
In the Wild: a Large Scale Study of Web Services
Vulnerabilities

Sushama Karumanchi and Anna Cinzia Squicciarini
College of Information Sciences and Technology,

Pennsylvania State University
{sik5273,acs20}@psu.edu

ABSTRACT
The pervasiveness of Web Services, compounded with seam-
less interoperability characteristics, introduces security con-
cerns that are to be carefully considered with the envisioned
internet architecture. In this paper, we propose a compre-
hensive study on Web Service vulnerabilities. We consider
not only well known Web-based vulnerabilities such as SQL
injection, session replay etc, but we also analyze Web-Service
specific vulnerabilities and their potential of attacks due to
poor service construction and service maintenance. In our
analysis, we classify each of the studied vulnerability ac-
cording to a new taxonomy, discuss remedies and impact,
and propose methods of detection based on real-time analy-
sis. Our analysis is supported by the results of a large scale
study involving over 2,000 real-world Web Services. We note
that many of the least studied vulnerabilities are present in
the wild.

1. INTRODUCTION
The Internet will be characterized by a new generation of

applications built by composing services and data from dif-
ferent providers and organizations in order to provide users
with added-value services tailored to their needs. Web Ser-
vices play a key role in realizing the Internet vision, as they
provide a simple interface between a provider and a con-
sumer and are supported by a complex software infrastruc-
ture, which typically includes an application server, the op-
erating system and a set of external systems (e.g., databases,
payment gateways, etc). A Web Service may include sev-
eral operations, wherein each operation is a method with
several input parameters, and is described using a standard-
ized XML format used to generate server and client code,
and for configuration, the WSDL (Web Service Description
Language). A broker is used to enable applications to find
Web Services. Consumer and provider communicate by ex-
changing SOAP (Simple Object Access Protocol) messages.

However, the pervasiveness of Web-Services, compounded
with seamless interoperability characteristics of Web ser-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC 2014, March 24 - 28 2014, Gyeongju, Republic of Korea.
Copyright 2014 ACM 978-1-4503-2469-4/14/03 ...$15.00.

vices introduce security concerns that do not exist in tradi-
tional distributed messaging techniques (e.g. RMI [18] and
CORBA [17]) and that are currently not addressed by exist-
ing technologies. For instance, the SOAP protocol used for
communication in Web Services does not address security
by itself. A SOAP protocol can bypass a firewall and can
get processed by the Web Service directly [19]. As shown
in recent work, SOAP messages can be easily exploited [19],
and be overturned to the attacker’s gain.

In response to these issues, some recent work has proposed
extensions to improve Web service security, e.g. [11, 14, 6, 7].
Further, some standardization efforts have been undertaken.
WS-Security [16] for example, is a notable standardization
effort, introduced to add security to SOAP messages by de-
scribing how the header part of the message can be used to
pass along security information. Nevertheless, the extent to
which these initiatives have strengthened the overall secu-
rity guarantees offered by the Web services is yet unclear.
In particular, although taxonomies for generic software vul-
nerabilities have been successfully proposed [23, 4], we are
not aware of any in-depth study of Web Services vulnerabili-
ties. Most of the existing works point to vulnerabilities that
are generic to any Web application, or focus on securing
solely SOAP messages, but do not discuss about vulnera-
bilities specifically related to Web Services, such as WSDL
vulnerabilities [14]. WSDL related vulnerabilities are those
that enable the attackers to know their existence through
the analysis of the WSDL files of the services.
In an effort to improve our understanding of Web services
vulnerabilities, in this paper we introduce a novel client-
based classification of Web service vulnerabilities. Our clas-
sification enables the client to know which vulnerabilities
can be quickly prevented by the client as well as which ones
can be prevented without revealing any information to the
service provider or the attacker.

Starting from our classification criteria, we discuss several
Web service vulnerabilities. We consider not only known
Web-based vulnerabilities such as SQL injection, session re-
play etc, but we also analyze vulnerabilities born specifi-
cally as a result of poor Web service construction and ser-
vice maintenance, such as lack of encryption, invalid XML,
parser attacks, and log file attacks.

In our analysis, we discuss remedies and impact for each
of the identified vulnerabilities, and propose methods of de-
tection based on real-time analysis of the WSDL document
describing the exposed Web Service.

We provide the results of a large scale study involving over
2,000 real-world Web services. Our evaluation, carried out

using a vulnerability detector prototyped by us, indicates
that many of the least studied vulnerabilities (in the context
of Web services) are present in the wild such as Password in
Clear, and Invalid XML. We provide a discussion on possible
solution mechanisms and countermeasures.

The paper is organized as follows. In Section 2, we present
some background on Web services. In Section 3, we present
our taxonomy of services and discuss various vulnerabilities.
We present our methodology employed to detect vulnerabil-
ities and discuss the results in Section 4. We conclude in
Section 5.

