
visits to his office) can be naturally modeled as the
mixture of T ergodic sequences.

DEFINITION 5 (Periodically Ergodic Process). Let
{{Yk(t)}, k = 0, 1, . . . , T−1} be the set of T subsequences
obtained from {X(t)} such that

Yk(t) = X(t× T + k), ∀k ∈ {0, 1, . . . , T − 1}. (1)

Then, a random process {X(t)} is said to be periodically
ergodic with period T if every {Yk(t)} is ergodic.

An important result concerning the ergodic process
is the Birkhoff’s Ergodic theorem, which asserts that
the time average of any ergodic process converges to
a fixed value.

THEOREM 1 (Birkhoff’s Ergodic Theorem). For any
ergodic process {Y (t)}, if E[|Y (0)|] <∞, then

lim
n→∞

1

n

n−1∑
t=0

Y (t)→ E[Y (0)] a.s.

Here, |·| denotes the absolute value, and E[·] denotes
the expectation value of a random variable. We again
refer interested readers to [10] for the proof. In this
paper, we focus on its implication on our problem,
which leads to the following corollary.

COROLLARY 1. Let {X(t)} be a periodic ergodic process
and X = {x(t)} be any realization of the process. Then
there exists a unique vector pT = [pT0 , . . . , p

T
T−1] such

that the following holds with probability (w.p.) 1:

lim
n→∞

1

n

n−1∑
t=0

x(t× T + k) = pTk . (2)

Clearly, when {X(t)} is a binary non-constant pro-
cess, pT is the periodic distribution vector of {X(t)},
since it summarizes the long-term periodic behavior
of the process.

As we mentioned before, the key property a period-
ically ergodic process is that its behavior at any fixed
timestamp with respect to the period T (represented
by a probability distribution) does not change over
time, and can be estimated by the mean of all the
samples. However, in our problem we only have seen
a small portion of the samples, so one may wondering
if we can still reliably estimate the periodic behavior
by summarizing the observations with respect to T .
Mathematically, the question becomes: For any sub-
sequence of {Yk(t)} with timestamps {l1, l2, . . .}, does
the sample mean limn→∞

1
n

∑n−1
t=0 Y (lt) still converge

to pTk ?
In probability theory, a subsequence for which this

condition holds is called an admissible subsequence.
In general, not all the subsequences are admissible
for an arbitrary ergodic process {Y (t)}. However,
the following lemma shows that, as long as Y (l1)
is independent of Y (l2) when |l1 − l2| → ∞, all the
subsequences must be admissible.

LEMMA 1 ([11], [12]). A stationary process {Y (t)} is
said to be mixing if for any measurable sets A1, A2 ⊆ RN,

lim
n→∞

P(Y ∈ A1, θ
nY ∈ A2) = P(Y ∈ A1)P(Y ∈ A2).

Further, all subsequences of {Y (t)} are admissible if and
only if {Y (t)} is mixing.

Note that mixing implies ergodicity [10]. Similarly
to the definition of periodically ergodic processes,
we call a process {X(t)} periodically mixing if every
{Yk(t)} is mixing. For the rest of the paper, we will
focus on processes which are periodically mixing, and
define our period detection problem as follows.

PROBLEM 1 (Event Period Detection). Given a binary
sequence X generated by some periodically mixing process
{X(t)} with (an unknown) periodic distribution vector
pT0 , find T0.

Note that, by the definition of periodically mixing
process, we assume a single, time-invariant period in
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the observation sequence. Also, the timestamps are
assumed to be synchronized (non-drifting), although
later we will show empirically that our method is
insensitive to moderate oscillations in the actual sam-
pling time.

In Section 3, we propose a novel measure for pe-
riodicity, and show that it is guaranteed to find the
true period T0 given any realization of a periodically
mixing process, even with incomplete observations.
Before that, we use two examples to demonstrate the
practicability of our probabilistic model.

2.2 Two Examples
In this section, we give two important examples of
periodically mixing processes, namely the independent
Bernoulli processes and the periodically inhomogeneous
Markov chains, and demonstrate how they can be used
to model real periodic events.

2.2.1 Independent Bernoulli Processes
Suppose {X(t)} is a random process with each
X(t) independently distributed according to
Bernoulli(pTmod (t,T )), then {X(t)} is a periodically
ergodic process with periodic distribution vector pT .
Note that if we restrict the value of each pTk to {0, 1}
only, then the resulting sequence is strictly periodic
according to Definition 1. In addition, it is trivial
to see that any i.i.d. sequence is mixing. Therefore,
all independent Bernoulli processes are periodically
mixing.

As an example, assuming that the probability of
a person’s visit to his office at each timestamp is
independent of that at any other timestamps, then his
periodic behavior may be modeled by an independent
Bernoulli process with the periodic distribution vector
shown in Figure 3.

2.2.2 Periodically Inhomogeneous Markov Chains
The independent Bernoulli process is a very simple
and intuitive way to model a periodic event. How-
ever, it cannot model the dependency of consecutive
observations in a sequence. For example, if we know
that a person is in his office at 9am for one day, then
it is very likely that he is also in his office at 10am
for the same day. In order to model such dependency,
we now introduce another type of random process,
called periodically inhomogeneous Markov chains.

In general, a random process {X(t)} is a Markov
chain if, given the present state, the future and past
states are independent. Therefore, any Markov chain
with a finite state space S1 can be characterized by a
series of transition matrices {P (t)}, where the (i, j)-th
entry of P (t), pij(t), is the probability of going from
state si to state sj at timestamp t:

pij(t) = P(X(t+ 1) = sj |X(t) = si). (3)

1. In this paper, we assume that each state si ∈ S takes value in
{0, 1, . . . ,m− 1}, where m is the size of S.

To model the periodic behavior of an event, we
assume that the transition matrix P (t) is changing
over time (inhomogeneous) but repeats itself after
every T timestamps.

