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Abstract

Trajectory clustering has played a crucial role in data analysis sinceeiailev
underlying trends of moving objects. Due to their sequential nature, toayedata
are often receivethcrementally e.g., continuous new points reported by GPS sys-
tem. However, since existing trajectory clustering algorithms are dewelfmwe
static datasets, they are not suitable for incremental clustering with the iiofjow
two requirements. First, clustering should be processed efficiently ginaa be
frequently requested. Second, huge amounts of trajectory data emastbmmo-
dated, as they will accumulate constantly.

An incremental clustering framework for trajectoriessproposed in this paper.
It contains two parts: online micro-cluster maintenance and offline melaster
creation. For online part, when a new bunch of trajectories arrives) gajec-
tory is simplified into a set of directed line segments in order to find clusters of
trajectory subparts. Micro-clusters are used to store compact suesnedrsimi-
lar trajectory line segments, which take much smaller space than raw tragscto
When new data are added, micro-clusters are updated incrementalfiett tiee
changes. For offline part, when a user requests to see currentricigstesult,
macro-clustering is performed on the set of micro-clusters rathemthati trajec-
tories over the whole time span. Since the number of micro-clusters is sihalfe
that of original trajectories, macro-clusters are generated efficiensigdw clus-
tering result of trajectories. Experimental results on both synthetic arldiaga
sets show that our framework achieves high efficiency as well as higtedng

quality.

1 Introduction

In recent years, the collection of trajectory data has becomreasingly common.
GPS chips implanted in animals have enabled scientistati their study objects as
they travel. RFID technology installed in vehicles has ésadliraffic officers to track

road traffic in real-time. With such data, trajectory clusteg is a very useful task. It
discovers movement patterns that help analysts see owemadls in the trajectories.
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are those of the authors and do not necessarily reflect thes aéthe funding agencies.



For example, analysis of bird feeding and nesting habits isortant task. With the
help of GPS, scientists can tag and track birds as they flynardBuch tracking devices
report the trajectories of animals on a continual basig,(every minute, every hour).
With such data, scientists can study the movement habéts ttajectory clusters) of
birds.

One important property with tracking application is fherementalnature of the
data. The data will grow to be in huge size as time goes by. iGenthe following real
case of moving vehicle data which is used in experiment evialn.

Example 1 A taxi tracking system tracks the real-time locations of entbran 5,000
taxis in San Francisco. With the sensor installed on each the system is able to
receive information about current location(longitude datitude) of each taxi with a
precise timestamp. The system accumulates the updatecedata minute. After a
single day, the system will collect totally 7.2 million piginvith 1,440 points for each
taxi. After a week, the number of points will be accumulatesiCt.4 million points.

For static data sets, there are many existing trajectorsteling algorithms de-
veloped. However, to the best of our knowledge, none of thengeted at solving
clustering problem for incremental huge trajectory data@ated out in Example 1.
Gaffneyet al.[9, 8] proposed a probabilistic clustering technique fajectories. The
problem with this statistical approach is that it consideafectories as a whole. But in
the real cases, one trajectory can be very long and comgtieghile subparts of differ-
ent trajectories may share similar paths. These commors patub-trajectories could
be interesting trajectory clusters. Letal.[13] proposed a trajectory clustering algo-
rithm TRACLUS based on the partition-and-group frameworkis is the first work
that mines clusters from a sequence of sub-trajectoriefirsitpartitions trajectories
into several line segments with least information lossntgeup them into clusters.
The followed work of Leeet al.[12, 11] on trajectory outliers detection and trajectory
classification based on the idea of sub-trajectories shbaitsittis necessary and im-
portant to mine interesting knowledge on partial trajeewrather than on the whole
trajectories. However, neither of these algorithms is adleandle the case when the
input data is continuously updated since they require tinepdete input data be avail-
able.

Facing continuous data, previous methods will take long tioretrieve all the data
and re-compute the trajectory cluster over the whole hute . If the users want to
track real-time clusters every hour, it is almost imposstblfinish computation within
the time period threshold, especially considering the siagstill keeps growing every
minute. Therefore, trajectory data must be accommodatadrmentally.

