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Abstract

Envy-freeness up to one good (EF1) is a well-studied

fairness notion for indivisible goods that addresses pair-

wise envy by the removal of at most one good. In the

worst case, each pair of agents might require the (hy-

pothetical) removal of a di�erent good, resulting in a

weak aggregate guarantee. We study allocations that

are nearly envy-free in aggregate, and de�ne a novel

fairness notion based on information withholding. Un-

der this notion, an agent can withhold (or hide) some of

the goods in its bundle and reveal the remaining goods

to the other agents. We observe that in practice, envy-

freeness can be achieved by withholding only a small

number of goods overall. We show that �nding alloca-

tions that withhold an optimal number of goods is com-

putationally hard even for highly restricted classes of

valuations. In contrast to the worst-case results, our ex-

periments on synthetic and real-world preference data

show that existing algorithms for �nding EF1 alloca-

tions withhold a close-to-optimal amount of informa-

tion.

1 Introduction

When dividing discrete objects, one often strives for

a fairness notion called envy-freeness (Foley 1967), un-

der which no agent prefers the allocation of another

agent to its own. Such outcomes might not exist in gen-

eral (even with only two agents and a single indivisible

good), motivating the need for approximations. Among

the many approximations of envy-freeness proposed in

the literature (Lipton et al. 2004; Budish 2011; Nguyen

and Rothe 2014; Caragiannis et al. 2016), the one that

has found impressive practical appeal is envy-freeness
up to one good (EF1). In an EF1 allocation, agent a can

envy agent b as long as there is some good in b’s bundle

whose removal makes the envy go away. It is known

that an EF1 allocation always exists and can be com-

puted in polynomial time (Markakis 2017).

On closer scrutiny, however, we �nd that EF1 is not

as strong as one might think: In the worst case, an EF1
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allocation could entail the (hypothetical) removal of ev-
ery good, because the elimination of each agent’s envy

may require the removal of a di�erent good. To see

this, consider an instance with six goods g1, . . . , g6 and

three agents a1, a2, a3 whose (additive) valuations are

as follows:

g1 g2 g3 g4 g5 g6
a1 1 1 4 1 1 4
a2 1 4 1 1 4 1
a3 4 1 1 4 1 1

Observe that the allocation shown via circled goods

is EF1, since any pairwise envy can be addressed by

removing an underlined good. However, each pair of

agents requires the removal of a di�erent good (e.g.,

a1’s envy towards a2 is addressed by removing g3
whereas a3’s envy towards a2 is addressed by remov-

ing g4, and so on), resulting in a weak approximation

overall (since all goods need to be removed over all

pairs of agents).

The above example shows that EF1, on its own, is

too coarse to distinguish between allocations that re-

move a large number of goods (such as the one with cir-

cled entries) and those that remove only a few (such as

the one with underlined entries, which, in fact, is envy-

free). This limitation highlights the need for a fairness

notion that (a) can distinguish between allocations in

terms of their aggregate approximation, and (b) retains

the “up to one good” style approximation of EF1 that

has proven to be practically useful (Goldman and Pro-

caccia 2014). Our work aims to �ll this important gap.

We propose a new fairness notion called envy-
freeness up to k hidden goods (HEF-k), de�ned as fol-

lows: Say there are n agents, m goods, and an alloca-

tion A = (A1, . . . , An). Suppose there is a set S of

k goods (called the hidden set) such that each agent i
withholds the goods in Ai ∩ S (i.e., the hidden goods

owned by i) and only discloses the goods in Ai \ S
to the other agents. Any other agent h 6= i only ob-

serves the goods disclosed by i (i.e., those in Ai \ S),

and its valuation for i’s bundle is therefore vh(Ai \ S)
instead of vh(Ai). Additionally, agent h’s valuation for



its own bundle is vh(Ah) (and not vh(Ah \S)) because

it can observe its own hidden goods. If, under the dis-

closed allocation, no agent prefers the bundle of any

other agent (i.e., if vh(Ah) ≥ vh(Ai \S) for every pair

of agents i, h), then we say that A is envy-free up to k
hidden goods (HEF-k). In other words, by withholding

the information about S, allocationA can be made free

of envy.

Notice how HEF-k addresses the previous concerns:

Like EF1, HEF-k is a relaxation of envy-freeness that

is de�ned in terms of the number of goods. However,

unlike EF1, HEF-k o�ers a precise quanti�cation of the

extent of information that must be withheld in order to

achieve envy-freeness.