DEFINITION 6 ([13]). We call X a periodically in-
homogeneous Markov chain, if there exists a positive
integer T such that for all values of t,

P (t) = P (t+ T ). (4)

With this definition, our key observation is that,
just like the homogeneous (time-invariant) Markov
chain with transition matrix P which often admits
a unique stationary distribution π (i.e., πP = π),
a periodically inhomogeneous Markov chain {X(t)}
can often be decomposed into T homogeneous Markov
chains {{Yk(t)}, k = 0, . . . , T − 1}, each admitting a
unique stationary distribution πk. In such cases, the
i-th entry of πk, πk(i), can be viewed as the long run
proportion of time that the Markov chain {Yk(t)} will
stay in the i-th state. Further, let π̄k =

∑
si∈S siπk(i),

we can show that

lim
n→∞

1

n

n−1∑
t=0

Yk(t)→ π̄k a.s.

We call such a Markov chain a periodically ergodic
Markov chain according to Definition 5.

However, unlike the case of i.i.d. sequences, a pe-
riodically inhomogeneous Markov chain is not nec-
essarily periodically ergodic. The conditions for a
Markov chain to be periodically ergodic has been pre-
viously studied, for example, in [13]. We summarize
the main result below.

DEFINITION 7 (Reducibility of Markov Chain). A
homogeneous Markov chain {Y (t)} is irreducible if for
any two states si and sj , if started in si, the chain has a
non-zero probability transitioning into sj . That is,

P(Y (t) = sj |Y (0) = si) > 0 for some t ≥ 0. (5)

Now, given a finite-state periodically inhomoge-
neous Markov chain {X(t)}, we construct T homoge-
neous Markov chains {{Yk(t)}, k = 0, . . . , T − 1} from
{X(t)} as follows:

Yk(t) = X(t× T + k). (6)

Denote their transition matrices by {P k}T−1k=0 , where

P k = P (k)P (k + 1) · · ·P (k + T − 1), ∀k. (7)

Then, the following lemma states that {X(t)} is pe-
riodically ergodic if there exists a {Yk(t)} which is
irreducible.

LEMMA 2 ([13]). If there exists a k ∈ {0, 1, . . . , T − 1}
such that {Yk(t)} is a homogeneous irreducible Markov
chain, then there exists a unique probability measure πk
for each k such that

πkP
k = πk, and πkP (k) = πk+1.

2 (8)

2. Here, πT is understood to be π0.



1041-4347 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TKDE.2014.2365801, IEEE Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XX XXXX 5

0 6 12 18 24
0

0.5

1
P[x(t+1)=Office | x(t)=Home]

0 6 12 18 24
0

0.5

1

Time (hour)

P[x(t+1)=Office | x(t)=Office]

Fig. 4. A periodically inhomogeneous Markov chain
(T0 = 24).
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Fig. 5. The corresponding periodic distribution vector
for the Markov chain shown in Figure 4.

In addition, {X(t)} is periodically ergodic and

lim
n→∞

1

n

n−1∑
t=0

X(t× T + k)→ π̄k a.s.

For our period detection problem, the Markov
chain only takes two states S = {s1, s2} = {0, 1}.
In such case, each π̄k has value in [0, 1] and Π =
[π̄0, π̄1, . . . , π̄T−1] is the periodic distribution vector
of {X(t)}. We illustrate the concepts and results de-
scribed so far using the following example.

EXAMPLE 3. In this example, we model a person’s daily
behavior as the periodically inhomogeneous Markov chain
with its transition matrices shown in Figure 4. As one can
see, the person has high probability going to work (from
home) at 8-9am in the morning and 2-3pm in the afternoon.
In addition, he tends to stay in the office between 9am-5pm,
with the exception that he may go back home around noon
(11am-1pm) for lunch. We further show the corresponding
periodic distribution vector Π in Figure 5.

Comparing to the Independent Bernoulli model, the
Markov chain enables us to model the time dependency of
the person’s behavior. For example, if he is in the office at
4pm, the probability that he will stay in the office at 5pm
is very high (p = 0.95), whereas if he is at home at 4pm
(possibly due to illness), it is very unlikely that he will be
in the office at 5pm (p = 0).

Finally, an ergodic Markov chain is not necessarily
mixing. Consider the following example.

EXAMPLE 4. Let {Y (t)} be a homogenous Markov chain
with transition matrix

P =

[
0 1
1 0

]
. (9)

Then, {Y (t)} is an ergodic sequence with a unique station-
ary distribution π = [0.5, 0.5]. However, letting lt = 2t,
for this subsequence we have limn→∞

1
n

∑n−1
t=0 Y (lt) is

equal to either 0 or 1, depending on the value of Y (0).
Hence, this subsequence is not admissible.

In the above example, we see that the value Y (t) is
solely determined by the initial value Y (0), no matter
how large t is. To provide the additional conditions
for a (periodically) ergodic Markov chain to be (peri-
odically) mixing, we need the following definition.

DEFINITION 8. A Markov chain is said to be aperiodic
if for any state si, there exists t0 such that for all t ≥ t0,

P(Y (t) = si|Y (0) = si) > 0. (10)

Obviously, the Markov chain in Example 4 is not
aperiodic. With this definition, we have the following
lemma which gives the conditions for a periodically
ergodic Markov chain to be periodically mixing.

LEMMA 3 ([14]). A periodically ergodic Markov chain
{X(t)} is periodically mixing if and only if there exists a
k ∈ {0, 1, . . . , T − 1} such that {Yk(t)} is aperiodic.

Table 1 summarizes the concepts and conditions
w.r.t. the two examples we discussed in this section.
Meanwhile, we emphasize that the periodically mix-
ing condition is a fairly general one in probability
theory. Its scope certainly goes far beyond the above
examples, and so does the periodicity measure we are
going to introduce next.

