
Toward Detecting Compromised MapReduce
Workers through Log Analysis

Eunjung Yoon
Department of Computer Science and Engineering

Pennsylvania State University
University Park, USA
eyoon@cse.psu.edu

Anna Squicciarini
College of Information Sciences and Technology

Pennsylvania State University
University Park, USA

asquicciarini@ist.psu.edu

Abstract—MapReduce is a framework for performing data-
intensive computations in parallel on commodity computers.
When MapReduce is carried out in distributed settings, users
maintain very little control over these computations, causing
several security and privacy concerns. MapReduce activities
may be subverted or compromised by malicious or cheating
nodes. In this paper, we focus on the analysis and detection of
attacks launched by malicious or misconfigured nodes, which
may tamper with the ordinary functions of the MapReduce
framework. Our goal is to investigate the extent to which integrity
and correctness of computation in a MapReduce environments
can be verified while introducing no modifications on the original
MapReduce operations or introductions of extra operations,
neither computational nor cryptographic. We identify a number
of data and computation integrity checks against aggregated
low-level system traces and Hadoop logs, correlated with one
another to obtain insights on the operations being performed
by nodes. This information is then matched against system and
program invariants to effectively detect malicious activities, from
lazy nodes to nodes changing input/output or completing different
computations.

I. INTRODUCTION

The MapReduce computing paradigm is an architectural
and programming model for efficiently processing massive
amount of raw data in a parallel and distributed manner [5].
With the recent proliferation of cloud computing services, the
MapReduce framework has become a very popular approach to
process Big Data in distributed environments. It provides seam-
less distribution of computing tasks among computing nodes,
in a transparent way to programmers. Its current design allows
users’ data to be efficiently processed in multiple parallel tasks,
with little control from the end users. Considering its benefits,
MapReduce has been widely adopted by a number of large
companies, such as Google, Yahoo, Amazon, Facebook and
AOL. An open source implementation of MapReduce called
Hadoop [11], developed by Yahoo has further encouraged wide
adoption of MapReduce.

Despite the achieved flexibility and great MapReduce de-
gree of scalable computing offered to its clients, MapReduce
is vulnerable to third-party attacks and misbehavior. Some
participants, be them users or nodes, can be subverters that
deceptively perpetrate cybercrime or other cyber attacks [29],
[30] using distributed computational resources. Further, due to
the little control users have over the processes and functions
carried out by the nodes on users’ data, data miscalculation

may easily go undetected. This is especially true when lazy or
malicious servers are involved in a MapReduce task.

In this paper, we focus on the analysis and detection of
attacks launched by malicious or misconfigured nodes, which
may tamper with the ordinary functions of the MapReduce
framework.

Our objective is to investigate the extent to which integrity
and correctness of computation in a MapReduce environment
can be verified using a black box approach, with no modifi-
cation of the original MapReduce operations or introduction
of extra operations, neither computational or cryptographic.
We note that there is a significant amount of work tackling
the problem of verification of remote computation. Common
approaches rely on replication [12], [29], cryptographic proofs
[19], [20], [2], or attestation protocols [30], [23], [28]. Most
of such approaches, although effective, require modification
of either the original MapReduce operation flow (e.g. [22]), or
they require modification of the submitted MapReduce tasks,
to include checks or computation of cryptographic attestations
[3], [10]. Our challenge is instead to devise alternative solu-
tions that do not require such intrusive modifications.

To this end, we propose a new approach to carry out
semantic analysis of system calls and MapReduce logs as
a novel way of detecting misuse and attacks in MapReduce
frameworks. As noted in previous work [14], syscall event-
streams present a rich source of statistical and semantic
information for performance and diagnosis in MapReduce
frameworks. In this work, we push this concept forward,
and hypothesize that system calls can be leveraged to un-
cover specific attacks to MapReduce nodes, due to improper
execution of the MapReduce framework or to incorrect or
tampered execution of the MapReduce jobs tasked by clients.
We therefore conduct an in-depth analysis of execution traces
of parallel nodes to verify the execution pattern followed by a
mapper or a reducer in a Hadoop environment. Execution trace
recording through dynamic instrumentation helps identify the
flow of execution of MapReduce applications.

We highlight how, given an exact trace of execution of an
entire system, collected from multiple nodes, it is possible to
deduce the operations that took place. Such information can
even be used to demonstrate that some operation did not hap-
pen, which is a highly desirable property to ensure information
assurance. Further, we identify a set of invariants that can help
form a baseline behavior of both the Hadoop framework and



of the applications. We correlate Hadoop logs with specific
system calls, and match them against the identified invariants.
We then identify whether a malicious node has subverted the
functioning of the Map Reduce operations, or otherwise altered
the original workflow of the computations.

The rest of the paper is organized as follows. Next section
highlights related work. In Section III, we provide background
information of our approach and discuss goal and assumptions
taken in this work. In Section IV, we discuss our instru-
mentation techniques for inspecting MapReduce execution
traces. Next, we present our approach toward inspection of
MapReduce traces, in Section V. We continue in Section VI
with discussing program invariants, followed in Section VII
with our approach toward verifying the invariants using the
identified invariants. In Section VII, we discuss experimental
evaluation, and conclude the paper in Section VIII.

II. RELATED WORK

There is a significant amount of work tackling the problem
of verification of computation, in various computing appli-
cations, from Desktop Grids to Cloud Computing. Common
approaches rely on replication [12], [29], [30], voting schemes,
cryptographic proofs [19], [20], [2], or attestation protocols
(e.g. [10]). Below we summarize some interesting work, car-
ried out in the context of distributed systems, and more recently
in MapReduce. Du et al. [7] used sampling techniques to
achieve efficient and viable uncheatable grid computing. Zhao
et al. [33] proposed a scheme to address collusion for result
verification. Sarmenta et al. [24] introduced majority voting,
and spot-checking techniques, to reduces the error rate linearly
with the amount checks to be performed. [26] employs a
replication-based scheme that allows the degree of redundancy
to be adaptively adjusted based on the dynamically-calculated
reputation as well as reliability of each worker.

