
Chapter 12
Spatiotemporal Pattern Mining: Algorithms
and Applications

Zhenhui Li

Abstract With the fast development of positioning technology, spatiotemporal data
has become widely available nowadays. Mining patterns from spatiotemporal data
has many important applications in human mobility understanding, smart transporta-
tion, urban planning and ecological studies. In this chapter, we provide an overview
of spatiotemporal data mining methods. We classify the patterns into three categories:
(1) individual periodic pattern; (2) pairwise movement pattern and (3) aggregative
patterns over multiple trajectories. This chapter states the challenges of pattern dis-
covery, reviews the state-of-the-art methods and also discusses the limitations of
existing methods.
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1 Introduction

With the rapid development of positioning technologies, sensor networks, and on-
line social media, spatiotemporal data is now widely collected from smartphones
carried by people, sensor tags attached to animals, GPS tracking systems on cars and
airplanes, RFID tags on merchandise, and location-based services offered by social
media. While such tracking systems act as real-time monitoring platforms, analyzing
spatiotemporal data generated from these systems frames many research problems
and high-impact applications:

• Understanding animal movement is important to addressing environmental chal-
lenges such as climate and land use change, bio-diversity loss, invasive species,
and infectious diseases.

• Traffic patterns help people with fastest path finding based on dynamic traffic
information; automatic and early identification of traffic incidents; and safety
alerts when dangerous driving behaviors are recognized.
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• Unusual vessel trajectory could be a sign of smuggling; outlying taking-
off/landing patterns could be a dangerous signal for aviation; and detection of
suspicious human movements could help prevent crimes and terrorism.

• Spatiotemporal interactions of human may tell the semantic relationships among
them such as colleague, family or friend relationships. Different from cyber so-
cial network such as Facebook friends, spatiotemporal relationships reveal more
complicated physical social network.

This book chapter discusses the state-of-art data mining methods to discover un-
derlying patterns in movements. Various patterns, characteristics, anomalies, and
actionable knowledge can be mined from massive moving object data. We will focus
on following three categories of movement patterns:

• Individual periodic pattern. One most basic pattern in moving objects is the
periodicity. Human repeat daily or weekly movement patterns. Animals have
seasonal migration patterns. We will discuss how to automatically detect the
periods in a trajectory and how to mine frequent periodic patterns after periods
are detected. We will also describe the methods of using periodic patterns for
future movement prediction.

• Pairwise movement pattern. Focusing on two moving objects only, we will discuss
different trajectory similarity measures and the methods to mine generic, behav-
ioral and semantic patterns. Generic patterns include the attraction or avoidance
relationships between two moving objects. In behavioral patterns, we will mainly
discuss how to detect the following and leadership patterns. To mine semantic re-
lationships, such as colleague or friends, we will discuss the supervised learning
frameworks with various spatiotemporal features.

• Aggregate patterns over multiple trajectories. The aggregate patterns describe a
group of moving objects share similar movement patterns. Frequent trajectory
patterns can find the frequent sequential transitions among spatial regions. Mov-
ing object clusters, such as flock, convoy and swarm, will detect a group of moving
objects being spatially close for a relatively long period of time. Trajectory clus-
tering groups similar (sub-)trajectories and reveals the popular paths shared by
trajectories.

The rest of the chapter is organized as follows. Section 2 introduces the basic def-
initions and concepts in spatiotemporal data mining. We then study the individual
periodic patterns in Sect. 3. Section 4 covers pairwise movement patterns. And we
present aggregate patterns in Sect. 5. Finally, we summarize the chapter in Sect. 6.

2 Basic Concept

2.1 Spatiotemporal Data Collection

Spatiotemporal data is a broad concept. As long as the data is related to spatial
and temporal information, we call it spatiotemporal data. Two most frequently seen
spatiotemporal data are (1) ID-based spatiotemporal data collected from GPS and
(2) location-based data collected from sensors.
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Table 12.1 A sample of real
moving object data showing
non-constant sampling rate

Id Timestamp Location-long Location-lat

2635 1997-07-24 20:50:00 − 149.007 63.809
2635 1997-07-24 21:23:35 − 148.897 63.766
2635 1997-07-27 22:30:23 − 148.967 63.824
2635 1997-07-31 02:52:48 − 149.026 63.803
2635 1997-08-03 01:47:04 − 149.046 63.795

An ID-based spatiotemporal data is essentially a trajectory. The tracking device is
attached to a moving object. For example, scientists can embed sensors on animals’
body and use GPS to track them; cellphone data can reveal an individual person’s
movement; and GPS embedded in cars can track a vehicle’s movement. Suppose we
have trajectories of n moving objects {o1, o2, . . . , on}. Each trajectory is represented
as a sequence of points (x1, y1, tm), (x2, y2, tm), . . . , (xn, yn, tm), where (xi , yi) is a
location (longitude and latitude) and ti is the time when location (xi , yi) is recorded.
The trajectory data could contain a large set of moving objects and the tracking time
for moving objects could expand several years.

A location-based spatiotemporal data is the temporal data collected from a fixed
location. The tracking devices (i.e., sensors) are fixed at certain locations. For ex-
ample, sensors embedded on the road can track the speed and volume of the traffic;
sensors are installed at various locations to track the weather information, such as
temperature, wind speed and humidity. There are a set of associated properties at
location (x, y) at time t . We use f (x, y, t , p) to denote the value of property p at
location (x, y) at time t .

In this book chapter, we will focus on ID-based spatiotemporal data (i.e., trajec-
tories). We will mainly discuss about the patterns of animal and human movement
data.

