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Abstract

Causality analysis, beyond “mere” correlations, has be-
come increasingly important for scientific discoveries
and policy decisions. Many of these real-world appli-
cations involve time series data. A key observation is
that the causality between time series could vary signif-
icantly over time. For example, a rain could cause severe
traffic jams during the rush hours, but has little impact
on the traffic at midnight. However, previous studies
mostly look at the whole time series when determining
the causal relationship between them. Instead, we pro-
pose to detect the partial time intervals with causality.
As it is time consuming to enumerate all time intervals
and test causality for each interval, we further propose
an efficient algorithm that can avoid unnecessary com-
putations based on the bounds of F -test in the Granger
causality test. We use both synthetic datasets and real
datasets to demonstrate the efficiency of our pruning
techniques and that our method can effectively discover
interesting causal intervals in the time series data.

1 Introduction

In recent years, driven by a wide range of real-world
applications and scientific discoveries, detecting causal-
ity from the data has gained increasing attention in
the data mining community. Time series data is a
type of data frequently seen in many applications such
as stock, traffic, and climate. Various methods have
been developed to determine the causality between two
time series. Among all causality test methods, Granger
causality test [10] is one of the most popular meth-
ods [25, 2, 20, 18, 17].

In short, the idea of Granger test is based on
prediction: Given a pair of time series X = x1x2 . . . xT
and Y = y1y2 . . . yT , two different predictive models,
called the full model and the reduced model, are fitted
using the whole time series (i.e., all data points). The
full model uses the past values of X and the past values
of Y to predict Y , whereas the reduced model uses past
values of Y only to predict Y . Then, we say that X
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     X causes Y: rejected
     X[t0:t1] causes Y[t0:t1]: accepted

Figure 1: An example illustrating the causality in
partial time series. The original Granger test fails to
detect the causal relationship, since X causes Y only
during the time interval [t0 : t1]. Our goal is to find
such time intervals.

causes Y by Granger test if the full model is significantly
better than the reduced model (i.e., it is critical to use
the values of X to predict Y ).

However, in real-world scenarios, causal relation-
ships may exist only in partial time series. This is
illustrated in Figure 1, where X causes Y only during
the time interval [t0 : t1]. In such cases, if we apply the
traditional Granger test (i.e., fitting the models using
the whole time series), we may not detect any causal-
ity between X and Y . However, if we only test on the
partial time series in interval [t0 : t1], the causality can
be discovered. Therefore, given two time series X and
Y , our goal in this paper is to find the causal time in-
tervals in which X causes Y . This is highly motivated
by a number of real world applications. Consider the
following two examples.

EXAMPLE 1.1. Suppose that a local event (e.g., a
football game) attracts many people, generating a large
volume of traffic at the venue (e.g., a football stadium)
during the event hours. In such scenario, time series
X could be the frequency of geo-tagged tweets at the
venue (as a proxy of the popularity of local events), and
time series Y could be the taxi pick-up volume at the
same location. Intuitively, we can say that the tweet
frequency X (which represents the people attending the
event) causes traffic volume Y during the time of the
event. However, for the rest of the time, tweet frequency
does not necessarily cause the pick-up volume. In fact,
during the normal days, the pick-ups are mostly due
to human routine behaviors (e.g., commuting between



home and work) and may not have any correlation with
the frequency of geo-tagged tweets.

EXAMPLE 1.2. Nowadays, environmental pollution
is a big concern in people’s daily life. For example,
poor air quality in big cities in China [27, 28] and po-
tential air/water contamination from shale gas devel-
opment [15, 22] in the United States have drawn a lot
of attention lately. Here, one biggest scientific question
is whether certain type of emissions (e.g., CO2) gener-
ated by industrial, vehicular, or other human activities
causes the environmental change. But the causal rela-
tionship between an emission source and the air quality
may vary over time. For example, vehicle emissions re-
act in the presence of sunlight and form ground level
ozone, a primary ingredient of smog, whereas industrial
emissions have a bigger impact on the air quality in cool
and humid days.