3 THE PROPOSED METHOD

As we see in Example 2, when we overlay the bi-
nary sequence with its true period T0, the resulting
sequence correctly reveals its underlying periodic be-
havior. In this section, we make this observation for-
mal using the concept of periodic distribution vector.
Then, we propose a novel probabilistic measure of
periodicity based on this observation and prove its
validity even when the observations are incomplete.

3.1 A Probabilistic Measure of Periodicity

Given a binary sequence X , we define S+ = {t :
x(t) = 1} and S− = {t : x(t) = 0} as the collections
of timestamps with 1’s and 0’s, respectively. For a
candidate period T , let IT denote the power set of
[0 : T − 1]. Then, for any set of timestamps (possibly
non-consecutive) I ∈ IT , we can define the collections
of original timestamps that fall into this set after
overlay as follows:

S+
I = {t ∈ S+ : FT (t) ∈ I}, S−I = {t ∈ S− : FT (t) ∈ I},

where FT (t) = mod (t, T ), and further compute the
ratios of 1’s and 0’s whose corresponding timestamps
fall into I after overlay:

µ+
X (I, T ) =

|S+
I |
|S+|

, µ−X (I, T ) =
|S−I |
|S−|

. (11)
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TABLE 1
Summary of conditions for different random processes to be (periodic) ergodic and (periodic) mixing.

Random process (Periodic) ergodic (Periodic) mixing
Independent Bernoulli Always Always

Homogeneous MC {X(t)} is irreducible {X(t)} is irreducible & aperiodic
Periodically inhomogeneous MC ∃k s.t. {Yk(t)} is irreducible ∃k s.t. {Yk(t)} is irreducible & aperiodic

The following lemma says that these ratios indeed
reveal the true probabilistic model parameters, given
that the observation sequence is sufficiently long.

LEMMA 4. Suppose X = {x(t)}n−1t=0 is a binary sequence
generated by any periodically ergodic process with periodic
distribution vector pT0 of length T0, write qT0

i = 1− pT0
i .

Then, for any T and I ∈ IT , the following holds w.p. 1:

lim
n→∞

µ+
X (I, T ) =

∑
i∈I

 1

T

T0−1∑
j=0

pT0

FT0 (i+j×T )∑T0−1
k=0 pT0

k

 ,

lim
n→∞

µ−X (I, T ) =
∑
i∈I

 1

T

T0−1∑
j=0

qT0

FT0 (i+j×T )∑T0−1
k=0 qT0

k

 .

Proof: The proof is a straightforward application
of the Birkhoff’s Ergodic Theorem, and we only prove
the first equation. With a slight abuse of notation we
write Si = {t : FT (t) = i} and S+

i = {t ∈ S+ : FT (t) =
i}. We further partition Si into T0 subsets such that

Si,j = {i+ jT, i+ (j + T0)T, i+ (j + 2T0)T, . . .},

where j = {0, . . . , T0 − 1}. Since each subsequence
{x(t) : t ∈ Si,j} is the realization of a single mixing
process, we have w.p. 1 that

lim
n→∞

|S+
i |
n

= lim
n→∞

∑T0−1
j=0

∑
t∈Si,j x(t)

|Si|
· |Si|
n

=

∑T0−1
j=0 pT0

FT0 (i+j×T )

T0T
,

where we use limn→∞
|Si|
n = 1

T for the last equal-
ity. Also, since the random process can be decom-
posed into T0 mixing processes, we have w.p. 1 that
limn→∞ |S+|/n = 1

T0

∑T0−1
k=0 pT0

k . Therefore,

lim
n→∞

µ+
X (I, T ) = lim

n→∞

|S+
I |/n
|S+|/n

= lim
n→∞

∑
i∈I |S

+
i |/n

|S+|/n

=
∑
i∈I

 1

T

T0−1∑
j=0

pT0

FT0 (i+j×T )∑T0−1
k=0 pT0

k

 .

Note that, if T = T0, the equations in Lemma 4 can
be simplified to:

lim
n→∞

µ+
X (I, T0) =

∑
i∈I p

T0
i∑T0−1

i=0 pT0
i

, lim
n→∞

µ−X (I, T0) =

∑
i∈I q

T0
i∑T0−1

i=0 qT0
i

.

This suggests that ratio of positive (negative) samples
that fall into I after overlay indeed converges to what
one would expect according to pT0 . Based on this

result, we now introduce our measure of periodicity.
For any I ∈ IT , we define its discrepancy score as:

∆X (I, T ) = µ+
X (I, T )− µ−X (I, T ). (12)

Then, the periodicity measure of X w.r.t. period T is:

γX (T ) = max
I∈IT

∆X (I, T ). (13)

It is obvious that γX (T ) is bounded: 0 ≤ γX (T ) ≤ 1.
Moreover, γX (T ) = 1 if and only if X is strictly
periodic with period T . But more importantly, we
have the following lemma, which states that under
our probabilistic model, γX (T ) is indeed a desired
measure of periodicity.

LEMMA 5. Suppose X is a binary sequence generated by
any periodically mixing process with periodic distribution
vector pT0 of length T0, then the following holds w.p. 1:

lim
n→∞

γX (T ) ≤ lim
n→∞

γX (T0), ∀T ∈ Z.

Proof: Define

ci =
pT0
i∑T0−1

k=0 pT0

k

− qT0
i∑T0−1

k=0 qT0

k

,

it is easy to see that the value limn→∞ γX (T0) is
achieved by I∗ = {i ∈ {0, . . . , T0 − 1} : ci > 0}. So
it suffices to show that for any T ∈ Z and I ∈ IT ,

lim
n→∞

∆X (I, T ) ≤ lim
n→∞

∆X (I∗, T0) =
∑
i∈I∗

ci.