An important point to notice is thatew data will only affect local shiftslt will
not have big influence on clusters in the areas which are fay d&em the local area
of new data. So, a more sensible approach to accommodateanmént of data is
to maintain and adjusnicro-clustersof the trajectory data. Micro-clusters are tight
clusters over small local regions. Due to their small sizlesy are more flexible to
changes in the data source. Yet they still achieve the dksjrace savings of clusters by
summarizing extremely similar input trajectories. Thesgpprties make them suitable
for incremental clustering.

This work proposes aimcremental Fajectory Qustering using Ntro- and Macro-
clusteringframework called TCMM. It makes the following contribut®towards an
incremental trajectory clustering solution. First, tcdgies are simplified by partition-
ing into line segments to find the clusters of sub-trajee®rBecond, micro-clusters of



the partitioned trajectories are computed and maintainee@mentally. Micro-clusters
hold and summarize similar trajectory partitions at verg fgranularity levels. They
use very little space and can be updated efficiently. Andi§inaicro-clusters are used
to generate the macro-clusters( final trajectory clusters).

The TCMM framework is truly incremental in the sense thatnmiclusters are
incrementally maintained as more and more data are recdBesmhuse their granular-
ity level is low, they can adjust to all types of change in thput data. The number
of micro-clusters is much smaller than that of the origimgit data. When the user
wants to compute the full trajectory clusters, micro-austare combined together to
form the macro-clusters in higher granularity level.

The rest of this paper is organized as follows. Section 2 &igndefines the prob-
lem and gives an outline of the TCMM framework. Sections 31d a.2 discuss the
micro-clusters and the macro-clusters, respectivelyeBRrpents are shown in Section
4. Related work is analyzed in Section 5. Finally, the papechkides in Section 6.

2 General Framework

2.1 Problem Statement

The data to be studied in this work will be in the context ofrsremental data source
That is, new batches of trajectory data will continuouslyféinto the clustering al-
gorithm (e.g, from new data recordings). The goal is to process such datp@duce
clustersncrementallyandnot have to re-compute from scratch every time.

Let the input data be represented by a sequence of time-sthirgectory data
sets: (I, I1,,...) where each;, is a set of trajectories being presented at time
Eachl;, = {TRy,TRs,...,TR,,,} Where eacll'R; is a trajectory. A single tra-
jectoryT'R; is often represented as a polyline, which is a sequence ofeubed line
segments. It can be denotedB&; = pipz ... pien,, Where each poing; is a time-
stamped point.TR; can be further simplified to derive a new polyline with fewer
points while its deviation from the original polyline is bl some threshold. The sim-
plification techniques have been studied extensively iripus work [13, 5] . In this
paper, we use the simplification technique in our previopepH 3]. Simplified trajec-
tory is represented aERj”mp“f ‘ed — I,\Ly...L,, whereL; andL,, are connected
directed line segments (i.e., trajectory partitions).

Given such input data, the goal is to produce a set of clusters{C1, Cs, ..., Cp }.
A clusteris a set of directed trajectory line segme6@ts= {L;, Lo, -- , L;,, }, Wwhere
Ly is a directed line segment from certain simplified trajeg®r’""*"*/*** at certain
time stampt;. Because we do clustering on line segments rather than vitagée-
tories, the clusters we find are actually sub-trajectorgtelts, which are the popular
paths visited by many moving objects.

2.2 TCMM Framework

Figure 1 shows the general data flow of TCMM. Thaxis represents the progress of
time and they-axis shows the progress of data processing. As the figustrdites,
input data are received continuously.

The first step is micro-clustering. Because there is an tefidata source, it is
impossible to store all the preprocessed input data and gngtusters from them on
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Figure 1: The Framework

request. To solve this problem, this work introduces thecephoftrajectory micro-
clusters The term “micro” refers to the extreme tightness of the teltss The idea is
to only cluster at very fine granularity. Hence, the numbemafro-clusters is much
larger than that of final trajectory clusters. Figure 1 shéwesmicro-clusters in the
second row. Section 3.1 will discuss them in detail.

The second step is macro-clustering, which will be disaissaletail in Section
3.2. Compared to the micro-clustering step, which are watlebnstantly as new data
is received, the macro-clustering stepidy evoked after receiving the user’s request
of trajectory clusters. This step will then use the micrastérs as input.