To detect all the casual time intervals, a naive way
is to enumerate all the time intervals of the time series
and conduct Granger test for each interval. But such an
enumeration could be very time consuming in practice.
To address this challenge, in this paper we propose an
efficient algorithm for causal time interval discovery.
Here, our key insight is that similar time intervals (i.e.,
intervals with significant overlaps) are likely to have
similar Granger test results. In fact, given the fitted
models of a time interval, we can derive useful upper and
lower bounds for the statistical significance of Granger
causality for similar time intervals. Such bounds can
be used to quickly identify intervals that will definitely
pass or fail the test without fitting the actual models.

We have conducted experiments to verify the ef-
fectiveness and efficiency of our method on two inter-
esting real-world datasets. First, we study the causal-
ity relationship between local event (represented by the
frequency of geo-tagged tweets at the venue) and the
traffic volume (represented by the taxi drop-offs/pick-
ups). We have observed that, when there is an event,
taxi drop-offs cause geo-tagged tweets, and geo-tagged
tweets cause pick-ups. Second, we analyze variables of
climate and their causal relationship with temperature.
We have observed that the causality varies over time
and is different for different variables.

In summary, our key contributions are as follows:

• To the best of our knowledge, we are the first to
study the problem of detecting partial time inter-
vals in which a causal relationship exists between
two time series based on the Granger test.

• We propose an efficient algorithm which utilizes
the bounds of regression error to avoid unnecessary

computations for the Granger test over similar time
intervals.

• We conduct experiments on both synthetic data
and real data to demonstrate the effectiveness and
efficiency of the proposed method.

Before proceeding, we emphasize that our work
is built upon the Granger test. We do not claim to
improve the Granger test itself, which is known to have
some weaknesses (more details in Section 2). Instead,
we focus on an important yet unaddressed problem in
practice, that is, discovering partial time intervals with
Granger causality.

2 Related Work

Dependency/causality discovery on time series.
Many methods have been proposed to discover the tem-
poral dependency between time series, such as autocor-
relation, cross-correlation [7], transfer entropy [6], ran-
domization test [16], phase slope index [21]. However,
temporal correlation or dependency does not necessar-
ily indicate causality. Granger causality test [10] was
first introduced in the area of econometrics for time se-
ries analysis and has since gained tremendous success
across many domains due to its simplicity and robust-
ness [12, 13, 3, 8].

Weakness of the Granger test. A well-known diffi-
culty in causality reasoning (including the Granger test)
is the confounding issue, that is, spurious causality may
be detected if both processes X and Y are impacted by
a third (possibly unknown) process (i.e., a confounder).
In [14], variables which mediate the impact of an ac-
tion on the outcome are identified to reduce the bias
in assessing the causal effect for online advertising. [5]
exploits confounder path delays in an attempt to cancel
out the spurious confounder effect. However, a princi-
pled solution to this problem remains elusive.

Variations of the Granger test. While the original
Granger causality test was designed for two time series,
several methods [2, 18, 17] have been proposed to an-
alyze time series data involving many features and to
learn a causal graph structure. Following the work [2],
[20] detects causality of spatial time series, [18] pro-
poses to use hidden Markov Random Field method,
[17] handles extreme values in time series, [4] detects
Granger causality from irregular time series, and [5]
presents Copula-Granger method to efficiently capture
non-linearity in the data. Learning temporal causal
graph has been applied to biology applications [25], cli-
mate analysis [9], microbiology [19], fMRI data analy-
sis [24], anomaly detection [23], and longitudinal anal-
ysis [26]. However, none of these work address the is-
sues that causality could change over time, and that



causality only exists in partial time intervals. Previ-
ous study [1] uses a fixed-length sliding window to test
Granger causality, but they cannot detect all the causal
time intervals in an efficient way.

3 Finding Causal Time Intervals

We use X = x1x2 . . . xT and Y = y1y2 . . . yT to
represent the two synchronized time series of interest.
As discussed before, our goal is to detect all time
intervals in which a casual relationship exists between
X and Y . We use X[i : j] to denote a time interval in
time series X, that is, xixi+1 . . . xj . Similarly, Y [i : j]
denotes yiyi+1 . . . yj . In this paper, we use the two-
sided Granger test to determine the causality, which is
introduced next.