Clearly, any allocation can be made envy-free by

hiding all the goods (i.e., if k = m). The real strength of

HEF-k lies in k being small; indeed, an HEF-0 alloca-

tion is envy-free. As we will demonstrate below, there

are natural settings that admit HEF-k allocations with

a small k (i.e., hide only a small number of goods) even

when (exact) envy-freeness is unlikely.

Information Withholding is Meaningful in

Practice. To understand the usefulness of HEF-k,

we generated a synthetic dataset where we varied the

number of agents n from 5 to 10, and the number

of goods m from 5 to 20 (we ignore the cases where

m < n). For every �xed n and m, we generated 100
instances with binary valuations. Speci�cally, for

every agent i and every good j, the valuation vi,j is

drawn i.i.d. from Bernoulli(0.7). Figure 1a shows the

heatmap of the number of instances out of 100 that

do not admit envy-free outcomes. Figure 1b shows the

heatmap of the number of goods that must be hidden

in the worst-case. That is, the color of each cell denotes

the smallest k such that each of the corresponding 100
instances admits some HEF-k allocation.
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(a) Heatmap of the fraction

of instances that are not

envy-free.
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(b) Heatmap of the number

of goods that must be hid-

den.

Figure 1: In both �gures, each cell corresponds to 100
instances with binary valuations for a �xed number of

goods m (on X-axis) and a �xed number of agents n
(on Y-axis).

It is evident from Figure 1 that even in the regime

where envy-free outcomes are unlikely (in particular,

the red-colored cells in Figure 1a), there exist HEF-k
allocations with k ≤ 3 (the light blue-colored cells

in Figure 1b). This observation, along with the forego-

ing discussion, shows that fairness through informa-

tion withholding is a well-motivated approach towards

approximate envy-freeness that yields promising exis-

tence results in practice.

Our Contributions We make contributions on

three fronts.

• On the conceptual side, we propose a novel fairness

notion called HEF-k as a �ne-grained generalization of

envy-freeness in terms of aggregate approximation.

• Our theoretical results (Section 4) show that com-

puting HEF-k allocations is computationally hard even

for highly restricted classes of valuations (Theorem 1

and Corollary 1). We show a similar result when HEF-

k is coupled with Pareto optimality (Theorem 2). We

also provide an alternative proof of NP-completeness

of determining the existence of an envy-free allocation

for binary valuations (Proposition 3).

• Our experiments show that HEF-k allocations with

a small k often exist, even when envy-free allocations

do not (Figure 1). We also compare several known algo-

rithms for computing EF1 allocations on synthetic and

real-world preference data, and �nd that the round-

robin algorithm and a recent algorithm of Barman,

Krishnamurthy, and Vaish (2018) withhold close-to-

optimal amount of information, often hiding no more

than three goods (Section 5).

2 Related Work

An emerging line of work in the fair division litera-

ture considers relaxations of envy-freeness by limit-

ing the information available to the agents. Notably,

Aziz et al. (2018) consider a setting where each agent

is aware only of its own bundle and has no knowledge

about the allocations of the other agents. They propose

the notion of epistemic envy-freeness (EEF) under which

each agent believes that an envy-free allocation of the

remaining goods among the other agents is possible.

Note that in EEF, each agent might consider a di�erent

hypothetical assignment of the remaining goods, and

each of these could be signi�cantly di�erent from the

actual underlying allocation. By contrast, under HEF-

k, each agent evaluates its valuation with respect to

the same (underlying) allocation. Chen and Shah (2017)

study a related model where agents have probabilistic

beliefs about the allocations of the other agents, and

envy is de�ned in expectation. Chan et al. (2019) study

a setting similar to Aziz et al. (2018) wherein each agent

is unaware of the allocations of the other agents, with

the guarantee that it does not get the worst bundle.

Another related line of work considers settings

where the agents constitute a social network and can

only observe the allocations of their neighbors (Abebe,

Kleinberg, and Parkes 2017; Bei, Qiao, and Zhang 2017;

Chevaleyre, Endriss, and Maudet 2017; Aziz et al. 2018;

Beynier et al. 2018; Bredereck, Kaczmarczyk, and Nie-

dermeier 2018). These works place an informational

constraint on the set of agents, whereas our model re-

stricts the set of revealed goods per agent.