2.2 Data Preprocessing

The raw trajectory data are unevenly sampled and could contain a long period of
missing data. Table 12.1 shows a sample of raw trajectory data. As we can see that
the data is sampled with uneven gaps and there could be 3–4 days missing data.
Depending on different tracking scenarios, the sampling rate of movement could
vary from seconds to days. For bird tracking, the data could be sampled every 3–5
days in order to save battery and make the tracking time span to several years. For
vehicles, the sampling rate could be as small as seconds. For mobile phone users,
there is a reported point only when the user is connecting to cellphone towers.

Most of trajectory mining methods assume the data is evenly sampled. A simple
and commonly used preprocessing step is to use linear interpolation to make the
data evenly gapped. If two consecutive points in a trajectory are gapped with a long
time period, linear interpolation may introduce a lot of errors. For example, one
data point of a human trajectory is being at home at 9 p.m. on Monday and the next
point is being at home at 10 p.m. on Wednesday. If we use 1 h to linearly interpolate



286 Z. Li

the missing data for these 2 days, all the points between 9 p.m. Monday to 10 p.m.
Wednesday will be at home. So it is better to mark those points during the long
missing period as invalid points. And when conducting pattern mining methods, we
will only consider the valid points. When designing data mining methods, we should
pay attention to the issue of incomplete, noisy, and unevenly sampled data. Ideally,
a pattern mining method should take the raw data as input or even handle the raw
data with uncertainties.

2.3 Background Information

Few moving objects move in free space. Vehicles, obviously, need to follow the road
network. Planes and boats need to follow more or less the scheduled paths. Animals,
which live in a more free space, are also confined to embedding landscape, such as
rivers, mountains and the food resources.

When considering the background information, the mining tasks become more
challenging. For example, the distance between two cars cannot be calculated simply
by Euclidean distance. Similarly for animals, if there is a mountain or a big river
between two animals, they could be actually far away from each other. Consider-
ing background information will result in more complex distance calculation and
correspondingly require different data mining methods.

For domain experts to interpret the discovered patterns, it is important to consider
the underlying geography in order to understand where, when and ultimately why the
entities move the way they do. Grazing sheep, for example, may perform a certain
movement pattern only when they are on a certain vegetation type. Homing pigeons
may show certain flight patterns only when close to a salient landscape feature such
as a rive or a highway. And, the movement patterns expressed by tracked vehicle will
obviously be very dependent on the environment the vehicle is moving in, be it in a
car park, in a suburb or on a highway. Thus, patterns have to be conceptualized that
allow linking of the movement with the embedding environment.

3 Individual Periodic Pattern

One most common activity in moving objects is the periodic behavior. A periodic
behavior can be loosely defined as the repeating activities at certain locations with
regular time intervals. For example, bald eagles start migrating to South America in
late October and go back to Alaska around mid March.

Periodic behaviors provide an insightful and concise explanation over the long
moving history. For example, animal movements could be summarized using several
daily and yearly periodic behaviors. Periodic behaviors are also useful for compress-
ing movement data [3, 28, 38]. Moreover, periodic behaviors are useful in future
movement prediction [17], especially for a distant querying time. At the same time,
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Fig. 12.1 Figure on the left shows the trajectory of a bald eagle over 3 years. Each yellow pin is
a recorded GPS locations. Figure on the right shows the density map of all the locations in the
trajectory. Periodica first detects dense areas as reference spots and then find periodicity for each
reference spot [22]

if an object fails to follow regular periodic behaviors, it could be a signal of abnormal
environment change or an accident.

In this section, we will first introduce how to automatically detect periods in a
trajectory. Then, we will discuss the methods to mine frequent periodic patterns from
a trajectory. Lastly, we will show how to use periodic patterns for future movement
prediction.

3.1 Automatic Discovery of Periodicity in Movements

A periodic behavior can be loosely defined as the repeating activities at certain
locations with regular time intervals. So the mining task will be, given a trajectory,
find those locations and corresponding periods (i.e., regular time intervals). This is
a challenging task because a real-life moving object never strictly follows a single
given periodic pattern. For example, birds never follow exactly the same migration
path every year. Their migration routes are strongly affected by weather conditions
and thus could be substantially different from previous years. Meanwhile, even
though birds generally stay in north in the summer, it is not the case that they stay
at exactly the same locations on exactly the same days of the year as previous years.
Therefore, “north” is a fairly vague geo-concept that is hard to be modeled. Moreover,
birds could have multiple interleaved periodic behaviors at different spatiotemporal
granularities, as a result of daily periodic hunting behaviors, combined with yearly
migration behaviors.

Li et al. [22] propose Periodica to handle the aforementioned challenges. One of
their key observations is that the binary in-and-out patterns with respect to different
reference spots can reliably reveal movement periodicity. Periodica is done in two
steps. In the first step, the trajectory points are clustered based on the spatial densities



288 Z. Li

Event has a period of 20. Occurrences of the event happen between 20k+5 to 20k+10.
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Fig. 12.2 The underlying true period is 20. The black dots and cross marks correspond to “in” and
“out” events separately. When using the correct period 20 to segment and overlay the observations,
as shown in the figure on the left, the “in” observations are clustered. Figure is from [24]

on the map to form semantic regions called reference spots. Figure 12.1 shows an
example of an eagle movement data. There are three reference spots detected from
the movement. Reference spots could be fairly large but frequently visited regions
over several years, such as an area in Quebec (Spot #1 in Fig. 12.1) where birds
frequently stay during the summer. In the second step, the movement is transformed
into a binary in-and-out sequence, and then Fourier transform is applied on the
sequence to detect the period.