3.1 Granger Causality Test The Granger causal-
ity test [10] is a well-known hypothesis testing procedure
for determining whether one time series is useful in fore-
casting another. It was introduced to find “predictive
causality” in time series. The basic idea of Granger
causality is that, if a time series X causes the changes
in a time series Y , the past values of X should provide
unique information in predicting the future values of
Y , compared with using the past values of Y only for
prediction.

Specifically, given two time series X and Y , Granger
test is performed by running the following two regres-
sions with a given lag parameter L. The full model Mf

uses both lagged values of X and lagged values of Y :

yt ∼
L∑
l=1

al · yt−l +

L∑
l=1

bl · xt−l (Full model Mf ).

The reduced model Mr uses only the lagged values of
Y :

yt ∼
L∑
l=1

al · yt−l (Reduced model Mr).

If X Granger–causes Y , we expect the full model
provides a significantly more accurate prediction than
the reduced model. To determine whether the full model
would be statistically better than the reduced model or
not, the F -test is commonly performed, and it calculates
the F -statistic:

(3.1) F =
(SSEr − SSEf )/(df − dr)

SSEf/(T − df − 1)
,

where SSEM denotes the sum of squared errors of a
regression model M . Specifically, let ŷt denotes the
value of yt predicted by M , then SSEM =

∑T
t=1(yt −

ŷt)
2. Further, df and dr denote the degrees of freedom

(i.e., the number of independent variables) in the models
Mf and Mr, respectively, and T is the length of the time
series.

In our problem, we have df = 2L and dr = L.
Therefore, the F -statistic can be simplified as follows:

(3.2) F =
(SSEr − SSEf )/L

SSEf/(T − 2L− 1)
.

Under the null hypothesis (i.e., the full model
does not give a significantly better prediction), the F -
statistic will have an F -distribution with parameters L
and T − 2L − 1, or equivalently, F ∼ FL,T−2L−1. The
null hypothesis is rejected if the F -statistic calculated
from the data is greater than the critical value of the F -
distribution for some desired false-rejection probability
(e.g., p-value = 0.05).

Based on the above discussion, we can now summa-
rize the Granger causality test as follows.

Definition 3.1. (Granger Causality Test) Give
two time series X and Y , and a time lag parameter
L, we say that X Granger–causes Y if the F -statistic
calculated in Eq. (3.2) is greater than the critical value
of the F -distribution for certain desired false-rejection
probability.

3.2 Two-Sided Granger Causality In [10],
Granger pointed out the following feedback mechanism
for two-sided causality: if X Granger–causes Y and Y
also Granger–causes X, it is likely that there exists an-
other variable which needs to be controlled or could be
a better candidate for the Granger causation. Several
follow-up articles [11, 12] also mentioned the necessity
of considering of the direction of Granger causality.
Following the discussion, we test for two-sided Granger
causality and say that X causes Y only if X causes
Y by Granger causality but Y does not cause X by
Granger causality. Thus, we define the causality as
follows.

Definition 3.2. (Causality) Give two time series X
and Y , and a time lag parameter L, we say that X
causes Y if and only if:

1. X and Y are stationary; and

2. X causes Y by Granger causality; and

3. Y does not cause X by Granger causality.

We further define the time interval with causality
as follows.

Definition 3.3. (Causal Time Interval) Give two
time series X and Y , and a time lag parameter L, we



call time interval [i : j] a causal time interval if X[i : j]
causes Y [i : j] by Definition 3.2.

Our objective is to find all the casual time intervals.

PROBLEM 3.1. Give two time series X and Y , find
all the time intervals [i : j] such that X[i : j] causes
Y [i : j] by Definition 3.2.

4 Efficient Algorithm

The most straightforward approach to solve Problem 3.1
is to enumerate all the time intervals [i : j] and
check each criterion in Definition 3.2. Checking the
causality of one time interval takes O(T · L2) time (see
Appendix A for details). Since there are O(T 2) time
segments, the overall time complexity is O(T 3 · L2).
Such time complexity could be too high for some real
applications, especially when the time series is long.
Next, we investigate efficient pruning rules to speed-up
the computation.

