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Abstract. The wide use of GPS sensors in smart phones encourages
people to record their personal trajectories and share them with others
in the Internet. A recommendation service is needed to help people pro-
cess the large quantity of trajectories and select potentially interesting
ones. The GPS trace data is a new format of information and few works
focus on building user preference profiles on it. In this work we proposed
a trajectory recommendation framework and developed three recommen-
dation methods, namely, Activity-Based Recommendation (ABR), GPS-
Based Recommendation (GBR) and Hybrid Recommendation. The ABR
recommends trajectories purely relying on activity tags. For GBR, we
proposed a generative model to construct user profiles based on GPS
traces. The Hybrid recommendation combines the ABR and GBR. We
finally conducted extensive experiments to evaluate these proposed solu-
tions and it turned out the hybrid solution displays the best performance.

1 Introduction

With the rapid development of mobile devices, wireless networks and Web 2.0
technology, a number of location-based sharing services, e.g., Foursquare1, Face-
book Place2, Everytrail3 and GPSXchange4, have emerged in recent years. Among
them, Everytrail and GPSXchange are particularly unique because they allow
users to share their outdoor experiences by uploading GPS trajectory data of
various outdoor activities, e.g., hiking and biking. By sharing trajectory infor-
mation, these Web 2.0 sites provide excellent resources for their users to plan or
explore outdoor activities of interests.

The rich amount of trajectories available in those web sites brings significant
challenges for users to find what they search for. Also, different from conven-
tional items with enrich texts, it is difficult to judge whether the trajectory is
interesting or not based on the activity tag or GPS raw data. Therefore, in order
to automatically discover interesting trajectories, a trajectory recommendation
service is highly desirable.

1 http://www.foursquare.com
2 http://www.facebook.com/places/
3 http://www.everytrail.com
4 http://www.gpsxchange.com/
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Conventional collaborative filtering (CF) techniques do not fit the problem
trajectory recommendation. The CF requires people to access the same items to
compute user interest similarity. However, in trajectory sharing website, there are
no two people who generate exactly the same trajectory and the user similarity
can not be calculated by “accessing the same item”.

In this work, we explore the ideas of content-based recommendation tech-
niques [1, 8, 13]. We consider two types of trajectory “content”, activity tags and
GPS points. The activitiy tags, such as hiking or biking, are annotated by the
users themselves. The trajectory is represented as a sequence of GPS points with
corresponding time stamps.

Recommendation based on tags is named as activity-based recommendation
(ABR), which utilizes the tag content (if available) to make trajectory recom-
mendation. Since the tags are manually labeled by the creator, they can be
treated as a good feature for a trajectory. Unfortunately, activity tags are not
always available for a GPS trajectory. In the Everytrail data we collected, about
12.61% of the trajectories do not have tags. Additionally, ABR may not be able
to make recommendation if there are too many candidates with the same tag.
For example, in our collected data, 14% of all tagged trajectories, are tagged
with “hiking”. One intuitive solution would be using geographical region as a
filtering to eliminate infeasible candidates. However, it does not really solve the
problem. For example, after constraining the search result into “San Fran”, we
still found 96 hiking trajectories in the collected Everytrail dataset. Finally, tra-
jectories with the same tag may have different moving patterns, which the ABR
is unable to capture. Let’s consider two hiking fans. The first one likes to take a
gentle walk so she can take a lot of photographs but the other one treats hiking
as a physical exercise. Naturally, the two trajectories, although both labeled as
“hiking”, may contain very different features, which ABR fails to capture.

Considering these weak points of ABR discussed above, we also exploit the
sampled points in GPS trajectories for recommendation and call the proposed
technique GPS based recommendation (GBR). The raw GPS data contains plen-
tiful movement information (e.g., speed, change of speed, etc.), which captures
the user’s outdoor experiences implicitly. For example, techniques for using raw
GPS data to infer the transportation modes (e.g., taking bus, taking subway, bik-
ing and walking) of trajectories have been studied [22, 21, 17, 18, 7, 6]. However,
these techniques are not applicable to our trajectory recommendation service
since we aim to capture users’ moving habits and use them to differentiate the
trajectories of the same activity type. Take the example of hiking fans mentioned
earlier, existing techniques can only classify them as “hiking”. However, what
a recommender system needs are more personalized moving habits, e.g., gentle
walking or intense trotting. We argue that such information is embedded in GPS
data and we aim to mine them out to facilitate trajectory recommendation.