Specific to MapReduce, and closer to our work, is the
SecureMR framework [30], which adopts a new decentralized
replication-based integrity verification scheme, and utilizes the
existing architecture of MapReduce for replication purposes.
On a similar vein, Xiao et al. [31] presented an accountable
MapReduce platform which checks all working machines and
detects malicious nodes in real time. Auditors are able to
generate verifiable evidence once inconsistency occurs, by
replicating the tasks executed by workers and matching output
with the original results. Another significant contribution is
the Airavat system proposed by Roy et al. [22]. Airavat is
a security and privacy framework for MapReduce systems.
Airavat aims to enforce differential privacy, i.e. it aims to
ensure that the output of aggregate computations does not
violate the privacy of individual inputs. It does so by modifying
the Java Virtual Machine and the MapReduce framework by
adding SELinux-like Mandatory Access Control to the DFS.

Most of the above mentioned studies are based on repli-
cation techniques, or require changing the MapReduce con-
figuration to increase the security guarantees being offered.
Tasks are either being duplicated and sent to two or more
different participants for processing, or cryptographic checks
are required to provide proofs of correctness of execution.
Such redundant operations waste resources in the system
and although accurate, are often impractical. We remove the

constraints that extra operations have to be performed and
investigate how careful analysis of correlated and properly
parsed logs can help detect malicious activities.

In addition to work on verification and integrity of com-
putation, there is a large body of work on detection of system
errors by means of log analysis (e.g. [9], [32], [27]). These
works focus on mining and statistical learning techniques
applied on system logs to determine possible misconfigurations
or computing issues. Xu et al [32], for example, use a two stage
approach based on frequent pattern mining and distribution
estimation techniques to capture the dominant patterns. The
authors’ empirical analysis shows high detection accuracy of
system errors and also uncovers patterns of execution on a
given cluster of nodes. We differ in approach and goal, as our
focus is on intentional malicious actions, rather than system
errors. Also note that mining techniques would not be enough
to detect malice, as the client-provided program is unknown
until being submitted to MapReduce framework. Thus it is
almost impossible (or very impractical) to train the program
for classifying normal or abnormal behavior.

III. BACKGROUND AND PROBLEM STATEMENT

A. MapReduce Framework

MapReduce is a functional programming paradigm [6]. It
enables parallel programming of large data efficiently using
multiple nodes. Its programming model is built upon a dis-
tributed file system (DFS) which provides distributed storage
(see Figure 1). Programmers specify two functions: Map
and Reduce. The Map function receives a key/value pair as
input and generates intermediate key/value pairs to be further
processed. The Reduce function merges all the intermediate
key/value pairs associated with the same (intermediate) key
and then generates final output. On a cloud computing setting,
these functions are orchestrated by the Master node. The
Master acts as the coordinator responsible for task scheduling,
job management, etc. The mappers, and reducers nodes, carry
out the functions. Next, we provide a brief review of this model
in the context of Hadoop, since it is the reference architecture
used in our study.

1) Hadoop: The Hadoop framework is a popular exam-
ple of the MapReduce paradigm. Hadoop is based on a
master/slave model. The master node runs the JobTracker,
TaskTracker, NameNode and DataNode, whereas a slave node
can run the TaskTracker and DataNode. The JobTracker is
responsible for distributing MapReduce tasks to worker/slave
nodes and keeping track of them. The TaskTracker is re-
sponsible for running the job accepted from the JobTracker
on the node. The TaskTracker spawns a new JVM for each
task received and then monitors the progress of this spawned
process, capturing its output and exit codes.

One TaskTracker runs on each slave node and TaskTracker
spawns multiple child JVMs to handle many map or reduce
tasks in parallel on each slave node.

2) Hadoop Distributed Filesystem: By default, Hadoop
comes with the Hadoop Distributed Filesystem (HDFS), which
is a distributed, scalable filesystem designed to scale to
petabytes of data while running on top of the underlying
filesystem of the operating system. User applications access



..

.

.

.

MAPPERS 
REDUCERS 

..

.

.

.

          SHUFFLERS

  (intermediate results) 

HDFS

input slice 1

input slice 2

input slice k

MASTER  

CLIENT 

(plug-in) 

OUTPUT 

OUTPUT 

OUTPUT 

CLIENT DATA

AND APPLICATIONS

Fig. 1: Overview of the main MapReduce framework

the file system using the HDFS client. HDFS is rack-aware,
meaning it keeps track of where the data resides in a network
by associating with the data set the name of its rack. This
allows Hadoop to efficiently schedule tasks to those nodes
that contain data (or which are nearest to the data) in order to
optimize bandwidth utilization.

NameNode and DataNode are part of HDFS. The Na-
meNode is responsible for maintaining the directory structure
of the filesystem (i.e., metadata) and to track where the file
data is kept in the Hadoop cluster (i.e., DataNode). The
NameNode is a single point of failure in HDFS; if it fails,
the whole filesystem will come down (support for a secondary
NameNode is present). It does not, however, store any data
itself. The DataNode is where data is actually stored. An
optimal cluster has multiple DataNodes that store data across
multiple locations for increased reliability.

B. Goal

Our main goal is to investigate the extent to which it
is possible to detect any cheating or malicious behavior of
worker nodes by monitoring execution behavior at runtime on
the nodes. Cheating nodes are nodes which skip part or all
the requested computation to save computational resources.
Malicious nodes are nodes which deliberately subvert the
computation in order to obtain some selfish gain [18]. For
instance, they may execute additional computational tasks to
charge the client, or they may attempt to obtain the input or
output data of the user.

Note that we do not aim to provide a data-level program
verification technique, as it would be impractical. We also do
not aim to zoom in on unknown attacks that involve hidden
or compromised system calls; for instance, mimicry attacks
which try to masquerade as normal behavior by modifying
detectable system call sequences are beyond the scope of this
work. Further, an attacker can create the wrong result without
causing any system failure, so we do not aim to detect faulty
nodes. Faulty behavioral patterns have been studied in previous
work [32], [27], and are beyond the scope of our work.

C. Assumptions

We rely on the following assumptions.

1) MapReduce framework is not tampered with. In particu-
lar, the Hadoop system, in terms of scheduling, assigning
jobs (map and reduce jobs) to workers, and collecting the
results has not been compromised. We assume workers
compute the same MapReduce tasks at the same time on
portions of the same input data.

2) Worker nodes have similar hardware configuration. This
assumption is consistent with common real-world appli-
cations, as most instances of MapReduce clusters are
designed to have the same technical specifications. We
tried making trace comparisons among workers to be fair
and comparable in this work.

