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ABSTRACT

A wide range of modern web applications are only possible because

of the composable nature of the web services they are built upon.

It is, therefore, often critical to ensure proper functioning of these

web services. As often, the server-side of web services is not directly

accessible, several log message based analysis have been developed

to monitor the status of web services. Existing techniques focus

on using clusters of messages (log patterns) to detect important

system events. We argue that meaningful system events are often

representable by groups of cohesive log messages and the relation-

ships among these groups. We propose a novel method to mine

structural events as directed workflow graphs (where nodes repre-

sent log patterns, and edges represent relations among patterns).

The structural events are inclusive and correspond to interpretable

episodes in the system.

The problem is non-trivial due to the nature of log data: (i) In-

dividual log messages contain limited information, and (ii) Log

messages in a large scale web system are often interleaved even

though the log messages from individual components are ordered.

As a result, the patterns and relationships mined directly from the

messages and their ordering can be erroneous and unreliable in

practice. Our solution is based on the observation that meaningful

log patterns and relations often form workflow structures that are

connected. Our method directly models the overall quality of struc-

tural events. Through both qualitative and quantitative experiments

on real world datasets, we demonstrate the effectiveness and the

expressiveness of our event detection method.
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1 INTRODUCTION

In today’s connected world, the web applications help with all as-

pects of life. Most of the modern web applications are served by

loosely coupled web services. Enterprises spend great resources to

∗Work performed while the author was an intern at NEC Labs.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

KDD ’17, August 13-17, 2017, Halifax, NS, Canada

© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-4887-4/17/08. . . $15.00
https://doi.org/10.1145/3097983.3098124

Messages:

18:03:50 key pressed id=000

18:03:50 initial message

18:04:43 barcode id=919

18:04:43 display: 4 1

18:04:43 display: 1

18:04:43 display: 1

18:04:43 item infor: 411

...

18:03:55 key pressed=001

18:03:55 display: 4 2

18:03:57 key pressed=005

18:03:57 display: 0

18:03:59 key pressed=035

18:03:59 display: 9

18:03:59 item infor: 409

...

18:05:55 key id=100

item infor

display

character
barcode key pressed

finish

initial

message

Start

(a) (b)

Figure 1: Motivating example: (a) Log messages generated

by the Retail Management Service (RMS) at a grocery store.

Symbol 1 and 2 mark the logs corresponding to manual

entry and barcode scan events respectively. (b) A structural

event detected from the messages. Arrows of the same color

represent a event sequence.

ensure proper functioning of these web services as they directly

impact the quality and availability of the applications. At the same

time, the ubiquitous logging behavior generates rich text messages

that are useful for monitoring the performance of services and iden-

tifying their potential risks. However, the sheer amount of messages

and its highly dynamic nature render the problem challenging.

To tackle the problem, researchers and businesses have been

heavily investigated in mining various system events from logs,

such as, log patterns [3, 6, 22], and relations between log pat-

terns [10, 11, 20, 21, 26]. While mined patterns are useful, most

studies do not consider the high level structures composed by those

patterns. In this paper, we argue that the high level structures often

represent more meaningful system events, which can be naturally

expressed by directed workflow graphs. We motivate our problem

by using log messages collected from a Retail Management Service

(RMS)1. A RMS is a set of applications used by retailers to manage

their business.

Example 1.1. Consider a user shopping in a retail store, the

cashier working at the till uses both keyboard and scanner based

input methods to enter products purchased by the user. The actions

of the cashier are registered as log messages by the store’s RMS. Fig-

ure 1(a) shows the log messages generated for this transaction. Two

1https://blog.springboardretail.com/what-is-a-retail-management-system/



major actions of this transaction are labeled by system administra-

tors: A) Scanning a product (id=411) using its barcode. B) Product

with an id 409 entered via keyboard. We can see that individual

log message contains limited semantic information, for example

the log at 18:03:55 just shows that the key 4 is pressed. Format of

the log messages may indicate some patterns, e.g., key press and
display character , but the patterns are still hard to interpret and

does not completely represent the intentions of the cashier.

The key observation here is that the entire event (transaction)

is reflected by structures composed of multiple transitions and

patterns of logs. Figure 1(b) shows the directed workflow graph

composed by the patterns and the transitions. The graph represen-

tation associates isolated log patterns into structures that embed

semantic information. It is easy to see that left part of the graph

corresponds to scanning barcode, and the right part corresponds to

manually entering the item code.

The example shows that important/meaningful system events

are revealed by structures spanning multiple log patterns and their

transitions. The directed graph does not merely visualize the inter-

mediate transitions between patterns. More importantly, it reveals

structural relations beyond just the pairs of patterns. Therefore, we

name such a directed workflow graph a structural event, and aim to

detect them from logs. Meaningful structural events have shown to

be very valuable in various application domains, such as, monitor-

ing system workflow [28], detecting sequence anomalies [19], and

program workflow inspection [4, 5, 27].

However, automatically detecting such structural events is a

challenging problem, due to characteristics of log data. First, indi-

vidual log messages contain limited information. For example, in

Figure 1, the log at 18:03:55 just shows that the key 4 is pressed.