Key insight to speed-up the computation. We
observe that the major bottleneck of complexity lies in
the fitting of the full model and the reduced model for
each interval in order to compute the SSE values for F -
test. To speed-up the computation, our key insight is
that very often it is unnecessary to obtain the exact SSE
values and F -statistic for an interval. Specially, suppose
that for interval [i : j] we have fitted the full model

M
[i:j]
f and the reduced model M

[i:j]
r . Then, consider

the subsequent interval [i : j + 1]. Since the models for
[i : j] and the models for [i : j + 1] share most of the
data samples for fitting, we can actually estimate the
bounds of the F -statistic for the interval [i : j+ 1] using
the models for [i : j] and then do pruning based on the
bounds. For example, if the upper bound of F -statistic
for [i : j + 1] is smaller than or equal to the critical
value of the corresponding F -distribution, then we can
conclude that [i : j + 1] will fail the Granger test and
there is no need to fit the actual models. Further, we
can continue the same estimation of bounds for intervals
[i : j+2], [i : j+3], . . . (with less tight bounds), until we
reach a time interval [i : j+ δ] that requires an accurate
computation of F -statistic. Below we formally describe
the pruning technique based on our key insight, and
prove its effectiveness.

4.1 Pruning Technique To avoid unnecessary com-
putation for time intervals that do not have causality,
we first introduce the bounds for error in the regression
model. Given a time interval [i : j] and the correspond-
ing data set {yk, xk1, . . . , xkp}jk=i, we use M [i:j] to de-
note the regression model obtained using the ordinary

least squares fitting:

yk = β1xk1+ · · ·+βpxkp+εk = xT
kβ+εk, k = i, . . . , j,

where xT
kβ is the inner product of vectors xk and β.

The sum of squared errors for model M [i:j] is defined
as:

(4.3) SSE(M [i:j]) =

j∑
k=i

ε2k.

For a regression modelM , we further denote εM (xk)
as the prediction error of sample xk using model M :

(4.4) εM (xk) = M(xk)− yk,

where M(xk) is the predicted value of yk based on
predictors xk using model M . Then, for any δ ∈ Z+,
we have the following two lemmas regarding the error
bounds of M [i:j+δ]:

Lemma 4.1. Given a regression model M [i:j], the upper
bound of SSE(M [i:j+δ]) is:
(4.5)

dSSE(M [i:j+δ])e = SSE(M [i:j]) +

j+δ∑
k=j+1

ε2M [i:j](xk).

Proof. By definition, we always have SSE(M [i:j+δ]) =

minβ

∑j+δ
k=i ε

2
M (xk). It is obvious that

minβ

∑j+δ
k=i ε

2
M (xk) ≤

∑j+δ
k=i ε

2
M [i:j](xk). Now we

also note that
∑j+δ
k=i ε

2
M [i:j](xk) = SSE(M [i:j]) +∑j+δ

k=j+1 ε
2
M [i:j](xk). Therefore, (4.5) gives an upper

bound to SSE(M [i:j+δ]).

Lemma 4.2. Given a regression model M [i:j], the lower
bound of SSE(M [i:j+δ]) is:

(4.6) bSSE(M [i:j+δ])c = SSE(M [i:j]).

Proof. Recall that SSE(M [i:j]) = minβ

∑j
k=i ε

2
M (xk).

Note that minβ

∑j
k=i ε

2
M (xk) ≤

∑j
k=i ε

2
M [i:j+δ](xk)

by definition. Then,
∑j
k=i ε

2
M [i:j+δ](xk) ≤∑j+δ

k=i ε
2
M [i:j+δ](xk) = SSE(M [i:j+δ]), since

ε2
M [i:j+1](xk), · · · , ε2

M [i:j+δ](xk) are all non-negative.

Therefore, (4.6) gives a lower bound to SSE(M [i:j+δ]).

Now, let M
[i:j]
f and M

[i:j]
r denote the full model and

reduced model obtained via least square fitting for time



segment [i : j], respectively. We wish to know if time
interval [i : j + δ] can pass the Granger test. Based on
the F -test (Eq. (3.2)), the upper bound of F -statistic
for [i : j + δ] is:
(4.7)

dF [i:j+δ]e =

(
dSSE(M

[i:j+δ]
r )e − bSSE(M

[i:j+δ]
f )c

)
/L

bSSE(M
[i:j+δ]
f )c/ ((j + δ − i+ 1)− 2L− 1)

.