The rest of the paper is organized as follows. Section 2 formally defines the
problem, introduces ABR and reviews the related work. Section 3 and 4 re-
spectively detail the GPS feature extraction and the generative model in GBR.
Section 5 presents the evaluation of our proposed solutions. Finally, Section 6
concludes the paper.



Mining GPS for Traj. Rec. 3

2 Preliminaries

In this section, we first formally introduce the trajectory recommendation prob-
lem and discuss the sub-tasks to tackle the proposed problem. Then we provide
a comprehensive literature review on recommendation and trajectory related
research work.

2.1 Problem Formulation

A trajectory consists of two parts, i.e., an activity tag (could be absent) and
a raw GPS trace. Formally, a trajectory is represented as T = 〈a, TG〉, where
a ∈ {”hiking”, ”biking”, · · · , ”null”} denotes the activity tag and TG stands for
the raw GPS trace.

The GPS trace is obtained via GPS sensor which sampled the moving object’s
current location together with the sampled time stamp. Thus the original format
is a series of triple tuples defined below.

Definition 1 (Raw GPS Trace) A GPS trace TG = {pt1, · · · , ptn} is defined
as a series of sample points, pti = 〈xi, yi, ti〉 where xi, yi represent the latitude
and longitude of the ith point and ti stands for the time stamp.

The recommendation problem is to find a subset of candidate trajectories
that could be of interest to an active user. More formally, given a collection of
trajectories S = {T1, · · · , Tn} and a person u, recommendation needs to find
k trajectories S′ = {Tr1, · · · , Trk} that u is most interested in. Suppose we
have a ranking function Score(T, u) that can compute the “interest degree” of
a trajectory to a user, the recommendation can be formulated as follows.

Definition 2 (Top-k Trajectory Recommendation) Given a trajectory set
S = {T1, · · · , Tn}, the recommendation service for user u needs to find a subset
of k trajectories S′ = {Tr1, · · · , Trk} so that ∀Ti ∈ S − S′, we have

Score(Ti, u) ≤ min
Tj∈S′

Score(Tj , u) (1)

The above definition reveals three problems for trajectory recommendation.
The first two problems are how to represent the trajectory (Feature Extraction)
and the user (User Profile Modeling) in a proper way to facilitate the computa-
tion of a ranking score. And the final one is how to design an effective ranking
function Score(T, u) to measure the “interest degree”.

2.2 Activity-based Recommendation

The ABR tries capturing a person’s activity preferences based on her previously
shared trajectories. This preference to different activities is represented as a series
of probabilities, whose values are obtained by maximizing the joint probability
of observed data.

Let A = {a1, · · · , an} denote the collection of all activity tags and pi, 1 ≤ i ≤
n denote the probability that the user u is interested in activity ai. Obviously
∑n

i=1 pi = 1. For the user’s previously published trajectories, the activity tags
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are X = {x1, · · · , xm} where xj ∈ A, 1 ≤ j ≤ m. X is the observed data for the
user and the solution is to guess the user’s preference, or exactly the value of pi
based on these experiences. We assume that the instance xj ∈ X is independent
of each other and the probability of observing X is given in Equation (2).

P (X |p1, · · · , pm) =

m
∏

j=1

P (xj |p1, · · · , pm) =

m
∏

j=1

n
∑

i=1

pi · 1xj=ai
=

n
∏

i=1

pni

i (2)

where ni represents the number of trajectories that is tagged with ai in X .
To learn the value of pi, we need to maximize the Equation (2) under the con-

straint that the sum of all probabilities is equal to 1, i.e., the objective function
as shown in Equation (3).

L(p1, · · · , pn) = logP (X |p1, · · · , pn)+λ(1−
n
∑

i=1

pi) =

n
∑

i=1

ni log pi+λ(1−
n
∑

i=1

pi)

(3)
where λ is a Lagrange multiplier.

The objective function is solved by setting each partial differential ∂L
∂pi

to 0.

For ABR, the ranking function is thus defined as:

Scoreabr(T, u) = log

n
∑

i=1

pi · 1T.activity=pi
pi =

ni
∑n

j=1 nj

(4)

2.3 Related Work

Due to the wide use of GPS-equipped smart phones, much attention is focused
on the use of the trajectory data to improve people’s life, among which trans-
portation mode detection is most related to our work.