3 Trajectory Clustering using Micro- and Macro-clustering

3.1 Trajectory Micro-Clustering

As newly arrived trajectories will only affect local clusiteg result, trajectory micro-
clusters (or just micro-clusters) are introduced here tmtam a fine-granularity clus-
tering. Micro-clusters (defined in Section 3.1.1) are mudrarrestrictive than the
final clusters in the sense that each micro-cluster is meaably hold and summa-
rize the information of local partitioned trajectories.dvb-clustering will enable more
efficient computation of final clusters comparing with corgion from original line
segments.

Algorithm 1 shows the general work flow of generating and r@iing micro-
clusters. It proceeds as follows. After a batch of new ttajees arrive, we compute
the closest micro-clusted/C), for each line segmenk; in every trajectory. If the
distance betweeti,; and M C}, is less than a distance threshotd),.(..), L; will be
inserted intoM/ C),. Otherwise, a new micro-clustéd C,,.., Will be created forL;.

If the creation of the new micro-cluster results in the owad of the total number of
micro-clusters, some micro-clusters will be merged. Trst of this section discuss
these steps in detail.

3.1.1 Micro-Cluster Definitions

Each trajectory micro-cluster will hold and summarize acdgtartitioned trajectories,
which are essentially line segments.



Algorithm 1 Trajectory Micro-Clustering

1: Input:New trajectoried;_,, .., = {TR:,TRs,--- ,TR,rr} and existing micro-
clustersMC = {MCy1,MCs,...,MCyp,,.}

2: Parameter. d,,qz

3: Output: UpdatedM C with new trajectories inserted.

4: Algorithm :

5: for everyT’R; € I;_,.,.., do

6: for everyL; € TR; do

7: Find the closesd/ C}, to line segmenL; /* Section 3.1.2 */
8: if distancgL;, M C}) < dmas then

9: Add L; into M C}, and updatel! C, accordingly
10: else

11: Create a new micro-clust@t C,,., for L;;

12: if size of M C exceeds memory constraitien

13: Merge micro-clusters id/C /* Section 3.1.3 */

Definition 1 (Micro-Cluster) A trajectory micro-cluster (or micro-clustefigr a set of
directed line segmentty, Lo, -- , Ly is defined as the tuple:N, LScenter, LSe,
LSiengths SSecenters S50, SSiengen), WhereN is the number of line segments in the
micro-cluster,L.Scenter, LSg, and LSicnq:n are the linear sums of the line segments’
center points, angles and lengths respectivlly.cptcr, SS9, and SSic, 4, are the
squared sums of the line segments’ center points, angleteagths respectively.

The definition of trajectory micro-cluster is an extensidthe cluster feature vec-
tor in BIRCH [16]. The linear sum.S represents the basic summarized information
of line segments(e., center point, angle and length). The square siswill be used
to calculate the tightness of micro-cluster which will bealissed in Section 3.1.3.
The additive nature of the definition makes it easy to add regvdegments into the
micro-cluster and merge two micro-clusters. Meanwhile, dkfinition is designed to
be consistent with the distance measure of line segmenscdiios 3.1.2.

Also, every trajectory micro-cluster will haver@presentative line segmerfs the
name suggests, this line segment is the representativedgmaent of the cluster. It is
an “average” of sorts.

Definition 2 (Representative Line Segment)Therepresentative line segmesfta micro-
cluster is represented by the starting poirind ending point. s ande can be com-
puted from the micro-cluster features.

sin 6

len, center, — Tlen)

cos
s = (center, —

sin 6
len, center, + Tlen)

cos
e = (center, +

wherecenter, = LScenter, /N, centery = LScenter, /N, len = LSjengin/N, and
6 = LSy/N.

Figure 2 shows an example. There are four line segments imtbe-cluster,
which are drawn in thin lines. The representative line segroéthe micro-cluster is
drawn in a thick line.
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3.1.2 Creating and Updating Micro-Clusters

When a new line segmetit; is received, the first task is to find the closest micro-
clusterM Cy, that can absorly,; (i.e., Line 7 in Algorithm 1). If the distance between
L; and M C}, is less than the distance threshdlg,.., L; is then added td/C}, and
MCY, is updated accordingly; if not, a new micro-cluster is cedat.e., Line 8 to 11
in Algorithm 1). This section will discuss how these steps erformed in detail.

