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ABSTRACT
We study the problem of allocating multiple objects to agents with-

out transferable utilities, where each agent may receive more than

one object according to a quota. Under lexicographic preferences,

we characterize the set of strategyproof, non-bossy, and neutral

quota mechanisms and show that under a mild Pareto efficiency

condition, serial dictatorship quota mechanisms are the only mech-

anisms satisfying these properties. We then extend quota mech-

anisms to randomized settings, and show that the random serial

dictatorship quota mechanisms (RSDQ) are envyfree, strategyproof,

and ex post efficient for any number of agents and objects and

any quota system, proving that the well-studied Random Serial

Dictatorship (RSD) satisfies envyfreeness when preferences are

lexicographic.
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1 INTRODUCTION
Assignment problems are fundamental in numerous multiagent

systems and fair division problems [12, 17]. We consider the prob-

lem of allocating indivisible objects to agents without any explicit

market. In many real-life domains such as course assignment, room

assignment, school choice, medical resource allocation, etc. the use

of monetary transfers or explicit markets are forbidden because

of ethical and legal issues [45, 46]. Much of the literature in this

domain is concerned with designing incentive compatible mecha-

nisms that incentivize agents to reveal their preferences truthfully

[1, 6, 28, 42, 55]. Moreover, the criterion of Pareto efficiency along

with strategyproofness provide stable solutions to such allocation

problems. These problems are often studied for their axiomatic char-

acteristics [5, 6, 29, 38, 39] or computational aspects [4, 23, 49, 59].

In this paper, we take a mechanism design approach and focus on

axiomatic aspects of assignment problems in multiagent settings.

We are interested in allocation problems where each agent may

receive a set of objects and thus we search for mechanisms that

satisfy some core axiomatic properties of strategyproofness, Pareto

efficiency, and non-bossiness. Examples of such allocation problems
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include distributing inheritance among heirs
1
, allocating multiple

tasks to employees, assigning scientific equipment to researchers,

assigning teaching assistants to different courses, and allocating

players to sports teams. The common solution for allocating players

to teams or allocating courses to students in the course assignment

problem is the Draft mechanism [14], where agents choose one

item in each picking round. However, allocation mechanisms, such

as the Draft mechanism, have been shown to be highly manipulable

in practice and fail to guarantee Pareto efficiency [16]. Therefore

we ask the following questions:

(1) How can we characterize the set of mechanisms with desir-

able guarantees for multiple assignment problems?

(2) What fairness guarantees are achievable when designing

strategyproof mechanisms for allocating multiple indivisible

objects?

Our work generalizes previous results [27, 41], for a subclass

of preferences, by allowing any number of agents or objects, and

assuming that individual agents’ quotas – the maximum number of

objects they can receive – can vary and be agent specific, imposing

no restrictions on the problem size nor quota structures. Instead,

we are interested in expanding the possible quota mechanisms to a

larger class, essentially enabling social planners to choose any type

of quota system based on a desired metric such as seniority.

Our main focus is on the lexicographic preference domain [24],

where agents have idiosyncratic private preferences. Lexicographic

preferences lead to compact representations of agents’ preferences

over bundles of objects, and have been well studied in artificial in-

telligence and economics [2, 25, 35, 37, 48, 53]. There is substantial

evidence in behavioral economics, psychology, and consumer mar-

ket research for the presence of lexicographic preferences among

individuals: breaking ties among equally valued alternatives [21],

making purchasing decisions by consumers [19], and examining

public policies, job candidates, etc. [57]. Individuals’ choices partic-

ularly tend to look more lexicographic in ordinal domains, thus, in

ordinal mechanism design one must pay particular attention to the

settings wherein agents may treat alternatives as non-substitutable

goods [24].

Examples of such domains include assigning scientific resources

or labs to research groups, assigning teaching assistants to instruc-

tors, etc. Take the example of assigning teaching assistants to in-

structors. An instructor requiring three assistants may plan to

utilize her team by delegating the most important task (let’s say

teaching tutorials) to Alice (her top choice), perhaps because of past

interactions. Thus, she would consider any subset that includes

Alice superior to all those that do not assign Alice to her course.

Our Contributions. Our main results in this domain are the fol-

lowings:

1
We only consider non-liquid assets that cannot be easily converted to transferable

assets such as money.



• We characterize the set of strategyproof, non-bossy, and

neutral allocation mechanisms when there is a quota system.

Allowing any quota system enables the social planner to

remedy the inherent unfairness in deterministic allocation

mechanisms by assigning quotas according to some fairness

criteria (such as seniority, priority, etc.).

• We generalize our findings to randomized mechanisms and
show that restricting preferences to the lexicographic do-

main helps escape the negative results in designing strate-

gyproof, ex post efficient, and envyfree mechanisms. In par-

ticular, we show that random serial dictatorship quota mech-

anisms (RSDQ) satisfy all these properties in the domain

of lexicographic preferences. Thus, random quota mecha-

nisms provide a rich and extended class for object allocation

with no restriction on the market size nor quota structure

while providing envyfreeness in the lexicographic domain,

justifying the broad use of such mechanisms in practical

applications.

2 RELATEDWORK
Svensson [54, 55] formulated the standard assignment problem (first

proposed by Shapley and Scarf [52]) where each agent receives

exactly one item, and showed that Serial Dictatorship mechanisms

are the only social choice rules that satisfy strategyproofness, non-

bossiness, and neutrality. In this setting, each agent is entitled to

receive exactly one object from the market. Pápai [40] extended

the standard model of Svensson [54, 55] to settings where there are

potentially more objects than agents (each agent receiving at most

one object) with a hierarchy of endowments, generalizing Gale’s top

trading cycle procedure. This result showed that the hierarchical

exchange rules characterize the set of all Pareto efficient, group-

strategyproof, and reallocation proof mechanisms.