Due to the limitations of positioning technology and data collection mechanisms,
movement data collected from GPS or sensors could be highly sparse, noisy and
unsynchronized. First, the data is often sampled at an unsynchronized rate (e.g., if
the sampling rate of a tracking device is set to 1 h, data may be collected at 1:01, 2:08,
3:02, 4:15, and so on). Second, movement data collected can be scattered unevenly
over time (e.g., collected only when the tracking device is triggered, such as the
check-ins using smart phones). Third, the observations could be highly sparse. For
example, a bird can only carry a tiny device with limited battery life. There could be
only one or two reported locations in three to five days. If a sensor is not functioning
or a tracking facility is turned off, it could result in a large portion of missing data.
Traditional period detection methods, such as Fourier transform and auto-correlation,
are known to be sensitive to such nuisances. Lomb-Scargle periodogram [27, 32] is
proposed as a variation of Fourier transform to deal with unevenly spaced data, but
it cannot handle the case when the data is also sparse and noisy.

Li et al. [24] develop a novel approach to detect periodicity for sparse, noisy
and unsynchronized data. A “segment-and-overlay” idea is explored to uncover the
hidden period: Even when the observations are incomplete, the limited periodic ob-
servations will be clustered together if data is overlaid with the correct period, as
shown in Fig. 12.2. The method tries every potential periods. For a period candidate
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Fig. 12.3 Periodic patterns with respect to pre-defined spatial regions [28]

T , the timeline are segmented by length T and the observations are mapped to a rela-
tive timescale [1, T ]. If T is the true period, the observations will show highly skewed
distributions of the observations. Otherwise, the observations will be scattered over
[1, T ].

3.2 Frequent Periodic Pattern Mining

Given the period, such as a day or a week, we are interested in mining the frequent
regular trajectory patterns. For example, people wake up at the same time and follow
more or less the same route to their work everyday. The discovery of hidden periodic
patterns in spatiotemporal data, apart from unveiling important information to the
data analyst, can facilitate data management substantially.

The key challenge to mine frequent pattern in movement lies in how to transform a
2-dimensional movement sequence to 1-dimensional symbolic sequence.As proposed
by Mamoulis et al. [28], one way to handle this issue is to replace the exact locations
by the regions (e.g., districts, cellphone towers, or cells of a synthetic grid) which
contain them. Figure 12.3b shows an example of an area’s division into such regions.
By using the regions, we can transform a raw movement sequence as shown in
Fig. 12.3a to an event sequence as shown in Fig. 12.3c. Now the problem becomes a
traditional frequent periodic pattern mining problem [16]. In real scenario, sometimes
we are interested in the automated discovering of descriptive regions. Mamoulis et
al. [28] further propose to cluster the locations at corresponding relative timestamps,
such as clustering locations at 10am over different days. They propose a top-down
pattern mining method, which is more efficient than typical bottom-up method.

3.3 Using Periodic Pattern for Location Prediction

One important application of frequent periodic pattern is for future location predic-
tion. For example, if a person repeats his periodic pattern between home and office
every weekday, we could predict that this person is very likely to be in the office at
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10 a.m. and to be at home at 10 p.m. Most existing techniques target at near future
movement prediction, such as next minute or next hour. Linear motion functions
[30, 31, 34, 35] have been extensively studied for movement prediction. More com-
plicated models are studied in [36]. As pointed out by Jeung et al. [17], the actual
movement of a moving object may not necessarily comply with some mathemati-
cal models. It could be more complicated than what the mathematical formulas can
represent. Moreover, such models built based on recent movement are not useful for
predicting distant future movement, such as next day or one month after.

Periodic patterns can help better predict future movement, especially for a distant
query time. In [17], a prediction method based on periodic pattern is proposed. The
prediction problem assumes that the period T and periodic patterns are already given.
To answer predictive queries efficiently, a trajectory pattern tree is proposed to index
the periodic patterns. In [17], they use a hybrid prediction algorithm that provides
predictions for both near and distant time queries. For non-distant time queries, they
use the forward query processing that treats recent movements of an object as an
important parameter to predict near future locations. A set of qualified candidates
will be retrieved and ranked by their premise similarities to the given query. Then
they select top-k patterns and return the centers of their consequences as answers. For
a distant time queries, since recent movements become less important for prediction,
the backward query processing is used. Its main idea is to assign lower weights to
premise similarity measure and higher weights to consequences that are closer to the
query time in the ranking process of the pattern selection.

4 Pairwise Movement Patterns

In this section, we focus on pattern mining methods on two moving objects. The
pairwise movement patterns are between two moving objects R and S. The trajecto-
ries of two moving objects are denoted as R = r1r2. . .rn and S = s1s2. . .sm, where
ri and si are the locations of R and S at the ith timestamp.

We first introduce different similarity measures between two trajectories. Then,
based on properties of patterns, we will introduce generic patterns, behavioral pat-
terns, and semantic patterns. Generic patterns describe the overall attraction and
avoidance relationship between two moving objects. Behavioral patterns describe a
specific type of relationships in a (short) period of time, such as leading and follow-
ing. Semantic patterns tell the semantics of a relationship (e.g., colleague and friend)
in a supervised learning framework.

4.1 Similarity Measure

One way to infer the relationship strength of two moving objects is to measure the
similarity of their trajectories. The simplest way of measuring the similarity between
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two trajectories is to use p-norm distance. The p-norm distance between trajectories
of R and S is defined as:

Lp(R, S) =
(

n∑
i=1

(ri − si)
p

) 1
p

.