Meanwhile, from Lemma 4, we have

lim
n→∞

∆X (I, T ) =
1

T

∑
i∈I

T0−1∑
j=0

(
pT0

FT0 (i+j×T )∑T0−1
k=0 pT0

k

−
qT0

FT0 (i+j×T )∑T0−1
k=0 qT0

k

)

=
1

T

∑
i∈I

T0−1∑
j=0

cFT0 (i+j×T )

≤ 1

T

∑
i∈I

T0−1∑
j=0

max(cFT0 (i+j×T ), 0)

≤ 1

T

T0T−1∑
j=0

max(cFT0 (j), 0)

=
1

T
× T

∑
i∈I∗

ci =
∑
i∈I∗

ci,

where the third equality uses the definition of I∗. So
the proof is complete.

Note that, similar to the deterministic case, the
ambiguity of multiple periods still exists as we can
easily see that limn→∞ γX (mT0) = limn→∞ γX (T0) for
all m ∈ Z. But in this paper we are only interested in
finding the smallest one.
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Fig. 6. (a) and (c): Ratios of 1’s and 0’s at a single
timestamp (i.e., µ+

X (·, T ) and µ−X (·, T )) when T = 24
and T = 23, respectively. (b) and (d): Discrepancy
scores at a single timestamp (i.e. ∆X (·, T )) when T =
24 and T = 23.
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Fig. 7. Periodicity scores of potential periods.

EXAMPLE 5 (Running Example (cont.)). Suppose our
observation sequence X is generated by an independent
Bernoulli process (see Section 2.2.1) with the periodic
distribution vector shown in Figure 3. When we overlay the
sequence using potential period T = 24, Figure 6(a) shows
that positive observations have high probability to fall into
the set of timestamps: {10, 11, 14, 15, 16}. However, when
using the wrong period T = 23, the distribution is almost
uniform over time, as shown in Figure 6(c). Consequently,
we see large discrepancy scores for T=24 (Figure 6(b))
whereas the discrepancy scores are very small for T=23
(Figure 6(d)). Therefore, we will have γX (24) > γX (23).
Figure 7 shows the periodicity scores for all potential
periods in [1 : 200]. We can see that the score is maximized
at T = 24, which is the true period of the sequence.

3.2 Random Observation Model
Next, we extend our analysis on the proposed peri-
odicity measure to the case of incomplete observa-
tions with a random observation model. To this end,
we introduce a new label “-1” to the sequence X
to indicate that the observation is unavailable at a
specific timestamp. In the random observation model,
each observation x(t) is associated with a probability
dt ∈ [0, 1] and we write d = {dt}n−1t=0 .

DEFINITION 9. Let X0 be a binary sequence generated
by any periodically mixing process. A sequence X is said

to be generated according to (X0,d) if

x(t) =

{
x0(t) w.p. dt
−1 w.p. 1− dt

(14)

In general, we may assume that each dt is in-
dependently drawn from some fixed but unknown
distribution f over the interval [0, 1]. To avoid the
trivial case where dt ≡ 0 for all t, we further assume
that it has nonzero mean: ρf > 0. Although this model
seems to be very flexible, in the section we prove
that our periodicity measure is still valid. In order
to do so, we need the following lemma, which states
that µ+

X (I, T ) and µ−X (I, T ) remain the same as before,
assuming infinite length observation sequence.

LEMMA 6. Let X0 be a binary sequence generated by
any periodically mixing process with periodic distribution
vector pT0 . Suppose d = {dt}n−1t=0 are i.i.d. random
variables in [0, 1] with nonzero mean, and a sequence X is
generated according to (X0,d), write qT0

i = 1−pT0
i . Then,

for any T and I ∈ IT , the following holds w.p. 1:

lim
n→∞

µ+
X (I, T ) =

∑
i∈I

 1

T

T0−1∑
j=0

pT0

FT0 (i+j×T )∑T0−1
k=0 pT0

k

 ,

lim
n→∞

µ−X (I, T ) =
∑
i∈I

 1

T

T0−1∑
j=0

qT0

FT0 (i+j×T )∑T0−1
k=0 qT0

k

 .

The proof is similar to that of Lemma 4 and is
given in Appendix A. Since our periodicity measure
only depends on µ+

X (I, T ) and µ−X (I, T ), it is now
straightforward to prove its validity under the ran-
dom observation model. We summarize our main
result below.

THEOREM 2. Let X0 be a binary sequence generated by
any periodically mixing process with periodic distribution
vector pT0 . Suppose d = {dt}n−1t=0 are i.i.d. random
variables in [0, 1] with nonzero mean, and a sequence X
is generated according to (X0,d), then the following holds
w.p. 1:

lim
n→∞

γX (T ) ≤ lim
n→∞

γX (T0), ∀T ∈ Z.

The proof is exactly the same as that of Lemma 5
given the result of Lemma 6, hence is omitted here.

Here we make two useful comments on this result.
First, the assumption that dt’s are independent of
each other plays an important role in the proof. In
fact, if this does not hold, the observation sequence
could exhibit very different periodic behavior from
its underlying periodic distribution vector. But a thor-
ough discussion on this issue is beyond the scope of
this paper. Second, this result only holds exactly with
infinite length sequences. However, it provides a good
estimate on the situation with finite length sequences,
assuming that the sequences are long enough. Note
that this length requirement is particularly important
when a majority of samples are missing (i.e., ρf is
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close to 0). We will discuss this issue in more detail
in Section 4.
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Fig. 8. Period detection with unknown observations.

EXAMPLE 6 (Running Example (cont.)). To introduce
random observations, we sample the original sequence with
sampling rate 0.2. The generated sequence will have 80%
of its entries marked as unknown. Comparing Figure 8(a)
with Figure 6(b), we can see very similar discrepancy scores
over time. Random sampling has little effect on our period
detection method. As shown in Figure 8(b), we can still
detect the correct period at 24.