Before proceeding, the distance between a line segment amidra-cluster is de-
fined. Since a micro-cluster has its representative linenseg, the distance is in fact
defined between two line segments, which is composed of toeponents: the center
point distanced.cn.), the angle distancelf) and the parallel distancé/() . The dis-
tance is adapted from a similarity measure used in the arpattern recognition [10],
which is a modified line segment Hausdorff distance. Thelaindistance measure is
also used in [13]. Different from [13], we use componépt,,;.,- instead ofd, . The
reason to choosé....... is because it is a more balanced measure betwgemdd
and it is easier to adapt the concept of extent, which wilhtk@tduced in Section 3.1.3.

Let s; ande; be the starting and ending points bf, similarly for s; ande; with
L;. Without loss of generality, the longer line segment isgrssil toL;, and the shorter
one toL;. Figure 3 gives an intuitive illustration of the distancadtion.

Definition 3 The distance function is defined as the sum of three compmonent
dist(Ly, Lj) = deenter(Li, L) + do(Ls, L) + dj(Li, L;)
The center distance:
deenter(Li, Lj) =|| center; — center; || ,

where|| center; — center; || is the Euclidean distance between center points;aind
'ﬁ]e angle distance:

ity = { 1] om0 Psowe
where|| L; || denote length of;, (0° < 6 < 180°) denote the smaller intersecting
angle betweerl; and L;. Note that the range dof is not[0°, 360°) becausé is the
value of smaller intersecting angle without considering direction.

The parallel distance:
d(Ls, Lj) = min(l)1,1)2),

wherel, is the Euclidean distances pf to s; and/); is that ofp,. to e;. p, andp. are
the projection points of the points ande; onto L; respectively.



After finding the closest micro-clustév/ Cy, if the distance froni; is less than
dmaz, Li 1S inserted into it, and the linear and square suma{i@; are updated ac-
cordingly. Because they are just sums, the additivity prigpegoplies and the update is
efficient. If the distance between the nearest micro-ctastdL; is bigger thani,,,,.., a
new micro-cluster will be created fdr;. The initial measures in the new micro-cluster
is simply derived from line segment; (i.e., center point, theta, and length).

3.1.3 Merging Micro-Clusters

In real world applications, storage space is always a caimstrThe TCMM framework
faces this problem with its micro-clusters as shown in Li@etd 13 of Algorithm 1.
If the total space used by micro-clusters exceeds a giveresmmstraint, some micro-
clusters have to be merged to satisfy the space constraiganihile, if the number
of micro-clusters keeps increasing, it will affect the eficy of algorithm because
the most time-consuming part is finding the nearest micustel. And what is most
important, it may be unnecessary to keep all the micro-etsstince some of the micro-
clusters may become closer after several rounds of updategefore, the algorithm
demands merging close micro-clusters when necessary ¢d sipeefficiency and save
storage. Obviously, pairs of micro-clusters that contaimilar line segments are better
candidates for merging because the merge results in leggriafion loss.

One way to compute the similarity between two micro-clusisrto calculate the
distance between the representative line segments of tre4tiusters. Though intu-
itive, this method fails to consider the tightness of thenmiclusters. Figure 4 shows an

. . Loose micro-cluster C
Tight micro—cluster A

Merge Merge
Ty 6 ........... >

Tight micro—cluster B Loose micro—cluster D

(a) Merging tight micro-clusters (b) Merging loose micro-clusters
Figure 4: Merging micro-clusters

example that how tightness might effect distance betweemtvero-clusters. Figure
4(a) shows two tight micro-clusters and the micro-clusfégramerging them. Fig-
ure 4(b) shows the case for two comparatively loose micustels. We can see that
micro-clusterA and micro-cluste€ have same representative line segments, and so do
micro-clustersB and D. Thus the distance between micro-clusteand B should be

the same as that between micro-clustéandD if we measure the distance only using
representative line segments. In this case, the chancertgemecro-clusterst and B

is equal to that of merging micro-clustarsand D. However, we actually prefer merg-
ing micro-clusters” andD. There are two reasons: on one hand, if both micro-clusters
are very tight, they may not be good candidates for mergieguse it would break that
tightness after the merge. On the other hand, if they arelbo#ie, it may not do much
harm to merge them even if their representative line segsraetsomewhat far apart.
Hence, a better approach would be to consideettientof the micro-clusters and use
that information in computing the distance between miduster.