The characteristic raises significant difficulties in detecting mean-

ingful patterns (groups of logs). Second, a large proportion of the

messages may be interleaving because of simultaneous task exe-

cution in distributed systems, as unique task identifiers may not

be available [19, 27]. As a result, the temporal pattern relations

mined from the raw data may be inaccurate and misleading. These

characteristics require the structural event detection method to

intelligently distinguish meaningful relations and patterns from the

ones incurred by noise. In the literature, such structural events are

extracted in a closed environment [4, 5, 28], where log messages

are collected by running each application in isolation with as few

background messages as possible. However, such learning process

incurs a high cost and has limited usage. In this paper, we take a

data-driven approach to detect structural events from noisy log

messages directly.

Furthermore, we address the limitation of a workflow graph

in expressing higher-order sequential relations. More specifically,

in Figure 1, the two major events are reflected by two high order

pattern sequences: i) barcode → display ⤾ marked by the red

dashed arrows (a barcode scan followed by display of multiple char-

acters), and ii) key pressed ⇄ display marked by the blue dashed

arrows (each key press directly results in one character display).

However, if we only consider the transition expressed by the edges,

then the pattern sequence barcode → display → key pressed will

be incorrectly considered as a valid transition. The higher-order

information is particularly important for differentiating events with

common log patterns (nodes).

While literature have been focusing on proposing quality mea-

sures for detected patterns and relations, few looked at theworkflow

graphs resulting from connecting patterns with edges. In this paper,

we directly model the quality of the graph. In such an approach,

we can not only consider the structure quality of the resulting

events, but also account for errors in mined significant patterns and

relations. We resort to the intuition that meaningful log patterns

and relations often form workflow structures that are connected. We

formulate our event detection problem as a graph editing task. Our

proposed approach starts from a candidate graph containing all

the mined patterns then gradually edit the graph (i.e., adding or

deleting edges and nodes until a certain energy function is mini-

mized). Intuitively, the structural events should include significant

patterns and transitions for the system (i.e., high precision and high

coverage). More importantly, we favor patterns and relations that

are part of connected structures. The latter property translates to

graph connectivity. We further extend our energy function to embed

higher-order transitions and present a block optimization technique

to solve the problem.

In summary, our novel contributions are as follows:

● We study an important and challenging problem of detecting

structural events from noisy log messages.

● We propose a novel data-driven approach that is readily

applicable to any system logs and does not require domain

knowledge about the system to learn the model.

● We propose an energy minimization formulation that can

be solved efficiently. Compared with existing approaches,

our proposed energy function better describes important

structural events. We further extend our model to account

for higher-order relations to eliminate ambiguity caused by

edge representation.

● Experiments on three real datasets demonstrate the effec-

tiveness of our approach on different systems.

The rest of the paper is organized as follows. Related studies

are first discussed in Section 2. Section 3 presents preliminaries of

our detection framework. We describe our approach in Section 4

followed by inference method in Section 5. Section 6 discusses the

extension to include higher-order relations. Experimental results is

in Section 7. Finally, the paper is concluded in Section 8.

2 RELATEDWORK

In this section, we summarize related work from three aspects: i)

Node discovery, ii) Dependency discovery, and iii) Model inference.

Node discovery (Log summarization). This line of studies

is focused on providing a precise summarization (i.e., clusters) of

logs. As traditional clustering methods (e.g., k-means) designed

for numerical data are not directly applicable, (as logs are often

categorical and textual), researchers have proposed methods to

cluster logs by frequent words [24], text templates [3, 6, 19], tex-

tual hierarchies [22], and log categories obtained by supervised

methods [15]. To further consider the temporal information in the

logs, Jiang et al. [10] proposed to look at histograms of transition

time between the log messages to find log patterns. The resulting

log clusters consider the frequency of log appearances as well as



the transition time among logs. Instead of improving the pattern

discovery step, our proposal takes a complementary approach to

model the quality of the graph. Aforementioned studies can be

applied for node discovery in our framework.

Dependency discovery (Log dependency mining). Another

line of studies has been focusing on mining dependency relations

from the ordering of log messages. Various definitions of temporal

dependency have been proposed, such as, forwarding conditional

probabilities [20], transition invariants (e.g., A always follow B) [4,

5], and transition significance [12, 13]. These studies mainly focus

only on mining reliable pattern relations from the data and do not

consider the overall quality of the structural events.

Another long line of studies aims to mine higher-order sequen-

tial relations from data. Traditional frequent pattern mining ap-

proaches, such as sequential pattern mining [2, 8], frequent episode

mining [17, 18] can be applied to find important higher-order rela-

tions (sequences). Frequent pattern mining approaches often output

large number of sequences with little variation. Many studies fur-

ther reduce the result redundancy by using minimum description

length principle [11, 14, 23], or an interestingness measure [7].

However, the approaches do not consider how to summarize mined

sequences into a workflow graph.

Both lines of studies do not consider the quality of the workflow

graphs after aggregating mined pattern relations. In contrast, we

directly model the characteristics of the global graph. By looking at

the global structure, we are able to find transition patterns that are

structurally important butmay have low quality score locally. Again,

our approach and aforementioned relation discovery methods are

complementary. Our approach can build upon mined relations and

sequences.

Workflow model inference. Beschastnikh et al. [4, 5] pro-

posed a system to generate program execution workflow graphs

from log data. The generated graphs are later used in system de-

bugging tools. Yu et al. [28] proposed a system that utilizes pre-

generated workflow graphs to monitor interleaved log messages on

cloud computing services. Both studies use workflow graphs gen-

erated from log messages for monitoring and inspection purposes.