2. WEB SERVICES STANDARDS AND SE-
CURITY

In this section, we briefly overview some of the Web Ser-
vices standards that are relevant for our study. Web Ser-
vices Description Language (WSDL) is an XML format for
describing Web services. WSDL describes the structure of
a specific service using XML- formatted data. The infor-
mation provided acts as an interface to the service, that is,
the information includes service name and location, method
names, argument types, return values and types. Through
a WSDL description, a client application can determine ex-
plicit instructions on how to communicate with previously
private applications, as well as determine the operations
that are available to the consumer that he or she can in-
voke. WSDL files are typically stored in Web registries that
can be searched by potential clients to locate Web Service
implementations of desired capabilities. Due to exposed de-
tailed methods and location information, several attacks can
be crafted based upon vulnerabilities leveraging informa-
tion in WSDL files. Essentially, the attacker, by analyzing
the WSDL, is provided with critical information about var-
ious methods and parameters needed for the attack. These
set of vulnerabilities are sometimes referred to as WSDL
vulnerabilities. We note that, although some recent work
has already acknowledged that Web services undergo WSDL
threats [14, 9], we are not aware of any study of the impact
of such vulnerabilities. Further, previous work has shown
that Web Services are subjected to many other attacks, ir-
respective of the information stored in WSDL [19, 12, 13,
14, 3]. For instance, in Web applications, a client communi-
cates with the application through a Web browser whereas in
Web Services, the client directly interacts with the service.
Hence, the Web Services are more vulnerable to attacks than
traditional Web applications due to the absence of a browser
in the middle of communication.

In order to cope with these issues, Web Service security
standards [16] are nowadays widely used to implement an
end-to-end security solution between the sender and receiver
in a SOA system. Digital signatures and message encryption
are used within the WS-Security standard to ensure the con-
fidentiality, non-repudiation and integrity of the messages.
WS-Trust, WS-SecurityPolicy, WS-SecureConversation, WS-
Federation and WS-Authorization protocols are additional
security standards that augment the WS-Security specifica-
tion.

WS-Security standards, however, cannot provide a com-
prehensive security solution to Web Services. For instance,
XML-signatures can be used to protect the integrity of mes-
sages exchanged between the client and the service, but if
the message sender itself is malicious, it can insert malicious

content within the messages using its own genuine XML-
signature [11]. Also, WS-Security is not effective to pre-
vent many attacks. For instance despite the WS-Security
standards, an attacker can launch XML injection, param-
eter tampering attacks [19], Denial-of-Service [11], and in-
formation disclosure attacks. We argue that security mea-
sures such as input validation and careful coding of Web
Services are very important and complement WS-Security
standards. These observations motivate us to undertake this
study to find out how widely the Web Service vulnerabili-
ties are spread out in the huge set of openly available Web
Services.

3. A TAXONOMY OF WEB-SERVICE VUL-
NERABILITIES

In this section, we introduce a new taxonomy for Web
Services vulnerabilities, shown in Figure 1, and discuss few
representative vulnerabilities for each introduced element in
the taxonomy. We provide a novel client-centered perspec-
tive on the vulnerabilities Web Services currently face. Pre-
cisely, our approach is to take the viewpoint of a client to
help it quickly detect and cope with the vulnerability being
observed. The client-targeted classification has the follow-
ing advantages: 1. The client knows which vulnerabilities
can be prevented by the client (i.e., changeable), 2. The
client knows which vulnerabilities can be quickly detected
(i.e., static), and 3. The client knows which vulnerabilities
can be prevented without revealing any information to the
service provider or the attacker (i.e., static). This viewpoint
addresses a known shortcoming of previously proposed tax-
onomies, and of similar classification approaches based on
software vulnerabilities [23, 4] which do not make their in-
tended usage explicit.

For instance, a well known approach to classification of
vulnerabilities [12, 13], is based on the nature of the software
error originating the vulnerability or the security breach.
These classifications [12, 13] are interesting but general pur-
pose. Furthermore, although very extensive, using the soft-
ware error as a criteria may result in some degree of ambigu-
ity, in that some vulnerabilities may arguably fall into two
different categories. For example, if the criterion for clas-
sification is security breach, the well-known SQL injection
vulnerability could fall into both Tampering and Informa-
tion Disclosure vulnerability categories, since SQL exploits
may result in tampering of the Web service as well as lead
to unwanted information leakage. Also, we note that works
that predict the occurrence of vulnerabilities exist [5]. How-
ever, in this work, we do not aim at predictive methods, but
rather at designing strong taxonomies.