In the multiple-assignment problem, agents may receive sets of

objects, and thus, might have various interesting preferences (e.g.
complements or substitutes) over the bundles of objects. Pápai [42]

studied this problem on the domain of strict preferences allowing

for complements and substitutes, and showed that sequential dicta-

torships are the only strategyproof, Pareto optimal, and non-bossy

mechanisms. Ehlers and Klaus [22] restricted attention to respon-

sive and separable preferences and essentially proved that the same

result persists even in a more restrictive setting. Responsiveness of

preference relations was first introduced by Roth [44] for college ad-

mission problems, and along with separability, was formally defined

by Barberà et al. [10]. Furthermore, Ehlers and Klaus showed that

considering resource monotonic allocation rules, where changing

the available resources (objects) affects all agents similarly, limits

the allocation mechanisms to serial dictatorships. However, the

class of sequential dictatorships mechanisms no longer character-

izes all non-bossy, Pareto efficient, and strategyproof social choice

mechanisms. To address this issue, Pápai [41] and Hatfield [27] stud-

ied the multiple assignment problem where objects are assigned to

agents subject to a quota. Pápai [41] showed that under quantity-

monotonic preferences every strategyproof, non-bossy, and Pareto

efficient social choice mechanism is sequential; while generalizing

to monotonic preferences, the class of such social choice functions

gets restricted to quasi-dictatorial mechanisms where every agent

except the first dictator is limited to pick at most one object. Pá-

pai’s characterization is essentially a negative result and rules out

the possibility of designing neutral, non-bossy, strategyproof, and

Pareto efficient mechanisms that are not strongly dictatorial. Hat-

field [27], on the other hand, addressed this issue by assuming that

all agents have precisely fixed and equal quotas, and showed that

serial dictatorship is strategyproof, Pareto efficient, non-bossy, and

neutral for responsive preferences.

In the randomized settings, Random Serial Dictatorship (RSD)

and Probabilistic Serial Rule (PS) are well-known for their promi-

nent economic properties. RSD satisfies strategyproofness, ex post

efficiency, and equal treatment of equals [1], while PS is ordinally

efficient and envyfree but not strategyproof [11]. In fact, in the

multiple-assignment domain no randomized mechanism can satisfy

efficiency, strategyproofness, and equal treatment of equals under

the stochastic dominance relation [6].

For divisible objects, Schulman and Vazirani [51] showed that

if agents have lexicographic preferences, the Probabilistic Serial

rule is strategyproof under strict conditions over the minimum

available quantity of objects and the maximum demand request of

agents. Under indivisible objects, these strict requirements translate

to situations where the number of agents is greater than the num-

ber of objects and each agent receives at most one object. When

allocating multiple objects to agents, Kojima [36] obtained negative

results on (weak) strategyproofness of PS in the general domain of

preferences. Not only PS is not strategyproof, but the fraction of

manipulable profiles quickly goes to one as the number of objects

exceeds that of agents, even under lexicographic preferences [29].

In contrast, we seek to find strategyproof and envyfree mechanisms

with no restriction on the number of agents or objects under the

lexicographic preference domain, addressing the open questions

in [41] and in [51] about the existence of a mechanism with more

favorable fairness and strategyproofness properties.

3 THE MODEL
There is a set of m indivisible objects M = {1, . . . ,m} and a set

of n agents N = {1, . . . ,n}. There is only one copy of each object

available, and an agent may receive more than one object. LetM =
P(M) denote the power set ofM . Agents have private preferences

over sets of objects. Let P denote the set of all complete and strict

linear orders over M. Each agent’s preference is assumed to be

a strict relation ≻i∈ P. A preference profile denotes a preference
ordering for each agent and is written as ≻= (≻1, . . . , ≻n ) ∈ P

n
.

Following the convention, ≻−i= (≻1, . . . , ≻i−1, ≻i+1, . . . , ≻n ) ∈

Pn−1
, and thus ≻= (≻i , ≻−i ).

An allocation is a n ×m matrix A ∈ A that specifies a (possi-

bly probabilistic) allocation of objects to agents. The vector Ai =
(Ai ,1, . . . ,Ai ,m ) denotes the allocation of agent i . We sometimes

abuse the notation and useAi to refer to the set of objects allocated
to agent i . Let A refer to the set of possible allocations. Allocation

A ∈ A is said to be feasible if and only if∀j ∈ M,
∑
i ∈N Ai , j ∈ {0, 1},

no single object is assigned to more than one agent, while some

objects may not be assigned. Note that we allow free disposal, and
therefore,

⋃
i ∈N Ai ⊆ M . For two allocations we write Ai ≻i Bi if

agent i with preferences ≻i strictly prefers Ai to Bi .



Preference ≻i is lexicographic if there exists an ordering of ob-

jects, (a,b, c, . . .), such that for all A,B ∈ A if a ∈ Ai and a < Bi
then Ai ≻i Bi ; if b ∈ Ai and a,b < Bi then Ai ≻i Bi ; and so on.

That is, the ranking of objects determines the ordering of the sets of

objects in a lexicographic manner. Note that lexicographic prefer-

ences are responsive and strongly monotonic. A preference relation

is responsive if Ai
⋃

Bi ≻i Ai
⋃

B′i if and only if Bi ≻i B
′
i . Strong

monotonicity means that any set of objects is strictly preferred

to all of its proper subsets. Thus, under lexicographic preferences

Ai ≽i Bi implies either Ai ≻i Bi or Ai = Bi . We make no further

assumptions over preference relations.

An allocation mechanism is a function π : Pn → A, which

assigns a feasible allocation to every preference profile. Thus, agent

i’s allocationAi can also be represented as πi . An allocation mecha-

nism assigns objects to agents according to a quota system q, where
qi is the maximum number of objects that the ith agent can receive

such that

∑n
i=1

qi ≤ m. Since not all agents need to be assigned

an object, we use the size of quota |q | to denote the number of

agents that are assigned at least one object, thus, |q | ≤ n. From the

revelation principle [20], we can restrict our analysis to direct mech-

anisms that ask agents to report their preferences to the mechanism

directly.

3.1 Properties
In the context of deterministic assignments, an allocation A Pareto
dominates another allocation B at ≻ if ∃i ∈ N such that Ai ≻i Bi
and ∀j ∈ N Aj ≽j Bj . An allocation is Pareto efficient at ≻ if no

other allocation exists that Pareto dominates it at ≻. Since a social

planner may decide to only assign C ≤ m number of objects, we

need to slightly modify our efficiency definition. We say that an

allocation that assigns C =
∑n
i=1

qi objects is Pareto C-efficient if

there exists no other allocation that assigns an equal number of

objects, C , that makes at least one agent strictly better off without

making any other agent worse off. A Pareto C-efficient allocation

is also Pareto efficient when

∑n
i=1

qi =m.