In the following parts, we will first introduce the way to coatp micro-cluster
extent, then give definitions of the distance between mitusters with extent infor-
mation. Lastly, we will discuss how to merge two micro-cérst

Micro-Cluster Extent  The extent of a micro-cluster is an indication of its tightse
Recall that micro-clusters are represented by tuples ofatm: (N, LS.cnier, LSy,
LSiengthy SSecenter, S5, SSiengtn), Which maintain linear and square sums of center,
angle and length. The extent of the micro-cluster also oeduthree padatent cnier,
extenty andextent;.nqen, t0 measure the tightness of three basic facts of a trajectory
micro-cluster. The extents are the standard deviationdhlkeulated from its corre-
spondingL.S andSS.

Lemma 1 Given a set of distance valueS,= (d,, ds, ...,dy). LetLS =3%". | d;,
andSs =3",_, ,.(d:)?. The standard deviation of the distancesis- / "*55-(L5)°,
Proof 1 Referto [16].

Using Lemma 1, we give a formal definition for extent of a mictoster:

N x SS, — LS2
N2

extent, =

where symbok representsenter, 6, orlength andN is the number of line segments
in the micro-cluster.

(a) Center extent (b) 0 extent (c) Length extent

Figure 5: Micro-Cluster Extent

To give an intuition of extent concept, Figure 5 shows an elaraf extent cpier,
extenty and extentengn. Figure 5(a) states that “most” center points of the line
segments stored in this micro-cluster are within the ciofleadiusextent c,ser. Fig-
ure 5(b) illustrates that “most” angles vary within a randeetent, and Figure 5(c)
reflects the uncertainty of length.

Micro-Cluster Distance with Extent  With the extents properly defined, we can now
incorporate them into the distance function. Recall thatititention of extent was to
adjust the distance function based on the tightness of reiasters. For instance, let
d, 2 be the distance between micro-clustéfg’; and M C, according to the distance
function defined previously. If these two micro-clusters aoth “tight” (i.e, hav-
ing zero or very small extent), theh , indeed represents the distance between them.
However, if these two micro-clusters are both “looseg.( having large extent), then
their “true” inter-cluster distance should actually lessthand, ». This is because
the line segments at the borders of the two micro-clustersikely to be much closer
thand, ». With respect to merging micro-clusters, this allows loosero-clusters to
be more easily merged and vice-versa. The adjustment ofiskende function using



(c) Angle distance with extent

Figure 6: Line Segments Distance with Extent

extent is relatively simple. Whenever possible, extent edu® reduce the distance
between the representative line segments of micro-chister

To measure the distance between micro-clustard micro-clustey, it is equiva-
lent to measure the distan@e(L;, L}) between the representative line segmeijts
with extent’ and L* with extent’. Figure 6 shows an intuitive example of distance
measure with extent. For example, in Figure 6(a), the distdretween the centers
is the distance between representative line segments rthisusenter extents of two
micro-clusters. The formal definition is given as followsbd on the modification of
distance measure between line segmeirgs Definition 3). To avoid the redundancy
in presentation, the symbols explained in Definition 3 arerepeated in Definition 4.

