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Abstract—The increasing popularity of images at social media
sites is posing new opportunities for social discovery applications,
i.e., suggesting new friends and discovering new social groups
with similar interests via exploring images. To effectively handle
the explosive growth of images involved in social discovery, one
common trend for many emerging social media sites is to leverage
the commercial public cloud as their robust backend datacen-
ter. While extremely convenient, directly exposing content-rich
images and the related social discovery results to the public
cloud also raises new acute privacy concerns. In light of the
observation, in this paper we propose a privacy-preserving social
discovery service architecture based on encrypted images. As
the core of such social discovery is to compare and quantify
similar images, we first adopt the effective Bag-of-Words model to
extract the “visual similarity content” of users’ images into image
profile vectors, and then model the problem as similarity retrieval
of encrypted high-dimensional image profiles. To support fast
and scalable similarity search over hundreds of thousands of
encrypted images, we propose a secure and efficient indexing
structure. The resulting design enables social media sites to
obtain secure, practical, and accurate social discovery from the
public cloud, without disclosing the encrypted image content.
We formally prove the security and discuss further extensions
on user image update and the compatibility with existing image
sharing social functionalities. Extensive experiments on a large
Flickr image dataset demonstrate the practical performance of
the proposed design. Our qualitative social discovery results show
consistency with human perception.

I. INTRODUCTION

Images represent a popular form of self-expression in online

social media sites [1]. Users may upload images to share

fragments of their personal life, show representations of their

interest and events while connecting with known or even

unknown peers. In particular, photos increasingly provide

opportunities for social discovery applications. Due to the

semantic richness of image content, many social applications

are now directly exploring images to suggest new friends and

discover new social groups with similar interests. For example,

people on Flickr or Pinterest can upload their images to find

their recommended social groups, within which a group of

people shall share the same interests or similar experiences [2].

The idea is therefore to enable social discovery, using images

as the connection medium.

At the core, image based social discovery consists of

comparing and quantifying similar images at large scale, e.g.,

over 3.5 million images uploaded daily on Flickr [1], which in-

evitably demands huge storage and computation resources. To

effectively handle this large-scale computational and storage

problem, one common technology trend for many emerging

social media sites is to leverage the commercial public cloud

as their backend datacenter, for the robust and elastic power

with reduced cost. Among others, the popular photo sharing

service, Instagram [3], is such an example; users’ uploaded

images are stored directly in the Amazon cloud, rather than

passing through their on-premise local servers.

While extremely convenient, directly exposing content-

rich images and the related social discovery results to the

public cloud also raises new acute privacy concerns. Firstly,

semantically rich images may easily reveal content-sensitive

information, if not protected well. For example, a student’s

photo of 2013 graduation might be used to discover the whole

2013 graduates, and even expose the student’s family members

and other friends. Secondly, image-based social discovery in

outsourced scenario may cause even higher privacy risks, as it

further exposes personal profiles, revealing information such as

education background, living places, etc., to the public cloud,

which is known to have very broad attack surface. In fact,

some cloud-related new security threats are still not yet fully

understood [4]. As many images are now directly stored to

the public cloud in unencrypted form, how to satisfactorily

address these acute privacy concerns can be a pivotal issue.

In light of above observations, in this paper, we propose

our study on a new privacy-preserving image-centric social

discovery system that can be deployed at untrusted public

cloud. Different from most existing works on privacy in

social discovery that focus solely on image context, such as

manually annotated image tags, captions, attributes, etc., [5],

[6], our proposed secure social discovery design builds on

top of images’ visual features [7]. The rationale is that,

consistent with the well-known homophily theory [8], similar

users are likely to connect with one another. Hence, in the

context of images, we expect two users associated with images

with similar content to have higher chances sharing similar

interest, and therefore wanting to connect with one another. To

enable content-based social discovery, following a paradigm

commonly used in image processing and retrieval [9], we

first adopt the effective Bag-of-Words model to extract the
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“visual similarity content” of users’ images into individual

image profiles in the form of high dimensional vectors. Then,

we model the problem of privately comparing and quantifying

image content for social discovery as secure similarity retrieval

over encrypted high-dimensional image profiles.

Similar to the existing social media sites, our proposed

system also treats public cloud as the robust backend data

center. The only difference is that the public cloud hosts

all the images in encrypted form, but should still be able

to facilitate fast and scalable similarity discovery over mil-

lions of encrypted images. For that purpose, we propose a

secure and very efficient indexing structure from building

blocks of off-the-shelf locality-sensitive hashing [10], cuckoo

hashing [11], as well as recent advancements of searchable

symmetric encryption [12]–[14], etc. We will show how these

techniques can be utilized in a non-trivial way to achieve

practical and accurate social discovery in a provably secure

fashion. The resulting design enables social media sites to

obtain encrypted social discovery results from the backend

cloud, while protecting both the image content as well as

the related “visual similarity” image profiles. Our system

is expected to naturally complement existing context-based

approaches and serve for more advanced privacy-aware social

applications. The contributions are summarized as follows:

1) Our system is the first to deliver the privacy-preserving

image-centric social discovery services in an outsourced archi-

tecture, which allows fast and scalable discovery over millions

of encrypted users’ images.

2) Our proposed secure indexing structure guarantees the

privacy protection on image content and user image profiles,

while maintaining reasonably good social discovery accuracy,

indexing space efficiency, and constant-sized bandwidth cost.

3) We formally prove the security of our system design and

discuss their practical extensions, including supporting user

profile update. Compatibility with sharing services of existing

social media sites is also discussed.

4) Experiments over 1 million data records created from Flickr

image dataset (MIRFlickr-1M [15]) demonstrate the practical

performance of the proposed design on discovery latency,

space saving, and high accuracy. The social discovery results

are also shown to be consistent with human perception.