Different from our work, the workflow graph generation methods

assume that the logs are collected under a closed environment, i.e.,

log messages are collected by running each application in isola-

tion with as few background messages as possible. Such learning

process incurs a high cost and has limited usage in practice. In

contrary, we detect structural events (i.e., graph) from noisy log

messages directly. Perng et al. [21] also use Event Relation Net-

works (directed graphs) to represent temporal relations discovered.

The graph construction step applies user-specified thresholds to

filter insignificant relations. In practice, thresholds are hard to set.

We will compare with threshold based methods and depict their

problems in the experiments section. Furthermore, aforementioned

studies do not consider higher-order sequential relations among

patterns.

3 PRELIMINARIES

In this section, the pipeline of our approach is first described in

Section 3.1. The process of learning the nodes (Section 3.2) and

learning the edges (Section 3.3) is explained.

3.1 Pipeline

Our approach consists of three steps. Given a sequence of n log mes-

sages, M = ⟨m1,m2, ...,mn⟩, the first step converts raw messages

into a stream of log patterns S = ⟨p(s1),p(s2), ...,p(sn)⟩, where
p(si) represents the pattern id of message si . We denote the set of

all log patterns as P = {p1,p2, ...,pl}, where l is the total number

of patterns mined. Log messages with similar syntactical structure

usually correspond to system events that have the same semantic

meaning. For example, in Figure 1(a), messages following the regu-

lar expression “ ∗ barcode id ∶ ∗" (∗ denotes wild cards characters)

correspond to the barcode scanning event. Therefore, we discuss

our proposed framework at the pattern level.

We follow [28] to use regular expressions to cluster messages.

More specifically, a regular expression tree is built using all the

log messages, where different levels of the tree represent regular

expressions at different specificity. We use the level where the

number of clusters falls into a pre-defined range. Other log message

clustering methods can also be applied to find patterns.

We further mine transitional (sequential) relations among the

patterns. As a result, we can obtain an initial workflow graph G
∗ =

(V∗,E∗) from the log pattern stream, where each node v ∈ V
∗

represents a log pattern (i.e., a cluster of messages), and each e ∈
E
∗ ⊆ V

∗ × V
∗ denotes a temporal relation mined from the pattern

stream S . As the initial event graph may contain spurious edges, we

seek important substructures that represent the system behavior.

Therefore, our goal is to find:

G = argmin
Gl⊆G∗E(G

l ),

where Gl is a subgraph of the initial event graph G
∗, and function

E()measures the quality of the summarized graph. We will discuss

the detail of E() in following sections.

3.2 Learning Nodes

In the workflow graph, each node i is associated with a weight

m(⋅) denoting the importance of the log pattern. Formally, we use

normalized clustering size as the weight for each node, i.e.,

m(i) =
∣{p(s) = pi ∣i ∈ {1, . . . ,n}}∣

n
,

where ∣ ⋅ ∣ is the cardinality of a set, andm(i) ∈ [0, 1].
Note that other log clustering methods (mentioned in Section 2)

can also be applied for discovering meaningful log patterns, and

more sophisticated measures can be used. Here, for simplicity, we

only consider normalized clustering size as the weight function, as

it is not the focus of this paper.

3.3 Learning Edges

To construct edges in the initial workflow graph, each node is

connected with its neighbors. Node i , and j are neighbors, if and
only if there exists a transition from log pattern pi to pattern pj , i.e.,
∃t s.t. st .p = pi ∧ st+1.p = pj , where p ∈ P = {p1,p2, ...,pl} is the
set of all log patterns. The edges are weighed according to a quality

measure q(⋅) quantifying the strength of the relation. Formally,

we use the forwarding transitional probability as our edge quality

measure q(⋅), i.e.,

q(i, j) =
m(i, j)
m(i)

,



where m(i, j) is the number of times transition pi → pj occurs,
i.e.,m(i, j) = ∣{⟨st .p, st+1.p⟩ ∶ st .p = pi ∧ st+1.p = pj}∣. Note that
we have q(i, j) ∈ [0, 1]. Similarly, one may choose to use other

formulations for the quality measure q(⋅) (mentioned in Section 2).

4 STRUCTURAL EVENT DETECTION

Given an initial graph G
∗ = (V∗,E∗), where E

∗ denotes a set

of mined pairwise relations, the structural event detection is a

graph editing process. The goal is to return a graph G = (V,E)
(possibly disconnected) that represents important structural events

of the system, where V ⊆ V
∗, and E ⊆ E

∗, and E
∗ ⊆ V

∗ × V
∗.

Intuitively, the resulting graphG should include significant patterns

and transitions of the system (i.e., high precision and high coverage).

More importantly, as events often span multiple patterns and their

transitions, we favor resulting structures that are more connected.

The best structural events should therefore minimize the follow-

ing energy function:

E = EE + EV + EG,

where EV is a measure for the cost of including node set V, EE
measures the cost of including set of edges E, and EG is a graph

regularization term. We first give our complete energy function as:

E(G) =λe ∑
e∈E

(1 − q(e))

����������������������������������������������������������������������������������
precision (edge)

+λr ∑
e∈E∗∖E

q(e)

��������������������������������������������������������������������
coverage (edge)

+ λn ∑
i∈V

−m(i)

��������������������������������������������������������
coverage (node)

+ λc ∣G∣d
��������������

connectivity

, (1)

where λe ,λn , and λc are hyper-parameters controlling the effect of

different components.