3.1 A Client-target Taxonomy
In order to develop a sound taxonomy, a main challenge

is to identify unambiguous, orthogonal classification criteria
for a set of objects [20]. Defining unambiguous classification
criteria for software vulnerabilities is especially known to be
non-trivial [5]. In this work, the vulnerabilities are classified
based on the following: (1) by the detection method and
(2) by checking if the client , by itself, can prevent the at-
tack related to the vulnerability. Accordingly, we define two
mutually exclusive categories of vulnerabilities: Static and
Dynamic vulnerabilities. Static vulnerabilities can be de-
tected without the execution of a service whereas dynamic

STATIC DYNAMIC

CHANGEABLE UNCHANGEABLE CHANGEABLE UNCHANGEABLE

VULNERABILITY TYPES

-Confidentiality

 and Integrity

-Password in clear

-Logging and Auditing

Invalid XML

-SAX-based Parser

-Error on Interface

-SQL and XML injection

-Session Replay

Figure 1: Taxonomy of Web Services Vulnerabilities.

vulnerabilities can be detected upon execution. In order to
detect dynamic vulnerabilities, the client needs to receive
a response from the service, whereas, for the detection of
static vulnerabilities, there is no need of any feedback or re-
sponse from the service. To detect a static vulnerability, the
client can utilize the available resource belonging to the ser-
vice (e.g., WSDL) and does not need feedback or response
from the service. Each of these two classes of vulnerabili-
ties are further classified into Changeable and Unchangeable.
Changeable vulnerabilities can be prevented by the client and
the service on the fly when a client makes a call to the ser-
vice. That is, the vulnerability can be addressed without
modifying the core functions of the Web service itself. For
instance, the client may modify its original input or add to
its original input in order to prevent vulnerabilities. For ex-
ample, a client protects its password by encrypting it with
a cryptographic key when the client finds that the service
does not provide any mechanism for protecting the pass-
word. Unchangeable vulnerabilities can only be prevented
if the service undergoes some architectural and structural
change. That is, the service provider needs to modify the
service in order to prevent vulnerabilities which cannot be
done dynamically when a client call the service. For ex-
ample, if the service is prone to generate an error on the
interface on execution, it cannot be prevented either by the
client or the provider during the time of service execution
by the client.

Note that some vulnerabilities classified as changeable may,
of course, be addressed by the server which could change the
WSDL or its applications to address them. Our approach
is to label vulnerabilities as changeable if the client has the
option to prevent the vulnerability even if the server could
theoretically also address them directly.

In Figure 1, we report examples of vulnerabilities classi-
fied under our taxonomy. We note that our taxonomy is
orthogonal to existing classifications, as we provide a client-
targeted taxonomy.

3.2 Vulnerabilities
Next, we discuss some vulnerabilities for each of the classes

we have identified. We select vulnerabilities covering a broad
and diverse set of representative software and architectural

problems. Our discussion focuses on Web service-specific
vulnerabilities, whose corresponding attacks mainly exploit
information stored in WSDL files. Our empirical evaluation
demonstrates that most of the WSDL vulnerabilities are of-
ten underlooked, and yet exist in the wild and are poorly
protected.

We note that our discussion focuses on specific instances
of selected vulnerabilities. Multiple variations for every dis-
cussed vulnerability may exist, which however have the same
inherent nature and similar exploit methods. For instance,
for the parsing vulnerability (V2 in the description below),
there exist different variations such as XML Bomb, huge
file size, SOAP array attack vulnerabilities, etc. In all of
these instances, the basic idea is the same: the XML file is
modified to make the processing time of the file huge.

3.2.1 Static Vulnerabilities
We now present examples of static vulnerabilities. We dis-

cuss several vulnerabilities that are WSDL-related (V1-V4),
and provide an example of a non-WSDL-related vulnerabil-
ity (V5).

V1. Password in Clear
Purpose: A service requires a password from its client to

authenticate the client. A Web Service requests the client
for a user name and password by creating an authentication
method among its other methods related to the service. Just
like any other method of the service, the interface of an
authentication method is published in the WSDL. The client
makes a call to this method by providing his user name
and password, after which the service authenticates the user.
The following is a code snippet showing a login method in
terms of an operation.

<message name="LoginInput">

<part name="body" element="xsd1:LoginRequest"/>

</message>

<message name="LoginOutput">

<part name="body" element="xsd1:LoginResponse"/>

</message>

<portType name="LoginPortType">

<operation name="Login">

<input message="tns:LoginInput"/>

<output message="tns:LoginOutput"/>

</operation>

</portType>

Vulnerability: A service is said to have a Password in
Clear vulnerability when it does not use password encryp-
tion methods to protect the password at the message level.
Even though the client and the service employ a transport
level security protocol such as TLS or SSL, the password is
still at a message-level threat. Message-level security is very
important in cases where there exist intermediate nodes re-
ceiving the client’s message or request. For instance, con-
sider a service requesting the client for its password. The
client sends the password in clear as an argument to the au-
thentication method. However, the client method call might
pass through multiple intermediate nodes or servers which
are not necessarily authorized to access the client’s pass-
word. In this case, even though the client method call is
encrypted using a transport layer protocol, after receiving
the client call, the intermediate nodes can access the client’s
password.
Remedy: The Password in Clear vulnerability can be re-
solved by defining policies in the WSDL of a service. WS-
SecurityPolicy standard along with the WS-Policy standard
can be used to define security policies within the WSDL to
request the client to encrypt its password. This vulnerabil-
ity is classified as Changeable as the client can encrypt its
password with the service’s public key if it exists even when
there is no policy defined on the password. The following
is an example of an encryption policy defined in a WSDL
file asking the client to encrypt its input message, in which
case, the client encrypts its password.