3.3 Handling Sequences without Negative Sam-
ples
In many real world applications, negative samples
may be completely unavailable to us. For example, if
we have collected data from a local cellphone tower,
we will know that a person is in town when he makes
phone call through the local tower. However, we are
not sure whether this person is in town or not for
the rest of time, because he could either be out of
town or simply not making any call. In this case, the
observation sequence X takes value in {1,−1} only,
with -1 indicating the missing entries. In this section,
we modify our measure of periodicity to handle this
case.

Note that due to the lack of negative samples,
µ−X (I, T ) can no longer be computed from X . Thus, we
need find another quantity to compare µ+

X (I, T ) with.
To this end, consider a binary sequence U = {u(t)}n−1t=0

which is generated by an i.i.d. Bermoulli(p) random
process for some fixed p > 0. It is easy to see that for
any T and I ∈ IT , we have

lim
n→∞

µ+
U (I, T ) =

|I|
T
. (15)

This corresponds to the case where the positive sam-
ples are evenly distributed over all entries after over-
lay. So we propose the following new discrepancy
score for I :

∆+
X (I, T ) = µ+

X (I, T )− |I|
T
, (16)

and define the periodicity measure as:

γ+X (T ) = max
I∈IT

∆+
X (I, T ). (17)

In fact, with some slight modification to the proof
of Lemma 5, we can show that it is indeed a desired
measure for periodicity under our probabilistic model.

THEOREM 3. Let X0 be a binary sequence generated by
any periodically mixing process with periodic distribution
vector pT0 . Suppose d = {dt}n−1t=0 are i.i.d. random
variables in [0, 1] with nonzero mean, and a sequence X
is generated according to (X0,d), then the following holds
w.p. 1:

lim
n→∞

γ+X (T ) ≤ lim
n→∞

γ+X (T0), ∀T ∈ Z.

The proof is given in Appendix B. Here, we note
that this new measure γ+X (T ) can also be applied to
the cases where negative samples are available. Given
the same validity result, readers may wonder if it
can replace γX (T ). This is certainly not the case in
practice, as our results only hold exactly when the
sequence has infinite length. As we will see from the
experiment results, negative samples indeed provide
additional information for period detection in finite
length observation sequences.
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Fig. 9. (Running Example) Period detection on se-
quences without negative samples.

EXAMPLE 7 (Running Example (cont.)). In this ex-
ample we further marked all the negative samples in the
sequence we used in Example 6 as unknown. When there
is no negative samples, the portion of positive samples at
a single timestamp i is expected to be 1

T , as shown in
Figure 9(a). The discrepancy scores when T = 24 still have
large values at {10, 11, 14, 15, 16}. Thus the correct period
can be successfully detected as shown in Figure 9(b).

4 ALGORITHM

In Section 3, we have introduced our periodicity mea-
sure for any potential period T . Our period detection
algorithm ePeriodicity simply computes the periodicity
scores for every T and report the one with the highest
score. In this section, we first address a practical issue
when applying it to finite length sequence and then
discuss the time complexity of the algorithm.
Normalization. As one may already notice in our
running example, we usually see a general increasing
trend of periodicity scores γX (T ) and γ+X (T ) for a
larger potential period T . This trend becomes more
dominating as the number of observations decreases.
For example, the original running example has ob-
servations for 1000 days. If the observations are only
for 20 days, our method may obtain incorrect period
detection result, as the case shown in Figure 10(a).
In fact, this phenomenon is expected and can be
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understood in the following way. Let us take γ+X (T ) as
an example. Given a sequence X with finite number of
positive observations, it is easy to see that the size of
I that maximizes γ+X (T ) for any T is bounded above
by the number of positive observations. Therefore the
value |I

∗|
T always decreases as T increases, no matter

whether or not T is a true period of X .
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Fig. 10. Normalization of periodicity scores.

To remedy this issue, we use the periodicity scores
of randomized sequences to normalize the original
periodicity scores. Specifically, we randomly permute
the positions of observations along the timeline and
compute the periodicity score for each potential pe-
riod T . This procedure is repeated N times and the
average periodicity scores over N trials are output as
the base scores. The redline in Figure 10(a) shows the
base scores generated from randomized sequences by
setting N = 10, which agree well with the trend.

For every potential period T , we subtract the base
score from the original periodicity score, resulting
in the normalized periodicity score. Note that the
normalized score also slightly favors shorter period,
which helps us avoid detecting duplicated periods
(i.e., multiples of the prime period).
Time/Space Complexity Analysis. For every potential
period T , it takes O(n) time to compute discrepancy
score for a single timestamp (i.e., |S

+
i |
|S+|−

|S−
i |
|S−| ) and then

O(T ) time to compute the periodicity score γX (T )
(i.e., find all the timestamps whose discrepancy scores
are above 0 and obtain the aggregate score). Since
potential period should be in range [1 : n], the time
complexity of our algorithm is O(n2). In practice, it
is usually unnecessary to try all the potential periods.
For example, we may have common sense that the
periods will be no larger than certain values. So we
only need to try potential periods up to n0, where
n0 � n. This will make our algorithm efficient in
practice with time complexity as O(n × n0). In this
paper, we fix n0 = 200 for all the experiments. Of
course, in practice, the choice of n0 heavily relies
on prior knowledge about the range in which the
true period lies and is problem-dependent. Also, the
computational cost would be higher if a large n0 is
used (e.g., to detect large period).

In Figure 11, we show the computation time of
ePeriodicity as a function of n and n0 on a synthetic
dataset (see Section 5.1 for details about our synthetic
dataset generation). The experiment is performed in
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Fig. 11. Time of our algorithm.