Several other forms of fairness approximations have

been proposed recently, such as by introducing side

payments (Halpern and Shah 2019), permitting sharing

of some goods (Sandomirskiy and Segal-Halevi 2019),

or donating a small fraction of goods (Caragiannis,

Gravin, and Huang 2019).

3 Preliminaries

Problem instance An instance I = 〈[n], [m],V〉 of

the fair division problem is de�ned by a set of n ∈ N
agents [n] = {1, 2, . . . , n}, a set of m ∈ N goods
[m] = {1, 2, . . . ,m}, and a valuation pro�le V =
{v1, v2, . . . , vn} that speci�es the preferences of every

agent i ∈ [n] over each subset of the goods in [m] via

a valuation function vi : 2[m] → N ∪ {0}. Notice that

each agent’s valuation for any subset of goods is as-

sumed to be a non-negative integer. We will assume

that the valuation functions are additive, i.e., for any

i ∈ [n] and G ⊆ [m], vi(G) :=
∑

j∈G vi({j}), where

vi(∅) = 0. We will write vi,j instead of vi({j}) for a

singleton good j ∈ [m]. We say that an instance has bi-
nary valuations if for every i ∈ [n] and every j ∈ [m],
vi,j ∈ {0, 1}.
Allocation An allocation A := (A1, . . . , An) refers

to an n-partition of the set of goods [m], where Ai ⊆
[m] is the bundle allocated to agent i. Given an alloca-

tion A, the utility of agent i ∈ [n] for the bundle Ai is

vi(Ai) =
∑

j∈Ai
vi,j .

De�nition 1 (Envy-freeness). An allocation A is

envy-free (EF) if for every pair of agents i, h ∈ [n],
vi(Ai) ≥ vi(Ah). An allocation A is envy-free up to
one good (EF1) if for every pair of agents i, h ∈ [n]
such that Ah 6= ∅, there exists some good j ∈ Ah such

that vi(Ai) ≥ vi(Ah \{j}). An allocationA is strongly
envy-free up to one good (sEF1) if for every agent h ∈
[n] such that Ah 6= ∅, there exists a good gh ∈ Ah

such that for all i ∈ [n], vi(Ai) ≥ vi(Ah \ {gh}). The

notions of EF, EF1, and sEF1 are due to Foley (1967),

Budish (2011), and Conitzer et al. (2019), respectively.
1

De�nition 2 (Envy-freeness with hidden goods).

An allocation A is said to be envy-free up to k hidden
goods (HEF-k) if there exists a set S ⊆ [m] of at most

k goods such that for every pair of agents i, h ∈ [n],
we have vi(Ai) ≥ vi(Ah \S). An allocationA is envy-
free up to k uniformly hidden goods (uHEF-k) if there

exists a set S ⊆ [m] of at most k goods satisfying |S ∩
Ai| ≤ 1 for every i ∈ [n] such that for every pair of

agents i, h ∈ [n], we have vi(Ai) ≥ vi(Ah \ S). We

say that allocation A hides the goods in S and reveals
the remaining goods. Notice that a uHEF-k allocation

is also HEF-k but the converse is not necessarily true.

Indeed, in Proposition 2, we will present an instance

that, for some k ∈ N, admits an HEF-k allocation but

no uHEF-k allocation.

1

A slightly weaker notion than EF1 was previously stud-

ied by Lipton et al. (2004). However, their algorithm can be

shown to compute an EF1 allocation.

Remark 1. It follows from the de�nitions that an allo-

cation is EF if and only if it is HEF-0. It is also easy to

verify that an allocation is sEF1 if and only if it is uHEF-

n. This is because the unique hidden good for every

agent is also the one that is (hypothetically) removed

under sEF1. Additionally, as discussed in Section 1, an

EF1 allocation might not be uHEF-k for any k ≤ n.

We say that allocation A is HEF with respect to set S
ifA becomes envy-free after hiding the goods in S, i.e.,

for every pair of agents i, h ∈ [n], we have vi(Ai) ≥
vi(Ah\S). We say that k goodsmust be hidden underA
if A is HEF with respect to some set S such that |S| =
k, and there is no set S′ with |S′| < k such that A is

HEF with respect to S′.

De�nition 3 (Pareto optimality). An allocationA is

Pareto dominated by another allocation B if vi(Bi) ≥
vi(Ai) for every agent i ∈ [n] with at least one of the

inequalities being strict. A Pareto optimal (PO) alloca-

tion is one that is not Pareto dominated by any other

allocation.