Definition 3.1 (Pareto C-efficiency). A mechanism π with quota q,
where C =

∑
i qi , is Pareto C-efficient if for all ≻∈ Pn , there does

not exist A ∈ A which assigns C objects such that for all i ∈ N ,

Ai ≽i πi (≻), and Aj ≻j πj (≻) for some j ∈ N .

A mechanism is strategyproof if there exists no non-truthful

preference ordering ≻′i,≻i that improves agent i’s allocation. More

formally,

Definition 3.2 (Strategyproofness). Mechanism π is strategyproof

if for all ≻∈ Pn , i ∈ N , and for any misreport ≻′i∈ P, we have

πi (≻) ≽i πi (≻
′
i , ≻−i ).

Although strategyproofness ensures that no agent can benefit

from misreporting preferences, it does not prevent an agent from

reporting a preference that changes the prescribed allocation for

some other agents while keeping her allocation unchanged. This

propertywas first proposed by Satterthwaite and Sonnenschein [50].

A mechanism is non-bossy if an agent cannot change the allocation

without changing the allocation for herself.

Definition 3.3 (Non-bossiness). A mechanism is non-bossy if for

all ≻∈ Pn and agent i ∈ N , for all ≻′i such that πi (≻) = πi (≻
′
i , ≻−i )

we have π (≻) = π (≻′i , ≻−i ).

Non-bossiness and strategyproofness only prevent certain types

ofmanipulation; changing another agent’s allocation or individually

benefiting from a strategic report.

Our last requirement is neutrality. Let ϕ : M → M be a permuta-

tion of the objects. For all A ∈ A, let ϕ(A) be the set of objects in A
renamed according to ϕ. Thus, ϕ(A) = (ϕ(A1), . . . ,ϕ(An )). For each
≻∈ Pn we also define ϕ(≻) = (ϕ(≻1), . . . ,ϕ(≻n )) as the preference
profile where all objects are renamed according to ϕ.

Definition 3.4 (Neutrality). A mechanism π is neutral if for any

permutation function ϕ and for all preference profiles ≻∈ Pn ,

ϕ(π (≻)) = π (ϕ(≻)).

In other words, a mechanism is neutral if it does not depend
on the name of the objects, that is, changing the name of some

objects results in a one-to-one identical change in the outcome. It is

clear that above conditions reduce the set of possible mechanisms

drastically.

4 ALLOCATION MECHANISMS
Several plausible multiple allocation mechanisms exploit interleav-

ing picking orders to incorporate some level of fairness, where

agents can take turns each time picking one or more objects [13,

15, 34]. These mechanisms allow agents to pick objects in various

turns and have been widely used in numerous applications such as

assigning students to courses, members to teams, and in allocating

resources or moving turns in boardgames or sport games [14–16].

However, all such mechanisms are highly manipulable [3, 32, 33]

and have been shown to be significantly manipulated in practice

[16]. Moreover, no such mechanism can satisfy Pareto efficiency

nor non-bossiness.

With these essentially negative results for interleaving mecha-

nisms, we restrict our attention to the class of sequential dictator-

ship mechanisms, where each agent only gets one chance to pick

(possibly more than one) objects.

A serial dictatorship quota mechanism is a natural extension to

serial dictatorships for multiple assignment problems and proceeds

as follows: Given a fixed ordering of agents f = (f1, . . . , fn ) and a

quota system q, the first dictator f1 chooses q1 of her most preferred

objects; the second dictator f2 then choosesq2 of her most preferred

objects among the remaining objects. This procedure continues

until no object or no agent is left.
2

When allocating objects sequentially via a quota systemq, Pareto
C-efficiency requires that no group of agents prefer the allocation

of each other such that they prefer to trade objects ex post. If

such trading is possible, then the initial allocation is dominated by

the new allocation after the exchange. For example, take a serial

dictatorship with q1 = 1 and q2 = 2 and three objects. Agent 1

will receive her top choice object {a} (since {a} ≻1 {b} ≻1 {c})
according to her preference and agent 2 receives {b, c}. However,
it may be the case that {b, c} ≻1 {a} while {a} ≻2 {b, c} and both

agents may be better off exchanging their allocations. Thus, we

have the following proposition for general preferences.

Proposition 4.1. For general preferences, serial (and sequential)
dictatorship quota mechanisms do not guarantee Pareto C-efficiency.
2
Dropping neutrality, all our results extend to the class of sequential dictatorship

mechanisms. Thus, serial dictatorship quota mechanisms can be seen as sequential

dictatorships where the ordering f is a permutation of the agents, determined a priori.



In the absence of Pareto C-efficiency in the domain of general

preferences, a social planner is restricted to use only two types of

quota systems; either assigning at most one object to all agents

except the first dictator (who receives the remaining objects) [41],

or setting equal quotas for all agents [27]. These quota systems

are significantly restrictive and do not allow for any flexibility in

choosing the quota, a requirement in several allocation problems

that seek to include - aside from priorities - some level of fairness

by letting those agents with lower priorities pick more objects or

impose seniority restrictions.

5 CHARACTERIZING QUOTA ALLOCATIONS
UNDER LEXICOGRAPHIC PREFERENCES

Due to the impossibility shown in Proposition 4.1, we restrict our-

selves to the interesting class of lexicographic preferences. We

show that if preferences are lexicographic, regardless of the se-

lected quota system, any serial dictatorship mechanism guarantees

Pareto C-efficiency. We first provide the following lemma in the

lexicographic domain.

Lemma 5.1. The following statements hold for two sets of objects
when preferences are lexicographic:

- If Bi ⊂ Ai then Ai ≻i Bi .
- For allX such thatX ∩Ai = ∅, we haveAi ≻i Bi iffAi ∪X ≻i
Bi ∪ X .

- If Bi 1 Ai and Ai ≻i Bi then there exists an object x ∈ Ai
such that x ≻i X for all X ∈ P(Bi −Ai ).

The proof follows from strong monotonicity of lexicographic

preferences and has been omitted due to space.