MATLAB on a desktop PC with 3.40GHz CPU and
12GB memory. The default parameters are n = T ×
TN = 24 × 1000 = 24000 and n0 = 200. It clearly
shows that the time grows linearly in both n and n0.
In addition, by limiting n0 to 200, our algorithm takes
less than 1 second to process a sequence of length
120000. For a sequence of length 24000, it takes about
0.8 second to detect any period up to 1000.

Finally, it is easy to see that the space complexity of
our algorithm is O(n), as we simply store the input
sequence in an array.

5 EXPERIMENT

In this section, we systematically evaluate the pro-
posed techniques on both synthetic and real datasets.

5.1 Synthetic Dataset Generation
To test the effectiveness of our method under various
scenarios, we take the following steps to generate a
synthetic test sequence SEQ according to the periodi-
cally inhomogeneous Markov chain model. Meanwhile,
we refer readers to [1] for additional experiment
results on independent Bernoulli sequences.
Step 1. We first fix a period T (e.g., T = 24) and
the transition matrices {P (t)} (e.g., see Figure 4) for
the Markov chain model. Then, given the number of
repetitions TN , the complete observation sequence
SEQstd is generated according to the model. Note
that SEQstd is a boolean sequence of length T × TN ,
with values -1 and 1 indicating negative and positive
observations, respectively.
Step 3 (Random sampling η). We sample the standard
sequence with sampling rate η. For any element in
SEQstd, we set its value to 0 (i.e., unknown) with
probability (1− η).
Step 4 (Missing segments α). For any segment in
sequence SEQstd, we set all the elements in that
segment to 0 (i.e., unknown) with probability (1−α).
Step 5 (Random noise β). For any remaining observa-
tion in SEQstd, we reverse its original values (making
−1 as 1 and 1 as −1) with probability β.

The input sequence SEQ has values −1, 0, and
1 indicating negative, unknown, and positive ob-
servations. In the case when negative samples are
unavailable, all the −1 values are set to 0. Note that
here we set negative observations as −1 and unknown
ones as 0, which is different from the description in
previous sections. The reason is that if the unknown
entries are set as −1, in the presence of many missing
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Fig. 12. Comparison results on synthetic data with various parameter settings.

entries, traditional methods such as Fourier transform
will be dominated by missing entries instead of actual
observations. The purpose of such adjustment is to
facilitate traditional methods and it has no effect on
our method.

5.2 Methods for Comparison
We will compare ePeriodicity with the following meth-
ods, which are frequently used to detect periods in
boolean sequence [15]. The Matlab implementations
of all the algorithms, as well as the synthetic data
generation, are publicly available online.3

1. Fourier Transform (FFT): The frequency with the
highest spectral power from Fourier transform via
FFT is converted into time domain and output as the
result.
2. Auto-correlation and Fourier Transform (Auto):
We first compute the auto-correlation of the input
sequence. Since the output of auto-correlation will
have peaks at all the multiples of the true period, we
further apply Fourier transform to it and report the
period with the highest power.
3. Histogram and Fourier Transform (Histogram):
We calculate the distances between any two positive
observations and build a histogram of the distances
over all the pairs. Then we apply Fourier transform to
the histogram and report the period with the highest
power.

We will use FFT(pos) and Auto(pos) to denote the
methods FFT and Auto-correlation for cases without
any negative observations. For Histogram, since it only
considers the distances between positive observations,
the results for cases with or without negative obser-
vations are exactly the same.

5.3 Performance on Synthetic Dataset
In this section, we test all the methods on synthetic
data under various settings. We adopt the Markov
chain model with period T = 24 and transition
matrices shown in Figure 4 in this experiment. The
default parameter setting is the following: TN = 1000,
η = 0.1, α = 0.5, and β = 0.2. In Figure 12, we
report the performance of all the methods with one of
these parameters varying while the others are fixed.
For each parameter setting, we repeat the experiment
for 100 times and report the accuracy, which is the
percentage of correct period detections over 100 trials.

3. http://faculty.ist.psu.edu/jessieli/Site/research.html

Performance w.r.t sampling rate η. To better study
the effect of sampling rate, we set α = 1 in this
experiment. Figure 12(a) shows that ePeriodicity is
significantly better than other methods in terms of
handling data with low sampling rate. The accuracy
of ePeriodicity remains 100% even when the sampling
rate is as low as 0.01. The accuracies of other meth-
ods start to decrease when sampling rate is lower
than 0.5. Also note that Auto is slightly better than
FFT because auto-correlation essentially generates a
smoothed version of the categorical data for Fourier
transform. In addition, it is interesting to see that FFT
and Auto performs better in the case without negative
observations.

Performance w.r.t ratio of observed segments α. In
this set of experiments, sampling rate η is set to 1
to better study the effect of α. Figure 12(b) depicts
the performance of the methods. ePeriodicity again
performs much better than other methods. ePeriodicity
is almost perfect even when α = 0.01. And when
all other methods fail at α = 0.005, ePeriodicity still
achieves above 70% accuracy.

Performance w.r.t noise ratio β. In Figure 12(c), we
show the performance of the methods w.r.t different
noise ratios. Histogram is very sensitive to random
noises since it considers the distances between any
two positive observations. ePeriodicity is still the most
robust one among all. For example, with β = 0.3,
ePeriodicity achieves accuracy as high as 90%.

Performance w.r.t number of repetitions TN . Fig-
ure 12(d) shows the accuracies as a function of TN .
As expected, the accuracies decrease as TN becomes
smaller for all the methods, but ePeriodicity again
significantly outperforms the others.