De�nition 4 (EF1 algorithms). We will now describe

four known algorithms for �nding EF1 allocations that

are relevant to our work.

Round-robin algorithm (RoundRobin): Fix a

permutation σ of the agents. The RoundRobin algo-

rithm cycles through the agents according to σ. In each

round, an agent gets its favorite good from the pool of

remaining goods.

Envy-graph algorithm (EnvyGraph): This algo-

rithm, proposed by Lipton et al. (2004), works as fol-

lows: In each step, one of the remaining goods is as-

signed to an agent that is not envied by any other agent.

The existence of such an agent is guaranteed by resolv-

ing cyclic envy relations (if any exists) in a combinato-

rial structure called the envy-graph of an allocation.

Fisher market-based algorithm (Alg-EF1+PO):
This algorithm, due to Barman, Krishnamurthy, and

Vaish (2018), uses local search and price-rise subrou-

tines in a Fisher market associated with the fair divi-

sion instance, and returns an EF1 and PO allocation.

The bound on running time of this algorithm is pseu-

dopolynomial (a polynomial in vi,j instead of log vi,j ).

Maximum Nash Welfare solution (MNW): The

Nash social welfare of an allocation A is de�ned as

NSW(A) :=
(∏

i∈[n] vi(Ai)
)1/n

. The MNW algorithm

computes an allocation with the highest Nash social

welfare (called a Nash optimal allocation). Caragiannis

et al. (2016) showed that a Nash optimal allocation is

both EF1 and PO.

Remark 2. Conitzer et al. (2019) observed that

RoundRobin, Alg-EF1+PO, and MNW algorithms all

satisfy sEF1. It is easy to see that EnvyGraph algo-

rithm is also sEF1. However, note that among the above

algorithms, only MNW and Alg-EF1+PO are known to



also satisfy PO.
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The allocations computed by all four

algorithms have the property that there exists some

agent that is not envied by any other agent. Indeed,

MNW and Alg-EF1+PO are both PO and therefore can-

not have cyclic envy relations, and RoundRobin and

EnvyGraph algorithms have this property by design.

For such an agent (not necessarily the same agent for

all four algorithms), no good needs to be removed un-

der sEF1. Therefore, from Remark 1, all these algo-

rithms are also envy-free up to n−1 uniformly hidden

goods, or uHEF-(n− 1).

Proposition 1. Given an instance with additive valua-
tions, a uHEF-(n− 1) allocation always exists and can
be computed in polynomial time, and a uHEF-(n− 1)+
PO allocation always exists and can be computed in pseu-
dopolynomial time.
Remark 3. Note that for any k < n − 1, an HEF-k
allocation might fail to exist. Indeed, with n agents that

have identical and positive valuations for m = n − 1
goods, some agent will surely miss out and force the

allocation to hide all n− 1 (i.e., k + 1 or more) goods.

Therefore, the bound in Proposition 1 for uHEF-k (and

hence, for HEF-k) is tight in terms of k.

Relevant Computational Problems

De�nition 5 formalizes the decision problem of

whether a given instance admits an HEF-k allocation.

De�nition 5 (HEF-k-Existence). Given an instance

I , does there exist an allocation A and a set S ⊆ [m]
of at most k goods such that A is HEF w.r.t. S?

Notice that a certi�cate for HEF-k-Existence con-

sists of an allocation A as well as a set S of at most

k hidden goods. Another relevant computational ques-

tion involves checking whether a given allocation A is

HEF with respect to some set S ⊆ [m] of at most k
goods.

De�nition 6 (HEF-k-Verification). Given an in-

stance I and an allocation A, does there exist a set

S ⊆ [m] of k goods such that A is HEF w.r.t. S?

For additive valuations, both HEF-k-Existence and

HEF-k-Verification are in NP. The next problem per-

tains to the existence of envy-free allocations.

De�nition 7 (EF-Existence). Given an instance I ,

does there exist an envy-free allocation for I?

EF-Existence is known to be NP-complete (Lipton

et al. 2004). From Remark 1, it follows that HEF-k-
Existence is NP-complete when k = 0 for additive

valuations.