The paper organization: Section II states the system archi-

tecture, threat model, and preliminaries. Section III elaborates

our detailed system design of privacy-preserving image-centric

social discovery. Section IV presents the formal security anal-

ysis of our system design. Section V reports the performance

evaluations, followed by Section VI that overviews the related

works. Finally, Section VII concludes the whole paper.

II. PROBLEM STATEMENT

A. System Architecture and Threat Model

The intuition for image-centric social discovery is to use

image content to interpret the user interests. If two users

post images on similar content or topics, such as the same

places visited, similar types of food, pets, or plants they like,

Decrypt M, filter to R 

1. Encrypted images {Img} 

Users 

Off-premise cloud back end 

Storage: encrypted 
images, profiles 

1. Encrypted images {Img}

On-premise social service front end 

Build secure index I, 
encrypt profile {S*} 

Secure discovery 
via secure index I  

Fig. 1: Our proposed system architecture

then they are likely to have similar interest, and therefore

they may connect to possible friends, peers or even love

partners [7], [16]. Our approach is to recommend friends

by quantifying similarity of visual content between users.

Clearly, the higher the similarity, the higher the chances that

the two users would share similar interests. If two users’

preferred images contain similar “visual words”, then their

corresponding image profiles will be closer to each other. For

privacy preservation, the problem is thus how to find users

with nearest image profiles with regard to any targeted user(s),

among a large number of encrypted image profiles. Hereafter,

we formulate it as secure similarity search over encrypted

users’ high-dimensional image profiles.

System service flow: The high-level system architecture is

illustrated in Fig. 1. It involves three cooperating entities: the

users (Usr), the trusted social media site as the on-premise

service front-end (SF), and the untrusted cloud server (CS)

as the off-premise backend. Our service flow involves three

phases: 1) User data upload shown in Steps 1 & 2: For

privacy protection, each Usr first encrypts all her images

{Img}, then uploads them directly to CS. Meantime, each Usr
undertakes the preferred images to quantify her own image-

centric interests via a small-size image profile S and related

metadata V , both of which will be sent to SF. 2) Service
frontend initialization shown in Step 3: Upon receiving all

users’ {S, V }, SF will fast group the similar image profiles

via an advanced secure index I to enable the efficient and

secure social discovery later at CS. 3) Privacy-preserving
social discovery shown in Step 4, 5 & 6: For any targeted

user(s), CS is able to continuously process the secure social

discovery request, in the form of secure trapdoor t, from SF,

and returns encrypted matching result M , without seeing the

encrypted images {Img} or the users’ image profiles {S}.
The encrypted match M will be decrypted and filtered by SF
to derive actual social discovery result R for targeted users.

For practical consideration, the proposed architecture should

support any subsequent user profile update on the index I ,

without affecting correctness, efficiency, and security. It should

also support standard social image sharing functionalities,

where users can use different encryption techniques [17], [18]

to precisely enforce fine-grained access to their encrypted

images even in outsourced scenarios.
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Threat assumptions: We consider the security threats primar-

ily from the “honest-but-curious” cloud, who faithfully follows

the designated operations yet intends to infer users’ encrypted

image contents, image profiles, and related information. We

focus on protecting confidentiality of those images and image

profiles outsourced in a public cloud. We do not consider

other attacks, such as those on data integrity, availability, etc.,

in this paper, which can be handled by various orthogonal

mechanisms. For our design, we assume that the service front

end of the media site and all users are trustworthy. We assume

they can protect their secrets, such as keys and parameters, and

all communications are secure and authenticated.

B. Definitions of System Functions

Our system will instantiate seven functions, where GenProf
and ComputeLSH run at each Usr, Gen, ConSecIdx, GenTpdr
and GetRec run at SF, and SecRec runs at CS:

• S ← GenProf({Img},Δ): given images {Img} and

function parameter Δ, output the user image profile S.

• V ← ComputeLSH(S,h): given profile S and LSH

function parameter h, output the user metadata V .

• K ← Gen(1λ): given input security parameter λ, output

the secret key K.

• (I,S∗)← ConSecIdx(K,S,V): given the secret key K,

image profile set S and metadata set V, output a secure

index I and ciphertexts S∗.

• t ← GenTpdr(K,V ): given the secret key K and

metadata V , output a secure discovery trapdoor t.

• M ← SecRec(t, I): given secure trapdoor t and index I ,

output secure match M , a set of encrypted image profiles.

• R← GetRec(K,M): given the secret key K and secure

match M , output the actual recommendation result R.

We will also use some basic cryptographic primitives:

• f(k, ·), g(k, ·), G(·): pseudo-random functions (PRF).

• Enc(k, ·), Dec(k, ·): symmetric key based semantic se-

cure encryption/decryption function.

C. Preliminaries

Our design involves locality-sensitive hashing and cuckoo

hashing as building blocks. We provide a brief review of these

notations next.

Locality-sensitive hashing: LSH is an algorithm to solve

the approximate nearest neighbor search in high-dimensional

spaces [10]. The idea is to hash the high-dimensional input

data points via specially-designed LSH functions, where sim-

ilar data points are hashed into the same bucket with higher

probability than distant ones. Let O be the domain of data

points and D be the distance measure between points.

Definition 1 (Locality-sensitive Hashing). Given distance r1,
r2, r1 < r2, and probability value p1, p2, p1 > p2, a function
familyH = {h : O → U} is (r1, r2, p1, p2)-locality-sensitive if
for any oi, oj ∈ O: if D(oi, oj) ≤ r1 then P [h(oi) = h(oj)] ≥
p1; if D(oi, oj) > r2 then P [h(oi) = h(oj)] ≤ p2.

For search with good accuracy, multiple LSH hash tables

are needed [10], [19]. One needs to hash the query point q

into buckets in hash tables to find all candidate points, and

rank them based on their distance to q.