The p-norm distance requires the trajectory length to be the same, i.e., n = m. The
well-known Euclidean distance and Manhattan distance are p-norm distance when
p = 2 and p = 1 respectively.

The p-norm distance is easy to compute, but is sensitive to the time shift. Dynamic
Time Warping (DTW) [39] can handle the local time shifting and it does not need
the trajectories to be the same length. DTW is defined as:

DT W (R, S) = dist(r1, s1) + min

⎛⎝ DT W (R[2 : n], S[2 : m]),
DT W (R[2 : n], S),
DT W (R, S[2 : m])

⎞⎠ .

Edit distance with Real Penalty (ERP) [4] introduces a constant value g as the
gap of edit distance and uses real distance between elements as the penalty to handle
local time shifting. ERP is defined as:

ERP (R, S) = min

⎛⎝ ERP (R[2 : n], S[2 : m]) + dist(r1, s1),
ERP (R[2 : n], S) + dist(r1, g),
ERP (R, S[2 : m]) + dist(s1, g)

⎞⎠ .

The Longest Common Subsequences (LCSS) [37] requires a threshold ε to be
established. The threshold is used to determine whether or not two elements match
and it allows LCSS to handle noise by quantizing the distance between two elements
to two values, 0 and 1, to remove the larger distance effects caused by noise. LCSS
is defined as:

LCSS(R, S) =
{

LCSS(R[2, n], S[2, m]) + dist(r1, s1) dist(r1, s1) ≤ ε

max{LCSS(R[2, n], S), LCSS(R, S[2, m])} otherwise

Edit Distance on Real sequence (EDR) is defined similar to LCSS except EDR
assigns penalties to the gaps between two matched sub-trajectories according to the
lengths of gaps. EDR is defined as:

EDR(R, S) = min

⎛⎝ EDR(R[2 : n], S[2 : m]) + subcost ,
EDR(R[2 : n], S) + 1,
EDR(R, S[2 : m] + 1

⎞⎠ ,

where subcost = 0 if dist(r1, s1) ≤ ε and subcost = 1 otherwise.
A comparison of the similarity measures is shown in Table 12.2. All the measures

except Euclidean distance can handle local time shifting.And only Euclidean distance
requires the lengths of two trajectories to be the same. LCSS and EDR are more robust



292 Z. Li

Table 12.2 Summary of similarity measures [5]

Distance Local time shifting Noise Metric Computation cost

Euclidean
√

O(n)
DTW

√
O(n2)

ERP
√ √

O(n2)
LCSS

√ √
O(n2)

EDR
√ √

O(n2)

to noises because it does not require every point in R to be matched with a point with
S. If ri is a noise point, LCSS and EDR will skip it and assign a mismatch penalty to it.
Euclidean distance and ERP are metric distances since they obey triangle inequality.
Thus, efficient indexing and retrieval can be achieved by using these two distance
measures.

The distance measures mentioned above are suitable to find similar trajectory with
similar shapes. They can be applied on trajectories, such as hurricane trajectories and
animal migration paths. To measure the similarity on human movements, it could
make more sense to look at the co-locating frequency instead of trajectory shape. The
meeting frequency [25] is defined as the number of timestamps that their locations
are with distance ε:

f req(R, S) =
n∑

i=1

τ (ri , si),

where τ (ri , si) = 1 if dist(ri , si) ≤ ε and τ (ri , si) = 0 otherwise.
The similarity between two moving objects can also be measured by transitions

patterns. Li et al. [20] propose to measure the similarity of two mobile users based
on their location histories. The trajectory is first symbolized using the interesting
locations mined from user trajectory. Given two symbolized sequences seq1 =
r1(k1)

�t1−→ r2(k2)
�t2−→ . . . rm(km) and seq2 = s1(k′

1)
�t ′1−→ s2(k′

2)
�t ′2−→ . . . sm(k′

m),
where �t denotes the transition time between locations and k is the number of times
that the user stays in a location, seq1 and seq2 are similar if the following constraints
are satisfied:

1. ∀1 ≤ i ≤ m, ri = si ;
2. ∀1 ≤ i ≤ m, | �ti − �t ′i |≤ tth, where tth is a time threshold on the transition

times.

4.2 Generic Pattern

Relationships between two moving objects can be classified as attraction, avoidance
or neutral. In an attraction relationship, the presence of one individual causes the
other to approach (i.e., reduce the distance between them). As a result, the individuals
have a higher probability to be spatially close than expected based on chance. On
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the other hand, in an avoidance relationship, the presence of one individual causes
the other to move away. So the individuals have a lower probability to be spatially
close than expected. Finally, with a neutral relationship, individuals do not alter their
movement patterns based on the presence (or the absence) of the other individual. So
the probability that they are being spatially close is what would be expected based
on independent movements.

The attraction relationship is commonly seen, for example, in animal herds or
human groups (e.g., colleague and family). In addition, the avoidance relationship
also naturally exists among moving objects. In animal movements, prey try to avoid
predators, and different animal groups of the same species tend to avoid each other.
Even in the same group, subordinate animals often avoid their more dominant group-
mates. In human movements, criminals in the city try to avoid the police, whereas
drug traffickers traveling on the sea try to avoid the patrol.

Intuitively, similar trajectories could be an indication of attraction relationship.
The similarity can be defined by the similarity measures mentioned in the previous
subsection. The assumption here is that the smaller the distance is or the higher the
meeting frequency is, the stronger the attraction relationship is. Unfortunately, such
assumption is often violated in real movement data. For example, two animals may
be observed to be spatially close for 10 out of 100 timestamps. But is this significant
enough to determine the attraction relationship? Further, another two animals are
within spatial proximity for 20 out of 100 timestamps. Does this mean that the latter
pair has a more significant attraction relationship than the former pair? Finally, if
two animals are never being spatially close, do they necessarily have an avoidance
relationship?