3) Master node and HDFS are trusted. In the context of
Hadoop MapReduce, the master node is a single point
of failure and it manages scheduling, monitoring (i.e.,
MapReduce JobTracker) and the file system namespace
and access control to files by clients (i.e., HDFS Na-
meNode). Accordingly, we assume that Hadoop’s logging
facility is trusted. Further, system call logs at the nodes
are reliable. We note that this assumption is reasonable,
as several secure logging systems (e.g., SELiux-based and
VM-based [13], [8]) have been deployed and may be used
in MapReduce environments.

4) A majority of the MapReduce nodes exhibit honest be-
havior.

5) The Map function executed by the nodes is deterministic:
that is to say, given the same input, MapReduce yields
the same output.

D. Approach Overview

We build execution profiles of underlying application dur-
ing the map and reduce stage on each slave node through the
aggregated logs and identify deviations from common patterns
of the execution of the behavior.

We adopt a black-box, low-level, dynamic instrumentation
approach for collecting system-call level traces, which pre-
sumes no modification on Hadoop framework, and correlate
the system call logs with Hadoop logs. Correlating Hadoop’s
logs and low-level system traces enables us to obtain a com-
prehensive view of execution flow and data flow. Aggregated
system traces collected through dynamic instrumentation are



parsed to extract the execution flow of the program in a
fine grained manner, and in search of patterns indicative of
suspicious execution behavior. Here, by suspicious execution
behavior we mean behavior that is either (a) in violation
with the operations computing nodes should perform for the
MapReduce task they are in charge of or that (b) successfully
subverts MapReduce operations or the overall Hadoop execu-
tion flow.

Our intuition is as follows: a MapReduce job consists of
multiple copies of Map and Reduce tasks, each running the
same client application, operating on different portions of the
data set. We expect that the Map tasks exhibit similar behavior
with other Map tasks even from different architecture, and cor-
responding Reduce tasks. Precisely, note that all MapReduce
jobs follow the same flow of execution: (1) Map tasks are
assigned, and begin by reading input data from DataNodes;
(2) upon completion of Map task, the Map output is shuffled
to Reducers. Eventually, (3) the job terminates after Reducers
write their outputs back to the HDFS. Since each slave node
executes a subset of the global set of Map and Reduce tasks,
this temporal ordering is reflected on the slave nodes as
well. As recent work on fault analysis in cloud computing
and MapReduce applications has demonstrated [14], [27],
it is reasonable to expect that slaves nodes will encounter
similar workloads, and that the workloads will be mapped
into consistently similar traces of execution. The analysis of
these traces, along with information about the MapReduce
configuration, the input data and the system setup, can reveal
important insights on the ongoing activities at the nodes. More
importantly, by correlating these traces with expected invari-
ants on the programs execution and their workflow, we can
unveil ongoing malicious activities, that affect confidentiality,
integrity and availability of client’s data and computations.

To verify the intuition that we can detect a large number of
malicious activities with proper instrumentation techniques and
in-depth analysis, we leverage dynamic instrumentation tools
to monitor the execution flow of the MapReduce by checking
a large set of actions and events, of the following types:

• Program integrity: We check whether execution of the
map/reduce function follows the expected workflow,
determined using known invariants.

• Input operations: We check whether file split inputs
of the map function are from the correct HDFS
addresses/locations.

• Output operations: We verify whether the output files
of the reduce tasks are mapped into the expected
correct HDFS addresses/locations.

• I/O activities at the MapReduce function level: We
trace and analyze sets of system call related to file
I/O activity such as read() and write() system
calls within each map or reduce function, and semanti-
cally correlate this information with Hadoop logs and
configurations.

IV. INSPECTION OF MAPREDUCE EXECUTION TRACES

We collect traces of running TaskTracker on each slave
node and store the aggregated traces in HDFS as log files.
Precisely, we leverage Hadoop logs for the high-level analysis

MASTER SLAVES

Hadoop
JobTracker

NameNode

Hadoop
TaskTracker

DataNode

Map

Reduce

......

data 
blocks

HDFS

Jo
bT

ra
ck

er lo
g

N
am

eN
od

e
lo

g

Ta
sk

Tr
ac

ke
r

lo
g

D
at

aN
od

e
lo

g

Fig. 2: Hadoop Logs used for the log analysis

of the interaction between the HDFS and Map/Reduce tasks.
Specifically, Hadoop uses Apache Log4j facility to generate
logs (white-box approach); logs are generated from the dae-
mons of JobTracker, TaskTracker, NameNode and Datanode,
which include configuration logs, statistics, standard error,
standard output, and internal diagnostic information. Since
each TaskTracker executes a subset of the Map and Reduce
tasks, each TaskTracker observes a sampling of the global
distribution of completion of tasks.

Conversely, we observe the execution behavior of the Map
and Reduce functions through analysis of Map and Reduce
JVM-generated system call logs. System call logs are gen-
erated by dynamic instrumentation (i.e., DTrace/strace) from
the daemons of TaskTracker, (NameNode, and DataNode).
We note that system call logs are particularly important to
extract the program execution behavior of the Map and/or
Reduce tasks executed on top of TaskTracker’s spawned JVM
processes.

Our analysis of these logs is based on some important
insights about the information available through Hadoop logs
and system call logs:

• Hadoop Logs have several unique identifiers of Job-
Tracker, TaskTracker, NameNode, and DataNode.
JobID (e.g., job_200707121733_0003): Job-
Tracker and TaskTracker logs include the JobID which
represents the unique identifier for the job. JobID rep-
resents the JobTracker identifier and the job number.
BlockID (e.g., blk_<id_1>): DataNode log in-
cludes the BlockID which represents the HDFS blocks
that consists of raw bytes of the data file.
TaskID (e.g., task_200707121733_0003
_m_000005): TaskID represents a Map or Reduce
task. TaskID is JobID along with the number of
attempts and either ’m’ (i.e., map task) or ’r’ (i.e.,
reduce task), and the task number (i.e., fifth map task)

• System call traces provide finer grained execution
logs than Hadoop logs. System call logs are grouped
by process ID (i.e, PID) that represents the unique



identifier of each child JVM process of TaskTracker.

