Dataset Selection

Data in the format of (id, longitude, latitude, time). Most are real animal movement data from MoveBank.org.

Visualize in Google Earth

Google earth can simulate movements with temporal information; window will pop-out.

Interface

Function Details

Trajectory Clustering (SIGMOD’07)

Trajectory clustering focuses more on the geometric information of movements. It discovers the clusters of sub-trajectories.

Swarm Pattern (submitted) v.s. Convoy Pattern

Both swarm and convoy patterns are trying to find the moving objects that move together. Two moving objects are considered “together” at one timestamp if they belong to the same cluster at that timestamp. The goal of convoy is to find objects that move together for at least \(k \) consecutive times. Swarm, which is more practical in real application, tries to discover the objects that are close for \(\min_t \) non-consecutive times. Technique challenge for swarm mining is the exponential search space up to \(2^{\# \text{of objects}} \times 2^{\# \text{of timestamps}} \).

Visualization

Raw data visualization (each color represents one moving object); Mining results visualizations.

Text Message

Dataset properties; results.

External Links

More about the demo and about us.

Motivation

With the maturity of tracking technologies, increasing amounts of movement data become widely available, such as vehicles, animals, climate, and human movement data. MoveMine, is designed for sophisticated moving object data mining by integrating several useful functions including pattern mining and trajectory mining using the state-of-the-art techniques. Our system is tested on various real movement data sets, such as those provided by MoveBank.org (an international organization of biologists). It will benefit people to carry out versatile analysis on these kinds of data.

Step 1: Detect the regions that are frequently visited (reference spot).

Step 2: Detect periods for each reference spot.

Step 3: Summarize periodic behavior.

Visualization

Raw data visualization (each color represents one moving object); Mining results visualizations.

Text Message

Dataset properties; results.

External Links

More about the demo and about us.

Reference

Zhenhui Jessie Li, Ming Ji, Lu-An Tang, Yintao Yu, Jiawei Han.

University of Illinois at Urbana-Champaign

Jae-Gil Lee, IBM Almaden

Roland Kays, New York State Museum

Director of MoveBank.org

Periodic Pattern (KDD’10)

Periodicity is a frequently happening phenomenon for moving objects. Finding periodic patterns is difficult due to the fact that each timestamp is associated with a 2D spatial point as well as the noisy, sparse and uncertain nature of the data.

Vertical Clustering

Combine Fourier Transform and auto-correlation to find that periodicity.

Step 1: Detect the regions that are frequently visited (reference spot).

Step 2: Detect periods for each reference spot.

Step 3: Summarize periodic behavior.

Step 2: Detect periods for each reference spot.

Periodic behavior:

- Periodic pattern
- Convoy pattern

Visualization

Raw data visualization (each color represents one moving object); Mining results visualizations.

Text Message

Dataset properties; results.

External Links

More about the demo and about us.

Reference

Step 3: Summarize periodic behavior.

Periodic behavior:

- Periodic pattern
- Convoy pattern

Visualization

Raw data visualization (each color represents one moving object); Mining results visualizations.

Text Message

Dataset properties; results.

External Links

More about the demo and about us.

Reference

Swarm: Mining Moving Object Clusters, In Submission.

Reference

Discovery of Convoys in Trajectory Databases, PVLDB, 2008.