Proposition 5.2. If preferences are lexicographic, the serial dicta-
torship quota mechanism is Pareto C-efficient.

Proof. Consider a serial dictatorship mechanism π with quotaq,
that assignsC =

∑
i qi objects. Suppose for contradiction that there

exists an allocation B with arbitrary quota q′, where C ′ =
∑
i q
′
i ,

that Pareto dominates A = π (≻). We assume C ′ = C to ensure

that both allocations assign equal number of objects (Otherwise

by strong monotonicity of lexicographic preferences and Lemma

5.1 one can assign more objects to strictly improve some agents’

allocations.).

Since allocation B Pareto dominates A, then for all agents j ∈ N
we must have that Bj ≽j Aj , and there exists some agent i where
Bi ≻i Ai . If for all j ∈ N , |Bj | ≥ |Aj | then q′j ≥ qj . Now suppose

for some i , |Bi | > |Ai |. This implies that q′i > qi . By adding these

inequalities for all agents we have

∑
i q
′
i >

∑
i qi , contradicting the

initial assumption of equal quota sizes (C ′ = C). For the rest of the
proof, we consider two cases; one with |Bi | > |Ai |, and one where

|Bi | ≤ |Ai |.
Case I: Consider |Bi | ≤ |Ai | and Bi ≻i Ai . If Bi ⊂ Ai then

monotonicity of lexicographic preferences in Lemma 5.1 implies

that Ai ≻i Bi contradicting the assumption. On the other hand, if

Bi 1 Ai by Lemma 5.1 there exists an object x ∈ Bi such that for

all X ∈ P(Bi − Ai ) agent i ranks it higher than any other subset,

that is, x ≻i X . In this case, serial dictatorship must also assign x
to agent i in Ai , which is a contradiction.

Case II: Consider |Bi | > |Ai | and Bi ≻i Ai . The proof of this
case heavily relies on the lexicographic nature of preferences (as

opposed to Case I that held valid for the class of monotonic, and not

necessarily lexicographic, preferences). The inequality |Bi | > |Ai |
indicates that q′i > qi . We construct a preference profile ≻′ as

follows: for each j ∈ N , if Bj = Aj then ≻
′
j=≻j , otherwise if Bj , Aj

rank the set Bj higher thanAj in ≻
′
j (≻
′
j= Bj ≻ Aj ≻ . . .). Now run

the serial dictatorship on ≻′ with quota q. Suppose that B′ = π (≻′).
For agent i , B′i is the top qi objects of Bi where B′i ( Bi and

because qi is fixed, then |B
′
i | = |Ai |. Given ≻

′
we have Bi , Ai ,

which implies that B′i , Ai . By strong monotonicity for agent i we
have Bi ≻i B

′
i ≻i Ai . However, according to the constructed quotas

we have |Bi | > |B
′
i | but |B

′
i | = |Ai |, where B

′
i , Ai . By Lemma 5.1

there exists an object x ∈ B′i which is preferred to all proper subsets
ofAi −Bi . However, if such object exists it should have been picked

by agent i in the first place, which is in contradiction with agent i’s
preference. �

We state a few preliminary lemmas before proving our main

result in characterizing the set of non-bossy, Pareto C-efficient,

neutral, and strategyproof mechanisms. Given a non-bossy and

strategyproof mechanism, an agent’s allocation is only affected

by her predecessor dictators. Thus, an agent’s allocation may only

change if the preferences of one (or more) agent with higher priority

changes.

Lemma 5.3. Take any non-bossy and strategyproof mechanism
π . Given two preference profiles ≻, ≻′∈ Pn where ≻= (≻i , ≻−i )
and ≻′= (≻i , ≻′−i ), if for all j < i we have πfj (≻) = πfj (≻

′), then
πfi (≻) = πfi (≻

′).

Proof. For all j < i we have πfj (≻) = πfj (≻
′). By non-bossiness

and strategyproofness, for all ≻′j such that πj (≻) = πj (≻
′
j , ≻−j ) we

have π (≻) = π (≻′j , ≻−j ). In words, non-bossiness and strategyproof-

ness prevent any agent to change the allocation of other agents

with lower priority (those who are ordered after him), without

changing its own allocation. LetM ′ be the set of remaining objects

such that M ′ = M \
⋃j
k=1

πfk (≻). Since πfj (≻) = πfj (≻
′), the set

of remaining objectsM ′ under ≻′ is equivalent to those under ≻,
implying that πfi (≻) = πfi (≻

′) which concludes the proof. �

The next Lemma guarantees that the outcome of a strategyproof

and non-bossy mechanism only changes when an agent states that

some set of objects that are less preferred to πi (≻) under ≻i is now
preferred under ≻′i . Intuitively, any preference ordering ≻′i which

reorders only the sets of objects that are preferred to πi (≻) or the
sets of objects that are less preferred to the set of objects allocated

via πi (≻) keeps the outcome unchanged.

Lemma 5.4. Let π be a strategyproof and non-bossy mechanism,
and let ≻, ≻′∈ Pn . For all allocations A ∈ A, if for all i ∈ N , πi (≻
) ≽i Ai and πi (≻) ≽′i Ai , then π (≻) = π (≻′).

Proof. The proof is inspired by Lemma 1 in [55]. First, we show

thatπ (≻′i , ≻−i ) = π (≻), that is changing i’s preference only does not
affect the outcome. From strategyproofness we know that πi (≻i ) ≽i
πi (≻

′
i , ≻−i ). By the lemma’s assumption (if condition) we can also

write πi (≻i ) ≽
′
i πi (≻

′
i , ≻−i ). However, strategyproofness implies

that πi (≻
′
i , ≻−i ) ≽

′
i πi (≻i ). Since the preferences are strict, the only



way for the above inequalities to hold is when πi (≻
′
i , ≻−i ) = πi (≻).

The non-bossiness of π implies that π (≻′i , ≻−i ) = π (≻).
We need to show that the following argument holds for all

agents. We do this by partitioning the preference profile into ar-

bitrary partitions constructed partly from ≻ and partly from ≻′.

Let ≻p= (≻′
1
, . . . , ≻′p−1

, ≻p , . . . , ≻n ) ∈ P
n
. Thus, a sequence of

preference profiles can be recursively written as ≻p+1= (≻′p , ≻
p
−p ).