Li et al. [25] propose to mine significant attraction and avoidance relationships
by looking into the background territories. The relationships are detected through
the comparison between how frequent two objects are expected to meet and the
actual meeting frequency they have. Intuitively, if the actual meeting frequency is
smaller (or larger) than the expectation, the relationship is likely to be avoidance (or
attraction).

Given two trajectories R and S, the probability for one point ri in R to be spatially
close to any point in S is 1

n

∑n
j=1 τ (ri , sj ). Then the expected meeting frequency

between randomly shuffled R and S is:

E[f req(σ (R), σ (S))] =
n∑

i=1

⎛⎝1

n

n∑
j=1

τ (ri , sj )

⎞⎠ = 1

n

n∑
i=1

n∑
j=1

τ (ri , sj ),

where σ ( · ) denotes a random shuffled trajectory.
However, by comparing the actual meeting frequency with the expected meeting

frequency, one cannot determine a universal degree of the relationship. To further
measure the degree, let F = {f req(R, σ (S)) | σ } be the multiset of all randomized
meeting frequencies. The significance value of attraction (or avoidance) between to
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Fig. 12.4 Front region defined in [2]

moving objects R and S is defined as:

sigattract = Pr[f req(R, S) > f req(R, σ (S))]+
1
2Pr[f req(R, S) = f req(R, σ (S))],

sigavoid = Pr[f req(R, S) < f req(R, σ (S))]+
1
2Pr[f req(R, S) = f req(R, σ (S))].

Permutation test is conduced to get the multiset F . Permutation test is a popular
non-parametric approach, to performing hypothesis tests and constructing confi-
dence intervals. The null hypothesis is that the movement sequences of two objects
are independent. Since the total number of permutations is factorial, Monte Carlo
sampling is used to approximate the significance value.

4.3 Behavioral Pattern

The behavioral patterns describe certain behaviors within a (short) period of time,
such as pursuit, evasion, fighting, and play [7]. Following/leading is one interesting
behavioral pattern between two moving objects. For example, animal scientists study
which individual animal leads the group when animals move in order to determine
the social hierarchy, whereas police and security officers look suspicious movements
of a criminal who is following a victim.

Intuitively, a follower has similar trajectories as its leader but always arrives at a
location with some time lag. The challenges lay in three aspects: (1) the following
time lag is usually unknown and varying; (2) The follower may not have exactly the
same trajectory as the leader; and (3) the following relationship could be subtle and
always happens in a short period of time.

Andersson et al. [2] propose the concept of front region. A point si in the front
region of ri is defined by an apex angle α, a radius r , and an angle β restricting their
difference in direction ‖ di − dj ‖. Figure 12.4 shows an illustration of the front
region. In [2], a leader should appear in the front region of the follower(s) for at least
k consecutive timestamps.

In real scenario, a leader does not necessarily appear in the front region of the
followers for consecutive timestamps. Figure 12.5 illustrates a counter example. In
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S

R
s4 10:22

s2 10:09
s1 9:50

r1 10:01
r2 10:10

r3 10:15

r4 10:18
r5 10:20

r7 10:24
r8 10:29s3 10:17

r6 10:21

s6 10:28
s5 10:25

Fig. 12.5 In this example from [26], object R follows object S from 10:01 to 10:20 and moves
together afterwards. Even though R follows S, s2 is not in the front region of r2

this example, r2 is heading downwards at 10:10, and s2 is apparently not in the front
region of r2. The definition of front region and the constraint on being in the front
region for k consecutive timestamps are too strict to make the method applicable on
real data.

Li et al. [26] propose a more relaxed definition of following pattern. Given
thresholds dmax and lmax , a location pair (ri , sj ) is said to be a following pair if
‖ ri − sj ‖< dmax and 0 < i − j ≤ lmax . By considering a following pair as a
matching, the problem can be mapped to local sequence alignment (LSA) problem.
Smith-Waterman algorithm [33] can be applied to find the longest following interval
(best local alignment).

However, experimental results show LSA is sensitive to the parameter dmax . To
address the problem, Li et al. [26] further propose the concept of local distance
minimizer. The intuition is that if object R is following S at timestamp i, then there
must exit a strictly positive integer �(i) such that ri is spatially close to si−�(i). In
fact, the distance between ri and S should be minimized locally at such �(i). Based
on the intuition, f (i) is defined as whether ri is following si at timestamp i:

f (i) =
⎧⎨⎩

1, if�(i) > 0 and ‖ri − si−�(i)‖ < dmax

0, if�(i) ≤ 0 and ‖ri − si−�(i)‖ < dmax

×, if‖ri − si−�(i)‖ ≥ dmax

Then the following interval [s, t] should make
∑t

s f (i) maximized. The problem
can be transformed to the well-known Maximum Sum Segment problem and all the
following intervals can be found in linear time.
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a b

Fig. 12.6 Social networks in reality mining dataset [10]. a shows the inferred weighted friendship
network, where the weights correspond to the relationship strengths. b shows the reported friendship
network

4.4 Semantic Patterns

The social structure of human is one of the fundamental questions in social sci-
ence. As traditional survey methods often suffer from its limited scale, Eagle
and Pentland [8, 10] propose a mobile sensing framework to use human mo-
bility data as indicators of human social network. The Reality Mining project
http://reality.media.mit.edu/ tracked the movement of 94 users for
one academic year and conducted survey about the relationships between those users.
The studies show that human mobility patterns strongly correlate with relationships
among people.