Comparison with Lomb-Scargle method. Lomb-
Scargle periodogram (Lomb) [8], [9] was introduced
as a variation of Fourier transform to detect periods
in unevenly sampled data. The method takes the times-
tamps with observations and their corresponding val-
ues as input. It does not work for the positive-sample-
only case, because all the input values will be the same
hence no period can be detected. The reason we do
not compare with this method systematically is that
the method performs poorly on the binary data and it
is very slow. Here, we run it on a smaller dataset by
setting TN = 100. We can see from Table 2 that, when
η = 0.5 or α = 0.5, ePeriodicity and FFT perform well
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whereas the accuracy of Lomb is already approaching
0. As pointed out in [16], Lomb does not work well
on bi-modal periodic signals and sinusoidal signals
with non-Gaussian noises, hence not suitable for our
purpose.

TABLE 2
Comparison with Lomb-Scargle method.

Parameter Accuracy
ePeriodicity FFT Lomb

η = 0.5 1 0.77 0.12
η = 0.1 1 0.53 0.12
α = 0.5 1 0.95 0.01
α = 0.1 0.97 0.25 0

5.4 Robustness to Arbitrary Periodic Behaviors
We further study the performance of all the methods
on arbitrary periodic behaviors. In this experiment,
instead of using any specific random process (e.g.,
Markov chain) to generate the observation sequence,
we directly specify the periodic behavior using a
randomly generated boolean sequence SEG of length
T . In particular, given the period T and the ratio of
1’s in SEG as r, we generate SEG by setting each
element to 1 with probability r. Then, the complete
observation sequence SEQstd is obtained by repeating
SEG for TN times.

Sequences generated in this way will have positive
observations scattered within a period, which will
cause big problems for all the methods using Fourier
transform, as evidenced in Figure 13. This is because
Fourier transform is very likely to have high spectral power
at short periods if the input values alternate between 1 and -
1 frequently. We refer interested readers to Appendix C
for more discussion about this issue. In Figure 13(a)
we set r = 0.4 and show the results w.r.t period
length T . In Figure 13(b), we fix T = 24 and show the
results with varying r. As we can see, all the other
methods fail miserably when the periodic behavior
is randomly generated. In addition, when the ratio of
positive observations is low, i.e. fewer observations, it
is more difficult to detect the correct period in general.
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Fig. 13. Comparison results on randomly generated
periodic behaviors.

5.5 A Case Study on Real Human Movements
In this section, we use the real GPS locations of a
person who has tracking record for 492 days. We
first pick one of his frequently visited locations and
generate a boolean observation sequence by treating

all the visits to this location as positive observations
and visits to other locations as negative observa-
tions. We study the performance of the methods on
this symbolized movement data at different sampling
rates. In Figure 14, we compare the methods at two
sampling rates, 1 hour and 20 minutes. As one can see
in Figure 14(a), when overlaying this person’s activity
using the period of one day, most of the visits occur in
time interval [40 : 60] for sampling rate of 20 minutes,
or equivalently, in interval [15 : 20] when the time unit
is 1 hour. On one hand, when sampling rate is 20 min-
utes, all the methods except FFT(pos) and Histogram
successfully detect the period of 24 hours, as they all
have the strongest peaks at 24 hours (so we take 24
hours as the true period). On the other hand, when
the data is sampled at each hour only, all the other
methods fail to report 24 hours as the strongest peak
whereas ePeriodicity still succeeds. In fact, the success
of ePeriodicity can be easily inferred from Figure 14(a),
as one can see that lowering the sampling rate has
little effect on the distribution graph of the overlaid
sequence. We further show the periods reported by
all the methods at various sampling rates in Table 3.
ePeriodicity obviously outperforms the others in terms
of tolerating low sampling rates.

TABLE 3
Periods reported by different methods.

Method Sampling rate
20min 1hour 2hour 4hour

ePeriodicity(pos) 24 24 24 8
ePeriodicity 24 24 24 8
FFT(pos) 9.3 9 8 8

FFT 24 195 372 372
Auto(pos) 24 9 42 8

Auto 24 193 372 780
Histogram 66.33 8 42 48

Next, in Figure 15, we use the binary sequence
of the same person w.r.t. a different location and
demonstrate the ability of our method in detecting
multiple potential periods, especially those long ones.
As we can see in Figure 15(a), this person clearly
has weekly periodicity w.r.t this location. It is very
likely that this location is his office which he only
visits during weekdays. ePeriodicity correctly detects
7-day with the highest periodicity score and 1-day
has second highest score. But all other methods are
dominated by the short period of 1-day. Please note
that, in the figures of other methods, 1-week point is
not even on the peak. This shows the strength of our
method at detecting both long and short periods.

5.6 Performance on Real Sensor Dataset
We now conduct systematic performance study us-
ing the public sensor event dataset provided by the
CASAS smart home project.4 The dataset consists
of large-scale sensor data collected from a number
of smart apartments located on the Washington State

4. http://ailab.wsu.edu/casas/datasets/
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Fig. 14. Comparison of period detection methods on a person’s movement data.
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Fig. 15. Comparison of methods on detecting long period, i.e. one week (168 hours).

University campus. Each apartment is instrumented
with various types of sensors, such as motion sensors
on the ceiling, door sensors on cabinets and doors,
and temperature sensors in each room. Sensor data
are generated and stored while volunteer participants
perform their daily activities in these apartments over
the course of several months.

In this experiment, we use the motion sensor data
generated from four different apartments, referred to
as Tulum, Milan, Paris and Aruba, respectively. In
Figure 16(a), we show some characteristics of each
apartment. Note that the residents in this dataset
exhibit a great deal of diversity in terms of age,
marriage status, health condition (healthy or having
dementia) and pets [17], [18].

Apartment #Residents #Sensors Time Range
Tulum 2 31 9/25/09 – 3/28/10
Milan 1 + dog 28 10/16/09 – 1/6/10
Paris 2 + cat 29 3/31/10 – 9/6/10

Aruba 1 31 6/12/11 – 7/13/12
(a) Characteristics of the dataset
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(b) Two representative periodic behaviors in Tulum
Fig. 16. CASAS smart home dataset.