Cuckoo hashing: cuckoo hashing [11] is designed to build

high performance hash tables. It can disperse objects with hash

collisions into different choice of hash tables for better load

balance. The standard cuckoo hashing is defined below:

Definition 2 (Cuckoo Hashing). Given two hash tables T1 and
T2, both of them contain w space units. Two independent and
random hash functions h1, h2 : O → {0, w−1} are associated
to T1 and T2, where O is the object domain. One object o ∈ O
can be inserted either in the bucket h1(o) of T1 or the bucket
h2(o) of T2.

If the hash collision happens, the object in the occupied

bucket will be kicked away to another hash table. When more

objects are inserted, the number of kick-away operations will

increase. In practice, the standard cuckoo hashing can be

extended with more than 2 hash tables.

III. OUR PROPOSED DESIGN

A. User Data Upload

The core of image-centric social discovery is to quantify

visual similarity from users’ images as mentioned before.

Since images are naturally stored at users’ local devices with

increasing computing power, our system adopts the “crowd-

sourcing” strategy to decentralize the tedious and potentially

burdensome image preprocessing work to individual users.

Each Usr can preprocess her own preferred images offline

to assist the Service frontend initialization at SF later on.

Specifically, two tasks are assigned to each Usr’s client:

User Image Profile Generation: We represent each user’s

image-centric interests as an image profile based on the Bag-

of-Words model (BoW) [9], which is shown effective in

contexts of image similarity comparison and retrieval [7], [16].

In function GenProf, the parameter Δ denotes the visual word

vocabulary Δ, which can be pre-trained and shared by SF.

Then for each preferred Img, a BoW vector is obtained by

extracting image features and clustering them with regard to

Δ, where each entry in BoW vector denotes the occurrences

of the corresponding visual word. We then aggregate all BoW

vectors for a certain user and normalize it to create the user

image profile vector S = {s1, . . . , sm}, where si reflects

the strength of user’s preference on the i-th visual word in

Δ, and m is the size of Δ. We note that such user image

profile generation is not unique. In order to discover users

with similar image-centric interests, we need a metric to

measure the closeness of the high-dimensional user image

profile vectors. As suggested in prior work [10], [20], various

metrics, e.g., Euclidean, cosine, Jarcard distances, etc., work

well for the purposes. Without loss of generality, we adopt

Euclidean distance in the system design and implementation

of this paper. We leave the effectiveness comparison against

other metrics in our future work.

User Metadata Generation: For high quality of similarity

evaluation, “visual words” vocabulary Δ may contain more

than hundreds of words, which makes the user image profile
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S high-dimensional. To assist SF to build the secure similarity

index for social discovery shown in Section III-B, our system

further demands each Usr to generate some metadata V for her

image profile S, in the form of locality-sensitive hash values.

In function ComputeLSH, the parameter h = {h1, h2, . . . , hl}
denotes the set parameters of l LSH functions, introduced in

Section II-C. With image profile S, each Usr can compute

her own metadata V = {h1(S), . . . , hl(S)}. Similar to visual

word vocabulary Δ, parameter h can be pre-shared by SF.

Each Usr will also encrypt her images and upload them

to CS for privacy protection. We will show these encrypted

images are compatible with social data sharing services by

exploring advanced encryption techniques in Section III-E.

B. Service Frontend Initialization

To facilitate cloud to remotely perform privacy-preserving

image-centric social discovery, the major task for SF is to

build a secure similarity search index over encrypted high-

dimensional image profiles. The question is how to make the

design practical and be able to support millions of user profiles

with high accuracy and strong security guarantees?

One straightforward approach is to first cluster similar user

image profiles into the same bucket in LSH based hash tables.

Then, a secure index can be built after encrypting all buckets

and inserting random paddings [21]. However, the unbalanced

load of LSH [19] and secure index requirement [12] make this

approach suffer from unscalable index size O(n2) for n data

items and large bandwidth cost O(n) for each search request

interaction. It is far from practical when meeting millions of

user profiles at social media sites.

Combining LSH and Cuckoo Hashing: Thus, we have to

explore more advanced secure index designs that aim to take

into account the practical performance parameters such as

index size, index load factor1, and security overhead, from the

very beginning of the design. For this purpose, we resort to a

recent index design [22] in plaintext domain which utilizes the

combination of LSH and cuckoo hashing for fast and efficient

similarity search over big data. As introduced, cuckoo hashing

is known for building practical, high-performance hash tables.

It uses multiple hash tables and allows multiple hash locations

for each data item. Thus, data items can be “moved” among

those positions during data insertions in index building. Such

a design provides a lot of flexibility on LSH load balance

and helps increase hash table load factors [11]. The resulting

index in [22] is shown to support high load-balance, low search

latency, and reasonable search accuracy. However, it supports

only plaintext data without security.

Towards Secure and Efficient Similarity Index: How to

leverage the aforementioned observation and design a provably

secure index with all the salient features remains a challenging

problem. Recall that in [22], the basic idea is to insert each data

item into one of the l initialized hash tables associated with l
LSH functions. If any collision happens, we will use cuckoo-

driven approach to kick away the existing data item and insert

1The ratio of the number of data items to the number of entries in the index
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Fig. 2: Our proposed index construction Insertion phase

the very data item into another hash table from the remaining

l − 1 choices. To further resolve the hash collision, probing

technique is also utilized [19]. But for security guarantees, we

need to do all the operations in a privacy-preserving manner.

We achieve this by exploring a suite of carefully constructed

security designs. Below we illustrate our design blueprint.

Firstly, our design uses one-way functions, like keyed PRF,

to secure the sensitive LSH values while preserving the locality

of close image profiles. Note that LSH does not preserve

the one-way property as pseudo-random functions. Thus, it

is possible to reveal the input image profiles by observing

LSH values. Secondly, a specially designed random probing

technique is explored in index building to protect the similar

image profiles with hash collisions. Specifically, the way we

search for empty buckets to resolve collisions is random.