Using the first part of the proof and by the recursive representa-

tion, we can write π (≻p ) = π (≻′p , ≻
p
−p ) = π (≻p+1). Now using this

representation, we shall write π (≻′) = π (≻n+1) and π (≻) = π (≻1),

which implies that π (≻) = π (≻′). �

The next lemma states that when all agents’ preferences are iden-

tical, any strategyproof, non-bossy, and Pareto C-efficient mecha-

nism simulates the outcome of a serial dictatorship quota mecha-

nism.

Lemma 5.5. Let π be a strategyproof, non-bossy, and Pareto C-
efficient mechanism with quota system q, and ≻ be a preference
profile where all individual preferences coincide, that is ≻i=≻j for all
i, j ∈ N . Then, there exists an ordering of agents, f , such that for each
k = 1, . . . , |q |, agent fk receives exactly qk items according to quota
q induced by a serial dictatorship.

Proof. Suppose the contrary and let ≻ be an identical preference

profile ≻1=≻2= a ≻ b ≻ c such that agent 1 receives a and c
while agent 2 receives b. For agents 1 and 2, assume that they

both have received no other objects except the ones stated above

(Alternatively, we can assume that the other objects received by

these two agents so far are their highest ranked objects, and because

these objects were assigned in some previous steps, they won’t

affect the assignment of the remaining objects). For all other agents

N \ {1, 2} assume that the allocation remains unchanged, i.e., these
agents will receive exactly the same objects after we change the

preferences of agent 1. By Lemma 5.4, since the mechanism is non-

bossy and strategyproof, agent 1’s allocation remains unchanged

under the following changes in its preference ordering:

≻1= a ≻ b ≻ c ⇒ a ≻ c ≻ b ⇒ c ≻ a ≻ b

Thus, the new preference profile ≻′ would be

≻′
1
: c ≻ a ≻ b

≻2: a ≻ b ≻ c

where π (≻′) = π (≻). The squares show the current allocation.

Since agent 1 is receiving two objects and agent 2 receives one, for

any ordering that is not prescribed by a serial dictatorship, agent

2 should be ordered second (otherwise, the ordering is a serial

dictatorship).

More specifically, orderings (1,2) and (2,1) are serial dictatorships.

Since agent 2 must be ordered second, it must be the case that agent

1 goes first and third (otherwise we are back at (1,2), which results

in a serial dictatorship). Agent 1 first chooses object c according
to ≻′

1
, then agent 2 chooses object a according to ≻2, and lastly

agent 1 chooses the remaining object b. Therefore, agent 2 can

benefit from manipulating the mechanism by choosing a instead

of b, contradicting the assumption that π is strategyproof and non-

bossy. This implies that such agents cannot exist, and concludes

our proof. �

Algorithm 1: Constructing an identical preference profile

Data: A preference profile ≻, an ordering f , and quota q
Result: A profile with identical preferences ≻′ with

π (≻′) = π (≻)
1 Initialize ≻1← ∅

2 Initialize set Z = ∅

3 for (i ← 1 to |q |) do
4 Z ← top(qi , ≻fi ) // Most preferred set of size qi from the remaining

objects.

5 ≻′
1
← append(≻′

1
,Z ) // Append this set to the preference ordering.

6 Z ← ∅

7 for (i ← 1 to | f |) do
8 ≻′i←≻

′
1

9 return ≻′.

Theorem 5.6. When preferences are lexicographic, an allocation
mechanism is strategyproof, non-bossy, neutral, and Pareto C-efficient
if and only if it is a serial dictatorship quota mechanism.

Proof. It is clear that in the multiple-assignment problem any

serial dictatorship mechanism is strategyproof, neutral, and non-

bossy [42]. For Pareto efficiency, in Proposition 5.2, we showed

that the serial dictatorship mechanism is Pareto C-efficient for any

quota, and in fact it becomes Pareto efficient in a stronger sense

when all objects are allocated C =m.

Now, we must show that any strategyproof, Pareto C-efficient,

neutral, and non-bossy mechanism, π , can be simulated via a serial

dictatorship quota mechanism. Let π be a strategyproof, Pareto

C-efficient, neutral, and non-bossy mechanism. Consider ≻∈ Pn to

be an arbitrary lexicographic preference profile. Given q, we want
to show that π is a serial dictatorship mechanism. Thus, we need

to find an ordering f that induces the same outcome as π when

allocating objects serially according to quota q.
Take an identical preference profile and apply the mechanism

π with a quota q. By Lemma 5.5, there exists a serial dictatorial

allocation with an ordering f where agent f1 receives q1 of her

favorite objects from M , agent f2 receives q2 of her best objects

fromM \πf1 , and so on. Therefore, given a strategyproof, non-bossy,
neutral, and Pareto C-efficient mechanism with quota q, we can
identify an ordering of agents f = (f1, . . . , fn ) that receive objects
according to q = (q1, . . . ,qn ). Note that since the ordering is fixed

a priori, the same f applies to any non-identical preference profile.

From any arbitrary preference profile ≻, we construct an equivalent

profile as follows: Given the ordering f , the first best q1 objects (the

set of size q1) according to ≻f1 are denoted by Af1 and are listed as

the first objects (or set of objects of size q1 since preferences are

lexicographic) in ≻′i . The next q2 objects in ≻′i are the first best q2

objects according to ≻f2 from M \ Af1 , and so on. In general, for

each i = 2, . . . , |q |, the next best qi objects are the best qi objects

according to ≻fi fromM \
⋃j=i−1

j=1
Aj . Algorithm 1 illustrates these

steps.

Now we need to show that applying π to the constructed identi-

cal preference profile (≻′) induces the same outcome as applying

it to ≻. By Lemma 5.3 for each agent fi , πfi (≻) = πfi (≻
′) if for all

j < i we have πfj (≻) = πfj (≻
′). That is, the allocation of an agent



remains the same if the allocations of all previous agents remain

unchanged. Now by Lemma 5.4, for any allocation A ∈ A, if for

each agent i ∈ N , πi (≻
′) ≽′i Ai then we also have πi (≻

′) ≽i Ai . For
each fi where i = 1, . . . , |q |, by Lemma 5.4 since π is strategyproof

and non-bossy, for any allocation Afi given the quota q we have

πfi ≽
′
fi
Afi and πfi ≽fi Afi , which implies that πfi (≻

′) = πfi (≻).