Edge precision and coverage: As we want to include signifi-

cant pattern relations in detected structural events, we define the

energy term on the edges as:

EE = λe ∑
e∈E

(1 − q(e)) + λr ∑
e∈E∗∖E

q(e),

where E is the set of edges inG, E∗∖E is a set of edges not included.

The edge energy consists of components measuring the precision

and the coverage of edges respectively. The edge precision term

favors including transition relations that have high strength. The

second term favors the case where all strong transitions are also

covered in detected events. Without considering the coverage term,

adding new edges within already connected components (with-

out introducing new nodes) will not decrease the energy value.

As a result, edges forming cyclic structures cannot be detected.

For example, as shown in Figure 1, when the cashier manually

inputs an item code, the system first registers a key press event

and displays the corresponding character. The action corresponds

to key pressed ⇄ display patterns in the structural events. Even

though both directions of the edge has similar importance, not

considering the coverage on edges will likely to miss either the

edge key pressed → display or the edge key pressed ← display.

Node coverage:We define node energy to measure the coverage

on node as:

EV = −λn ∑
i∈V

m(i),

wherem(i)measures the fraction of the times log pattern i appears.
The energy term favors including log patterns that appear more

frequently. Similar formulations to include important nodes in the

graphs are also used in other works [12, 13].

Graph connectivity. Our key observation is that important

system events often span multiple patterns and transitions of logs, the

intuition translates to measuring the connectivity of the structural

events. We define a term on the resulting graph structure using a

graph regularization term as follows

EG = ∣G∣d ,

where ∣G∣d is the number of connected components. Other connec-

tivity measures, such as, pairwise node distances, are also applicable

and yield similar results. We choose to use the number of connected

components for ease of computation. A simple depth-first or breath-

first search takes linear time complexity with respect to the number

of nodes and edges.

5 ENERGY MINIMIZATION VIA GRAPH
EDITING

Our goal is to mine sub-graph structures that minimizes the energy

function as in Equation (1). The energy function is not differentiable,

as unknowns are discrete variables, and the connectivity term does

not have closed form expression. Moreover, we can see that a naive

search solution is infeasible because of the exponential number of

possible subgraphs. We use a Monte Carlo Markov Chain (MCMC)

method [1] to explore the search space more effectively.

5.1 MCMC

In a stochastic optimization approach, algorithms generate a new

candidate based on the previous ones. In each candidate generation

step, a newly generated candidate is compared to the previous

candidate. If the new candidate has a better objective value, it will

be accepted as the new solution, otherwise, it will be accepted with

a probability proportional to its quality. The sequence of candidates

is a Markov Chain. Metropolis-Hasting algorithm [9] approaches

the optimal solution using such a Markov Chain.

Metropolis-Hasting algorithm consists of two main steps: the

proposal and the acceptance steps. In the proposal step, a new graph

configuration G
′ is proposed by the function Q . Given the newly

proposed configuration, the algorithm decides whether to accept

the new configuration with a probability γ defined as follows:

γ = min

⎡⎢⎢⎢⎢⎣
1,

f (G′)
f (G)

Q(G;G′)
Q(G′;G)

⎤⎥⎥⎥⎥⎦
, (2)

where Q(G′;G) is the proposal density function. The algorithm

repeats the two steps until a stopping criterion is met. A common

definition of f (G′) is:

f (G′) =
exp−E(G

′)/T

Z
,



Algorithm 1 SED(E∗, Q , E)

Input: Mined relation set E∗, proposal functionQ , energy function

E.
Output: Structural event graph G

1: while Stopping criteria not met do

2: G← G
i

3: Propose G′ ← Q(G′;G)
4: Compute γ(i) (Eq.6) with E(G) and E(G′).
5: if U [0, 1] < γ(i) then
6: G

i+1 ← G
′

7: else

8: G
i+1 ← G

9: end if

10: end while

11: return G

where Z = ∑∀G′ e
−E(G′)/T is the partition function (i.e., normaliz-

ing constant), and T is the temperature parameter. Note that since

γ is a ratio, we only need f (G) upto a constant factor. Hence, we

do not explicitly compute Z . As we have introduced the basics for

a stochastic optimization framework, we now proceed to explain

our proposed method in detail.

5.2 Proposal Density Function

While the proposal density function can be an arbitrary one, the

choice affects the convergence significantly. In the extreme case, an

uniform proposal function will perform no better than doing a naive

search. Following [12, 13], the proposal function Q is designed to

include modifications of graph edges and is defined as follows:

Q(G′;G) =
⎧⎪⎪
⎨
⎪⎪⎩

Qa(G′;G), p = 0.5

Qd(G
′;G), p = 0.5,

(3)

where Qa adds an edge e = i → j to G with a probability pa(e)
defined as follows:

pa(e) =
exp−(1−q(e))

∑∀e ′∈E∗∖E exp−(1−q(e
′))
, (4)

and E∗ ∖E is the set of edges that are not already in the graph. The

intuition is that the edges of higher quality are more likely to be

included in the structural event graph.

Qd deletes one edge e = i → j from G with a probability pd(e)
defined as follows:

pd(e) =
exp−q(e)

∑∀e ′∈E exp−q(e
′)
, (5)

where E is the list of selected edges. The intuition is that an edge of

lower quality is more likely to be deleted from the structural event

graph. We do not define proposal functions on nodes, as selections

on edges implicitly determines node selection as well.