Finally, we encrypt data items stored in the hash table buckets

via carefully designed random masks. Such masks can be

extended for index update as shown later. Random paddings

are utilized to make all buckets indistinguishable. We illustrate

our design in Fig. 2 and Algorithms 1, 2 & 3.

Let image profile set be S = {S1, · · · , Sn} for n users.

Let Li be the identifier for Si which enables CS to locate

Si’s physical location. Let the user metadata set be V =
{V1, · · · , Vn}, where Vi = {h1(Si), · · · , hl(Si)} includes l
LSH values of Si. Let K = (k1, · · · , kl, ks) be secret keys via

Gen(1λ) and f : {0, 1}λ × {0, 1}∗ → {0, 1}u, g : {0, 1}λ ×
{0, 1}∗ → {0, 1}u be PRF. Function ConSecIdx(K,V,S)
constructs I through the following phases.

• Setup phase:

1) Index initialization: set the index load factor τ ∈ (0, 1]

201



Algorithm 1: ConSecIdx(K,S,V)

Data: k = {k1, . . . , kl, ks}: secret key set;
S = {S1, . . . , Sn}: user image profile set;
V = {V1, . . . , Vn}: user profile metadata set;

Result: I: secure index.
begin

1 w ← �N/l�;
2 I ← new T [l];
3 Loop← 0;
4 for i← 1 to n do
5 Insert :
6 if PrimaryInsert(Li, Vi) = true then
7 goto: Next;

8 if RandomProbe(Li, Vi, d) = true then
9 goto: Next;

10 while Loop ≤MaxLoop do
// Cuckoo Kick-away.

11 Randomly pick j ∈ [1, l];
12 pos← f(kj , Vi[j]);
13 Lk ← Tj [pos];
14 Tj [pos]← Li;
15 Loop++;
16 goto: Insert; // insert Lk .

17 rehash();
18 Next :

19 for i← 1 to n do
20 Bi ← BucketEnc(Li); // Encrypt buckets.
21 S∗

i ← Enc(ks, Si); // Encrypt image profiles.

defined as τ = n/N , where N is the size of index I . Then

create l hash tables T. Each table T contains w = �N/l�
buckets, where each bucket is u-bit length. Set random probe

range as d within each table.

• Insertion phase, for 1 ≤ i ≤ n:

2) Primary insertion: insert Li to one of l hash tables. For

j from 1 to l, if Tj [f(kj , hj(Si))] is empty, then insert Li to

Tj [f(kj , hj(Si))].
3) Random probe: If the above l buckets are occupied, extra

d random buckets for each table are probed. For j from 1 to l
and δ from 1 to d, if Tj [f(kj , hj(Si)||δ)] is empty, then insert

Li to Tj [f(kj , hj(Si)||δ)].
4) Cuckoo kick-away: If no bucket is empty, randomly select

j from 1 to l and kick way Lk located in Tj [f(kj , hj(Si))].
Then insert Li to Tj [f(kj , hj(Si))] and re-insert Lk back via

phases 1, 2&3 in an iterative fashion.

• Encryption phase:

5) Bucket encryption: for 1 ≤ i ≤ n, generate random mask

ri = g(kj , j||pos) for each Li, which is located at Tj [pos],
0 ≤ pos < w. Then encrypt bucket Bi = ri ⊕ Li.

6) Random padding: fill up the remaining w ∗ l − n empty

buckets with random values with equal length of Bi.

7) Image profile encryption: for 1 ≤ i ≤ n, call Enc(ks, Si)
to output S∗

i .

Remark: The space complexity of our proposed secure index

is O(n), because no duplicated copies of image profiles is

stored after cuckoo kick-away. The security strength of our

index design lies in the fact that all buckets of hash tables

are filled in a secured fashion, determined by keyed pseudo-

random functions, random paddings, and random masking. In

Algorithm 2: PrimaryInsert(Li, Vi)

Data: Li: image profile identifier to be inserted;
Vi: user metadata vector;

Result: b: boolean true or false.
begin

1 for j ← 1 to l do
2 pos← f(kj , Vi[j]);
3 if Tj [pos] = NULL then
4 Tj [pos]← Li;
5 return true;

6 return false;

Algorithm 3: RandomProbe(Li, Vi, d)

Data: Li: image profile identifier to be inserted;
Vi: user metadata vector;
d: random probe range;

Result: b: boolean true or false.
begin

// Randomly select a hash table.
1 for j ← 1 to l do
2 for δ ← 1 to d do
3 pos← f(kj , Vi[j]||δ);
4 if Tj [pos] = NULL then
5 Tj [pos]← Li;
6 return true;

7 return false;

practice, PRF is implemented by cryptographic hash functions,

and their outputs should be mod the table capacity to determine

the item buckets in hash tables. Non-committing private key

encryption, i.e., XORing identifier Li with a random mask ri
is applied to achieve the adaptive security. We will give formal

security proofs of our design in Section IV. The correctness is

guaranteed because PRF is deterministic. Thus, the locality-

sensitivity of LSH values are preserved so that similar data

items can be still grouped together in the secure index.

The kick-away operation may cause multi-round Insertion
phases when most of buckets in index are occupied. Therefore,

we assign a large number for the maximum allowed Insertion
rounds defined as MaxLoop at line 10 in Algorithm 1. In the

worst case, the rehash operation at line 17 will be performed

to generate new LSH function set and rebuild the index. But

in practice, a good choice of parameters (e.g., load factor τ ,

random probe range d, LSH parameters) can greatly reduce the

number of kick-ways which will be demonstrated in Section V.