Figure 12.6 shows two social networks of all the participants in the study. Net-
work in Fig. 12.6a is constructed from mobility data and network in Fig. 12.6b is
constructed using survey data. These two networks inferred from different data show
similar structure. Such observation provides strong evidence that human movement
data reflects social relationship done by survey. Later in [9], Eagle and Pentland fur-
ther propose to use Principle Component Analysis (PCA) to extract representative
behaviors of an individual and of groups.
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Fig. 12.7 Meeting frequency for a friend and a non-friend pair in Reality Mining dataset [23]

Category Variables Description Co-location User mobility

Intensity
and
Duration

NumObservations The total number of observations of the user. √
NumColoc, NumColocEvening, Num-
ColocWeekend

The number of co-location observations of the two users, in total, in the
evening only, and on weekends only.

√

NumLocations, NumLocationsEvening,
NumLocationsWeekend

The number of distinct grid boxes where the user or users were observed, in
total, in the evening only, and on weekends only.

√ √

NumHours, NumWeekdays, NumDates The number of distinct hours of the day, days of the week, and calendar
dates that the two users were observed together.

√

ObservationTimeSpan The difference in seconds between the last and the first location or co-
location observation.

√ √

BoundingBoxArea The area of the minimal axis aligned rectangle that contains the
locations/co-location observations of the user/users.

√ √

Location
Diversity

AvgEntropy, MedEntropy, VarEntropy,
MinEntropy, MaxEntropy

The mean/median/variance/min/max of the location entropy at each
location/co-location observation of the user/users.

√ √

AvgFreq, MedFreq, VarFreq, MinFreq,
MaxFreq

The mean/median/variance/min/max of the location frequency at each
location/co-location observation of the user/users.

√ √

AvgUserCount, MedUserCount, VarUser-
Count, MinUserCount, MaxUserCount

The mean/median/variance/min/max of the location user count at each
location/co-location observation of the user/users.

√ √

Mobility
Regularity

SchEntropyL, SchEntropyLH, SchEn-
tropyLD, SchEntropyLHD

The schedule entropy of the user with respect to location, location and hour,
location and day of the week, and location and hour and day of the week.

√

SchSizeLH, SchSizeLD, SchSizeLHD The schedule size of the user with respect to location and hour, location and
day of the week, and location and hour and day of the week.

√

Specificity

AvgTFIDF, MinTFIDF, MaxTFIDF The mean/minimum/maximum of the location TFIDF at each co-location of
the two users.

√

PercentObservationsTogether The total number of co-locations of the two users divided by the sum of
each users total number of observations.

√

Structural
Properties

NumMutualNeighbors The number of people who have been co-located with both users. √
NeighborhoodOverlap The number of people who have been co-located with both users divided by

the number of people who have been co-located with either user.
√

LocationOverlap The total number of distinct places visited by both users divided by the total
number of places visited by either users.

√

Fig. 12.8 Names and descriptions of the mobility features used in [6]

The co-locating times could be a discriminative feature to indicate the semantic
relationships. Figure 12.7 shows the meeting frequency with respect to different days
of the week for a friend pair and for a non-friend pair in Reality Mining dataset. It
is shown in the figure that the friend pair meets more on the weekends, while the
non-friend pair meets more during the weekdays. Motivated by this observation,
Li et al. [23] propose to mine discriminative time intervals to classify whether two
people are friends. The discriminative interval, namely T-Motif, is the time interval
where there is a significant difference in meeting frequency between friend pairs and
non-friend pairs.

To study how interactions in mobility data correlate with friendships on social
networks, Cranshaw et al. [6] propose to build a supervised learning framework
using features extracted from mobility data to predict the online relationship. They
use a location sharing application based on user check-ins on Facebook to obtain the
mobility data from 489 users. Using the mobility data, they propose a set of features
as shown in Fig. 12.8. The features can be divided into four categories:
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• Intensity and Duration: These features quantify the duration and the number
of times that users engage in the system. This set of features includes number of
observations, number of co-location observations, time spent at each location.

• Location Diversity: These features aim to understand the context of all locations.
The features include location frequency and the location entropy. For a location
L, the location entropy is defined as Entropy(L) = −∑u∈U PL(u) log PL(u),
where U is the set of all users, and PL(u) is the probability for a user u being at
the location L.

• Specificity: These features measure whether two persons meet at locations where
less frequently visited by the public. The tf-idf score penalizes the popular places
that many people frequently visit.

• Structural Properties: These features aim to capture network property of two
users such as mutual neighbors and location overlaps.

The experimental results in [6] shows that using a variety of classification methods
such as random forests and support vector machines can achieve precision above
60 % in predicting the online relationships using the mobility features.

5 Aggregate Patterns over Multiple Trajectories

The aggregate patterns describe common paths shared by a set of trajectories or a
cluster of moving objects being spatially close for a long time. In this section, we
first introduce the trajectories patterns, which is a concise description of frequent
behaviors in terms of space and time. Then we will present the methods on mining
moving object clusters. Finally, we discuss trajectory clustering methods.

5.1 Frequent Trajectory Pattern Mining

A frequent trajectory pattern is a popular path repeated by many trajectories. Finding
frequent trajectory patterns is helpful in summarizing the historical trajectories and
predicting the future movements. A trajectory pattern [14] is used to describe a set of
individual trajectories visiting the same sequence of places with similar travel times.
In trajectory patterns, two notions are important: (1) the geographical locations and
(2) the travel time between locations.