5.3 Simulated Annealing

Metropolis-Hasting algorithm could suffer from long-mixing time

(slow-convergence) because of low acceptance rate. Simulated An-

nealing adaptively sets the T in the Equation (3) to control the

acceptance ratio γ .

Usually, the algorithm starts at a high temperature (a large T ),
where the distribution of f (G) is closer to a uniform distribution.

Later, the temperature gradually reduces according to a cooling

schedule. The process corresponds to a broad search at the begin-

ning and gradually narrows down to a promising area for fine-

grained exploration.

In this work, we adapt an exponential cooling schedule [1]:

T (i) = T0exp{−αi
1/N },

where N is the dimensionality of the model space, and we let N = 2,

α = 0.8 and T0 = 1. The new acceptance rate γ(i) varies over

iterations as follows:

γ(i) = min

⎡⎢⎢⎢⎢⎣
1,
exp−E(G

′)/T (i)

exp−E(G)/T (i)
Q(G;G′)
Q(G′;G)

⎤⎥⎥⎥⎥⎦
(6)

The optimization process is presented in Algorithm 1. The algo-

rithm takes an edge set E∗, initial temperatureT0, proposal function
Q , and energy function E. While the stopping criterion is not met,

the algorithm continues to examine new proposed structural events.

Several possibilities exist for the stopping criterion. Empirically,

we found that stopping the algorithm when the energy value re-

mains unchanged for 100 continuous iterations to be most effective.

Finally, we study the time complexity of algorithm 1. In each

iteration, computing the graph energy, E(G), is the most expensive

operation. It requires the computation of three terms: Edge energy,

Node energy and Connectivity, each of which can be computed

in linear time using graph traversal algorithms such as Depth-

first search. Given Nmax iterations of the SED algorithm, the time

complexity is, therefore, O((∣V∣ + ∣E∗∣) × Nmax ).

6 HIGHER-ORDER SEQUENCES

As we discussed in Section 1, the edge formulation can only repre-

sent transitions between pairs of patterns. However, the log patterns

may inherently embed higher-order sequential relations. We use

E
∗
k to denote a set of high-order relations of length k , e.g., we have

E
∗ = E

∗
2 , and E

∗
3 = {(i, j,k)}. Similar to the edge case, the higher-

order relations are also weighed by a quality measure q(⋅). Our goal
here is to select important high-order relations Ek ⊆ E

∗
k to enrich

the structural event graph. We can similarly define an energy term

that measures the precision and coverage of included relations,

EEk =λ
′
e ∑
e∈Ek

(1 − q(e)) + λ′r ∑
e∈E∗

k
∖Ek

q(e). (7)

We further constraint that sub-relations of a higher-order re-

lation e ∈ Ek should be included in the selected edge set E. For

example, we have (i, j,k) ∈ E3 ⇔ (i, j) ∈ E2 ∧ (j,k) ∈ E2. Corre-
spondingly, wewant the higher-order relations to explain important

log patterns and have:

EVk = −λn ∑
i∈V(Ek )

m(i),

whereV(Ek) is a set of log patterns (i.e., nodes) that selected higher-
order relations. In this paper, we only consider second order rela-

tions, i.e., E3. The generalization to a larger k is straight-forward.

Here, we define weights for high-order relations (of order 2) as:



Algorithm 2 BlockSED(E∗,E∗k )

Input: Mined relation set E∗,E∗k
Output: Structural event graph G

1: G(V,E) ← SED(E∗,Q,E)
2: E
∗
f il ter ed ← {(i, j,k) ∶ (i, j) ∈ E ∧ (j,k) ∈ E, (i, j,k) ∈ E∗k}

3: G(V,E,Ek) ← SED(E∗f il ter ed ,H ,E)
4: return G(V,E,Ek)

q(i, j,k) = q((i, j),k) × q(i, (j,k)) =
m(i, j,k)
m(i, j)

m(i, j,k)
m(j,k)

,

where m(i, j,k) is the frequency of transition i → j → k . The
energy terms related to higher-order sequences are EEk and EVk .
The higher-order energy E(Gk) is defined as follows:

E(Gk) = EEk + EVk . (8)

Accordingly, the joint energy function is given by:

E = E(G) + E(Gk), (9)

where E(G) is defined as in Equation 1.

6.1 Block Optimization

To optimize the new energy function, we again use a MCMC ap-

proach with a proposal function H defined as:

H(G′;G) =
⎧⎪⎪
⎨
⎪⎪⎩

Ha(G′;G), p = 0.5

Hd(G
′;G), p = 0.5

, (10)

where H is similar to the function Q defined in Section 5.2 with Ha

and Hd representing addition and deletion operations. We can still

use Equation 4 and Equation 5 to define editing probabilities, by

replacing E∗ and E with high-order set E∗k , and Ek respectively.

However, the minimization problem is easily stuck at some local

optima, as we will show in Section 7. To address this problem, we

propose a block optimization technique, where we optimize for

each order of the relation in an increasing order. A key observation

is that the proposal step on high-order relations will not change

the energy terms computed on lower-order relations. The detailed

steps are shown in Algorithm 2. In line 1, we execute the SED
algorithm only using the proposal function related to pairwise edge

update, i.e., Q . Based on the result, we filter the set of high-order

sequences in line 2. In line 3, we again run the SED algorithm with

the proposal function H . The graph G with selected edges (E) and

the higher-order sequences (Ek ) is the structural event graph.