For a fixed false-rejection probability (e.g., p =
0.05), let c∗a,b be the critical value of the F -distribution
Fa,b with (a, b) degrees of freedom. Obviously, if the
upper bound dF [i:j+δ]e ≤ c∗L,(j+δ−i+1)−2L−1, there is
no need to fit the regression model for time interval
[i : j + δ]. And we can safely move on to the next time
interval [i, j + δ + 1].

Similarly, we can also calculate the lower bound of
F -statistic for [i : j + δ]:
(4.8)

bF [i:j+δ]c =

(
bSSE(M

[i:j+δ]
r )c − dSSE(M

[i:j+δ]
f )e

)
/L

dSSE(M
[i:j+δ]
f )e/ ((j + δ − i+ 1)− 2L− 1)

.

Obviously, if the lower bound bF [i:j+δ]c >
c∗L,(j+δ−i+1)−2L−1, the time interval [i : j + δ] will def-
initely pass the Granger causality test. In such cases,
there is again no need to fit the actual models and cal-
culate the actual F -statistic.

Note that the same pruning technique can be ap-
plied to the reverse Granger test. Specifically, if the up-
per bound of F -statistic is small or equal to the critical
value, or the lower bound of F -statistic is greater than
the critical value, then there is no need to fit the ac-
tual models or calculate the actual F -statistic. In other
words, we only conduct the actual reverse Granger test
if the upper bound is greater than the critical value but
the lower bound is small or equal to the critical value.
Finally, in the reverse direction, in which we test if Y
causes X, we only keep those intervals that fail the
F -test.

Finally, due to the space limit, we refer interested
readers to Appendix B for a summarization of our algo-
rithm and discussions on the implementation details.

5 Experiments

We conduct experiments on both synthetic datasets and
real datasets to examine the efficiency and effectiveness
of our proposed method. All the experiments are
conducted on a 3.4GHz Intel Core i7 system with 16
GB memory.

5.1 Experiment on Synthetic Data To generate
synthetic dataset, we first generate independent variable
X and then generate time series Y based on X. Since
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Figure 2: Count of causal time intervals with ground
truth causal interval as [450 : 550]. We expect to see a
Bell-shaped curve when overlaying all the causal time
intervals.

both X and Y need to be stationary, we simulate X as
an auto-regressive stationary time series of length T .

To generate time series Y , we first choose an interval
[s∗ : t∗] to be the causal time interval. Then, we
simulate Y as

yt =


L∑
k=1

akyt−k +
L∑
k=1

bkxt−k + εt, s∗ ≤ t ≤ t∗

L∑
k=1

akyt−k + εt, otherwise

where ak and bk are parameters controlling the degree
of auto-correlation and Granger causality respectively.
The noise εt follows a Gaussian distribution and by
default we set the standard deviation of this Gaussian
distribution as 0 (i.e., no error).

By default, we set T = 1000, [s∗ : t∗] = [450 : 550],
and L = 2. For the coefficients, we set ak = 0.2 if k is
odd, and ak = −0.2 if k is even. We alternate the sign
of ak here to avoid the situations that the time series
keeps increasing (or decreasing) and becomes extremely
large (or small). In addition, we set bk = 0.2.

Effectiveness Study. First, we note that although the
ground truth time interval is [450 : 550], there will be
many intervals passing the causality test. Specifically,
if an interval is causal, other intervals contained by this
interval, as well as those which have significant overlaps
with it, will also be causal. Thus, if we overlay all these
intervals, we expect to see a Bell-shaped curve as shown
in Fig. 2. As one can see, the middle time index (i.e.,
t = 500) is covered by the largest number of causal
time intervals (i.e., about 600 in our setting). Note
that timestamps that are not in [450 : 550] may also
be covered by a few causal intervals.

Now, suppose that the output contains p causal
intervals [s1 : t1], [s2 : t2], . . ., [sp : tp]. We denote
ct as the number of causal intervals covering timestamp
t. Since we conduct causality test on the simulated data
without any noise by default, we treat the count ct as
the ground truth count of causal intervals for timestamp



t. We then conduct the causality test on the noisy data
and denote the count of detected causal intervals at t as
c′t. We define the detection error as the mean difference
between c′t and the ground truth ct:

(5.9)
1

T

T∑
t=1

|ct − c′t|.