C. Privacy-preserving Image-centric Social Discovery Service

Our system delivers privacy-preserving image-centric social

discovery service via secure similarity search over encrypted

image profiles. The methodology is built on the concept of

secure index construction to search and retrieve a constant yet

small amount of encrypted near image profiles. SF only needs

to perform a light-weighted distance ranking locally to obtain

the final recommendation results. We state our service flow for

a target user with image profile S and metadata V as follows:

1) SF calls GenTpdr(K,V ) to one-way transform the user

metadata V to a trapdoor t = {t1 = (t10, . . . , t
1
d), . . . , t

l =
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(tl0, . . . , t
l
d)}. Here tji = (posji , r

j
i ), where rji = g(kj , j||posji ),

and posji is specified by f(kj , V ) for i = 0 and f(kj , V ||i)
for 1 ≤ i ≤ d.

2) CS calls SecRec(t, I) to first locate l ∗ (d+1) encrypted

buckets {Bic} specified by {posic}, and unmask each {Lic}
via ric ⊕ Bic , for 1 ≤ c ≤ l ∗ (d + 1). With {Lic}, CS then

finds and returns the referenced l ∗ (d + 1) encrypted image

profiles {S∗
ic
}, as the secure match M , to SF.

3) SF calls GetRec(M) to recover {Sic} via Dec(ks, S
∗
ic
)

for distance ranking and filtering, then output the recom-

mended users R to the target user.

Remark: Our design requires SF to retrieve all matched results

back for two reasons. Firstly, those image profiles will be

decrypted and ranked according to their Euclidean distances

with regard to the query image profile. The ranking results can

be integrated with other friend recommendation algorithms for

high quality social discovery. For example, one can use Friend-

of-Friend [23] approach to further filter the ranking results.

The derived final candidates can be recommended to the target

user, who may want to only make friends with acquaintances

in addition to common image-centric interests [7].

Secondly, the retrieved data are indeed small-sized (less than

a few hundred for properly chosen l and d), and the resulting

distance ranking cost is marginal. We further note that this

small bandwidth cost is constant when the data set grows, and

will be sufficient for good social discovery accuracy. We will

demonstrate these features in our experiment in Section V.

Note that our design can be combined with existing encryp-

tion techniques, such as [24], for image profile encryption,

which is expected to further support encrypted cloud side dis-

tance ranking. We leave the comparison of these combinations

and related evaluations as our future tasks.

D. User Profile Update

In social media sites, some users may occasionally upload

new pictures to represent their real-time updated social in-

terests. Accordingly, our system needs to further support the

corresponding update procedure on the secure index, while

guaranteeing the correctness and security. When user revises

the preferred images, the image profile S and metadata V
will be updated. Before inserting the new profile, the outdated

image profile should be deleted. Thus, we must require SF to

first retrieve the encrypted original image profile for deletion,

and then inserting the new image profile back to the index I .

For secure and correct deletion and insertion operations,

we need to slightly revise our design, which now introduces

interactions between SP and CS. Our design is inspired

from [13]. Specifically, we revise the way of bucket encryption

as B = (G(r) ⊕ (L||V ),Enc(kr, r)), where r is a random

value, G(·) is PRF, kr is another secret key kept by SF. r
should be newly picked each time whenever L needs to be re-

masked at bucket B. The reason we include the masked user’s

metadata V in B is for secure insertion considerations. This is

because if any kick-away operation happens due to insertion,

SF should be able to use the related metadata to determine

where to re-insert the newly kicked bucket item in index I .

Next, we introduce the secure deletion and secure insertion.

Secure deletion: To empty bucket Bi, SF first generates the

delete trapdoor t via metadata Vi, which is similar as the

search trapdoor but only contains the position pos as defined

in Section III-C. After retrieving l ∗ (d + 1) buckets {Bic},
the {ric} are recovered via Dec(kr, ·), and identifiers {Lic}
can be unmasked via {G(ric)}, for 1 ≤ c ≤ l ∗ (d + 1).
From recovered identifiers, SF will locate the target Bi which

should be emptied. For security reason, this is done by SF
replacing the target bucket Bi with masking of a special

label ⊥: Bi = (G(ri) ⊕ ⊥,Enc(kr, ri)) for newly picked ri.
Meanwhile, each Bic of the remaining l ∗ (d+1)− 1 buckets

needs to be re-masked too by using freshly and independengly

picked random ric . Finally, SF sends l ∗ (d + 1) re-masked

buckets to CS to replace the old buckets at the same positions,

which also hides the actual emptied bucket Bi. The identifier

Li is also passed to CS to remove the encrypted S∗
i . After

deletion, CS sees all l ∗ (d+1) buckets are freshly re-masked.

Secure insertion: To insert Si, SF generates the insertion

trapdoor t for insertion of identifier Li and metadata Vi to

the index I . Like deletion trapdoor, the insertion trapdoor

retrieves l ∗ (d + 1) encrypted buckets first. If there are

empty buckets found, i.e., ⊥ is revealed after unmasking, Li

can be inserted directly. But if there are no empty buck-

ets available, then one of the l primary insertion buckets,

say Bk, will be kicked. SF first inserts Vi into Bk via

Bk = (G(rk) ⊕ (Li||Vi),Enc(kr, rk)). SF then re-masks all

remaining l ∗ (d + 1) − 1 buckets as in Secure Deletion,

and sends them back for CS to replace the old buckets

at the same positions, which also hides the actual kicked

bucket Bk. The encrypted S∗
i is also sent to CS. Note that

Bk = (G(r)⊕(Lk||Vk),Enc(kr, rk)). To re-insert Lk,Vk back

to index I , SF first unmasks Bk, uses Vk to generate the re-

insertion trapdoor, and repeats the above Secure Insertion
operations until no kick-away. Finally, SF passes the encrypted

S∗
i passed to CS for storage.