Zheng et. al. [21, 22] collected 47 people’s GPS data and compared differ-
ent machine learning techniques to classify transportation modes. The methods
however can not be used for recommendation. Trajectory recommendation re-
quires to give a ranking score to each candidate trajectory while classification
algorithms, e.g., decision tree, can only output binary values. In [17, 18], Reddy
et. al. compared and even ranked different types of trajectory features. One of
the most important features in their work is the instant acceleration recorded
by accelerometer. This information is usually unavailable for common trajectory
information since most of the smart phones are not equipped with accelerome-
ter. In [6, 7], different trajectories of moving objects, including eye-tracking, are
collected for transportation mode classification.

Trajectories contain plenty of valuable information. Previous classification
works explored different types of features that can well capture the trajectory
modes. However they did not pay attention to user’s moving habit that is also
contained in trajectory data. Li et. al. [10, 11] tries to mine moving patterns from
GPS data of animals. GPS data in our case are records of a person’s trips that
happen at different places and few of them overlap with each other. Therefore
no periodic patterns can be mined out of such “scattered” data. In [9, 14, 15],
Discrete Fourier Transformation is also used to extract features from trajectory
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data. However, their goal is for clustering, which is quite straightforward with
the extracted data. Our work is to develop generative model based on these
features to learn user moving habits for recommendation.

Other works related to recommendation are based on semantic information
of trajectory [3, 4, 20]. These works treats trajectory as a sequence of ”meaning-
ful places” and use the semantic information of the locations, e.g., restaurant,
shopping centers.In our case, trajectories do not have semantic tags. Further-
more, not all trajectories contain meaningful locations. For example, a hiking
trajectory is unlikely to pass places such as restaurant, shopping center.

3 GPS Feature Extraction

In this section we focus on extracting features from GPS data. Specifically, we
introduce two types of features, i.e., partial-view feature (PVF) and entire-view
feature (EVF). The PVF mainly consists of physic values such as speed, velocity,
etc., and is easy to understand.

Specifically, given a trajectory’s raw GPS data, average velocity, average
acceleration and other physical measurements can be easily computed and they
represent some characteristics of that trajectory. In this work, the PVF contains
the total length of trajectory Len, the total time of the trajectory Time and
top-pf1 maximum velocity V̂1, · · · , V̂pf1 and top-pf2 acceleration Â1, · · · , Âpf2 .

The EVF tries to capture the global features and is harder to understand
semantically. We adopt Discrete Fourier Transform (DFT) to transform the GPS
data and a discussion is provided in Section 3.2.

3.1 Entire-view Feature

Before applying DFT on GPS, there are two issues need to be addressed. Firstly,
different trajectories may have different lengths, i.e., different number of sam-
pling points. If we take the whole GPS trace as input, DFT will generate features
that have different dimensions. This situation makes it difficult to compare two
trajectories as they might be in different frequency spectrums. Secondly, there
are three kinds of signals that can be obtained from GPS traces, i.e., distance sig-
nal, velocity signal and acceleration signal. We need to decide which one should
be used as DFT input.

For the first problem, a sliding window of fixed size is used to split the GPS
trace into several segments. DFT coefficients of these segments are then refined to
form a GPS feature of the same size. This processing method is similar to music
compression and classification [12, 16]. As for the second problem, we choose
speed signal because i) it suffers less impact of sampling rates than the distance
signal and ii) it is more accurate in reflecting the moving status than acceleration
signal. Given two trajectories which have the same sampled data points (i.e.,
latitude, longitude and the number of points) except for the time stamp, the
DFT features will be same. However, the moving status for the two trajectories
could be quite different if the sampling rates are not the same. The speed series
can avoid this weakness. Also, note that the acceleration signal is converted from
the velocity signal under the assumption that the object is moving at a constant
acceleration between two sampled points. Each manipulation of the GPS data,
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e.g., linear interpolation, converting to distance signal etc., may introduce some
errors. Therefore the velocity signal is better than the acceleration signal in
terms of accuracy.

A final feature of size ws× r is obtained by keeping the top-r max value for
each dimension. The process is both shown in Figure 1. The use of overlapping
window is to mitigate the “loss” at the edges of the window5. The refined value
r is to mitigate the impact of path condition. because extreme cases are usually
free of road limitation. For example, if it is found that a user drove 35 miles
per hour for some segment while 25 miles per hour for other. The it is more
reasonable to believe that the speed 35 mph is more likely to represent the
user’s habit instead of 25 mph.