• The logs in distributed systems tend to be interleaved.
We use a timestamp information to extract the correct
order of execution. We take into account the drift time,
which is due to possible discrepancies between clock
times on the machines, by inspecting system events
within the same time frame and synchronizing the
timestamps. The information from Hadoop logs and
system calls is matched against the order of the task
invocations. For example, Hadoop creates an on-the-
fly script file named taskjvm.sh to launch new
task JVMs so we extract related log entries from
Hadoop’s TaskTracker log and system calls (i.e., open
taskjvm.sh) for synchronizing the timestamp of
the two different log files.

Log Parsing: The original logs collected in distributed en-
vironment is typically repetitive, unstructured and semanti-
cally hard to interpret, so we parse the log in order to get
the desired information [16]. Precisely, to extract meaningful
information from Hadoop logs and system call logs, we use
the unique identifiers described above to create custom regular
expressions that allow to match to parse particular log entries.
To correlate Hadoop logs and system call logs, we extract
JobID and MapID/ReduceID (i.e., attemptID) from
the taskjvm.sh related log entry of Hadoop TaskTracker
logs and matching log entry (i.e., system call events on
taskjvm.sh with corresponding JobID, MapID/ReduceID,
and PID) from system call logs. We also analyze syscall param-
eters such as the file descriptor (i.e.,filename and pathname)
that the system call accesses for exploring I/O operations and
the dependency in Map/Reduce tasks.

V. INTEGRITY CHECKS

Next, we discuss our detailed approach toward detect-
ing anomalies in the data and processing of MapReduce
computations. We describe how we can extract patterns of
communication among nodes and leverage access patterns to
uncover data being misplaced or wrongly accessed.

A. Monitoring communication between HDFS client and the
NameNode and the DataNode

The HDFS client (i.e., Map or Reduce task) accesses the
HDFS service via RPC (Remote Procedure Call). In order for
a client to first submit the data to HDFS, the client connects
to the NameNode. The client’s request flows in the form of
Hadoop RPC requests over a TCP connection. Once the con-
nection has been established, data blocks are transferred from
the client to DataNodes. We analyze communication between
the client and the NameNode and the DataNode by extracting
network related events from Hadoop and system call logs. The
Hadoop and system call logs are correlated with the extracted
IP addresses, port numbers, and socket connection related
system calls for tracing the network connection between the
HDFS client and the HDFS service so that we can identify
any unauthorized connection from the HDFS client to the
NameNode or DataNode. Any suspicious network connection
attempts such as wrong IP addresses of DataNoes or port
numbers, a number of unsuccessful socket connection system
calls, etc can be a good indication of malicious behavior.

Inconsistency between correlated information and each logs’
information is also an indicator of anomaly.

B. HDFS access patterns

HDFS is a distributed file system that has been created with
the purpose of storing large data for large scale data intensive
applications. We use collected Hadoop’s logs to extract HDFS
client’s access patterns to HDFS along with the location of
data blocks as a means for validating the integrity of input
data. Hadoop’s NameNode and DataNode logs provide the
information of data block ID and DataNode location where
the block is stored, which is accessed by the HDFS client.
Namenode manages lists of files, list of blocks in each file, list
of blocks per Datanode, and other metadata. DataNode stores
blocks of data in its local file system and stores metadata for
each block.

We specifically extract the location (i.e., IP address or host-
name) of DataNode and the data blockID being accessed by the
HDFS client. We also extract the information about the opera-
tions on the HDFS such as HDFS_READ and HDFS_WRITE.
This information is useful for validating input data to Map
task - if the input data loaded to Map task is originated from
the correct DataNode location not from attacker. The BlockID
extracted from the log is also used for validating the integrity
of input data to Map task. Examples of Hadoop NameNode
and DataNode trace logs are reported in Figure 3.

C. Snooping IO between HDFS and MapReduce by using
DTrace/Strace

By analyzing HDFS access patterns, we can identify mali-
cious accesses to HDFS, such as writing arbitrary data blocks
to DataNodes or unauthorized access to the data blocks. We
specifically check for the following HDFS actions:

• Storing client-provided data file as blocks in a set of
DataNodes

• Loading data blocks into Map task from DataNodes
that hosts replicas of the blocks.

We analyze the system call traces collected from DataNode
to identify the data transfer activity between the HDFS client
and DataNode. For example, accept() system call gives
us information about the client establishing a connection with
the DataNode. open() system call with the argument of
blockID reveals which data block is being accessed. HDFS
data transfers are carried out using TCP/IP sockets directly,
thus the system call sendfile() with arguments of file
descriptors enables us to check if the DataNode sends the
correct data block to the corresponding HDFS client. Below
is an example of system call traces on DataNode.

accept() = out_fd;
open("pathname(blockID)", O_RDONLY) = in_fd;
sendfile(out_fd,in_fd,offset,bytes) = bytes;

D. Execution traces of Map and Reduce function

We collect the dynamic execution traces of Map and
Reduce tasks by DTracing TaskTracker’s child JVM processes
both in method level and system-call level on each slave



* Hadoop NameNode log:

STATE* Network toplogy has 1 racks and 2 datanodes

BLOCK* registerDatanode: node registration from ($DataNode):50010
storage DS-624241665-192.168.1.14-50010-1382597957423

BLOCK* allocateBlock: $path blk 5905677021831100640 2283
BLOCK* addStoredBock: blockMap updated: 127.0.0.1:50010

is added to blk 5905677021831100640 2283 size 33890

* Hadoop DataNode log:
DatanodeRegistration( (DataNode):50010
storageID= DS-624241665-192.168.1.14-50010-1382597957423, infoPort=50075, ipcPort=50020)In
DataNode.run, data = FSDatasetdirpath=’ ($HDFS-Path)/dfs/data/current’

Receiving blk 5905677021831100640 2283 src: ($HDFS-Client-IP):55950 dest: ($DataNode):50010

src: ($DataNode):50010, dest: ($HDFS-Client-IP):56002, bytes: 34158, op: HDFS_READ, cliID:
DFSClient_NONMAPREDUCE_1010168535_38, offset: 0, srvID: DS-624241665-192.168.1.14-50010-1382597957423,
blockid: blk 5905677021831100640 2283, duration: 671000

Fig. 3: Examples of Hadoop NameNode and DataNode logs

node. We extract semantic information of program execution
from the trace, such as what classes have been loaded in
Map/Reduce task and what kind of operations are performed
on system components. The semantic analysis of system traces
provides fine grained information about the control flow and
data flow of the Map/Reduce task. Using system-call level
logs, we can also identify dependency and causual relation-
ships between different components in Map/Reduce tasks. The
causual relationship indicates the execution logic expressed in
the source code of the user application.