In the dataset, each raw sensor event ek is rep-
resented by the pair (sidk, tk), where sidk is the
sensor ID and tk is the timestamp. From the raw
data, we generate the complete observation sequence
Xi, 1 ≤ i ≤ N, for each of the N sensors by sampling

all of its events at the 1-hour rate. That is, we set
xi(t) = 1 if at least one event of the i-th sensor
occurred in the t-th hour, and xi(t) = −1 otherwise.
Note that since these sensors are densely positioned
in the rooms (typically 1 meter apart), their events
are often highly correlated. In Figure 16(b), we show
the two most representative periodic behaviors in
Tulum when overlaying the events of each sensor
using the period of one day (i.e., T = 24). As we
can see, the sensor activities clearly exhibit a daily
periodicity, with the first behavior corresponding to
sensors that are more active during the daytime (e.g.,
sensors in the living room), and the second behavior
corresponding to sensors that are more active at night
(e.g., sensors in the bedroom). Sensors in other apart-
ments also show similar daily behaviors, although the
exact pattern may vary depending on the residents’
life style. Therefore, we use T = 24 as the ground
truth period in this experiment.

In Figure 17, we report the average period detec-
tion accuracy for all sensors in each apartment with
varying sampling rate η. Recall that for each element
in the original sequence, we set its value to 0 with
probability (1 − η). Here, for each η, we repeat the
experiment for 10 times. As one can see, ePeriodicity
outperforms the other methods on all four testbeds
at all sampling rates. Most notably, ePeriodicity is the
only method which achieves 100% accuracy when
the sequences are complete, indicating that it is not
sensitive to different periodic behaviors.

6 RELATED WORK
Fourier transform and auto-correlation are the two
most popular methods to detect periods [5]. However,
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Fig. 17. Comparison results on CASAS dataset w.r.t. sample rate η.

Fourier transform has known problem in detecting the
periods from sparse data [15]. It also performs poorly
on data with multiple non-consecutive occurrence in
a period, as it tends to prefer short periods [6]. Auto-
correlation offers accurate estimation for both short
and long periods, but is more difficult to find the
unique period due to the fact that the multiples of the
true period will have the same score as the true period
itself. In addition, both Fourier transform and auto-
ccorelation require evenly sampled input data. Lomb-
Scargle periodogram [8], [9] is proposed as a variation
of Fourier transform to handle unevenly spaced data
using least-squares fitting of sinusoidal curves. But
it suffers the same problems as Fourier transform.
In bioinformatics, several methods have been pro-
posed to address the issue of unevenly spaced gene
data [19], [20]. However, this issue is only one aspect
of our problem whereas the low sampling rate and
missing data problem have not been studied in these
papers. An interesting previous work [15] has studied
the problem of periodic pattern detection in sparse
boolean sequences for gene data, where the ratio of
the number of 1’s to 0’s is small. However, sparsity
in our problem is a result of low sampling rate and
missing data, and we do not make any assumption
on the sparsity of original periodic patterns.

Studies on periodicity analysis in data mining and
database area usually assume the input to be a se-
quence of symbols instead of real value time series,
and most of them have been focused on the efficiency
of the algorithms. Han et al. [21], [22] first developed
algorithms for mining frequent partial periodic pat-
terns, a special type of frequent patterns. Following
this pioneering work, Yang et al. presented a series of
work dealing with different variations of the periodic
patterns, such as asynchronous periodic patterns [23],
surprising periodic patterns [24], patterns with gap
penalties [25], and high level patterns [26]. Mean-
while, methods have been proposed to mine partial
periodic pattern with unknown periods [27], from
incremental datasets [28], or in local segments [29].
Recently, using suffix tree as the underlying data
structure, [30] proposed a unified framework to mine
partial periodic patterns from subsection of the time-
series despite various types of noise. However, all
these works are based on the definition of frequent
pattern with a strict min sup threshold. They tend to
output a large set of patterns, most of which are only

slightly different from each other. Also, it is unclear
how to extend these methods to deal with incomplete
observations.

There are also papers addressing the automatic
period detection problem in time-series [31], [32], [33],
[7], [34]. Indyk et al. [33] develops an O(n log2 n)
time complexity algorithm using sketch approaches
to find representative trend, where n is the length of
the sequence. Berberidis et al. [31] detects the period
candidates for each symbol using autocorrelation. Im-
proved from [31], [33], Elfeky et al. [7] proposes a
more efficient convolution method which considers
multiple symbols together while detecting the period.
In addition, in [34], a method based on dynamic time
warping is proposed to handle insertion and dele-
tion noises at the expense of higher time complexity.
However, none of these methods is able to handle in-
complete observation sequences. Our recent work [3]
has studied probabilistic periodic behavior mining for
moving objects. But it has been focused on processing
spatiotemporal data, while period detection is still
based on Fourier transform and auto-correlation.

In summary, none of previous studies can handle
all the practical issues we mentioned in this paper,
i.e., the observations are incomplete, and the periodic
behavior is oscillating and noisy.

7 CONCLUSION

In this paper, we address the important and challeng-
ing problem of period detection from incomplete ob-
servations. We first propose a probabilistic model for
periodic behaviors. Then, we design a novel measure
for periodicity and a practical algorithm ePeriodicity
to detect periods in real scenarios. We give a rigorous
proof of its validity for our probabilistic framework.
Empirical studies show that our method is robust to
imperfectly collected data and complicated periodic
behaviors. A case study on real human movement
data further demonstrates the effectiveness of our
method.

While our approach is designed for binary se-
quences, one important extension is to handle sym-
bolic or real-valued sequences. For example, GPS
locations are often associated with the land types;
sensors may not only detect the usage of a room but
also report the temperature and humidity. Such data
could also be sparse, noisy and unevenly sampled
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due to the limitations of devices. We consider this as
interesting future work.
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