Definition 4 The distance betweeh; and L} contains three parts: center distance
d: angle distancelj; and parallel distancelﬁ.

center?

dist(L;, L}) = deenter (L7, L}) + do(L7, L) + d)(L;, L)

The center distance:

7
center

* * *\ L Al — p- _ J
dyenter(Lf, L}) = max (0, lcenter; — center;|| — extent extentcemm,)

The angle distance:

0* = 0 — (extent) + extenté)
cire 7oy ) ITLS || xsin(6%), 0° < 6* < 90°
de(Liij) = { I L; I, 90° < §* < 180°

The parallel distance:

dﬁ(L;‘, L;) = max (O, min(lyy,2) — (eztentfength + extent{ength)/Z),

whereeztent’

Jengtn IS the projection obatent],, ,, ontoL;.

length

Note that the distances defined between two representateségments with extent
are smaller than those defined between two original ones. tAadlistance may be
equal to zero when there is an overlap between represanliatvsegments with extent.
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Merging Algorithm  The final algorithm of merging micro-clusters is as follows.
Given M micro-clusters, the distance between any two micro-ctastecalculated.
They are then sorted from the most similar to the least similae most similar pairs
are the best candidate for merging since merging them resthie least amount of
information loss. They are merged until the number of midigsters satisfy the given
space constraints.

3.2 Trajectory Macro-Clustering

The last step in the TCMM framework produces the overaletggry clusters. While
micro-clustering is processed with a new batch of data cdmea®sacro-clustering is
evokedonly whenit is called upon by the user.

Since the distance between micro-clusters is defined in fefir4, it is easy to
adapt any clustering method on spatial points. We simplg neeeplace the distancce
between spatial points with the distance between micrstets. In our framework,
we use density-based clustering [7], which is also used IAJIRJS [13]. The clus-
tering technique in macro-clustering step is the same asltlgtering algorithm in
TRACLUS. The only difference is that macro-clustering inMR® is performed on
the set of micro-clusters rather than the set of trajectanyifpns as in TRACLUS.
The micro-clusters are clustered through a density-bakgtitam which discovers
maximally “density-connected” components, each of whatmfs a macro-cluster.

4 Experiments

This section tests the efficiency and effectiveness of tbpgsed framework under a
variety of conditions with different datasets. The TCMMrfrework and the TRA-
CLUS [13] framework are both implemented using C++ and cdeadpivith gcc. All
tests were performed on a Intel 2.4GHz PC with 2GB of RAM.

4.1 Synthetic Data

(a) Micro-clusters at snapshot 1 (b) Micro-clusters at snapshot 2
Figure 7: Micro-clusters from synthetic data

As a simple way to quickly test the “accuracy” of TCMM, syniibdrajectory data
is generated. Objects are generated to move along prevdeést paths with small
perturbations <€ 10% relative distance from pre-determined points}% trajectories
are random noises added to the data. Figure 7 shows the oésutremental micro-
clustering at two different snapshots. Figure 7(a) showstrajectories in gray; one
can clearly see the trajectory clusters. The extractedoaglrsters are drawn with
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red/bold lines; they match the intuitive clusters. Figufie) 8hows the trajectories and
extraction results for a later snapshot. Again, they mdiehrituitive clusters.

4.2 Real Animal Data in Free Space

Next, clusters are computed from deer movement HataYear 1995. This data set
contains 32 trajectories with abo@, 000 points in total. The dataset size of animal
is considerably small due to the high expense and techroabdifficulties to track
animals. But it is worth studying animal data because thedtaries are in free space
rather than on restricted road network. In Section 4.3, théurevaluation on a much
larger vehicle dataset containing owen00 trajectories will be conducted.

To the best of our knowledge, there is no any other increnh&afactory cluster-
ing algorithm. So the results of TCMM will be compared with AGLUS [13], which
does trajectory clustering over the whole data set. Sincemalusters in TCMM sum-
matrize original line segments information with some infation loss, the clustering
result on micro-clusters might not be as real as TRACLUS hecctuster result from
TRACLUS is used as a standard to test the accuracy of TCMMnMbae, it is im-
portant to show the efficiency against TRACLUS while bothufssare similar.

We adapt performance measure, sum of square distance (8@ IuStream [1]
to test the quality of clustering results. Assume that tlaeeea total of n line segments
at the current timestamp. For each line segnigntve find the centroidife. represen-
tative line segment)’,, of its closest macro-cluster, and compufé;, C1,,) between
L; andCy,. The SSQ at timestamp is equal to the sumfL;, C;,) and the average
SSQisSSQ/n.