VI. MAPREDUCE INVARIANTS

In order to effectively use the traces described in previous
section, we correlate them against some anticipated or trust-
worthy behavior of the MapReduce nodes. Given that we do
not assume ground truth is given in terms of data output or
correctness of traces, we resort to analyze this information
against some expected invariants. Program invariants always
hold in system logs under different inputs and workloads
[15]. Hence, they naturally serve as checkpoints for validating
program execution. Our approach is therefore to consider
a set of program invariants, and analyze log sequences to
compare them with an expected workflow. An anomaly can
therefore be detected by checking if the new log fails to satisfy
the anticipated invariant conditions. The invariants in Hadoop
framework that we observed include: presence of Hadoop
and Java libraries, reading correct configuration files, writing
intermediate datablocks and fetching intermediate blocks by
reduce nodes.

Hadoop libraries are common to all Hadoop applications.
Since Hadoop libraries are not dependent on the applications,
the events related to loading Hadoop libraries at runtime on
worker nodes should be commonly observed without any devi-
ation. Further, we can check if necessary Hadoop libraries have
been loaded for the Map and/or Reduce tasks by analyzing
system call logs.

The mapper function transforms input key-value pairs to
intermediate key-value pairs and the reducer function takes
a number of pairs sharing the same key and produces the
final result of the computation. In detail, input data in HDFS
are split and fed to the mapper function as key-value pairs.
The key-value pairs produced by the mapper function are then
sorted and combined by the function named shuffleSort which
aggregates the values having the same key and sends the key
and the list of the values to the reducer. The final result of the
reducer is stored in HDFS.

In addition to simple operation and log events checks,
we can check if the execution pattern follows this expected
workflow through analysis of HDFS access patterns before the
mapper execution and after the reducer execution, and the I/O
events within the mapper and reducer task. Precisely, Hadoop
configuration provides the location of intermediate output
being stored by the mappers and system call parameters reveal
the location where the mapper wrote intermediate output.
These two locations should always match, regardless of the
data size or the specific Map application.

For example, when checking whether HDFS has correctly
interacted with MapReduce, the following events should be
observed.

• Client writes data file to HDFS (splitted and stored as
blocks in DataNodes)

• Mapper loads the data chunk from DataNodes

• Reducer writes the final output to HDFS unless the
output is written to another Mapper

The order of the above steps is important in Hadoop workflow
and should not be changed.

Further, for more detailed understanding of the behavior of
the actual functions, the following invariants at the Map and
Reduce function level can be observed.



• Input/Output: Given with the same input data, Map
function always emits the same output data, unless
the Map function has been compromised.

• Method invocations: The methods should be invoked
in the same order for sequential tasks where the
execution flow is the same.

• Execution Order: multiple invariants can be consid-
ered. For instance, loading input data block to Map
function from HDFS is always followed by writing the
intermediate output to the local disk/HDFS. Further,
loading the intermediate output to Reduce task is
always followed by writing the output to the local
disk/HDFS.

In terms of the number of system calls in Map/Reduce
function, the number of called and returned system calls (e.g.,
open(), close()) should be the same within the mapper and the
reducer. Checking this number is a knowingly effective way to
detect possible anomalies such as file descriptor attacks[25].

VII. MATCHING INVARIANTS AGAINST INTEGRITY
CHECKS

Our verification of MapReduce execution is based on
the analysis of correlated Hadoop log and system call log
collected at runtime. Apache Hadoop and HDFS is built in
Java language. Thus, we verify the methods of the mapper and
the reducer implemented in Java. In this section, we discuss
how to verify MapReduce computations based on observed
invariants discussed in previous section.

A. Verification of Input Data Integrity

In order to check for possible malicious activities, the first
step is to verify the input data being used by the nodes. This
is determined by tracing the interaction between Map/Reduce
task and HDFS. Figure 2, inspired by [27], summarizes the
main logs instrumented for our analysis.

Hadoop’s JobTracker log provides information about input
data size and the number of input splits for a given task,
which matches the number of mappers. The filename of input
data that a specific map task and its path in HDFS can be
extracted from Hadoop’s TaskTracker log. In particular, we
can extract the JobID, TaskID, MapID, and the location of
the nodes that Map and/or Reduce tasks have been assigned
and also information about the input data that is used for
mappers. Using this information, we can correlate JobTracker,
TaskTracker log, and instrumented system I/O event log to
extract the semantic and behavioral relations between HDFS
and Map/Reduce tasks.

One simple verification that can be done on the input data
is to check the size of input data from the JobTracker log
and HDFS. The JobTracker provides us Input size for job that
should match with the size of input file stored in HDFS. For
example, the size of input data in the example of a WordCount
application (described in the next sections), is a a text file of
1573078 bytes. The size information can be extracted from
JobTracker log and HDFS. Block-level operations on HDFS
(e.g., HDFS_READ, HDFS_WRITE) can be observed from
the DataNode log. Finer grained information such as BlockID,
the location of blocks, and Map task’s access patterns to the

blocks can be extracted from system I/O event traces obtained
through dynamic instrumentation on DataNode.

The intermediate and final results produced from mappers
and reducers can be similarly verified through the correlated
log analysis. We observe HDFS access behavior with the
information about data block used for MapReduce task and
its location from the correlated log. The intermediate out-
put is generally stored in ’$JobID/$attempID/output’
folder. Hadoop logs and system call logs also provide the
information about the data size. We can extract the size of
MapReduce output data from TaskTracker log (e.g., reported
output size for $attemptID was 450916), which is same as
the sum of the number of bytes that the Reducer successfully
has written to HDFS (i.e., return value of write() system
calls), extracted from System call log on TaskTracker instance.