7 EXPERIMENTS

In this section, we performed experiments on log messages col-

lected from three different domains: back-end servers, management

systems, and user applications. Results consistently show that our

method outperforms various other approaches. Our qualitative

results are backed by user studies and case studies.

7.1 Datasets

For all three datasets, we generate ground truth workflow graphs

on labeled data, which simulates a perfectly closed environment.

Log Source # messages # patterns # labels

Windows Server 61,190 140 12

RMS 21,736 106 10

Web Browser 997,176 26 11

Table 1: Statistics of the datasets. #labels column shows the

number of labeled patterns we have for each dataset, i.e.,

number of patterns in the ground truth structural event.

The labeled data was provided by domain experts different from

the users participated in user study for Windows Server and RMS

datasets. For the Web Browser dataset, we separate the logs by user

id (as the unique identifier is presented in the dataset) and manually

generate workflow subgraphs.

Windows Server2. The Windows server data consists of log mes-

sages from a Windows server at a data center. The log messages

are collected over a two-month period. The server primarily runs

two types of services: (i) database back-up services, and (ii) log-

collection processes for the data center. The back-up services are

automatically invoked periodically and the log-collection processes

are invoked by user requests. As we do not force the server to run

under a closed-environment, large amount of the logs are irrelevant

to the two services. We manually labeled the log data for these two

types of services.

Retail Management Service (RMS)2. The RMS data consists of

log messages from a retail management system. The log messages

are collected over a one-month period and has 21,736 messages

in total. Domain experts have provided us with expected events

during a normal operations of the RMS. These include events corre-

sponding to product scanning, which we use for comparison. The

ground truth graph contains 10 log patterns.

Web Browser. The web browser dataset consists of log messages

generated from a Firefox browser on a computer for one week3. The

dataset contains 997, 176 messages. Each log message is associated

with an event code reflecting the corresponding browser event, e.g.,

loading plugins, opening tabs, or allocating memory. We manually

label log messages that correspond to common browsing actions:

open/close tab, add/delete/move bookmark, follow links, and install

plugin.We generate a ground truthworkflow graph from the labeled

data.

Table 1 summarizes the statistics of the datasets. In each case, the

ground truth only describes a fraction of the system functionality,

i.e., there may exist other meaningful log patterns and pattern

transitions that are not included in the ground truth. Therefore, we

only consider log patterns that are included in the ground truth

and evaluate the structure induced by those selected patterns.

7.2 Evaluation Metrics

The output of our problem is a directed graphG = (V,E). Therefore,
we evaluate the result based on similarity between resulting graph

and the ground truth graph. Specifically, we use precision and

recall of the edges as the metric (measures on the nodes give similar

results). Given a ground truth graph Gд = (Vд ,Eд), precision

2Names are not revealed due to non-disclosure issues.
3https://datahub.io/dataset/a-week-in-the-life-of-a-browser-version-2



measures the fraction of edges in G that are also in the ground

truth graph, i.e., P = ∣E⋂Eд ∣
∣E∣

. Recall measures the fraction of edges

in the ground truth graph that are recovered in the result graph

G, i.e., R = ∣E⋂Eд ∣
∣Eд ∣

. We also report F1 score that considers both

precision and recall, i.e., F1 = 2 PR
P+R . We only report the precision

and recall for the edge set E.

7.3 Comparisons

In this paper, we compare our method against four state-of-the-art

and baseline methods that extract structural events.

Threshold method. In this method, structural events are detected

from an initial workflow graph by simply filtering out all edges

with q(e) < θ , θ is a threshold parameter. We use two thresholds

0.1 and 0.5 for comparison. The threshold method considers only

the quality of each relation.

StoryLine.Wang et al. [25] and Lin et al. [16] proposed a story line

extraction method for summarizing progressing news events. Given

a text query, a subgraph is retrieved based on the textual similarity

between the query and the documents. In this subgraph, each node

represents a text document and each directed edge represents the

similarity between documents (with temporal ordering). Each node

is also weighed by its dissimilarity to the query. StoryLine extracts

minimum weight dominating set of the subgraph and searches

for a directed Steiner tree that connects nodes in the set. We use

1 −m(i) as the weight for log pattern (node) i and directly use the

log patterns appeared in the ground truth as the retrieved subgraph.

The method can extract tree like events.

K-cores.We compare with a purely connectivity based detection

method. K-cores of a graph are maximally connected subgraphs in

which each vertex has degree more or equal to k . We set K = 3. The

K-cores represents densely connected components of the graph.

We further filter edges with quality lower than 0.1. This baseline

considers the connectivity of resulting structural events.

ESRE. Kwon and Lee [12, 13] proposed a unified event summa-

rization and detection framework (ESRE). ESRE aims to detect se-

quential events, such as, a person getting on a bus and sitting, from

surveillance videos. The proposed approach first extracts important

image segments from video frames. Image segments are connected

based on their temporal and spatial proximity. The images segments

and their connections are fed into a graph editing algorithm to mine

causal events via minimizing an energy function. Compared with

our energy function, their energy function does not consider the

connectivity and coverage of the resulting graph. As a result, the

method is likely to miss important cyclic structures and split com-

plete structural events into smaller ones. We compare our method

with the graph-editing step of ESRE.