<wsp:Policy wsu:Id="InputIdentifier">

<wsp:ExactlyOne>

<wsp:All>

<sp:EncryptedParts>

<sp:Body/>

</sp:EncryptedParts>

</wsp:All>

</wsp:ExactlyOne>

</wsp:Policy>

V2. Invalid Parser
Purpose: A parser is required at the service end in order
to parse the service requests of the client.
Vulnerability: A service is said to have a Parser vulner-
ability when proper validation techniques are not in place
at the service end during parsing of the service requests.
Two types of parsers are commonly used in the context of
Web Services: DOM-based parser and SAX-based parser
[22]. DOM-based parser is prone to denial of service at-
tacks. This is mainly because DOM-based parser places
whole of the XML request data in the memory for pars-
ing. One such dangerous attack is the XML Bomb attack,
where an attacker writes an XML file with huge number of
nested elements or entities. Due to this attack, the parser
allocates large memory and it is stuck indefinitely parsing
the huge number of elements, leading to denial of service to
other clients requesting the service. Also, the following at-
tacks can take place: inputting large number of files for pars-
ing, malformed XML (e.g., unclosed tags), malicious attach-
ment, soap array attack (huge number of XML elements),

and large XML document size. SAX-based parser is more
prone to XML injection attacks, where an attacker inputs
data to the service which can query data in unauthorized
mode. Though both DOM and SAX based parsers are vul-
nerable to denial of service and XML injection attacks, the
above attacks are more critical to each of the parsers. This
vulnerability can be detected at the service provider end.
Though Parser vulnerability is not explicitly dependent on
the WSDL, it is considered to be partially dependent on the
WSDL as the attacker can carefully frame the XML input
which is logically correct according to the schema defined or
referred to in the WSDL, but which is a malicious one.
Remedy: The Denial of Service attack in terms of XML
Bomb attack can be resolved by validating the size of in-
put stream when an XML request arrives at the service end.
The XML Injection attack can be resolved by properly val-
idating the input from the client by defining a proper XML
Schema. This vulnerability is classified as Unchangeable as
the code and the type of parsers cannot be changed during
the client’s call to the service.

V3. Invalid XML
Purpose: Validation of an XML file is needed in order to
prevent attacks that submit an XML file with malicious con-
tent or XML file with wrong data types.
Vulnerability: A service is said to have an Invalid XML
vulnerability when the schema related to the service is de-
fined within the WSDL file of the service. The following is
an example of a schema defined within the WSDL (the other
parts of the file such as messages, port types, etc, are not
shown):

<wsdl:types>

<s:schema elementFormDefault="qualified"

targetNamespace="http://test.org/">

<s:element name="WeatherRequest">

<s:complexType>

<s:sequence>

<s:element minOccurs="0" maxOccurs="1"

name="City" type="s:string"/>

<s:element minOccurs="0" maxOccurs="1"

name="Zipcode" type="s:int"/>

</s:sequence>

</s:complexType>

</s:element>

<s:element name="WeatherResponse">

<s:complexType>

<s:sequence>

<s:element minOccurs="0" maxOccurs="1"

name="Resp" type="s:string"/>

</s:sequence>

</s:complexType>

</s:element>

</s:schema>

</wsdl:types>

Exploiting this vulnerability, an attacker can modify the
actual schema with a different schema and replace it in the
WSDL file. This attack is called Invalid XML or Schema
Poisoning attack, wherein when the client accesses the WSDL
file, it is prompted with an Invalid XML error due to which
the client would not be able to use the WSDL file to make
function calls to the service.

For instance, in the above schema, the attacker might

modify the above inline schema by replacing the string type
with an int type. Hence, the client is forced to provide an
integer instead of a string due to which the client would get
an Invalid XML error every time it calls the service.
Remedy: The Invalid XML vulnerability can be resolved
by defining the schema outside of the WSDL file. The at-
tacker will not have access to the schema for modification.
This vulnerability is classified as Unchangeable as the ser-
vice provider defines the schema beforehand in the WSDL
and cannot be changed when the client makes a call to the
service.