Therefore, we have π (≻′) = π (≻). Since ≻′ is an identical profile,

π (≻′) = π (≻) assignsqi objects to each agent according to the serial
ordering f . Thus, π is a serial dictatorship quota mechanism. �

The following example illustrates how an equivalent preference

profile with identical outcome is constructed given any arbitrary

preference profile, ordering, and quota system.

Example 5.7. Consider allocating 4 objects to 3 agents with pref-

erences illustrated in Table 1 (left), based on the following quota

q = (1, 2, 1). Assume the following ordering of agents f = (1, 2, 3).
To construct a profile with identical orderings, agent 1’s first best

object according to ≻1, a, is considered the highest ranking object in
≻′i . Agent 2’s best two objects (q2 = 2) among the remaining objects

c and b are ranked next, and finally agent 3’s remaining object d is

ranked last. Given f and q, the two preference profiles depicted in

Table 1 have exactly similar outcome (shown with squares).

≻1: a ≻ b ≻ c ≻ d

≻2: c ≻ a ≻ b ≻ d

≻3: a ≻ c ≻ d ≻ b

≻′
1
: a ≻ c ≻ b ≻ d

≻′
2
: a ≻ c ≻ b ≻ d

≻′
3
: a ≻ c ≻ b ≻ d

Table 1: Converting a preference profile to identical order-
ings, with exact same outcome.

5.1 Group Strategyproofness
In this section, we show that for quota mechanisms strategyproof-

ness and non-bossiness are necessary and sufficient conditions for

group-strategyproofness. Under group-strategyproofness no subset

of agents can collectively misreport their preferences such that

some of them can gain a more preferred allocation. In other words,

group-strategyproofness requires that no agent is ever harmed by

truthfully reporting her preference.

Pápai [40] has given a characterization of group-strategyproofness,

showing that a deterministic mechanism is group-strategyproof if

and only if it is strategyproof and non-bossy, and Thomson [56]

provides an overview of where these conditions do not hold (e.g.

presence of indifferences) [9, 30, 43].

We extend Theorem 5.6, proving that serial dictatorship quota

mechanisms characterize the set of neutral, Pareto C-efficient, and

group-strategyproof mechanisms.

Theorem 5.8. Serial dictatorship quota mechanisms are the only
neutral, Pareto C-efficient, and group-strategyproof mechanisms.

Proof. It is easy to see that group-strategyproofness implies

strategyproofness and non-bossiness (Lemma 1 in [40]). We need

to show the converse, that is, if π is strategyproof and non-bossy

then it is group-strategyproof.

Let N ′ ⊆ N be a subset of agents, N ′ = {1, . . . ,n′}, with ≻′N ′
such that allocation of some agents inN ′ strictly improves while for

other agents in N ′ the allocation remains the same. Formally, for all

i ∈ N ′, πi (≻
′
N ′, ≻−N ′) ≽i πi (≻) and for some j ∈ N ′, πj (≻

′
N ′, ≻−N ′

) ≻j πj (≻). Construct an alternative preference profile ≻̂ such that

for all i ∈ N ′ the preference ordering ≻̂i preserves the ordering but
moves the set πi (≻

′
N ′, ≻−N ′) to the front of the ordering. For agent

1, if π1(≻
′
N ′, ≻−N ′) ≻1 π1(≻) then by Lemma 5.3, π1(≻

′
N ′, ≻−N ′) is

not in the list of available sets. Otherwise, π1(≻
′
N ′, ≻−N ′) = π1(≻).

Thus, strategyproofness implies that π1(≻̂1, ≻−1) = π1(≻), and by

non-bossiness we have π (≻̂1, ≻−1) = π (≻). Repeating the same ar-

gument for all other agents in {2, . . . ,n′}, we get π (≻̂N ′, ≻−N ′) =
π (≻). Now since π is strategyproof and non-bossy, using Lemma 5.4

we have that π (≻̂N ′, ≻−N ′) = π (≻′N ′, ≻−N ′). This implies that

π (≻N ′, ≻−N ′) = π (≻), meaning that π is group-strategyproof. �

Giving the complete picture, note that a group-strategyproof

mechanism does not rule out the possibility of manipulation by a

subset of agents that misreport their preferences and then exchange

their allocations ex post. The property that rules out the possibility

of coalitional manipulation and the exchange of objects ex post is

called reallocation-proofness [40]. The following example illustrates

a mechanism that is group-strategyproof but does not guarantee

reallocation-proofness.

Example 5.9. Consider three agents with preferences as shown in
Table 2. A serial dictatorship mechanism with ordering f = (1, 2, 3)
and qi = 1,∀i ∈ N assigns objects to agents as shown with squares.

≻1: a ≻ c ≻ b
≻2: c ≻ b ≻ a

≻3: c ≻ a ≻ b

Table 2: An example illustrating that a serial dictator-
ship quota mechanism is group-strategyproof but not
reallocation-proof.

Given the serial dictatorship, none of the subset of agents benefit

from misreporting their preferences since the serial dictatorship

mechanism is non-bossy and strategyproof. However, if agents are

able to exchange objects ex post, agent 1 and 3 can form a coalition

and strategically report preferences as ≻′
1
: c ≻ a ≻ b and ≻′

3
: a ≻

c ≻ b. Agent 1 receives object c , agent 2 receives b, and agent 3

receives object a. Now, after the allocation is complete, if agents 1

and 3 swap their assignments, they both receive their top choices,

and thus, benefit from this type of reallocation manipulation.

6 RANDOMIZED QUOTA MECHANISMS
Thus far we identified the class of deterministic strategyproof, non-

bossy, and Pareto C-efficient quota mechanisms. However, deter-

ministic quota mechanisms generally have poor fairness properties:

the first dictator always has a strong advantage over the next dicta-

tor and so on. This unfairness could escalate when an agent gets to

pick more objects than the successor agent, that is, qi > qj for i < j .
Thus, while any profile-independent randomization over a set of

serially dictatorial mechanisms still maintains the incentive prop-

erty, randomization over priority orderings seems to be a proper

way of restoring some measure of randomized fairness.