Remark: Since the secure update essentially conforms to the

same procedure as secure social discovery, the deletion and

insertion do not leak extra sensitive information, except the

fact that user profile is being updated and its possible position

lies in all re-masked buckets. To further reduce the information

leakage from update, one can leverage the batch update [12],

[13] to perform multiple image profiles update simutaneously.

We leave the detailed analysis as our future work.

E. System Compatibility

Our system can be compatible with image sharing services

at social media sites. Encrypted data sharing in social networks

has been proposed before, such as Persona [17], which adopts

attribute-based encryption (ABE). Our design can utilize simi-

lar approaches for sharing encrypted images. Specifically, each

user first generates ABE secret keys for her friends, based on

the attributes derived from existing access control policy. For

image encryption at Usr, a set of access attributes must be

specified so that friends with the right ABE secret keys can
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decrypt the image. Thus, users are able to manage friendship

and mandate access over outsouced encrypted images.

IV. SECURITY ANALYSIS

In this section, we prove the security of the social discovery

scheme between SF and CS. We follow the simulation based

adaptive security definition, extended from searchable sym-

metric encryption (SSE) [12], [14]. The proof is to demonstrate

that the attacker cannot infer any extra sensitive information

from its views, i.e., a sequence of secure search queries and

results. Specifically, we will first formally quantify the allowed

information leakage from the view, including search pattern,

access pattern, and intersection pattern.With the leakage, we

show that a simulator can build a simulated index and output

the simulated search trapdoors and results. To prove the

security guarantee, we further show that for a sequence of

adaptive queries, the views from the real search interactions

and the simulated views cannot be distinguished. We define

the information leakage as follows:

Definition 3 (Access Pattern AP). Let the metadata set
{V1, · · · , Vq} be a sequence of q queries, {tV1

, · · · , tVq
}

be the trapdoor set. AP is defined as q sets of identifiers
({LV1}, . . . {LVq}) for {tV1 , · · · , tVq}, where for each tVi =

{t1, · · · , tl}, tj = {tj0, · · · , tjd} is the trapdoor for hash table
Tj in I and associated to {Lj

0, · · · , Lj
d}, for 1 ≤ j ≤ l.

In our search scheme, we consider the similarity search

pattern from the overlap of queries and the intersection pattern

as the overlap in access pattern. Because the encrypted image

profiles are semantically secure and search requests are pro-

tected by one-way trapdoors, such leakage only indicates the

retrieved image profiles are close for our search correctness.

Definition 4 (Similarity Search Pattern SSP). For a sequence
of q queries, SSP is defined as a symmetric matrix ΠSSP

q×q ,
where the element ΠSSP [i][j] is a binary vector ν that
indicates the intersections Vi ∩ Vj for 1 ≤ i, j ≤ q, if
Vi[m] = Vj [m], then ν[m] = 1, otherwise ν[m] = 0, for
1 ≤ m ≤ l.
Definition 5 (Intersection Pattern IP). For a sequence of q
queries, IP is defined as a symmetric matrix ΠIP

q×q , where the
element ΠIP [i][j] contains l arrays that records the access
intersection for qi and qj . Array aj stores the identifier
intersection {Lj}, the trapdoor intersection {tj} for hash
table Tj in I .
Definition 6 (Trace T ). T is defined as (AP,SSP, IP, I)
for a sequence of q queries.
Definition 7 (View V). V is defined as ({L1}, . . . {Lq}, {S∗

1},
. . . {S∗

q }, t1, . . . tq) for a sequence of q queries.
Trace T is the allowed information leakage, and view V is

observed by CS for a sequence of queries. The security of our

similarity search scheme is stated in the Theorem 1.

Theorem 1. Our proposed scheme satisfies the adaptive se-
mantic security, if there exists a P.P.T. simulator S and P.P.T.
adversary A, for a sufficiently large γ and every positive poly-
nomial function p(·), we have P [A(V) = 1]−P [A(Vs) = 1] <
1

p(γ) , i.e., V and Vs are computationally indistinguishable.

Proof: We will prove that the P.P.T. S can first simulate

an index Is from the trace T, then adaptively simulate the

view Vs, which is indistinguishable with the real view V . The

steps of simulating Vs are presented as follows:

• To build Is, S generates N random buckets, where N is the

size of I . The bucket in I is Bi = ri ⊕ Li or equal length

random padding, so S generates the random string B′
i, where

|B′
i| = |Bi|. As a result, Is and I are indistinguishable.

• To simulate the distinguishable Vs, S first uses the identifiers

{L′}, which are identical as the identifiers {L} from T .

Thus they are indistinguishable. Then S generates set {S∗′}
with the same size of {S∗}, where each S∗′

i is a random

string and subject to |S∗′
i | = |S∗

i |, thus {S∗′} and {S∗} are

computationally indistinguishable.

• To adaptively simulate the trapdoors, S should create them

consistently with SSP and IP, otherwise, the simulation will

be detected by adversary. For the first query q1, S simulates

the trapdoors for l hash table one by one. For Tj in I , the

trapdoor is tj
′
= {tj

′
0 , · · · , tj

′
d }, where tj

′
i = (pos′, r′). S will

uniformly sample pos′ ∈ [0, w) and locate B′
i. For an identifier

L′
i, there must exist a random r′ where L′

i = r′ ⊕ B′
i, so S

outputs r′ = L′
i ⊕ B′

i. For subsequent query qi+1 (1 ≤ i ≤
q − 1), S adaptively simulates t′i+1 from SSP and IP for i
queries. Similarly, S simulates the trapdoors for l hash table

one by one. If tj
′

i has not appeared before, S adopts the same

approach to simulate tj
′

i . Otherwise, S copies the same tj
′

i .