V4. Confidentiality and Integrity
Purpose: A client needs to protect its data during transit
from unauthorized sniffing and modification from attackers
if the data is important and sensitive.
Vulnerability: A service is said to have a Confidential-
ity and Integrity vulnerability when it does not employ any
kind of encryption or integrity techniques over its input and
output data. When the input data sent to the methods by
the client and when the output data from the service are
not encrypted, there is a breach to the confidentiality of
the client’s data in transit similar to the Password in Clear
vulnerability. However, Password in Clear vulnerability is
present only in the operations element of the WSDL file
and deals only with the password, whereas Confidentiality
and Integrity vulnerability is concerned to any data present
within any element within the WSDL file. Also, the client’s
data in transit to the service might be altered by attackers
in which case the integrity of the client’s data is lost. This
vulnerability can be detected by analyzing the WSDL file
of the service by checking if there are any security policies
defined in the WSDL file regarding the encryption and in-
tegrity of the messages or data.
Remedy: The Confidentiality vulnerability for input data
can be resolved by requiring the client to encrypt its data
during transit. This requirement can be achieved by defin-
ing XML encryption policies using WS-SecurityPolicy stan-
dard along with the WS-Policy standard within the WSDL.
For confidentiality of output data, the service needs to em-
ploy the encryption methods too. The Integrity vulnera-
bility can be resolved by requiring the client to use digi-
tal signatures over its input data. The service can achieve
this by defining XML digital signature policies using WS-
SecurityPolicy standard along with the WS-Policy standard
within the WSDL. This vulnerability is classified as Change-
able as the client, before making a call to the service, can
encrypt the message using the public key of the service to
ensure confidentiality, and the client can sign the message
using its private key to ensure integrity.

V5. Logging

Several static vulnerabilities that are not WSDL-related
exist. For instance vulnerabilities such as the Logging vul-
nerability and Services in Public Business Registries vulner-
ability arise irrespective of WSDL data.
Purpose: A service provider needs to log or store critical
activities that take place with respect to the service for se-
curity reasons. For instance, a service logs the login time
and login username.A service also needs to audit the stored
log files for security reasons. When a failed login occurs,

by auditing the log file, the service provider can investigate
about a probable attack.
Vulnerability: A service is said to have a logging vulnera-
bility when it is prone to log injection. That is, the service
logging mechanism does not properly validate the input of
the service. In a log injection attack, an attacker injects his
own phrase into the service provider’s log file. The attacker
injects a targeted phrase in the input he provides to the ser-
vice. For instance, consider a service taking a user name of
the user as one of its inputs. The following is a normal log
file generated after a genuine user User1 invokes the service.

Successful login attempt for User1.

An attacker’s intention could be to defame User3. The at-
tacker provides his input as ”User2. [LINEBREAK] Failed
login attempt for User3. [LINEBREAK] Failed login at-
tempt for User3. [LINEBREAK] Failed login attempt for
User3. [LINEBREAK] Failed login attempt for User3. [LINE-
BREAK] Failed login attempt for User3.”, so that the fol-
lowing is written to the log file.

Failed login attempt for User2.

Failed login attempt for User3.

Failed login attempt for User3.

Failed login attempt for User3.

Failed login attempt for User3.

Since the service logging mechanism does not properly
validate the input of the service, especially, the linebreak in
the example above, the attacker is able to inject into the log
file. User3 is mistakenly suspected for his login behavior due
to this logging vulnerability.
Remedy: The Logging vulnerability can be resolved by
properly validating the inputs provided by the user. The log-
ging validation mechanism by avoiding meta-characters such
as linebreak, separators, etc. This vulnerability is classified
as Unchangeable as the log files are at the service provider’s
end.

3.2.2 Dynamic Vulnerabilities
Dynamic Vulnerabilities (i.e. can only be detected upon

the execution of a service) are widely present in generic Web
applications and have been studied [10, 15] more in depth
than the Static Vulnerabilities. We now provide a high level
review of the most seen ones in Web services.

V6. Error on Interface
Purpose: Errors are used to let the developer know to alter
the code if there is a bug in the code, and to let the user of
the service know to alter his or her input to the service.
Vulnerability: A Web Service is said to have an Error on
Interface vulnerability when it throws an error on the client’s
user interface or browser when the client makes a call to
the service which might reveal to an attacker the internal
details of the service such as their secret directory informa-
tion, database dumps, and stack traces. For example, the
following code of a service reveals the path information to
the service invoker:
char* path = getenv("PATH");

...
sprintf(stderr, " No file found on path %s n", path);

Remedy: The Error on Interface vulnerability can be avoided
by handling error messages in the service code. This vulner-
ability is classified as Unchangeable as the service provider

Type of Service Authenticating
Services

Non-
Authenticating
Services

% of Ser-
vices Au-
thenticat-
ing

No of Ser-
vices

Avg. no of
Operations

No of Ser-
vices

Avg. no of
Operations

Business 38 9 27 5 58
Location 41 9 71 6 37

Communication/Entertainment 29 15 36 8 44.6
Scientific/Security 15 3 695 23 2

Search 5 7 50 8 9
Other 224 15 1115 7 17
Total 352 66 1994 62

Table 1: Authenticating and Non-Authenticating Services

cannot change the service code while the client makes a call
to the service.