In Figure 3, we show the detection error as a func-
tion of the noise variance. As one can see, the detection
error increases as the variance of noise increases. But
the difference in the count of causal intervals remains
relatively small when the variance is below 0.1.
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Figure 3: Detection error w.r.t. the variance of noise.

Efficiency Study. We conduct several sets of experi-
ments to demonstrate the efficiency of our method under
different settings.

First, in Table 1 we show the running time of the
baseline method (without pruning) and our efficient
algorithm (with pruning). In this experiment, we keep
the causal interval length to be 100, and the standard
deviation of noise to be 0. One can see that, as the
length of the time series increases, it takes longer time
to detect causal time intervals. However, our algorithm
with pruning is at least 48% faster than the baseline
method which does not do pruning. Note that, in the
baseline method, we first test whetherX Granger causes
Y . Only when it passes the Granger test, we will run
the reverse Granger test. And only if it fails the reverse
test, we conduct stationarity test. So the baseline does
not necessarily conduct all the model fittings and tests.
But still, our pruning rule can save a significant amount
of time on top of the baseline method.

Total length Baseline Pruning Improvement

500 65.72 33.97 48%
1000 123.13 60.69 51%
1500 196.84 101.84 48%
2000 258.91 127.57 51%
2500 316.97 150.95 52%

Table 1: Running time (in seconds) and relative im-
provement w.r.t. total length of time series.

Next, we fix the total length of time series to be
1000, and examine the running time w.r.t the length
of the causal time interval. As one can see in Table 2,
the longer the causal interval is, the longer the overall
running time is. However, our pruning method is robust
to the change of causal interval length. We can always
achieve at least 51% improvement in efficiency.

Causal length Baseline Pruning Improvement

0 115.42 53.96 53%
50 114.45 53.52 53%
100 123.13 60.69 51%
150 132.46 61.90 53%
200 136.89 62.16 54%

Table 2: Running time (in seconds) and relative im-
provement w.r.t. length of the causal interval.

5.2 Experiment on Traffic data In this section, we
use real data to analyze the causal relationship between
taxi pick-ups/drop-offs and geo-tagged tweets in New
York City.

Data Description. The New York City generated
about half million taxi trips every day. Such taxi
trip data are public from www.nyc.gov. The dataset
contains pick-up and drop-off of each trip. Each pick-
up or drop-off record contains information of timestamp,
latitude, and longitude. In order to study what causes
taxi trips, we use geo-tagged tweets as a signal of local
events. Each geo-tagged tweet includes information
of timestamp, userid, latitude, longitude, and tweet
content.
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(a) Traffic and tweet data
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(b) Traffic and tweet data (zoomed in)

Figure 4: Traffic and tweet data near Jacob K. Javits
Convention Center in New York City in October, 2012.
The zoomed in time series shows strong correlation
between traffic and #nycc tweets.



Causality. Traffic and geo-tagged tweets could have a
significant causal relationship when there is a big local
event where many people tweet about the event and
also many people take taxis before and after the event.
We show such a case study in our dataset. We choose
a 500 meter by 500 meter area near Jacob K. Javits
Convention Center in New York City. In Figure 4,
we show the frequency of taxi pick-ups and drop-offs
from 10/01/2012 to 10/31/2012 in that area. We are
interested in explaining the changes in traffic. We test
the temporal frequency of different hashtags and find
one hashtag “#nycc” has a strong causality with taxi
volume from 10/11/2012 to 10/14/2012 in that area.
Hashtag “#nycc” means New York Comic Conference.
Figure 4 shows the frequency of this hashtag over time.