We first define a few additional properties in the randomized set-

tings. A random allocation is a stochasticmatrixAwith

∑
i ∈N Ai , j =

1 for each j ∈ M . This feasibility condition guarantees that the prob-

ability of assigning each object is a proper probability distribution.

Moreover, every random allocation is a convex combination of

deterministic allocations and is induced by a lottery over deter-

ministic allocations [58]. Hence, we can focus on mechanisms that

guarantee Pareto C-efficient solutions ex post.

Definition 6.1 (Ex Post C-Efficiency). A random allocation is ex

post C-efficient if it can be represented as a probability distribution

over deterministic Pareto C-efficient allocations.

The support of any lottery representation of a strategyproof

allocation mechanism must consist entirely of strategyproof deter-

ministic mechanisms. Moreover, if the distribution over orderings

does not depend on the submitted preferences of the agents, then

such randomized mechanisms are strategyproof [47].

We focus our attention on the downward lexicographic domi-

nance relation to compare the quality of two random allocations

when preferences are lexicographic.
3
Given two allocations, an

agent prefers the one in which there is a higher probability for

getting the most-preferred object. Formally, given a preference or-

dering ≻i , agent i prefers any allocation Ai that assigns a higher
probability to her top ranked object Ai ,o1

over any assignment Bi
with Bi ,o1

< Ai ,o1
, regardless of the assigned probabilities to all

other objects. Only when two assignments allocate the same prob-

ability to the top object will the agent consider the next-ranked

object.

For randomized allocations we focus on the downward lexico-

graphic relation, as opposed to upward lexicographic relation [18].

The downward lexicographic notion compares random allocations

by comparing the probabilities assigned to objects in order of pref-

erence. It is in fact a more natural way of comparing allocations

and is extensively used in consumer markets and other settings

involving human decision makers [31, 57, 60].

Definition 6.2. Agent i with preference ≻i downward lexico-

graphically prefers random allocation Ai to Bi if

∃ ℓ ∈ M : Ai ,ℓ > Bi ,ℓ ∧ ∀k ≻i ℓ : Ai ,k = Bi ,k .

We say that allocation A downward lexicographically dom-
inates another allocation B if there exists no agent i ∈ N that

lexicographically prefers Bi to Ai . Thus, an allocation mechanism

is downward lexicographically efficient (dl-efficient) if for all pref-
erence profiles its induced allocation is not downward lexicograph-

ically dominated by any other random allocation.
4

Given an allocation A, we say that agent i is envious of agent j’s
allocation if agent i prefers Aj to her own allocation Ai . Thus, an
allocation is envyfree when no agent is envious of another agent’s

assignment. Formally we write,

Definition 6.3. Allocation A is envyfree if for all agents i ∈ N ,

there exists no agent-object pair j ∈ N , ℓ ∈ M such that, Aj ,ℓ >

Ai ,ℓ ∧ ∀k ≻i ℓ : Ai ,k = Aj ,k .

3
In the general domain, this measure corresponds to a stronger notion based on

first-order stochastic dominance [11, 26]

4
An allocation that is dl-efficient implies stochastic dominance efficiency (a.k.a sd-

efficiency) under general preferences but the converse does not hold. In other words,

there may be allocations that are sd-efficient but not dl-efficient.

A mechanism is envyfree if at all preference profiles ≻∈ Pn it

induces an envyfree allocation.

6.1 Random Serial Dictatorship Quota
Mechanisms

Recall that |q | denotes the number of agents that are assigned at

least one object. Given a quota of size |q |, there are

( n
|q |
)
× |q |!

permutations (sequences without repetition) of |q | agents from N .

Thus, a Random Serial Dictatorship mechanism with quota q is a

uniform randomization over all permutations of size |q |. Formally,

Definition 6.4 (Random Serial Dictatorship QuotaMechanism (RSDQ)).
Let P(N ) be the power set of N , and f ∈ P(N ) be any subset of

N . Given a preference profile ≻∈ Pn , a random serial dictatorship

with quota q is a convex combination of serial dictatorship quota

mechanisms and is defined as∑
f ∈P(N ): |f |= |q | πf (≻)( n

|q |
)
× |q |!

(1)

In this randomized mechanism agents are allowed to pick more

than one object according to q and not all the agents may be allo-

cated ex post. We can think of such mechanisms as extending the

well-known Random Serial Dictatorship (RSD) for the house as-

signment problem wherein each agent is entitled to receive exactly

one object. Thus, an RSD mechanism is a special case of our quota

mechanism with qi = 1,∀i ∈ N and |q | = n.

Example 6.5. Consider three agents and four objects. Agents’

preferences and the probabilistic allocation induced by RSDQ with

quota q = (2, 1, 1) are presented in Table 3. Note that the size of q
can potentially be smaller than the number of agents, meaning that

some agents may receive no objects ex post.

≻1 c ≻ a ≻ b ≻ d

≻2 a ≻ c ≻ d ≻ b

≻3 c ≻ b ≻ d ≻ a

a b c d

A1 3/6 1/6 2/6 2/6

A2 3/6 0 2/6 3/6

A3 0 5/6 2/6 1/6

Table 3: RSDQ allocation with q = (2, 1, 1).

The weakest notion of fairness in randomized settings is the

equal treatment of equals. We say an allocation is fair (in terms of

equal treatment of equals) if it assigns an identical random alloca-

tion (lottery) to agents with equal quotas and preferences.

Lemma 6.6. Take any serial dictatorship mechanism π with a
quota q. A uniform randomization over all permutations of orderings
with size |q | is strategyproof, non-bossy, ex post C-efficient, and fair
(equal treatment of equals).

Proof. Showing ex post C-efficiency is simple: any serial dic-

tatorship quota mechanism satisfies Pareto C-efficiency, and thus,

any randomization also guarantees a Pareto C-efficient solution ex

post. The support of the random allocation consists of only strate-

gyproof deterministic allocations, implying that the randomization

is also strategyproof. The equal treatment of equals is the direct

consequence of the uniform randomization over the set of possible



priority orderings. Any uniform randomization over a set of strate-

gyproof and non-bossy mechanisms is non-bossy (Theorem 2 in

Bade’s paper [8]), which implies that π is non-bossy. �

Now, we present our main result for envyfreeness of RSDQ

regardless of the selected quota system.