50 [ TCMM ——
TRACLUS -

TCMM &
5000 [TRACLUS et

4000 or

3000

Average SSQ

2000

Running Time (seconds)

0.5 f
1000 1
o2t 0.1k . .
6900 11718 16029 20064 6900 11718 16029 20064
Number of Trajectory Points Loaded Number of Trajectory Points Loaded

Figure 8: Effectiveness Comparison (DeeFigure 9: Efficiency Comparison (Deer)

As shown in Algorithm 1, there is only one parametgy, . in micro-clustering step
and we set it td0. The parameter sensitivity is analyzed and discussed itidBet.4.
For macro-clustering and TRACLUS, they use the same passwetand MinLns.
Here,e is set to50 and MinLns is set to8.

Figure 8 shows the quality of clustering results. Compariitpy TRACLUS, the
average SSQ of TCMM is slightly higher. In the worst caseatherage SSQ of TCMM
is 2% higher than TRACLUS. But the processing time of TCMM is sfigrintly faster
than TRACLUS. To process all th#0, 000 points, TCMM only taked).7 seconds
while TRACLUS takes!3 seconds. The reason is that it is much faster to do clustering
over micro-clusters rather than over all the trajectorytipans. With the deer dataset,
at last, the number of trajectory partitions (3390) is muadbrenthan the number of
micro-clusters (324) in total.

Ihttp:/iwww.fs.fed.us/pnwistarkey/data/tables/
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4.3 Real Traffic Data in Road Network

Real world GPS recorded data from a taxi company in San FFemds used to test
the performance of TCMM. The data set is huge and keeps ggoasrtime goes by.
It contains 7,727 trajectorieB{0, 000 points) of taxis as they travel around the city
picking up and dropping off passengers.

Micro Clusters

Macro Clusters )S
TRACLUS 33 Dﬁ /D3

Time 0 Time 1 Time 2
Figure 10: Taxi Experiment

Figure 10 shows the visual clustering result of taxi datastffow and second row
show the micro-clustersl(,,,. setto 800) and macro-clusteesset to 50 and/inLns
set to 8). Last row shows cluster result from TRACLUS. Timd 0and 2 correspond
to the timestamps respectively when 52317, 74896, and 98@f&ttory points have
been loaded. As we can see from Figure 10, the results fromNM@kd TRACLUS
are similar except very few differences. The similar cltisgg performance is further
proved in Figure 11, where the average SSQ of TCMM is onhhdlychigher than that
of TRACLUS (2% higher in worst case and4% higher on average).

Regarding to efficiency issue, Figure 12 shows the time reetprocess the data
in 4 increments with TCMM and TRACLUS. Compared to previoasadsets, TRA-
CLUS is substantially slower this time due to the larger datasize. To process all
the data, TRACLUS takes about 4.6 hours while TCMM only taéesut 7 minutes
to finish. This is because the number of trajectory part#ti(d2,600) is much larger
than the number of micro-clusters (2,013). It means that MOMmuch more efficient
than TRACLUS as data set is getting bigger, while at the same, the effectiveness
remains the same as TRACLUS.

TCMM —+—
[TRACLUS =3¢

TCMM Exexes
5000 | TRACLUS s

10000
4000

3000

1000 *

|
+/—*”—‘
100

24210 52317 74896 98002 24210 52317 74896 98002
Number of Trajectory Points Loaded Number of Trajectory Points Loaded

Average SSQ

2000
1000

Running Time (seconds)

Figure 11: Effectiveness Comparison(Taxiigure 12: Efficiency Comparison(Taxi)
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4.4 Parameter Sensitivity

TCMM(d_max = 600) ——
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5 5 ki & "
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Figure 13: Effectiveness witth,, .. Figure 14: Efficiency withl,,, .

The micro-clustering step of TCMM has the nice property thanly requires one
parameterd,,,.... A larged,,... builds micro-clusters that are large in individual size
but small in overall quantity, whereas a smadll,,, has the opposite effect. If we
setd, .. = 0, TCMM is actually TRACLUS because each line segment wilhfa
micro-cluster itself. Then the macro-clustering appliedicro-clusters is exactly the
one applied on original line segments. Therefore, the em#iked,, ... is, the better
the quality of clustering should be but the longer procegsime is needed. At the
same time, if we sef,,,,. larger, the algorithm runs faster but loses more infornmatio
in micro-clustering. Hence there is a trade-off betweeaaifeness and efficiency.