B. Verification of Computation Integrity

Although valid input data (i.e, original data that a user
submitted) has been used by a mapper, a compromised node
can lead to run cheating or malicious code for Map and/or Re-
duce tasks, resulting in incorrect computation results. To verify
the integrity of Map/Reduce computation, we inspect mapper’s
execution behavior by analyzing Hadoop TaskTracker log as
well as system call logs collected from each worker node at
runtime. Hadoop logs are useful to check that the programs
are properly instantiated and configured, but cannot provide
information about how and if Map/Reduce tasks are actually
executed correctly. Hence, we dynamically instrument mappers
and reducers at runtime and collect specific system call traces.
As system call tracing can incur high overhead, we collect
specific I/O related system calls only such as read() and
write(). The system call traces enable us to detect any
abnormal execution behavior of Map/Reduce task without
any a priori knowledge on client’s application (i.e., black-
box approach) by comparing traces from peer workers to
detect any abnormal execution behavior. This approach is more
reasonable when outsourcing the data and the workload into
the public Cloud.

By comparing system calls sequences across nodes, our
aim is to detect significant discrepancies in the system call
statistics between honest worker nodes and cheating worker
nodes or different pattern on the execution flow of Map
function for malicious worker node. For example, a cheating
node that tries to save computational resources may show sys-
tem call patterns of significantly lower number of write()
system calls than honest worker nodes, since most expensive
computation involves writing operations.

Our findings, discussed next, demonstrate that the statistics
related to traced system calls are very useful for detecting
cheating behavior in Map/Reduce computation. However, raw
statistics are not always enough for detecting malicious be-
havior, as even malicious Map/Reduce functions could invoke
similar number of a system calls with a honest code while it
could change the program semantics. We also need to consider
the program semantics and the execution flow from the log
analysis. We discuss this idea further in the context of our
case study, on Section VIII.



C. Verifications on Hadoop Configuration

We investigated how the manipulation of Hadoop configu-
ration/settings could affect the MapReduce execution behavior
and its workflow. An attacker can modify Hadoop config-
uration with the intention of subverting the computation of
MapReduce or corrupting computation1. One possible attack
using insufficient configuration is Symlink attack [17]. Attacker
identifies the target application by determining whether there
is sufficient check before writing data to a file and creating
symlinks to files in different directories. System call traces
show different patterns with manipulated configuration set-
tings. For example, TaskTracker’s IP address and port number
settings can be changed to connect to attacker’s node by ma-
nipulating the value of ”mapreduce.tasktracker.report.address”
in mapred-default.xml. Also, the local directory
where MapReduce stores intermediate data files can be
changed to the value of ”mapreduce.tasktracker.local.dir” in
mapred-default.xml to the attacker’s specified directory
to be able to manipulate the intermediate output. Mappers read
the configuration file before writing their output to the specified
location so an attacker may can modify the specification about
the location before Mappers read it. In both cases, system call
traces can provide evidence that the configuration has been
changed with the information about original and changed IP
address, port, and the local directory.

VIII. EXPERIMENTS

We used Hadoop version 1.2.1 in a Ubuntu based cluster.
We aggregate the system traces from each slave node and store
the logs (e.g. Hadoop syslogs and JobTracker and TaskTracker
daemon logs) in HDFS. As mentioned previous sections, logs
were collected upon execution of Map and Reduce functions.
We used Perl scripts to read, correlate, and parse the logs by
matching regular expressions. For Hadooop logs we collected
JobTracker, TaskTracker, NameNode, and DataNode log. Fi-
nally, for Dtrace log we collected system call traces and traces
of I/O snooping between HDFS and Map/Reduce tasks.

We chose WordCount for our experiments. WordCount is
a well-known Hadoop application that counts the occurrences
of words in a file. The map and reduce methods of Word-
Count application are shown in Figure 4. In our experiments,
we looked for patterns indicative of cheating and malicious
behavior, as follows.

1) Cheating Worker: We audited the MapRedue applica-
tions being executed on Hadoop framework and created a
cheating node that tries to skip some computations by altering
the execution flow (i.e., control flow of loop in WordCount
example). We traced the child JVMs of TaskTracker which
runs Mapper/Reduce function.

2) Malicious Worker: Malicious workers may attack
MapReduce framework in many ways. Given our lack of
assumptions about known correct traces, detecting malicious
behavior only using log analysis is very challenging. Even one
compromised mapper can lead to incorrect final result of the
Map/Reduce job as one compromised mapper can create wrong
intermediate output which will affect to the final result.

1A honest user can also make change the configuration in MapReduce
[21], but typically this would not affect the overall execution of MapReduce
functions

Hello World

This is Map

Hello World

This is Map

Hello, 1

World, 1

This, 1

is, 1

Map, 1

Hello, 1

Hello, 1

is, 1

is, 1

Map, 1

This, 1

This, 1

World, 1

Hadoop, 1

Hello, 2

is, 2

Map, 1

Reduce, 1

This, 2

World, 1
Hello Hadoop

This is Reduce

Hello Hadoop

This is Reduce

Hello, 1

Hadoop, 1

This, 1

is, 1

Reduce, 1

Reduce, 1

Hadoop, 1

Hello, 2

Hadoop, 1

is, 2

Map, 1

Reduce, 1

This, 2

World, 1

Input Split and pass to

each Map task 

Map

<Key, Value>

Sort/Shuffle Reduce

<Key, Value>
Final Result

Fig. 4: WordCount MapReduce process

Here, we discuss a few scenarios in which the attacker sub-
verts ordinary Map/Reduce functions. For these experiments,
we are particularly interested in exploring whether relevant
system calls and arguments can provide sufficient semantic
information from the system call traces to detect a malicious
activity. In this vein, we studied the following attacks. For each
attack, we discuss our approach for detection.

• Detecting malicious JVM activity such as suspicious
JVM spawning. We can extract JobID, MapID, and
JVM ID from Hadoop log and System call log of
nodes, and check whether they match or if one node
has different values from all the other nodes. Pre-
cisely, this attack is effectively detected by looking at
the system call log collected from TaskTracker child
processes and Hadoop TaskbTracker log. The logs
show detailed information of all spawned JVMs for
Map/Reduce tasks.

• Detecting malicious/suspicious JAR or Class files
loaded. The attacker can create malicious JAR (Java
class files archives) files can be used for exploit-
ing JRE (Java Runtime Environment) vulnerabilities.
System call traces show that all the classes loaded
for performing Map/Reduce tasks. The name and the
location of the JAVA class files can be extracted from
the logs.