The correctness of Vs is easy to demonstrate by searching

over Is. Explicitly, the similarity search pattern matches the

intersection pattern. For hash table Tm of qi and qj , if

ν[m] = 1, then the trapdoor ti for qi is the identical as

tj for qj . For security, random pos′ is of equal length to

pos, where pos is produced via PRF f(k, ·). Thus they are

computationally indistinguishable. And r′ is random due to the

randomness of B′
i, so r′ and r are computationally indistin-

guishable. Thus, the simulated t′ and real t are computationally

indistinguishable. We claim that there is no P,P.T. adversary

who can distinguish between Vs and V .
Remark: Similar to existing work on SSE [12], [14], [25], our

leakage on similarity search pattern and intersection pattern is

from the fact that all search trapdoors are deterministic. It

is not clear how to build probabilistic trapdoors for efficient

symmetric key based search design. But to mitigate such

statistical information leakage, one trick is to batch the social

discovery requests for multiple randomly selected target users

at once. However, more bandwidth cost will be incurred.

V. EXPERIMENTAL EVALUATION

A. Experimental Setup

We implement our system prototype by C++ in Linux. We

deploy the Usr client on a PC with Intel i7-3930 CPU and 16G

RAM, and deploy SF and CS on a server with Intel E5-2620

CPU and 120G RAM. Our system uses the computer vision

library OpenCV 2.4.7 for visual word vocabulary training,

image feature extraction, and image profile vector generation.

Our experiment uses Speeded up Robust Features (SURF)
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to extract features with a Determinant of Hessian interest

point detector [26]. Here the interest point is referred to

as a local salient patch, and each associated with a 64-

dimensional feature vector. We use OpenSSL library to realize

the symmetric encryption via AES-128 and the PRF via SHA-

2. From the 1 million Flickr image collection, MIRFLICKR-

1M [15], we choose 140,000 images with popular annotations

as our experiment image dataset. We randomly pick 10% from

our image dataset to build a 1000-word vocabulary via K-

means clustering [9]. We further create 1 million users. For

each user, we independently and randomly select 5 distinct

images from the remaining 90% of our dataset.

B. Image-centric Social Discovery Quality Evaluation

To evaluate our service quality of image-centric social

discovery, we first select one target user, who has images of

flowers and dogs to represent her social interests. We then try

to find top five users with image profiles that are closest to

this target user, among our created 1 million users. Our secure

social discovery result is shown in Fig. 3. Those preferred

images of recommended users are clearly visual similar with

the images of the target user. They all have either flowers

or dogs or both. Therefore, the recommended users can be

considered as the potential social discovery candidates with

mutual social interests to the target user. This demonstrates the

consistency of our social discovery with human perception.

C. Performance Evaluation

We now report our design from a number of performance

factors. We will also compare our design with an existing

work [21], which builds the secure index directly based on

LSH hash tables, as we mentioned in Section III-B. We will

denote it as KIK12, and show this approach does not work

well with our large dataset of 1 million image profiles.

User Client Overhead: In our system, user client only pro-

cesses a small number of preferred images. Thus, only a small

computation cost (0.54sec for user image profile generation

and 0.97msec for user metadata computation) and storage cost

(1.03MB for visual word vocabulary) are introduced.

Index Space Overhead Evaluation: Fig. 4-(a) compares the

space overhead between KIK12 and our proposed secure in-

dex. KIK12 suffers from the quadratic growing O(n2) storage

cost, while our index size O(n) is linearly increased. Here

n is the number of users. Specifically, KIK12 contains the

maximum number l∗n buckets after random padding, where l
is the number of LSH functions. Here each LSH bucket stores

a n-bit binary vector to indicate which of the total n users

are stored in the bucket. All n-bit LSH buckets are encrypted

via symmetric encryption. Thus, the total size of the index in

KIK12 is about l ∗n2/8 byte. The size of our index design is

u ∗ n/τ byte, where τ is the load factor and u is the size of

one encrypted bucket Bi, 32byte as the output of SHA-2. In

Fig. 4-(a), all space sizes are reported under parameters with

l = 10 and τ = 80%. For n = 1 million, the index of KIK12

is around 1.13TB, while ours consumes only 38MB.
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Fig. 3: Social discovery results: the preferred images of one

target user and the recommended top 5 users are exhibited

respectively. It demonstrates the effectiveness of our “visual

word” based image profile matching, which indicates that

those users share mutual interests like flowers and dogs.

Bandwidth Overhead Evaluation: Fig. 4-(b) compares the

service bandwidth cost between KIK12 and our design. In

KIK12, SF sends one query with l trapdoors, and retrieves l
encrypted binary vectors, each with n-bit, resulting in total l ∗
n/8 byte. In our design, the search incurs constant bandwidth

cost with respect to l×(d+1) secure search trapdoors (32byte

each) and retrieved encrypted image profiles (4KB each). For

l = 10 and d = 4, the bandwidth overhead is 201KB for the

total 50 trapdoors and retrieved ciphertexts. As shown, even

without the retrieved ciphertexts, KIK12 introduces 1220KB

service bandwidth, 6× more than ours, when n is 1 million.

Query Latency Evaluation: The query operation latency in

our system is measured in Fig. 4-(c). The network delays

are not considered. Fig. 4-(c) measures the operation latency

under the revised index design which supports secure deletion

and secure insertion. The search and deletion latency is both

constant as they only require one round interaction between

SF and CS with constant bandwidth cost determined by l
and d. But as the secure deletion needs to further update the

secure index via bucket re-masking (see Section III-D), its

latency is slightly larger than the search operation. Since the

insertion may involve multiple round interactions, the insertion

latency is highly related to the number of kick-aways. Fig. 4-

(c) also reports the total number of kick-ways for 100 data item

insertions after we have already 1 million data in the index.