If we assume the locations are already symbolized, frequent sequential pattern
[1] can be considered as a simplified trajectory pattern. For example, if many people
go from location X, to Y and then to Z, X → Y → Z will a frequent sequential
pattern. In order to enrich the sequential patterns with transition time information
between locations, Giannotti et al. [13] propose the temporally annotated sequences
(TAS). TAS has the following form:

T = s0
α1−→ s1

α2−→ · · · αn−→ sn,
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Fig. 12.9 Spatiotemporal containment of input sequence on trajectory pattern (x0, y0)
α1−→ (x1, y1)

[14]

where S = 〈s0, · · · , sn〉 are the elements in the sequence and A = 〈α1, · · · , αn〉 are

annotated transition time. With TAS, the pattern could be in the format of X
30 min−−−→

Y
20 min−−−→ Z.
Trajectory pattern [14] is defined in the same fashion of TAS where each element

in S should be a spatial location:

Definition 12.1 (T-pattern) A Trajectory pattern, called T-pattern, is a pair (S, A),
where S = 〈(x0, y0), · · · , (xk , yk)〉 is a sequence of points in R2, and A =
〈α1, · · · , αk〉 ∈ Rk+ is the temporal annotation of the sequence.

To judge whether a trajectory contains a trajectory pattern, Giannotti et al. [14]
propose a definition on spatiotemporal containment. In Fig. 12.9, input trajectory
sequence S1 . . . S5 contains trajectory pattern (x0, y0)

α1−→ (x1, y1), because for each
point (xi , yi) in trajectory pattern, there is a point in trajectory S that is close to it. For
example, point S3 is close to point (x1, y1) because it is in the spatial neighborhood
(i.e., N (x1, y1)) and also the time difference between (x1, y1) and S3 is less than
threshold τ . Many approaches can be used as a neighborhood function N ( · ). One
possible neighborhood function is to use the Regions-of-Interest (RoI) to naturally
partition the space into meaning areas. If prior knowledge is not available, RoI can
also be defined as the frequently visited locations/regions mined from the trajectories.
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The trajectory pattern mining problem consists of finding all frequent T-patterns,
such that

support(S, A) ≥ supmin,

where support(S, A) is the number of input trajectories containing the T-pattern
T (S, A) and the supmin is a minimum support threshold.

To mine frequent T-patterns, the method to mine temporally annotated sequences
(TAS) [13] can be applied if we first symbolize the locations using RoI. In [14], Gi-
annotti et al. further discuss how to dynamically identify the locations and transition
time in the pattern.

In [29], Monreale et al. propose WhereNext, a location prediction method using T-
Patterns. A decision tree, named T-pattern Tree, is built and evaluated in a supervised
learning framework. The tree is learned from theT-Patterns and it is used as a predictor
of the next location by finding the best matching path in the tree. Different from [17]
using individual frequent periodic pattern, as we discussed in Sect. 3, WhereNext
[29] uses the overall traffic flows to predict the next location.

5.2 Detection of Moving Object Cluster

Moving object clusters detect groups of moving objects being spatially close for a
considerably long time. Clusters of moving objects can reveal underlying communi-
ties, such as the social groups of animals or humans, and can also indirectly identify
outliers that do not conform to general group behaviors.

In this section, we will discuss patterns flock [15], convoy [18] and swarm [21].
A moving object cluster can be loosely defined as a set of moving objects being
spatially close for k timestamps. The differences among flock, convoy and swarm
lie in the definitions of “spatially close” and “k (non-)consecutive timestamps”.

Gudmundsson et al. [15] first propose the concept of flock.

Definition 12.2 (Flock) A set of moving objects O form a flock for timestamps T if
(1) for every timestamp in T , there is a disc with radius r containing all the objects
in O; and (2) T is consisted of at least k consecutive timestamps.

In Fig. 12.10, o3 and o4 form a flock since they are in the same disc from t1 to
t4. Since flock defines spatial constraint as a fixed-radius disc, such definition might
be too strict and is independent of data distribution. For example, at timestamp t1 in
Fig. 12.10, all the objects are in a density-connected cluster but using a disc may split
them into multiple clusters. To relax the rigid restriction on the disc-shape cluster,
Jeung et al. [18] proposes a new concept convoy to discover arbitrary-shape clusters.
Convoy uses DBSCAN [11] to cluster points in each timestamp. Two objects in a
cluster are density-connected to each other, if only there exists a sequence of objects
that connect them together. The definition of density-connected permits us to capture
a group of connected points with arbitrary shape.
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Fig. 12.10 An example of flock [15], convoy [18] and swarm [21]. If we set time constraint k = 3
(i.e., number of timestamps being spatially close), o3 and o4 form a flock since they are in a disc
for four consecutive timestamps. o1, o3 and o4 form a convoy since they are in the same density-
connected cluster for four consecutive timestamps. Swarm considers all these four objects as a
cluster since it treats o1 at t2 as a short deviation from the cluster

Table 12.3 Summary of moving object clusters

Pattern Spatial constraint Temporal constraint

Flock [15] Disc shape k consecutive timestamps
Convoy [18] Arbitrary shape k consecutive timestamps
Swarm [21] Arbitrary shape k (non-)consecutive timestamps

Definition 12.3 (Convoy) A set of moving objects O form a convoy for timestamps T

if (1) for every timestamp in T , all the objects in O are in the same density-connected
cluster; and (2) T is consisted of at least k consecutive timestamps.