4 Theoretical Results

We will now present our theoretical results concerning

the existence and computation of HEF-k and uHEF-

k allocations. We �rst show that uHEF-k is a strictly

more demanding notion than HEF-k (Proposition 2).

2

It is also known that RoundRobin and EnvyGraph
fail to satisfy PO; see, e.g., (Conitzer, Freeman, and Shah

2017).

Proposition 2. There exists an instance I that, for some
�xed k ∈ N, admits an HEF-k allocation but no uHEF-k
allocation.

Proof. Consider the fair division instance I with �ve

agents a1, . . . , a5 and six goods g1, . . . , g6 shown in

Table 1. Observe that the allocation A = (A1, . . . , A5)
with A1 = {g1, g2}, A2 = {g3}, A3 = {g4}, A4 =
{g5}, A5 = {g6} satis�es HEF-2 with respect to the

set S = {g1, g2}.

g1 g2 g3 g4 g5 g6
a1 1 1 2 0 0 0
a2 1 1 2 0 0 0
a3 10 10 1 1 1 1
a4 10 10 1 1 1 1
a5 10 10 1 1 1 1

Table 1: The instance used in the proof of Proposition 2.

We will show that I does not admit a uHEF-2 allo-

cation. Suppose, for contradiction, that there exists an

allocation B satisfying uHEF-2. Then, B must hide g1
and g2 (otherwise, at least one of a3, a4 or a5 will envy

the owner(s) of these goods). Thus, in particular, the

good g3 must be revealed byB. Assume, without loss of

generality, that g3 is not assigned to a1 inB (otherwise,

a similar argument can be carried out for a2). Then, B
must assign both g1 and g2 to a1 (so that a1 does not

envy the owner of g3). However, this violates the one-

hidden-good-per-agent property of uHEF-k, which is

a contradiction.

Recall from Section 3 that HEF-k-Existence is NP-

complete when k = 0. This still leaves open the ques-

tion whether HEF-k-Existence is NP-complete for any
�xed k ∈ N. Our next result (Theorem 1) shows that

this is indeed the case, even under the restricted set-

ting of identical valuations (i.e., for every j ∈ [m],
vi,j = vh,j for every i, h ∈ [n]).

Theorem 1 (Hardness of HEF-k-Existence). For
any �xed k ∈ N, HEF-k-Existence is NP-complete

even for identical valuations.

Proof. We will show a reduction from Partition,

which is known to be NP-complete (Garey and John-

son 1979). An instance of Partition consists of a mul-

tiset X = {x1, x2, . . . , xn} with xi ∈ N for all i ∈ [n].
The goal is to determine whether there exists Y ⊂ X
such that

∑
xi∈Y xi =

∑
xi∈X\Y xi = T , where

T := 1
2

∑
xi∈X xi.

We will construct a fair division instance with k+3
agents a1, . . . , ak+3 and n + k + 1 goods. The goods

are classi�ed into n + 1 main goods g1, . . . , gn+1 and

k dummy goods d1, . . . , dk . The (identical) valuations

are de�ned as follows: Every agent values the goods

g1, . . . , gn at x1, . . . , xn respectively; the good gn+1 at

T , and each dummy good at 4T .

(⇒) Suppose Y is a solution of Partition. Then, an

HEF-k allocation can be constructed as follows: Assign



the main goods corresponding to the set Y to agent

a1 and those corresponding to X \ Y to agent a2. The

good gn+1 is assigned to agent a3. Each of the remain-

ing k agents is assigned a unique dummy good. Note

that every agent in the set {a1, a2, a3} envies every

agent in the set {a4, . . . , ak+3}, and these are the only

pairs of agents with non-zero envy. Therefore, the allo-

cation can be made envy-free by hiding the k dummy

goods, i.e., the allocation is HEF with respect to the set

{d1, . . . , dk}.
(⇐) Now suppose there exists an HEF-k allocation

A. Since there are k dummy goods and k + 3 agents,

there must exist at least three agents that do not re-

ceive any dummy good in A. Without loss of gener-

ality, let these agents be a1, a2 and a3 (otherwise, we

can reindex). We claim that all dummy goods must be

hidden under A. Indeed, agent a1 does not receive any

dummy good, and therefore its maximum possible val-

uation can be v(g1∪· · ·∪gn+1) = 3T < v(dj) for any

dummy good dj . If some dummy good dj is not hidden,

then a1 will envy the owner of dj , contradicting HEF-k.