By testing the causality between the whole time
series of traffic and tweet, we are unable to find any
causality, as shown in Figure 5 where the causality score
for the whole time interval is 0. Thus, we detect all
the causal time intervals between traffic volume (pick-
up frequency and drop-off frequency) around Jacob K.
Javits Convention Center and the frequency of tweets
with hashtag “#nycc” in October 2012. The time lag L
is set to 5 hours. We only test time intervals less than 72
hours. To examine the strength of causal relationship at
any given timestamp t, we further define the causality
score of CS(t) as:

CS(t) =
# causal time intervals covering timestamp t

# time intervals covering timestamp t
.

Figure 5(a) shows that from 10/11/2012 to
10/14/2012, there is a strong evidence that changes in
taxi drop-off frequency cause changes in the frequency
of tweets with hashtag “#nycc”. This can be explained
by the fact that many people took the taxi to Jacob
K. Javits Convention Center, and posted tweets with
hashtag “#nycc” during their stay in the comic event.
Interestingly, it is much less evident that changes in
the frequency of tweets cause changes in taxi drop-off
frequency, because drop-offs typically happened before
people tweeting about the event.

In addition, Figure 5(b) shows that from 10/11 to
10/14, there is a strong evidence that changes in the
frequency of tweets with hashtag “#nycc” cause changes
in the taxi pick-up frequency. This can be explained by
the fact that, after attending the event, people took a
taxi and left the venue. However, we do not see much
causality in the reverse direction.

Running Time. In Table 3, we show the running
time for different lengths of time series. Our pruning
technique saves at least 36% of the time compared to
the baseline method.
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(a) Causality between tweet frequency and taxi
drop-offs (no causality when testing on the whole time

series of tweet and drop-off).
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Figure 5: Causality between traffic and frequency of
geo-tagged tweet containing hashtag “#nycc”. During
the nycc event period (10/11-10/14), we can see that
drop-offs cause tweets but not vice versa; and tweets
cause pick-ups but not vice versa. This suggests that
people take taxi to the venue, tweet about the comic
event, and then take taxi to leave.

5.3 Experiment on Climate Data In recent years,
global warming has been a major concern around the
world. In this section, we use a real climate dataset [20]
to study causal relationships between temperature and
other meteorological factors.

Data description. The climate dataset [20] is com-
posed of 125 climate monitoring locations in North
America. These locations are located on 2.5 × 2.5 de-
gree grids. Each sample location reported the monthly
data from 1990 to 2002, with each sample containing
temperature (TMP), CH4, CO2, CO, H2, Precipitation
(PRE), Vapor (VAP), Cloud Cover (CLD), Wet Days
(WET), and Frost Days (FRS). In this experiment, we
examine the causal relationship between the tempera-
ture and the other nine factors for 125 locations sepa-
rately and then aggregate the results of causality scores
across all these locations.

Causality. We show the causality score obtained by
our algorithm for each factor in Fig 6, with variance
across locations represented by the grey area. The time
lag length is set to be 3 months. In general, the causality



#Months Baseline Pruning Improvement

1 53.46 30.64 43%
2 117.41 66.97 43%
3 179.82 101.98 43%
6 333.54 208.86 37%
12 711.72 458.61 36%

Table 3: Running time (in seconds) comparison on taxi
data w.r.t. time series lengths.

of each feature on temperature varies over time. The
causality of climate features (PRE, VAP, WET, CLD)
varies a lot across different locations. However, the
causality of gases (CH4, CO2, CO, H2) on temperature
is relatively consistent across different locations. The
well-known Greenhouses gases CH4 and CO2 contribute
differently to the temperature change. The CH4 tends
to have a stronger causality on temperature in recent
years, but the causality of CO2 on temperature is
becoming less significant.

Running time. Without pruning, it takes 11, 680
seconds to run over all stations of all variables w.r.t.
temperature. With the pruning technique, it costs
7, 162 seconds. The pruning technique saves about one
third of the computational time.

6 Conclusion

In this paper, we propose to study a new problem of
detecting partial time intervals with Granger causality.
This problem is motivated by our observation that
causality could change over time. We further develop
an efficient algorithm that utilizes the error bounds
in the regression models to avoid repeatedly fitting
regression models for similar time intervals. We have
demonstrated the effectiveness and efficiency of our
method on both synthetic and real datasets.
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Figure 6: Causal relationship between temperature and other climate variables. There are 125 climate monitoring
stations and we conduct causality test for each station. The red line shows the average causality score over 125
stations and the grey line indicates the variance. The larger the grey area is, the bigger the difference among
different locations is. In each graph, we also report the number of stations that show causality when testing on
the whole time series.
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