7.4 Performance on Real Datasets

In this section, we report the performance of compared methods

on all three datasets. Table 2 summarizes the results of all com-

pared methods. We can see that our Structural Event Detection

SED method achieves the best F1 score compared against other

methods, i.e., 0.9, 1 and 0.86 on Server, RMS, and Browser datasets

respectively.
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Server

P 0.76 0.82 0.33 0.46 1 0.87

R 0.82 0.64 0.28 0.93 0.5 0.93

F1 0.33 0.72 0.31 0.61 0.67 0.9

RMS

P 0.8 1 0.75 0.72 1 1

R 1 0.75 0.37 1 0.25 1

F1 0.88 0.86 0.5 0.84 0.4 1

Browser

P 0.67 0.77 0.3 0.18 0.83 0.75

R 1 0.83 0.25 1 0.41 1

F1 0.8 0.8 0.27 0.31 0.56 0.86

Table 2: Precision, recall and F-1 scores for compared

method on the three datasets respectively.

By varying the threshold from 0.1 to 0.5 in threshold, the pre-

cision increases by nearly 0.1 across the three datasets but at the

same time, the recall decreases by nearly 0.3. This depicts the prob-

lem of a threshold based method. While a higher threshold keeps

edges having higher quality, many edges in the complete events

may be missed. With a lower threshold, edges of complete events

may all be included, however, many incorrect relations will also

be included. A precise threshold value is hard to know, and even

non-existent. In our approach, such a trade-off is measured based

on the contribution of an edge to the overall quality instead.

StoryLine has F1 score no more than 0.5 across the datasets, as

themethod explicitly assumes a tree structure connecting important

nodes. However, structural events often contain cyclic strictures

as illustrated in Figure 1. Both major events, i.e., scanning barcode,

and input item code, contain cyclic structures of log patterns.

ESRE achieves the best precision, i.e., 1, 1, and 0.83 precision

on the three datasets respectively. However the recall values are

low, i.e., 0.5, 0.4, and 0.41 on the three datasets respectively. This

is because the energy function does not consider coverage of the

edges in the result. Adding new edges within already connected

components (does not introduce new node) will not decrease the

energy value. As a result, edges forming cyclic structures cannot

be detected. Furthermore, the energy function does consider the

connectivity of the graph. Therefore, edges connecting important

sub-structures (while may appear infrequently) will be missed.

K-cores method achieves high recall, i.e., 0.93, 1 and 1 on all the

three datasets. However, the precision is low as it purely focuses

on the connectivity of the resulting model.

The experiment shows that our proposed method performs the

best as it considers precision, coverage, and connectivity of the

resulting graph jointly.

7.5 Convergence of Block Optimization

In this section, we study the convergence of our SED Algorithm 2.

We compare our block update strategy with vanilla stimulated

annealing approach (i.e., mix update), where we use the following
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Figure 2: Energy value with respect to number of iterations for alternating update and mix update.

P1

P2 P3

P4

P80

P79 P83

P81P82

P100

Pattern id Labeled semantics

P1 Starting input item code (action 1)

P2 Key pressed

P3 Character display

P4 Complete input

P79 Get item property

P80 Display unique item id

P81, P100 Display detailed item information

P83 Repeat

P82 Quantity

(a) (b)

Figure 3: One structural event detected from RMS data. The event corresponds to the cashier inputs an item manually via

keyboard (a) Structural event detected, where each node represents log patterns. (b) Semantics for each log pattern.

proposal function Q′:

Q′(G′;G) =
⎧⎪⎪
⎨
⎪⎪⎩

Q(G′;G), p = 0.5

H(G′;G), p = 0.5
.

There is an equal chance for a high-order update and an edge

update operation to happen. Figure 2 shows the energy value with

respect to the number of iterations for both inference approaches

on three datasets for 100 runs. The solid line represents the median

energy value, and the color bands mark the runs between the first

and the third quantile. We can see that block-update approach

reaches convergence at iterations 1500, 1100, and 1200 for Windows

Server, RMS and Web Browser datasets respectively, while the

mixed approach needs about 4000 iterations to converge on the

three datasets. At the same time, our proposed approach reaches a

lower energy state compared against the mix update approach.

Furthermore, we can see that these results of mixed update ap-

proach are unstable as the first and the third quantile cover a large

area. These results suggest that the update is easily stuck at some

ill-posed local optima. This is because once an ill-posed update gets

accepted, it is very hard for the algorithm to undo the step after a

few edge updates have occurred. Therefore, ill-posed higher-order

updates occuring at the early iterations of the methods would affect

the results significantly. The large variation in the result of the

vanilla stimulated annealing makes the method impractical.

7.6 User Study on Higher-Order Relations

To evaluate the interpretability of resulting structural events with

higher-order relations, we conducted a user study where 19 users

were asked to rank the outputs from different methods. The user

group is composed of 9 graduate students (majoring in computer

BlockSED ESRE K-cores StoryLine Threshold

Server 0.42 0.08 0.37 0.37 0.2

Browser 0.56 0.23 0.29 0.08 0.5

Table 3: User ratings of compared methods.

science or related fields) and 10 domain experts. BlockSED is used

as our method, as we also show the higher-order relations in the

detected structural events. For browser data, we asked the users

to rank the models based on whether the resulting models reflects

normal browsing behavior. For server data, we inform the subjects

that the server periodically runs back-up services and collects logs.