V7. SQL and XPath Injection
Purpose: The inputs of the clients are transformed into
SQL or XPath queries. The queries are used to query the
SQL and XPath databases of the services.
Vulnerability: A Web Service is said to have an SQL or
XPath Injection vulnerability when an attacker can input
hidden queries in his or her XML requests to retrieve data
from the database of the service. Similar to SQL injection
attack, XPath injection attack takes place when the service
is using XML documents to store user data instead of an
SQL database.
Remedy: The SQL and XPath Injection can be avoided
by defining an XML schema that carefully validates all pos-
sible types of inputs from the user. This vulnerability is
Unchangeable.

V8. Session Replay
Purpose: Session is maintained between a client and a ser-
vice, so that the client need not repeat providing the same
data to the service for consecutive method calls. For in-
stance, in order to authenticate a client, the service requires
the user name and password from the client every time it
calls the service. Hence, by maintaining a session with the
client, the service need not authenticate the client multiple
times.
Vulnerability: A service is said to have a Session Replay
vulnerability when it maintains sessions through session IDs.
An attacker can get hold of the session ID and reuse it to
gain unauthorized control of the session of an authorized
client by sending a request to the service using the session
ID.
Remedy: Session Replay vulnerability can be resolved by
the service and the client using a nonce during communica-
tion, with the client, that involves session ID. This vulner-
ability is classified as Changeable as the client can send a
nonce along with the session ID when it makes a call to the
service.

4. EMPIRICAL EVALUATION
To assess the extent to which Web Services vulnerabilities

are an actual problem in today’s Internet, we tested 2346
real Web Services. These services are taken from the Web
Service collection of Al-Masri and Mahmoud [2], who ob-

tained them from UDDI Business Registries and the World
Wide Web. In total, the authors [2] collected 2507 services.
Out of this dataset, we disregard 160 services which gen-
erated parser errors. The parser was unable to find the
schema files located in different locations, that is, outside
of the WSDL file.

4.1 Methodology
We developed a WSDL parser in order to efficiently detect

static vulnerabilities. Each WSDL file belonging to the 2507
services is associated with a service. The parser reads all the
WSDL files in a loop and processes each WSDL. It specifi-
cally detects static vulnerabilities by looking into certain el-
ements and information within the WSDL. It first looks for
the service name by parsing the file utilizing a Definition

object. Then, based on the service keywords (extracted from
the WSDL and compared with Wordnet dictionary to ensure
semantic relevance with the category), the parser classifies
the service into a type. The parser compares the service
name with a set of words which are commonly used for a
category. For instance, to detect if the service falls into busi-
ness category (discussed in Section 4.2), the parser compares
the service name with the following words: order, business,
price, purchase, rate, quote, accounting, stock, tax, market,
finance, etc. More details on the type-based organization
of the dataset used for our tests are provided in the next
section.

Next, it checks for the elements defining the vulnerabili-
ties. For instance, for the Password in Clear vulnerability,
our parser looks for the term Password in the WSDL docu-
ment within the operations elements. The parser also looks
if there are any policies defined by looking if any of the wsp

or wsap elements (see Section 3.2.1, V1) exist in the WSDL
file. If both these cases are true, then the parser warns
of a Password in Clear vulnerability. Similarly, the parser
looks for the presence of wsp or wsap elements in the WSDL
for detecting the Confidentiality and Integrity vulnerability.
However, for detecting Password in Clear vulnerability, the
parser, in addition to checking for the presence of policies in
the WSDL file, looks for authentication methods, and within
them looks for the argument ”Password”, whereas, for de-
tecting Confidentiality and Integrity vulnerability, the parser
just checks if any policies are defined within the WSDL file.
For both of these vulnerabilities, checking for a wsp or wsap
element enables us to know whether usage of encryption or
integrity technologies are mandated by the service.

Type of Service Total Ser-
vices

Pwd in
Clear

Confidentiality
and Int

Invalid XML Total
Vulnera-
bilities

Business 65 37 64 63 (96.92%) 164
Location 112 41 112 110 (98.21%) 263

Communication/Entertainment 65 29 65 61 (93.8%) 131
Scientific/Security 710 15 710 686 (96.62%) 1411

Search 55 5 55 52 (94.54%) 112
Other 1339 224 1339 1065 (79.53%) 2748
Total 2346 351 2345 2157(91.94%) 4853

Table 2: Static Vulnerabilities by Service Type

In order to detect whether Invalid XML vulnerability ex-
ists, the parser looks for the presence of a schema definition
element within the types element in the WSDL file. If the
schema is defined in the WSDL file, the parser concludes the
presence of the Invalid XML vulnerability. The Parser and
Logging and Auditing vulnerabilities cannot be detected by
us as the parser type information is available at the service
end, and the log and audit information is also available at
the service provider. However, if the client is able to ne-
gotiate about this information with the service, then these
vulnerabilities can be identified.