Trajectory

Speed Signal

DFT

DFT

DFT

Segment 1

Segment 2

Segment m

Entire-view Feature

Frequency 

Spectrum

Overlap

Ratio  

Sliding 

Window ws

...

Refine r Refine r

Interpolation

Time unit tu

Raw GPS 

Data

Fig. 1. Illustration of EVF extraction.
Four parameters, interpolation time
unit tu, window size ws, overlap ratio
α and refine value r, are involved.
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Fig. 2. Illustration of feature meaning.

3.2 Discussion of the Entire-view Feature

The basic waves have two components, i.e., frequency and amplitude. The fre-
quency indicates the intensity of speed change. That is, lower frequency suggests
that the moving is smoother while higher one means the moving object frequently
changes its speed. The amplitude of the wave reflects the strength of a signal, or
exactly, the absolute value of the speed. We use the example shown in Figure 2
to illustrate this point.

As shown in Figure 2(a), the speed signal of two trajectories are drawn. It
is easily seen that the trajectories are quite different. Firstly, trajectory 1 has a
smaller speed than trajectory 2. Also, the signal of trajectory 2 is smooth while
the speed of trajectory 1 suffers frequent change. Figure 2(b) displays the result
of DFT. Trajectory 2’s amplitudes are bigger than that of Trajectory 1, corre-
sponding to its original bigger speed. Furthermore, the frequency of trajectory

5 http://en.wikipedia.org/wiki/Window function#Overlapping windows
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1 lies mainly in higher spectrum while that of trajectory 2 in lower part. This
is consistent with the change of their original speed signal where low frequency
reflects smooth signal and high frequency corresponds to intense change.

4 User Profile Modeling and Trajectory Ranking

In this section we formally define the proposed generative model and introduce
the designed ranking functions.

4.1 Generative Model

Formally, suppose a person u has k latent habits z = {z1, · · · , zk} which sat-
isfies some distribution. For each habit zi, there are n groups of parameters
〈µi

1, σ
i
1〉, · · · , 〈µ

i
n, σ

i
n〉 corresponding to each dimension of trajectory feature.

For each dimension, we assume that the value follows a Gaussian distribution
N (µi

j , σ
i
j) with mean µi

j and standard variance σi
j . The generative model works

as follows. The person u first chooses a latent habit zk with probability πk.
Then this habit generates the amplitude for each frequency in the feature space,
which is determined by a Gaussian distribution. The generated feature finally
constructs a trajectory.

Given a set of trajectories S = {T1, · · · ,TN}, where Ti = 〈f i
1, · · · , f

i
n〉 is a

trajectory with n features. If all trajectories in S is known to be generated by
the person u, then the parameters θ = {π, µ, σ} can be learned by maximizing
the following log-likelihood function:

L(θ) = logP (S|θ)+λ(

k
∑

i=1

πi−1) =

N
∑

i=1

k
∑

j=1

τij(log πj+

n
∑

m=1

logG(·))+λ(

k
∑

i=1

πi−1)

(5)

where G(f i
m, µj

m, σj
m) = 1√

2πσj
m

e
− (fi

m−µ
j
m)2

2(σ
j
m)2 is the probability of value f i

m for

Gaussian distribution N (µj
m, σj

m), λ is the Lagrange multiplier and τij is an
indicator function whose value is 1 if and only if the trajectory Ti is generated
by habit zj .

We use EM algorithm [5] to solve this problem. In the following, let θ(t)
denote the values of parameters at tth iteration.

E-Step

E[τij ] =
P (Ti|zj)P (zj)

∑k
m=1 P (Ti|zm)P (zm)

=

∏n

d=1 G(f
i
d, µ

j
d(t− 1), σj

d(t− 1))π
(t−1)
j

∑k

m=1

∏n

d=1 G(f
i
d, µ

m
d (t− 1), σm

d (t− 1))π
(t−1)
m

(6)

M-Step

π
(t)
j =

∑N

i=1 E[τij ]
∑N

i=1

∑k
m=1 E[τim]

µj
m(t) =

∑N

i=1 E[τij ]f
i
m

∑N

i=1 E[τij ]
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σj
m(t) =

√

√

√

√

∑N

i=1 E[τij ](µ
j
m(t)− f i

m)2
∑N

i=1 E[τij ]

4.2 Ranking Function

We provide two ranking functions, of which one is developed from the generative
model and the other is hybrid of ABR and GBR.