In Fig. 12.10, three objects o1, o3 and o4 are in the same density-connected cluster
during the time interval [t1, t4]. Although the convoy model is much flexible than the
flock, the time constraint on k consecutive timestamps is still too strict. The moving
objects may temporarily leave the group. For example, o1 temporarily leaves the
group at t2. If we enforce the “consecutive” time constraint, o1 is not considered to
be in the same group with other objects. Motivated by this important observation,
Li et al. [21] propose the concept of swarm to relax the time constraint. Instead of
requiring the objects being in the same cluster for consecutive timestamps, swarm
allows the timestamps to be non-consecutive.

Definition 12.4 (Swarm) A set of moving objects O form a swarm for timestamps T

if (1) for every timestamp in T , all the objects in O are in the same density-connected
cluster; and (2) T is consisted of at least k timestamps that are not necessarily
consecutive.

In Fig. 12.10, we can see that all the objects form a group even though o1 tem-
porarily leaves the cluster at t2. Swarm is able to capture {o1, o2, o3, o4} as one cluster.

Table 12.3 summarizes the three different patterns: flock, convoy and swarm.
The definition of the swarm is the most flexible one in terms of the spatial and
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Fig. 12.11 Trajectory clustering example. Four trajectories are clustered into two clusters based on
trajectory similarity

temporal constraint. The time complexity of swarm is the also highest among three
patterns. Since it needs to enumerate every possible combination of objects, the time
complexity is O(2n), where n is the number of moving objects in dataset. But by
applying pruning rules on the search algorithm [21], swarm pattern mining is quite
efficient in real scenario.

5.3 Trajectory Clustering

Different from moving object clusters that detect clusters of objects and the cor-
responding time intervals that they are being together, trajectory clustering will
group (sub-)trajectories based on the overall trajectory similarity. Moving object
cluster mining is more suitable to answer questions such as “find a group of people
staying together for more than 2 hours”, whereas trajectory clustering can answer
questions like “group hurricane paths over years based on the trajectory similarity”.
Figure 12.11 illustrates an example of trajectory clustering. There are two clusters
based on trajectory similarity.

A typical clustering framework needs to consider two factors: (1) similarity mea-
sure and (2) clustering methods. As we discuss earlier in Sect. 4, the typical similarity
measures between two trajectories include Euclidean distance, Dynamic Time Warp-
ing and Longest Common Subsequence. And typical clustering methods include
K-Means, Hierarchical clustering and Gaussian Mixture Model.

Gaffney and Smyth [12] propose to cluster trajectories based on a probabilistic
modeling of trajectories. In probabilistic clustering, we assume that the data are
being generated in the following “generative” manner:

• An individual is drawn randomly from the population of interest.
• The individual has been assigned to cluster k with probability wk , sumK

k=1wk = 1.
These are the prior weights on the K clusters.
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Fig. 12.12 An example of trajectory clustering in the partition-and-group framework [19]

• Given that an individual belongs to cluster k, there is a density function fk(yj |θk)
which generates observed data yi for individual j .

From this generative model, the observed density on the y’s should be be a mixture
model, i.e., a linear combination of the component models:

P (yj |θ ) =
K∑
k

fk(yj |θk)wk.

In Gaussian mixture model, we will assume the generative models θk as Gaussian
models. In Gaffney et al. [12], they assume the data is generated as mixtures of
regression models, where we have measurements y which are a function of x and
the density function becomes fk(y|x, θk). Here x represents time, y represents the
locations of object and θk is the regression model of y on x. The parameters in gener-
ative models can be estimated using the Expectation-Maximization (EM) algorithm.
Experimental results [12] show that the proposed linear regression model performs
slightly better than Gaussian mixture model. The difference becomes more obvi-
ous with higher standard deviation in data generation. Both mixture model methods
perform much better than K-means.

In some applications, people are interested in discovering similar portions of
trajectories. For example, meteorologists will be interested in the common behaviors
of hurricanes near the coastline (i.e., at the time of landing) or at sea (i.e., before
landing). To cluster sub-trajectories, Lee et al. [19] propose a partition-and-group
framework named as TRACLUS as shown in Fig. 12.12. There are three steps in
TRACLUS.

1. Partitioning: in this step, each trajectory is partitioned into a set of line segment
based on characteristic points. A characteristic point is a point where the behavior
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of a trajectory changes. The minimum description length (MDL) principle is
adopted in this process.

2. Grouping: using given distance measure trajectory segments that are close to each
other are grouped into a cluster. Density-based clustering algorithm is used in this
process, which allows clusters in TRACULAS have any size and shape.

3. Representing: derive a representative trajectory for each cluster. The purpose of
this representative trajectory is to describe the overall movement of the trajectory
partitions that belong to the cluster.

An important step in TRACLUS is to partition a trajectory into sub-trajectories. By
clustering sub-trajectories instead of the whole trajectories, we are able to discover
the common paths shared by different sub-trajectories.

6 Summary

This chapter discusses many interesting state-of-the-art methods of spatiotemporal
pattern mining. Discovery of spatiotemporal patterns can benefit various appli-
cations, such as ecological studies, traffic planning and social network analysis.
We categorize the patterns as individual periodic patterns, pairwise patterns, and
aggregate patterns over multiple trajectories.

As the collection of spatiotemporal data becomes easier and popular, spatiotempo-
ral data mining is a promising research area with a lot of potential interesting research
topics. There are still many challenging issues have not been well addressed by cur-
rent methods, such as sparsity, uncertainties and noises in the data. It is also important
to consider the spatial semantics (e.g., point of interest information) and constraints
(e.g., road network and landscapes). So we could better understand the semantic
meanings of the patterns. Finally, it will be interesting to consider human factor in
the mining process and make the mining process more interactive and informative.
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