• Detecting misplaced intermediate result generated by
Mappers. This attack can be uncovered by checking
the location where the intermediate output files are
stored from the system call log. We detect if the map-
per writes intermediate output to a different location
than its configured location. Also, we can detect if a
Reducer fetches intermediate output from a different
location than the location where the data is stored.

• Detecting malicious modification on Hadoop
configurations. The attacker may manipulate
certain Hadoop configuration files which include
core-site.xml, mapred-site.xml, and
hdfs-site.xml in the middle of MapReduce
computation. We can detect any configuration change
on a worker node such as data block location
(’dfs.datanode.data.dir’ parameter setting
for DataNode) by correlating Hadoop logs and system



call logs.

A. Results

Below we report the results of cheating and malicious
worker case in the WordCount application. Our setup includes
six mappers and one cheating or malicious mapper among
them. We used eBooks obtained from the Project Gutenberg
collection[1] as input data and worker nodes were only exe-
cuting the WordCount program.

In the cheating scenario, Hadoop TaskTracker log indicates
that the size of Map output of the cheating node is significantly
different than output of the honest nodes. Specifically, from
Hadoop TaskTracker log we report the size of map output of
cheating mapper to be 6 bytes, whereas the size of map output
of honest mapper is 409313 bytes.

However, these statistics do not provide any details about
execution behavior of Mapper. The analysis of system calls
from the system call logs instead provides additional insights.
System call log indicates large difference in the number of
write() system calls in Map function. The number of
write() system calls of cheating mapper is much less than
that of honest mappers (which are the remaining nodes), while
the number of read() system calls are similar. We excluded
logging related write() system calls in Map function from
the log as most of write() system calls in WordCount
example are related to Hadoop’s logging. In particular, a
cheating node does not show any spill files recorded from the
Map phase, while honest mappers show a number of records
spilled during Map phase before starting Reduce phase.

These differences are because either the cheating Mapper
does not enter the loop (i.e., while statement), or it skips the
loop many times, which loop involves in generating a record
for each occurring word and its count. In repeated runs of this
experiment, we report the following average differences.

• no of write() system calls of honest mapper: 622
out of 42270 read/write system calls

• no of write() system calls of cheating mapper: 189
out of 44514 read/write system calls

In the malicious scenario, since raw statistics are not
sufficient for detection, we correlate Hadoop and System call
logs, to check for possible anomalies or inconsistencies with
other honest nodes. We note that the expected workflow of a
generic MapReduce application is as follows:

1) Worker nodes read Hadoop configuration files
2) Worker nodes read necessary JAR files such as

classes.jar, hadoop-core-1.2.1.jar
(Hadoop Common package) and other logging related
libraries and Java libraries.

3) Workers read and write taskjvm.sh and read JVM
launching related libraries for launching new JVM

4) Workers read Hadoop configuration files
5) Mappers read Mapper class (e.g., Map.class)
6) Mappers read input data blocks from HDFS node
7) Mappers write intermediate output such as file.out,

file.out.index to the local directory
8) Reducers load Reducer class (e.g., Reduce.class)
9) Reducers fetch Map outputs.

10) Reducers write final output to HDFS

Starting from this workflow, we consider three malicious
events: a case where the workflow is altered when the attacker
launches its own JVM to perform some malicious activity.
Second, we tested a case where a map function modification
occurs to tamper the intermediate results (change of source
code to corrupt the correctness of the counting operation) by
increasing the number of actual word counts. Finally, we tested
a case where input data is not authentic but it is accessed from
a secondary location.

Our analysis revealed that in the first case, when the
attacker tried to launch the attacker’s own JVM, the system call
log collected from TaskTracker child processes and Hadoop
TaskTracker log provide the expected discrepancies in the
JobID, MapID, and JVM ID. The logs show all spawned JVMs
for Map/Reduce tasks, in particular, we chose taskjvm.sh
file from the log for the indication of new JVM launch.
Typically, one JVM runs one task unless JVMs are configured
to be reused in the job configuration. With this information,
we are able to detect the maliciously spawned JVM if it
shows suspicious JobID or Map/ReduceID associated with the
operations.

In the second case, we found that while the workflow
analysis is not detailed enough to reveal any anomaly, the
differences in system calls statistics is significant enough to
denote ongoing unexpected activities. Precisely, in this case,
all nodes observe about 70-80% of their total system calls to
be of write() system calls, whereas the suspicious node has
only 20% write() system calls.

In the final case, after loading Mapper Class correctly, one
node will not access HDFS nodes. Instead, it reads data blocks
from its own local directory which is not configured by Hadoop
framework. The file descriptor of read() system call which
provides details about the file such as filename and the path,
reveals the location of the datablock (i.e., path of the file). This
shows the attacker’s configured location, which is different
from the information extracted from other worker nodes that
access DataNodes. For the system call logs, we can compare
file descriptors or the pathname as Dtrace can log the pathname
extracted from the file descriptor.

IX. DISCUSSION AND CONCLUSION

In this paper, we presented a study of system logs, as a way
to detect possible malicious or cheating worker nodes. Despite
our minimal assumptions on knowledge of the computations
being assessed (i.e. no known output or replicated input), we
identified several important indicators that can lead to quick
detection of malicious ongoing activities.

We believe that these findings can lead toward strong and
seamless solutions for the detection of cheating or malicious
worker nodes in MapReduce framework. Nevertheless, this
work is still at its infancy. Currently, our main limitation lies
in the little confidence over small modifications of the client’s
input that may tamper with the final output. While this is
possibly addressable through existing replication and quiz-
based methods [12], [29], we are still to investigate how to
further process system logs for better accuracy of detection.
One approach we are interested in exploring is based on



oblivious hashing [4]. That is, we may obliviously hash portion
of the applications’ source code, and determine which system
level calls hashing may incur into, to verify the hash, and
therefore verify the integrity of the function, directly from the
logs themselves.

Further, there are some assumptions we would like to relax,
in our future work. we assume system logs are trustworthy,
which may be not always realistic in case of nodes which
configuration is corrupted. Further, we are currently able to
zoom in on nodes performing malicious activities, but it
is not possible to identify which portion of the output is
corrupt as a result. Finally, although outside the scope of the
current paper, we are yet to investigate how the approach
would fare in case multiple nodes are compromised. While
we know that statistical comparison of system calls would fail
to provide meaningful insights, we also have identified other
non-comparative checks that may be effective. The extent to
which these are sufficient for any type of assessment is subject
of future work.