Therefore, all dummy goods must be hidden, and since

there are k such goods, these are the only ones that can

be hidden.

The above observation implies that the good gn+1

must be revealed by A. Furthermore, gn+1 must be as-

signed to one of a1, a2 or a3 (otherwise, by pigeon-

hole principle, one of these agents will have valua-

tion at most
2T
3 and will envy the owner of gn+1). If

gn+1 is assigned to a3, then the remaining main goods

g1, . . . , gn must be divided between a1 and a2 such that

v(A1) ≥ T and v(A2) ≥ T . This gives a partition of

the set X .

Another commonly used preference restriction is

that of binary valuations (i.e., for every i ∈ [n] and j ∈
[m], vi,j ∈ {0, 1}). We note that even under this restric-

tion, HEF-k-Existence remains NP-complete when

k = 0 (Corollary 1). This observation follows from a re-

sult of Aziz et al. (2015), who showed that determining

the existence of an envy-free allocation is NP-complete

even for binary valuations (Proposition 3). We provide

an alternative proof of this statement in the full version

of the paper (Hosseini et al. 2019).

Proposition 3 (Aziz et al. 2015; Theorem 11). EF-

Existence is NP-complete even for binary valuations.

Corollary 1. For k = 0, HEF-k-Existence is NP-

complete even for binary valuations.

Proposition 3 is also useful in establishing the com-

putational hardness of �nding an HEF-k+PO alloca-

tion. Note that unlike Corollary 1, Theorem 2 holds for

any �xed k ∈ N.

Theorem 2 (Hardness of HEF-k+PO). Given any
instance I with binary valuations and any �xed k ∈
N ∪ {0}, it is NP-hard to determine if I admits an al-
location that is envy-free up to k hidden goods (HEF-k)
and Pareto optimal (PO).

Proof. (Sketch) Starting from any instance of EF-

Existence with binary valuations (Proposition 3), we

add to it k new goods and k+1 new agents such that all

new goods are approved by all new agents (and no one

else). Also, the new agents have zero value for the ex-

isting goods. In the forward direction, an arbitrary al-

location of new goods among the new agents works. In

the reverse direction, PO forces each new (respectively,

existing) good to be assigned among new (respec-

tively, existing) agents only. The imbalance between

new agents and new goods means that all (and only)

the new goods must be hidden. Then, the restriction of

the HEF-k allocation to the existing agents/goods gives

the desired EF allocation.

We will now proceed to analyzing the computa-

tional complexity of HEF-k-Verification. Here, we

show a hardness-of-approximation result (Theorem 3).

Note that HEF-k-Verification is stated as a decision

problem. However, one can consider an approximation

version of this problem as follows: A c-approximation

algorithm for HEF-k-Verification is one that, given

any fair division instance, computes a set of goods

of size at most c · kopt
, where kopt

is the size of

the smallest hidden set for the given instance. Un-

der this de�nition, Theorem 3 can be interpreted as

follows: Given any ε > 0, there is no polynomial-

time (1 − ε). lnE-approximation algorithm for HEF-

k-Verification, unless P=NP.

Theorem 3 (HEF-k-Verification inapproxima-

bility). Given any ε > 0, it is NP-hard to approximate
HEF-k-Verification to within (1−ε)·lnE even for bi-
nary valuations, where E is the sum of all non-negative
pairwise envy values in the given allocation.

Proof. We will show a reduction from Hitting Set.

An instance of Hitting Set consists of a �nite set

X = {x1, . . . , xp}, a collection F = {F1, . . . , Fq} of

subsets ofX , and some k ∈ N. The goal is to determine

whether there exists Y ⊆ X , |Y | ≤ k that intersects

every member of F (i.e., for every F ∈ F , Y ∩F 6= ∅).
It is known that given any ε > 0, it is NP-hard to ap-

proximate Hitting Set to within a factor (1−ε)·ln |F|
(Dinur and Steurer 2014).

We will construct a fair division instance with n =
q + 1 agents and m = p+

∑q
i=1(|Fi| − 1) goods. The

agents are classi�ed into q dummy agents a1, . . . , aq
and one main agent aq+1. The goods are classi�ed

into p main goods g1, . . . , gp and q distinct sets of

dummy goods, where the ith set consists of the goods

f i1, . . . , f
i
|Fi|−1.