To test the dynamic vulnerabilities, we utilized a commer-
cial Web Service vulnerability scanner called Acunetix Web
vulnerability scanner [1]. We chose this scanner as it is well
known for Web Services vulnerability detection [21] and can
detect the most popular Web-based vulnerabilities (includ-
ing Error on Interface, and SQL and XPath Injection) in a
reliable fashion.

4.2 Results
As Web services can be of disparate types and can have

varying degree of complexity, we organized the WSDL files of
the dataset in different groups, based on the Web Service’s
types. We anticipate that Web services belonging to the
same type will have a very similar set of functionality and
corresponding architecture, and therefore may be prone to
a similar set of vulnerabilities.

We classified the services into 7 types based on their provi-
sioned service: Business (eg., quote retrieval), Location (eg.,
weather), Communication and Entertainment (eg., email,
travel, holiday), Scientific/Security (eg., gene variations, en-
cryption), Search (eg., search for university data), and Oth-
ers. These categories reflect the common types of Web ser-
vices exposed in public registries.

In Table 1, we show the average number of operations for
each service type. As reported, Scientific/Security services
expose a large number of operations, followed by Commu-
nication and Other service types. We note that services in
the Business category have higher percent of authenticating
services, followed by Communication services. In the table,
we further distinguish among authenticating (e.g. request a
password to access) and non-authenticating services. We ob-
serve that the authenticating services have an average of 9.4
operations or functions in their services whereas the non-
authenticating services have an average of 8.8 operations.
Intuitively, this is because authenticating services are more
complex than the non-authenticating services and usually
offer complex and possibly sensitive operations.

Table 2 shows the breakdown of number of vulnerabilities

detected by service type. As can be quickly observed, there
is an extremely large number of vulnerabilities identified per
service type. Any vulnerability present in each service oc-
curs at least once.

First, we note that non-authenticating services have more
static vulnerabilities (96.4%) compared to authenticating
services (94.5%). Non-authenticating services are typically
services with simpler communication protocols, that require
limited interaction and storage of sensitive data with end
users. Hence, they probably do not have a secure architec-
ture compared to authenticating services.

Further, as shown in Table 2, almost all (96.6%) of the
tested services do not specify any policies and hence they
suffer from Confidentiality and Integrity vulnerabilities. A
similar result is obtained for the Password in Clear vulner-
ability which is widely present among the services that re-
quest a password from the client. We find that all the au-
thenticating services, irrespective of the service type have
a Password in Clear vulnerability. We reason about the
absence of message level confidentiality and integrity pro-
tection by the services as follows: 1. Confidentiality and
Integrity of data can be achieved at the transport layer level
with the use of HTTPS, and 2. The tested services are pub-
licly available and are not related to internal processes of
a business and hence, might not have maintained message-
level confidentiality and integrity of services. Message-level
security is very important when the client message path in-
cludes multiple other applications or services which might
be connected with different, possibly non-secure transport
protocols. In such a case, transport level security is not suf-
ficient to protect the messages. Hence, we consider address-
ing the Confidentiality and Integrity and Password in Clear
vulnerabilities very critical in the Web Service life-cycle.

Also, we note that the large majority of the services de-
fine their schema within the WSDL itself. As discussed in
Section 3.2.1, exposing the schema leads to Invalid XML
vulnerability. We note that this vulnerability is mostly ob-
served in Location Services and Search Web-services. The
services from the Other category are least vulnerable (79.5
%) to Invalid XML attacks when compared to the remain-
ing service types. This is quite unexpected, and probably
identifies that there is a great variety of Web-services which
are more carefully architected than others.

In summary, from the above, we see that static vulnerabil-
ities are alarmingly common in publicly exposed Web Ser-
vices, with Confidentiality and Integrity vulnerability being
the most common. Confidentiality and integrity is consid-
ered a most important vulnerability, as previous research
[8] has shown that in spite of the presence of cryptographic

protocols such as SSL/TLS, breaches of confidentiality and
integrity of data are likely.

In regard to dynamic vulnerabilities, we randomly selected
300 services and checked whether they had any dynamic vul-
nerabilities. We selected proportionally equal number of ser-
vices from all service types. We specifically tested for Error
on Interface and SQL Injection vulnerabilities as these are
critical vulnerabilities that could dramatically affect Web
Services, as discussed in Section 3.2.2. We found very few
vulnerabilities. Interestingly, the tested Web Services have
either 0 or multiple vulnerabilities. Precisely, 7% of the ser-
vices have at least one vulnerability (i.e. 6 services), but
all of such services have multiple occurences of the same dy-
namic vulnerabilities (14 each, on average). We speculate
that these are instances of poorly maintained services, and
therefore, when the dynamic vulnerabilities exist in a ser-
vice, they affect multiple service operations leading to major
security holes.