Our experiment shows that the average number of kick-aways

per insertion can be adjusted by setting the LSH parameters

and index load factor. For the index with 1 million users

already, only less than 1 kick-away per insertion is triggered

on average when τ ≤ 80%, l = 10, d = 30.

Secure Index Building Cost: SF can build our secure index

in less than 1 minute for 1 million users as shown in Fig. 5-(a).

But when the index load factor increases, more cuckoo kick-

away operations will be triggered. Thus, the index building

time becomes larger. Specific to our dataset, when we set load

factor below 82%, we can get a reasonable performance in

terms of both index building cost and secure operation latency.
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(a) The space overhead.
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(b) The bandwidth overhead.
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(c) The operation performance.

Fig. 4: Evaluation on space, bandwidth and operation overhead
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Fig. 5: Index building cost, accuracy measurement and analysis

Accuracy Measurement: We compare our discovery accuracy

with KIK12 as well as a baseline approach. The baseline ap-

proach denotes the basic flow of using LSH for plaintext sim-

ilarity search as introduced in Section II-C, while in KIK12,

each item from the candidate set is directly ranked based on

its occurrences in common LSH buckets. Our accuracy mea-

surement from the average of 100 query image profiles {Sq}
is shown in Fig. 5-(b). It is defined as 1

K

∑K
i=1

||S′
i−Sq||

||Si−Sq|| [22].

It measures the closeness between the Euclidean distance of

top-K image profiles {Si} and the ground truth {S′
i} via brute

force method. Fig. 5-(b) shows that the accuracy of our results

is higher than the accuracy of the score-based ranking method

but lower than the accuracy of baseline for l = 10 and d = 30.

For baseline approach, it requires the distance comparison

done over a very large set of potential candidates (5,000

according to our test). The larger set of candidates explains

the better accuracy of the experiment result. For KIK12, the

comparison shows that the number of occurrences in common

LSH buckets is not always a good indicator for direct similarity

ranking. We remark that our approach achieves reasonable

accuracy measurement, yet always consumes much smaller

and constant bandwidth. Fig. 5-(c) further demonstrates the

impact of system parameters l and d on the accuracy of our

design. In general, the more image profiles are retrieved, the

more candidates can be obtained for ranking, leading to better

accuracy measure but at the cost of bandwidth.

VI. RELATED WORK

Content-based Friend Recommendation. Friend recommen-

dation is one of the fundamental social network services.

With the emerging popularity of social media, media content

such as images have been used for self and social disclosure.

One related approach defines the minimum cosine distance of

two users’ image features as user’s visual similarity to assist

ranking friend candidates [16]. Another one called content-

matching measures the distances of user feature vectors de-

rived from user images [7]. Despite very useful, all these

works do not consider the privacy protection on user images.

In our research, we provide strong security guarantee for social

discovery, which is conducted based on encrypted user images

and the related encrypted image profile vectors.

Privacy-preserving Social Profile Attribute Matching. Our

proposed research also relates to the branch of work on

privacy-preserving profile matching [5], [6] that typically

adopts one of two main approaches. One approach is private

set intersection (PSI) and private cardinality of set intersection

(PCSI) [5]. They treat users profiles as a set of attributes and

compute the set intersection. When the intersection size is

above a specific threshold, two users are identified as potential

friends. The other approach considers a users profile as a

vector [6]. Two users are considered potential friends when

their secure scalar product is under a certain threshold.

However, all these approaches treat users’ profiles as sets

of numbers or even coarse-grained binary values, which do

not necessarily express the versatile details of users’ interests

and/or experiences. Thus, it could be difficult to consistently

provide good quality social discovery. Also, these approaches

incur the computation/communication burden of friend finding

directly to individual users, which might not be practically

scalable with millions of users. Compared to them, our design

focuses on image-centric approach with built-in security, and

offload the storage and processing burden directly to cloud.

Search over Encrypted Data. Privacy-preserving image-

centric social discovery is also closely related to the works on

symmetric searchable encryption [12]–[14] and secure ranked

search [27], [28], which support efficient and secure search

over encrypted data. Yet, all these schemes only support textual

files, but are not necessarily suitable for our image-centric
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social discovery service. One recent work studied similar-

ity search over encrypted data [21], which builds on direct

combination of searchable encryption and locality-sensitive

hashing based indexing. As mentioned in Section III-B, the

indexing design suffers from the unscalable storage cost, and

has very low space efficiency. It does not explicitly support

data dynamics, and not always provide accurate search results.

Some related works [29], [30] on similar topic is built on

metric index and special partition, both through computing

distances with private pre-defined references or pivot objects.

But the security strength is limited, as the private objects are

subject to leakage when the attacker is able to adaptively

exploit the search request generator. One arguably stronger

design on encrypted hierarchical index was also proposed

in [29], but it is subject to high bandwidth overhead and incurs

considerable local burden for searching. Another work [24]

finds nearest signals and similar data through secure multi-

party computation on various distance metrics without know-

ing the contents. The model is different from ours. And these

protocols introduce additional computation and bandwidth cost

due to the relatively expensive public key encryption adopted.

VII. CONCLUSION

We have designed and implemented a privacy-preserving

image-centric social discovery system to expand user’s friends

with common interests effectively and securely. Our system is

deployed under modern architecture, which leverages cloud

as image storage back end. We first model user’s social

interests based on the image BoW representation, and then

design a secure and compact similarity index to enable fast

and scalable similarity search over millions of encrypted user

image profile vectors. The security of our design is formally

proved. Also, we present the service-driven applications on

user image update and the compatibility with image sharing

functionalities. Our evaluation demonstrates that our system

is practical and efficient under huge image dataset and 1

million users. The illustrated social discovery results are of

high quality and consistent with human perception.

In future, we plan to formalise and extend our secure

user profile update protocols. We will also integrate other

image related data like geolocation and tags to generate more

comprehensive profiles for better social discovery services.
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