The valuations are as follows: The main agent ap-

proves all the main goods, i.e., for all j ∈ [p],
vq+1({gj}) = 1. Each dummy agent ai approves the

dummy goods in the ith set as well as those main goods

that intersect with Fi, i.e., for every i ∈ [q], vi({f ij}) =
1 for all j ∈ [|Fi| − 1], and vi({gj}) = 1 whenever

xj ∈ Fi. All other valuations are set to 0.



The input allocation A = (A1, . . . , Aq+1) is de�ned

as follows: The main agent aq+1 is assigned all the main

goods, i.e.,Aq+1 := {g1, . . . , gp}. For every i ∈ [q], the

dummy agent ai is assigned the |Fi|−1 dummy goods

in the ith set, i.e., Ai := {f i1, . . . , f i|Fi|−1}. Note that in

the allocation A, each dummy agent envies the main

agent by one approved good, and these are the only

pairs of agents with envy. Finally, given any allocation

A, we de�ne the aggregate envy in A as the sum of all

non-negative pairwise envy values, i.e.,

E :=
∑

h∈[n]
∑

i6=h max{0, vi(Ah)− vi(Ai)}.

(⇒) Suppose Y ⊆ X , |Y | ≤ k is solution of the

Hitting Set instance. We claim that the allocation A
is HEF with respect to the set S := {gj : xj ∈ Y }
with |S| ≤ k. Indeed, since S is induced by a hitting

set, each dummy agent approves at least one good in

S. Therefore, by hiding the goods in S, the envy from

the dummy agents can be eliminated.

(⇐) Now suppose there exists S ⊆ [m], |S| ≤ k
such that A is HEF with respect to S. Then, for every

i ∈ [q], the set S must contain at least one good that

is approved by the dummy agent ai (otherwise A will

not be envy-free after hiding the goods in S). It is easy

to see that the set Y := {xj : gj ∈ S} constitutes the

desired hitting set of cardinality at most k.

Finally, to show the hardness-of-approximation, no-

tice that the aggregate envy in A is q because each

dummy agent envies the main agent by one unit of

utility. The claim now follows by substituting |F| =
q = E in the inapproximability result of Hitting Set

stated above.

Our next result (Theorem 4) provides an approxima-

tion algorithm that (nearly) matches the hardness-of-

approximation result in Theorem 3. We remark that the

algorithm in Theorem 4 applies to any instance with

additive and possibly non-binary valuations.

Theorem 4 (Approximation algorithm). There is a
polynomial-time algorithm that, given as input any in-
stance of HEF-k-Verification, �nds a set S ⊆ [m]
with |S| ≤ kopt · lnE + 1 such that the given alloca-
tion is HEF with respect to S. Here, E and kopt denote
the aggregate envy and the number of goods that must
be hidden under the given allocation, respectively.

The proof of Theorem 4 is available in the full ver-

sion (Hosseini et al. 2019), but a brief idea is as follows:

For any set S ⊆ [m], de�ne the residual envy function
f : 2[m] → R so that f(S) is the aggregate envy in

allocation A after hiding the goods in S. That is,

f(S) :=
∑

h∈[n]
∑

i 6=h max{0, vi(Ah \ S)− vi(Ai)}.

The relevant observation is that f is supermodular.
Given this observation, the approximation guarantee

in Theorem 4 can be obtained by the standard greedy

algorithm for submodular maximization, or, equiv-

alently, supermodular minimization (Nemhauser,

Wolsey, and Fisher 1978); see Algorithm 1.

ALGORITHM 1: Greedy Approximation Algorithm for

HEF-k-Verification

Input: An instance 〈[n], [m],V〉 and an allocation A.

Output: A set S ⊆ [m].

1 Initialize S = ∅.
2 while f(S) ≥ 1 do

3 Set j′ ← argmaxj∈[m]\S f(S)− f(S ∪ {j})
. tiebreak lexicographically

4 Update S ← S ∪ {j′}
5 return S

5 Experimental Results

We have seen that the worst-case computational

results for HEF-k, even in highly restricted set-

tings, are largely negative (Section 4). In this sec-

tion, we will examine whether the known al-

gorithms for computing approximately envy-free

allocations—in particular, the four EF1 algorithms

described in De�nition 4 in Section 3—can pro-

vide meaningful approximations to HEF-k in prac-

tice. Recall from Remark 2 that all four discussed

algorithms—RoundRobin, MNW, Alg-EF1+PO, and

EnvyGraph—satisfy uHEF-(n− 1).
We evaluate each algorithm in terms of (a) its regret