Theorem 6.7. Random Serial Dictatorship Quota mechanism is
envyfree with any quotaq, under downward lexicographic preferences.

Proof. LetA denote a random allocation induced by RSDQ with

quota q at an arbitrary preference profile ≻∈ Pn . Suppose for con-

tradiction that there exists an agent i ∈ N with random allocation

Ai that prefers another agent’s random allocation Aj to her own

assignment, that is,Aj ≻i Ai . Assuming that preferences are down-

ward lexicographic, there exists an object ℓ such that Aj ,ℓ > Ai ,ℓ
and for all objects that are ranked higher than ℓ (if any) they both

receive the same probability ∀k ≻i ℓ : Ai ,k = Aj ,k . Thus, we

can write:

∑
x ∈Ai :x ≻i ℓ Aj ,x =

∑
x ∈Ai :x ≻i ℓ Ai ,x . Since preferences

are lexicographic, the assignments of objects less preferred to ℓ

become irrelevant because for two allocations Ai and Bi such that

Ai ,ℓ > Bi ,ℓ , we have Ai ≻i Bi for all x ≺i ℓ where Bi ,x ≥ Ai ,x .
Thus, we need only focus on object ℓ.

Let F denote the set of all orderings of agents where i is ordered
before j or i appears but not j. Note that since we allow for |q | =
| f | ≤ n, some agents could be left unassigned, and permuting i and
j could imply that one is not chosen under

( n
|q |
)
. For any ordering

f ∈ F of agents where i precedes j, let ¯f ∈ ¯F be the ordering

obtained from f by swapping i and j. Clearly, |F | = | ¯F | and the

union of the two sets constitutes the set of orderings that at least

one of i or j (or both) is present. Fixing the preferences, we can

only focus on f and
¯f . Let πf (≻) be the serial dictatorship with

quota q and ordering f at ≻. RSDQ is a convex combination of

such deterministic allocations with equal probability of choosing

an ordering from any of F or
¯F . Given any object y ∈ M , either

i receives y in πf and j gets y in π ¯f , or none of the two gets y

in any of πf and π ¯f . Thus, object ℓ is either assigned to i in πf
and to j in π ¯f , or is assigned to another agent. If i gets ℓ in πf for

all f ∈ F , then j receives ℓ in π ¯f . The contradiction assumption

Aj ,ℓ > Ai ,ℓ implies that there exists an ordering f where i receives
a set of size qi that does not include object ℓ while j’s allocation
set includes ℓ. Let Xi denote this set for agent i and X j for agent j.
Then, Xi ≻i X j . Thus, by definition there exists an object ℓ′ ∈ Xi
such that ℓ′ ≻i ℓ, where ℓ

′ < X j . Thus, the probability of assigning

object ℓ′ ≻i ℓ to i is strictly greater than assigning it to j, that is,
Ai ,ℓ′ > Aj ,ℓ′ . However, by lexicographic assumption we must have

∀k ≻i ℓ : Ai ,k = Aj ,k , which is a contradiction. �

Theorem 6.8. Under downward lexicographic preferences, a Ran-
dom Serial Dictatorship Quota mechanism is ex post C-efficient, strate-
gyproof, non-bossy, and envyfree for any number of agents and objects
and any quota system.

The well-known random serial dictatorship mechanism (RSD),

also known as Random Priority, is defined when n =m and assigns

a single object to agents [1]. It is apparent that RSD is a special

instance from the class of RSDQ mechanisms.

Corollary 6.9. RSD is ex post efficient, strategyproof, non-bossy,
and envyfree when preferences are downward lexicographic.

7 DISCUSSION
We investigated strategyproof allocation mechanisms when agents

with lexicographic preferences may receive more than one object

according to a quota. The class of sequential quota mechanisms

enables the social planner to choose any quota without any lim-

itations. For the general domain of preferences, the set of strate-

gyproof, non-bossy, and Pareto efficient mechanisms gets restricted

to quasi-dictatorial mechanisms, which are far more unfair [41, 42].

Such mechanisms limit a social planner to specific quota systems

while demanding the complete allocation of all available objects. We

showed that the class of strategyproof allocation mechanisms that

satisfy neutrality, Pareto C-efficiency, and non-bossiness expands

significantly when preferences are lexicographic. Our characteriza-

tion shows that serial dictatorship quota mechanisms are the only

mechanisms satisfying these properties in the multiple-assignment

problem.

To recover some level of fairness, we extended the serial dicta-

torship quota mechanisms to randomized settings and showed that

randomization can help achieve some level of stochastic symme-

try amongst the agents. More importantly, we showed that RSDQ

mechanisms satisfy strategyproofness, ex post C-efficiency, and

envyfreeness for any number of agents, objects, and quota systems

when preferences are downward lexicographic. The envyfreeness

result is noteworthy: it shows that in contrast to the Probabilistic

Serial rule (PS) [11] which satisfies strategyproofness when pref-

erences are lexicographic only when n ≥ m [51], the well-known

RSD mechanism in the standard assignment problem is envyfree

for any combination of n and m. These results address the two

open questions about the existence of a mechanism with more

favorable fairness and strategyproofness properties [41, 51]. More-

over, these results confirm that, in contrast to general preferences,

under lexicographic preference relation efficiency, envyfreeness,

and strategyproofness do not charactrize the probabilistic serial

rule [48].

Serial dictatorship mechanisms are widely used in practice since

they are easy to implement while providing efficiency and strate-

gyproofness guarantees [45]. These mechanisms, and their random-

ized counterparts, provide a richer framework for multiple alloca-

tion problems while creating the possibility of fair and envyfree

assignments. In randomized settings, however, an open question

is whether RSDQ mechanisms are the only allocation rules that

satisfy the above properties in the multiple assignment domain. Of

course, answering this question, first, requires addressing the open

question by Bade [7] in the standard assignment problem (where

every agent gets at most one object): is random serial dictatorship a
unique mechanism that satisfies strategyproofness, ex post efficiency,
and equal treatment of equals?
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