The generative model discussed above captures the user’s moving habit and
can then be used for recommendation. Each user has a profile expressing her
latent habits 〈z1, · · · , zk〉 with probability 〈π1, · · · , πk〉. For each habit zi, there
is a n-dimension Gaussian distribution {〈µ1, σ1〉, · · · , 〈µn, σn〉}. The ranking of
a trajectory to a given user’s profile is to compute the probability that the
trajectory is generated by that user. More specifically, for a trajectory T =
〈f1, · · · , fn〉, its ranking score is computed below.

Scoregm(T, u) = logP (T |u) = log

k
∑

i=1

P (T |zi)P (zi) = log

k
∑

i=1

πi

n
∏

j=1

G(fj , µj , σj)

(7)
The probability P (u) is omitted since it is a constant to all candidate trajectories.

The ABR introduced in Section 2.2 is aware of a person’s historical activities
but can not distinguish two trajectories with the same activity. On the other
hand, the GBR described in Section 4 ranks trajectories purely based on its
GPS data and the user profile. In other words, it gives different ranking scores
to trajectories disregarding their activity tags. Therefore it indicates a poten-
tial improvement when the two methods are combined. Equation (8) shows the
hybrid ranking function that merges the two recommendation methods.

Scorehybrid(T, u) = (1− λ)Scoregm(T, u) + λScoreabr(T, u) (8)

where 0 ≤ λ ≤ 1 is a balance parameter adjusting the weight of the two sep-
arate ranking scores. Note that when λ = 0 the hybrid ranking becomes pure
generative model and λ = 1 reduces the method to pure ABR.

5 Evaluation

All the experiments are based on a real data set collected from Everytrail. Ev-
erytrail is a trajectory sharing website encouraging people to publish their trip
trajectories recorded by the smart phones. Each trajectory may also be associ-
ated with an activity tag, e.g., hiking, road biking, driving and so on. We crawled
the website from June 05, 2010 to August 07, 2010 and obtains 8,444 users and
63,760 trajectories in total.

5.1 Data Preparation

Because the trajectory data is uploaded by different people and there is no
strict examination, the raw data contains much noise for mining. We take the
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Fig. 3. Parameter Tuning for the EVF

following steps to clean the data. Firstly, all untagged trajectories are removed
to guarantee a fair comparison of ABR and GBR. Also, we removed trajectories
which have “illegal” GPS traces, defined as those i) whose sampled time stamp
are not monotone increasing ii) whose total time length is less than 300 seconds.
Finally, users whose shared trajectories are less than 20 are removed since small
sample may hurt the model accuracy and thus the recommendation performance.
After this preprocessing, there are 252 users and 9,120 trajectories remaining.

For each user in the preprocessed data, we randomly masked 20% of her
trajectories. These masked data serve as the test data to evaluate our proposed
recommendation methods and the remaining part is used as training data to
build the user’s profile. Furthermore precision and recall are metrics used to
evaluate the recommendation performance.

5.2 Parameter Tuning for Entire-view Feature

Figure 3 shows the tuning process for the remaining parameters, where ws ranges
from 8 to 128, α from 0.1 to 0.8 and r from 1 to 3. Also, the optimal configuration
for different r is highlighted in the figure. As is shown, best performance is
achieved when the feature dimension is 64, the overlapping window percentage
is 30% and the refined window size is 3.

Figure 4 shows experiments on time unit tu which varies from 3 seconds
to 20 seconds. It can be seen that the time unit should be neither too small
nor too large. For a small time unit, many pseudo points have to be added via
linear interpolation and it may introduce too many errors. On the other hand, a
big time unit may discard some true sample points, which may miss important
information. Judging from the result, tu is properly set to 5 seconds.