We asked the users to mark the results that best reflects the two

major events. For each user, models from five methods are shown.

The method ranked at the best will gain two points and the method

ranked at the second gains one point. Table 3 summarizes the user

rating normalized by the maximum score a model can achieve.

Events detected by SED are consistently ranked either as the first

or the second. As a result, SED achieves better user rating on the

datasets.

7.7 Parameter Study

In this section, we study the effect of the four parameters: λe , λr , λn
and λc on the energy function given by the equation 1 and describe

a process for tuning these parameters. For simplicity, we assume

that all these parameters lie in the range [0, 1].

Edge parameters λe and λr : We first derive a condition under

which include an edge, e , when minimizing the graph energy. From
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Figure 4: The number of components in the resulting graph

with respect to different values of λc .

Equation 1 we can see that the net increase in energy by including

the edge e is given by the Equation 11.

δ(e) = λe × (1 − q(e)) − λr × q(e) (11)

Since our objective is to minimize the energy, we want δ(e) < 0.

Therefore, we include an edge when q(e) > λe
λe+λr

. This inequality

serves as a guideline for choosing λe and λr based on empirical

knowledge. Note that edges having q(e) ≤ λe
λe+λr

may still be

included. In our experiments, we let λe = 0.3 and λr = 0.7.

Node parameter λn : We found that the values of λn ∈ [0, 1] do
not affect the result for our datasets, as the selection of nodes is

also implicitly considered in EE.

Connectivity parameter λc :We ran experiments on RMS andWin-

dows Server datasets since they have a higher number of patterns

as the Table 1 indicates. Figure 4 shows the number of components

in the resulting event graph for different values of λc . We can see

that when λc = 0 (without the connectivity constraints) the event

graph is split into 9 and 19 disconnected components in the two

datasets. Moreover the number of components vary less (6 to 2 and

9 to 6) as λc increases from 0.1 to 1. These results suggests that the

detected events are not sensitive to the value of parameter λc .

7.8 Case Study

In this section, we perform qualitative analysis on the event de-

tected in RMS data. We show that our model performs the best

in unraveling the underlying event. Figure 3(a) shows the event

detected by the algorithm 2. The raw logs are first clustered into

log patterns using regular expressions. The semantics for patterns

are shown in Figure 3(b). The entire structural event describes

the message flow when the cashier inputs an item manually via

keyboard.

Pattern P1,P2,P3 and P4 represents logs generated by press-

ing keys. Whenever a key is pressed, the corresponding character

will be displayed on the screen. Therefore, we see a loop between

pattern P2 and P3. The bidirectional transitions between P2 and
P3 happen frequently. ESRE method is likely to miss either tran-

sition from P2 to P3 or from P3 to P2, as it does not consider the
coverage of relations in the energy function. At the same time, Sto-

ryLine method cannot detect the loop structure, as it assumes that

the progression of news events follows a tree structure. Moreover,

compared to P3 → P2, the transition P3 → P4 happens far less

frequently, as multiple keys need to be pressed to input an item.

Threshold based method can easily miss transition P3→ P4, as it is
relatively infrequent. One may lower the threshold to include the

transition. But, many irrelevant transitions will also be included

as a side effect. Our proposed method can correctly include this

transition by considering the connectivity of the graph.

Starting from the pattern P79, the rest of the structural event
describes the message flow corresponding to displaying behavior

of the system. The message flow after entering an item code should

be P79 → P80 → P81 and then to P100. At the same time, P82
represents another action in the system that leads to displaying

behavior (patterns leading to P82 are not shown for brevity), which

generates message flow P82 → P80 → P83. If we only consider

transitions between two patterns, P80 → P81 and P80 → P83 are
both valid, which should not be the case. The contextual information

(whether P80 is preceded by P82 or P79) is extremely important

in anomaly detection applications. The dashed lines in Figure 3

represent the results of high-order constraints. Compared to all

other methods, our proposed framework can easily incorporate the

high-order information.

8 CONCLUSIONS AND FUTUREWORK

In this paper, we propose to mine structural events from log mes-

sages. The structural events are useful for status monitoring and

detecting abnormal behavior sequences. We proposed a data driven

approach that can be readily applied on normal system running

logs (as oppose to logs generated under a closed environment). Our

framework models the quality of the graph structure and embeds

higher-order sequential relations. Our proposed framework can be

further extended in the following directions.

The structural events can embed more temporal information and

consider more sophisticated structures. In this paper, we only utilize

the ordering information in log messages. Considering more fine-

grained temporal information, e.g., the transition time distribution,

can enrich mined structural events. We also focus on transition

relations among log patterns in this paper. There are other useful

relations among logs, such as running in parallel. Those relations

can be further modeled in the workflow graph using undirected

edges.

The current method requires manually tuning several hyper-

parameters. We plan to reduce the number of parameters, as the

energy terms on coverage have similar effects on the results (as

shown in Section 7.7). We also believe that the proposed framework

can achieve more utility in an interactive setting, where system ad-

mins can interactively exploring the system behaviors with different

focuses (parameter settings) on coverage, quality or connectivity.

This requires our framework to respond to different parameter set-

tings in a timely manner. We plan to investigate how to effectively

support the interactive setting with online inference in future work.
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