(de�ned below), and (b) the number of goods that the
algorithm must hide. Given an instance I and an allo-

cation A, let κ(A, I) denote the number of goods that

must be hidden under A. The regret of allocation A
is the number of extra goods that must be hidden un-

der A compared to the optimal. That is, reg(A, I) :=
κ(A, I)−minB κ(B, I). Similarly, given an algorithm

Alg, the regret of Alg is given by reg(Alg(I), I),
where Alg(I) is the allocation returned by Alg for the

input instance I . Note that the regret can be large due

to the suboptimality of an algorithm, but also due to

the size of the instance. To negate the e�ect of the lat-

ter, we normalize the regret value by n − 1, which is

the worst-case upper bound on the number of hidden

goods for all four algorithms of interest.

Experiments on Synthetic Data

The setup for synthetic experiments is similar to that

used in Figure 1. Speci�cally, the number of agents, n,

is varied from 5 to 10, and the number of goods, m, is

varied from 5 to 20 (we ignore the cases wherem < n).

For every �xed n and m, we generated 100 instances

with binary valuations drawn i.i.d. from Bernoulli dis-

tribution with parameter 0.7 (i.e., vi,j ∼ Ber(0.7)). Ta-

ble 2 shows the heatmaps of the normalized regret (av-

eraged over 100 instances) and the number of goods

that must be hidden (averaged over non-EF instances,

i.e., whenever k ≥ 1) for all four algorithms.
3

It is clear that Alg-EF1+PO and RoundRobin al-

gorithms have a superior performance than MNW and

3

The full version (Hosseini et al. 2019) provides additional

results for vi,j ∼ Ber(0.7), and vi,j ∼ Ber(0.5).



Normalized average-case regret
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Number of goods that must be hidden on average (averaged over non-EF instances only)
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Table 2: Results for synthetic data.

EnvyGraph. In particular, both Alg-EF1+PO and

RoundRobin have small normalized regret, suggest-

ing that they hide close-to-optimal number of goods.

Additionally, the number of hidden goods itself is small

for these algorithms (in most cases, no more than three
goods need to be hidden), suggesting that the worst-

case bound of n − 1 is unlikely to arise in practice.

Overall, our experiments suggest that Alg-EF1+PO
and RoundRobin can achieve useful approximations

to HEF-k in practice, especially in comparison to MNW
and EnvyGraph.

4

Experiments on Real-World Data

For experiments with real-world data, we use the data

from the popular fair division website Spliddit (Gold-

man and Procaccia 2014). The Spliddit data has 2212
instances in total, where the number of agents n varies

between 3 and 10, and the number of goods m ≥ n
varies between 3 and 93. Unlike the synthetic data, the

distribution of instances here is rather uneven (see the

full version online); in fact, 1821 of the 2212 instances

have n = 3 agents and m = 6 goods. Therefore, in-

stead of using heatmaps, we compare the algorithms

in terms of their normalized regret (averaged over the

entire dataset) and the cumulative distribution function

of the hidden goods (see Figure 2).

Figure 2 presents an interesting twist: MNW is now

the best performing algorithm, closely followed by

RoundRobin and Alg-EF1+PO. For any �xed k,

the fraction of instances for which these three algo-

rithms compute an HEF-k allocation is also nearly

identical. As can be observed, these algorithms almost

never need to hide more than three goods. By contrast,

EnvyGraph has the largest regret and signi�cantly

worse cumulative performance. Therefore, once again,

4

In the full version of the paper (Hosseini et al. 2019),

we provide two families of instances where the normalized

worst-case regret of MNW is large.
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Figure 2: Results for Spliddit data.

Alg-EF1+PO and RoundRobin algorithms perform

competitively with the optimal solution, making them

attractive options for achieving fair outcomes without

withholding too much information.

6 Future Work

The asymptotic existence of envy-free allocations has

been studied by Dickerson et al. (2014) and Manurangsi

and Suksompong (2019). Analyzing the asymptotic be-

havior of HEF-k allocations is an interesting direction

for future work. Exploring the connection with other

recently proposed relaxations that involve discarding

goods (Caragiannis, Gravin, and Huang 2019) or shar-

ing a small subset of goods (Sandomirskiy and Segal-

Halevi 2019) might also be interesting.
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