Finally Figure 5 shows the tuning of λ for hybrid recommendation. Note that
when λ = 0 the method is reduced to the ABR and when λ = 1 it is equivalent
to the GBR. Based on the result we set λ to 0.9 for the rest experiments.
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5.3 Comparison of Different Features

After determining the optimal configuration of EVF, we compare its recommen-
dation performance with two other features, namely, partial-view feature (PVF)
and combined feature. The PVF, as introduced in Section 3, consists of top-pf1
maximum velocity, top-pf2 acceleration, the length and time of the trajectory.
In the empirical study, the best performance of PVF is obtained when both pf1
and pf2 are set to 3. Combined feature is the combination of the two types of
features. As is seen in Figure 6, the combined feature outperforms the other two
in terms of both precision and recall, especially for top-1 recommendation. This
scenario proves our earlier argument that these two types of features represent
different aspects of a trajectory. The PVF aims to capture the locally extreme
characteristics while the EVF places more emphasis on the global picture of
a trajectory. They are complimentary to each other and can achieve the best
performance when combined together.
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Fig. 6. Feature Comparison

1 5 10 20 50
0

0.1

0.2

0.3

0.4

0.5

0.6

N

P
re

ci
si

on
 @

 N

SVM
MS
MAS
ABR
GM
Hybrid

(a) Precision

1 5 10 20 50
0

0.1

0.2

0.3

0.4

0.5

0.6

N

R
ec

al
l @

 N

SVM
MS
MAS
ABR
GM
Hybrid

(b) Recall
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5.4 Comparison of Different Recommendation Approaches

In this set of experiment, we evaluate the performance of the proposed recom-
mendation methods, i.e., ABR in Section 2.2, GBR in Section 4 and Hybrid
Recommendation where the λ is set to 0.9. We also include several baseline
methods for comparison. The details of them are listed below.

– Support Vector Machine (SVM)6. The SVM treats each user as a class and
all the trajectories’ combined features as training data. Then each candidate
trajectory will be assigned a series of probabilities indicating how likely it
belongs to each class (user). These values are thus treated as ranking scores.

6 In this experiment we used LIBSVM [2]
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– Maximum Similarity (MS). This method computes the cosine similarity of
the candidate trajectory’s combined feature to each of those uploaded by the
user and uses the maximum one as its score.

– Maximum Average Similarity (MAS). This method computes a centroid for
a collection of feature vectors of the user’s trajectories. Ranking score is
then determined by computing the cosine similarity between the candidate
trajectory to this centroid.

The MS and MAS can also be treated as an variant of item-based recommen-
dation [19]. Note that the above baselines share the same features (i.e., GPS
combined features) with our proposed GBR but adopt different approaches for
user-profile modeling and trajectory ranking. To distinguish the difference, we
use generative model (GM) to denote our proposed GBR.

The experiment results are shown in Figure 7. It is easily seen that the
generative model outperforms other methods that use GPS feature. These rec-
ommendation methods, SVM, MS, MAS, are solely based on user’s previous
trajectories and thus may be too biased to history data. The generative model,
instead of limiting to the data, tries to learn the users’ hidden moving pattern
and thus can achieve higher precision. ABR is the only method that relies on
the tag of the trajectory. In Figure 7, its performance, in terms of both precision
and recall, is worse than GM except for N = 50. As mentioned in Section 1,
this method can not distinguish trajectories of the same activity. This explains
its low precision and recall when N is small. The performance improvement for
bigger N , however, suggests a user’s concentration on the number of different
trajectory’s activities. Finally, the hybrid recommendation, which combines the
ranking functions of ABR and GM, shows the best performance. The ABR is
aware of a person’s historical activities but can not distinguish two trajecto-
ries with the same activity. On the other hand, the proposed generative model
ranks trajectories without any knowledge of their activities. The hybrid recom-
mendation method integrates both of their advantages, taking care of textual
information and the GPS traces. It can thus not only narrow down the range
of candidate trajectories but also distinguish those with the same activity tag.
This explains why the hybrid approach displays the best performance.

6 Conclusion

In this paper we studied the problem of trajectory recommendation. Each trajec-
tory usually consists a GPS trace and may contain an activity tag. A recommen-
dation service is supposed to find potentially interesting trajectories and push
them to particular people. We proposed a recommendation framework and divide
the task into three subproblems, i.e., feature extraction, user profile modeling
and trajectory ranking. Under this framework, we developed three recommen-
dation methods, namely, Activity-Based Recommendation (ABR), GPS-Based
Recommendation (GBR) and Hybrid recommendation. We conduct extensive
experiments to evaluate our solutions. For GPS feature, it is shown that the
combination of partial-view feature and entire-view feature achieves best per-
formance. As for the recommendation approach, the hybrid one that combines
ABR and GBR obtains highest precision and recall. In future work, we will focus
on ways of integrating travelogues, if available, into recommendation methods.
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