We use taxi datasets to study the parameter sensitivity radlgorithm. Figure 13
and Figure 14 show the performance of TCMM with differdpy,.. We can see that
whend,,.., = 600, the average SSQ is closer to that of TRACLUS, which shows
that it has more similar performance as TRACLUS. But it addaes longer time to do
clustering wheni,, ., = 600. However, comparing with TRACLUS, the time spent on
incremental clustering is still significantly shorter.

5 Related Work

Clustering has been studied extensively in machine legrand data mining. A num-
ber of approaches have been proposed to prquaEissdata in various conditions and
produce clusters of many different typésmeans [14] is a partitioning algorithm that
repeatedly partitions the data until some criterion is Mi&fRCH [16, 3] is another
approach that produces hierarchical clusters. DBSCAN fid| @PTICS [2] are two
algorithms that cluster the data based on local densityhibeidnoods.

Some of the ideas presented in the above algorithms areeabliapthis work. The
micro-clustering step in TCMM share the idea of micro-cduistg in BIRCH [16].
However, BIRCH [16] cannot handle trajectory clusterindieTclustering feature in
TCMM has been extended to exactly describe a line-segmesteciby including three
kinds of information. Also, unlike BIRCH, our framework do@&ot maintainraw
trajectories to make it more suitable for incremental datarses. The data bubble
[3] is an extension of the BIRCH framework and introduces ittea of the extent.
TCMM also uses the extent in its micro-cluster, but the dééinihas been changed to
accommodate trajectories.

Trajectory clustering has been studied in various conte@tffneyet al.[9, 4, 8]
proposes several algorithms for model-based trajectarsteting. These algorithms
only work on whole trajectories and cannot find similar stdjeictories. TRACLUS
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[13] is a trajectory clustering algorithm which does clustgb-trajectories. TRACLUS
performs density-based clustering over the entire setltiajectories. However, all
of these algorithms cannot efficiently handherementaldata. They are not suitable
for incremental data since clusters are re-calculated fomatch every time.

CluStream [1] studies clustering dynamic data streamsels @ two-step process to
first compute micro-clusters and then produce macro-alsistben need. Our method
adapts a similar micro-/macro-clustering framework fajectory data. However, our
method so far handles only incremental data but not trajgdtseams. This is be-
cause sub-trajectory micro-clustering has to wait for rigial number of new points
accumulated to form sub-trajectories, which needs addbigfer space and waiting
time. Moreover, the processing of sub-trajectories is nex@ensive and additional
processing power is needed for real time stream procesbimg, the extension of our
framework for trajectory streaming left for future resdarc

Esteret al. [6] proposes the Incremental DBSCAN algorithm, which is atee-
sion of DBSCAN for incremental data. Here, the final clustems directly updated
based on new data. We believe our two-step process is moitgdlaince any cluster-
ing algorithm can be employed for macro-clustering, whetearementalDBSCAN is
dedicated to DBSCAN. More recently, Sacharieisal. [15] discusses the problem of
online discovering hot motion. The basic idea is to delegate of the path extraction
process to objects, by assigning to them adaptive lightwtdifjers that dynamically
suppress unnecessary location updates. Their problenffésedit from ours in two
ways: first, they are trying to find recent hot paths whereaslmsters target at whole
time span; and second, they require the objects in a movirgjerito be close enough
to each other at any time instant during a sliding window ofikivet units but we are
more from geometric point of view to measure the distance/den trajectories.

6 Conclusions

In this work, we have proposed the TCMM framework for incremaé clustering of
trajectory data. It uses a two-step process to handle iremtahdatasets. The first
step maintains a flexible set of micro-clusters that is ugpdiaontinuously with the
input data. Micro-clusters compress the infinite data setoa finite manageable size
while still recording much of the trajectory informationh& second step, which is on-
demand, produces the final macro-clusters of the trajestarsing the micro-clusters
as input. Compared to previous static approaches, the TOdiMdwork is much more
flexible since it does not require all of the input data at ofidee micro-clusters provide
a summary of the trajectory data that can be updated eastyamiy new information.
This makes it more suitable for many real world applicatioergrios.
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