5. CONCLUSION
As Web Services technologies become an important com-

ponent of the Internet vision, we urge a better understanding
of their security guarantees. Toward meeting this goal, in
this paper we introduced a novel simple taxonomy to classify
Web Services vulnerabilities. Within the provided classifi-
cation, we discussed various vulnerabilities associated with
Web Services. To verify how common these vulnerabilities
are, we analyzed vulnerabilities of over 2000 real-world Web
Services. Our experiments show that there are a huge num-
ber of vulnerabilities in the publicly available services, which
call for a comprehensive solution to prevent the exploitation
of these vulnerabilities.

Acknowledgement Portions of Dr. Squicciarini’s work
was funded under National Science Foundation Grant #1250319.

6. REFERENCES
[1] Acunetix web application security.

http://www.acunetix.com/.

[2] Al-Masri E. and Mahmoud, H. Web service data set.
http://www.uoguelph.ca/ qmahmoud/qws/dataset/.

[3] N. Antunes and M. Vieira. Evaluating and improving
penetration testing in web services. In IEEE 23rd
International Symposium on Software Reliability
Engineering (ISSRE), pages 201–210, 2012.

[4] T. Aslam. A taxonomy of security faults in the unix
operating system. PhD thesis, Purdue University, 1995.

[5] C. V. Berghe, J. Riordan, and F. Piessens. A
vulnerability taxonomy methodology applied to web
services, 2005.

[6] E. Bertino, L. Martino, F. Paci, and A. Squicciarini.
Security for Web Services and Service-Oriented
Architectures. Springer, 2009.

[7] M. B. Brahim, T. Chaari, M. B. Jemaa, and
M. Jmaiel. Semantic matching of ws-securitypolicy
assertions. In Service-Oriented Computing-ICSOC
2011 Workshops, pages 114–130. Springer, 2012.

[8] B. Canvel, A. Hiltgen, S. Vaudenay, and
M. Vuagnoux. Password interception in a ssl/tls
channel. In D. Boneh, editor, Advances in Cryptology -
CRYPTO 2003, volume 2729 of Lecture Notes in

Computer Science, pages 583–599. Springer Berlin
Heidelberg, 2003.

[9] Y. Demchenko, L. Gommans, C. De Laat, and
B. Oudenaarde. Web services and grid security
vulnerabilities and threats analysis and model. In The
6th IEEE/ACM International Workshop on Grid
Computing, 2005.

[10] W. G. Halfond, J. Viegas, and A. Orso. A classification
of SQL-Injection attacks and countermeasures. In
Proceedings of the IEEE International Symposium on
Secure Software Engineering, March 2006.

[11] J. Holgersson and E. Soderstrom. Web service security
- vulnerabilities and threats within the context of
ws-security. In Standardization and Innovation in
Information Technology, 2005. The 4th Conference on,
pages 138–146, 2005.

[12] Microsoft. STRIDE Categories.
http://msdn.microsoft.com/en-
us/library/ee823878(v=cs.20).aspx.

[13] Microsoft. Vulnerability categories.
http://msdn.microsoft.com/en-
us/library/aa302418.aspx.

[14] A. Mirtalebi and M. R. Khayyambashi. Enhancing
security of Web service against WSDL threats. In
IEEE International Conference on Emergency
Management and Management Sciences, 2011.

[15] E. Moradian and A. Hakansson. Possible attacks on
xml web services. In International Journal of
Computer Science and Network Security, Vol. 6
No.1B, January 2006.

[16] OASIS: WS-Security 1.1.
http://www.oasis-open.org/specs/.

[17] Object Management Group. Corba.
http://www.corba.org.

[18] Oracle. Rmi.
http://www.oracle.com/technetwork/java/javase/tech/index-
jsp-136424.html.

[19] N. Sidharth and J. Liu. Intrusion resistant soap
messaging with iapf. In Proceedings of the 2008 IEEE
Asia-Pacific Services Computing Conference, APSCC
’08, pages 856–862, Washington, DC, USA, 2008.
IEEE Computer Society.

[20] G. G. Simpson. Principles of animal taxonomy,
volume 20. Columbia University Press, 1961.

[21] M. Vieira, N. Antunes, and H. Madeira. Using web
security scanners to detect vulnerabilities in web
services. In Dependable Systems Networks, 2009. DSN
’09. IEEE/IFIP International Conference on, pages
566–571, 2009.

[22] W. Wang. Security based heuristic sax for xml parsing.
In Security and Management, pages 179–185, 2007.

[23] S. Weber, P. A. Karger, and A. Paradkar. A software
flaw taxonomy: aiming tools at security. In ACM
SIGSOFT Software Engineering Notes, volume 30,
pages 1–7. ACM, 2005.