Acknowledgements The work from Squicciarini and Yoon
was partially supported by National Science Foundation under
award No. 1250319.

REFERENCES

[1] Project Gutenberg. http://www.gutenberg.org/wiki/Main Page.
[2] M. Blanton, J. M. Atallah, B. K. Frikken, and Q. M. Malluhi. Secure

and efficient outsourcing of sequence comparisons. In ESORICS, pages
505–522. Springer, 2012.

[3] Benjamin Braun, Ariel J Feldman, Zuocheng Ren, Srinath Setty, An-
drew J Blumberg, and Michael Walfish. Verifying computations with
state.

[4] Yuqun Chen, Ramarathnam Venkatesan, Matthew Cary, Ruoming Pang,
Saurabh Sinha, and Mariusz H Jakubowski. Oblivious hashing: A
stealthy software integrity verification primitive. In Information Hiding,
pages 400–414. Springer, 2003.

[5] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data
processing on large clusters. Communications of the ACM, 51(1):107–
113, 2008.

[6] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data
processing on large clusters. Commun. ACM, 51(1):107–113, January
2008.

[7] Wenliang Du, Mummoorthy Murugesan, and Jing Jia. Uncheatable grid
computing. In Algorithms and theory of computation handbook, pages
30–30. Chapman & Hall/CRC, 2010.

[8] George W. Dunlap, Samuel T. King, Sukru Cinar, Murtaza A. Basrai,
and Peter M. Chen. Revirt: Enabling intrusion analysis through virtual-
machine logging and replay. SIGOPS Oper. Syst. Rev., 36(SI):211–224,
December 2002.

[9] Qiang Fu, Jian-Guang Lou, Yi Wang, and Jiang Li. Execution anomaly
detection in distributed systems through unstructured log analysis. In
Data Mining, 2009. ICDM’09. Ninth IEEE International Conference
on, pages 149–158. IEEE, 2009.

[10] Liang Gu, Xuhua Ding, Robert Huijie Deng, Bing Xie, and Hong Mei.
Remote attestation on program execution. In Proceedings of the 3rd
ACM Workshop on Scalable Trusted Computing, STC ’08, pages 11–
20, 2008.

[11] Hadoop Apache. http://hadoop.apache.org, 2013.
[12] Chu Huang, Sencun Zhu, and Dinghao Wu. Towards trusted services:

Result verification schemes for mapreduce. In Cluster, Cloud and Grid
Computing (CCGrid), 2012 12th IEEE/ACM International Symposium
on, pages 41–48. IEEE, 2012.

[13] Trent Jaeger, Reiner Sailer, and Xiaolan Zhang. Analyzing integrity
protection in the selinux example policy. In Proceedings of the 12th
conference on USENIX Security Symposium-Volume 12, pages 5–5.
USENIX Association, 2003.

[14] Nikhil Khadke, Michael P Kasick, Soila P Kavulya, Jiaqi Tan, and Priya
Narasimhan. Transparent system call based performance debugging
for cloud computing. In Usenix Workshop on Managing Systems
Automatically and Dynamically, 2012.

[15] Ivo Krka, Yuriy Brun, Daniel Popescu, Joshua Garcia, and Nenad
Medvidovic. Using dynamic execution traces and program invariants
to enhance behavioral model inference. In Software Engineering, 2010
ACM/IEEE 32nd International Conference on, volume 2, pages 179–
182. IEEE, 2010.

[16] Jian-Guang Lou, Qiang Fu, Yi Wang, and Jiang Li. Mining dependency
in distributed systems through unstructured logs analysis. ACM SIGOPS
Operating Systems Review, 44(1):91–96, 2010.

[17] Mitre. Symlink attack. http://capec.mitre.org/data/definitions/132.html.
[18] Fabian Monrose, Peter Wyckoff, and Aviel D Rubin. Distributed

execution with remote audit. In Network and Distributed System
Security (NDSS) Symposium, 1999.

[19] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinoc-
chio: Nearly practical verifiable computation. In Proceedings of the
2013 IEEE Symposium on Security and Privacy, SP ’13, pages 238–
252, Washington, DC, USA, 2013. IEEE Computer Society.

[20] M.O. Rabin, R.A. Servedio, and C. Thorpe. Highly efficient secrecy-
preserving proofs of correctness of computations and applications. In
Proc. of 22nd Annual Symposium on Logic in Computer Science, pages
63–76. ACM, 2007.

[21] Ariel Rabkin and Randy Howard Katz. How hadoop clusters break.
IEEE Software, 30(4):88–94, 2013.

[22] I. Roy, S. T. V. Setty, A. Kilzer, V. Shmatikov, and E. Witchel. Airavat:
security and privacy for mapreduce. In Proc. of the 7th USENIX
conference on Networked systems design and implementation, NSDI’10,
pages 20–20, Berkeley, CA, USA, 2010. USENIX Association.

[23] Anbang Ruan and Andrew Martin. Tmr: Towards a trusted mapreduce
infrastructure. In Services (SERVICES), 2012 IEEE Eighth World
Congress on, pages 141–148. IEEE, 2012.

[24] Luis F. G. Sarmenta. Sabotage-tolerance mechanisms for volunteer
computing systems. Future Generation Computer Systems, 18:561–572,
2002.

[25] Benjamin Schwarz, Hao Chen, David Wagner, Jeremy Lin, Wei Tu,
Geoff Morrison, and Jacob West. Model checking an entire linux
distribution for security violations. In ACSAC, pages 13–22. IEEE
Computer Society.

[26] Jason Sonnek, Abhishek Chandra, and Jon B Weissman. Adaptive
reputation-based scheduling on unreliable distributed infrastructures.
Parallel and Distributed Systems, IEEE Transactions on, 18(11):1551–
1564, 2007.

[27] Jiaqi Tan, Xinghao Pan, Eugene Marinelli, Soila Kavulya, Rajeev
Gandhi, and Priya Narasimhan. Kahuna: Problem diagnosis for
mapreduce-based cloud computing environments. In Network Oper-
ations and Management Symposium (NOMS), 2010 IEEE, pages 112–
119. IEEE, 2010.

[28] V. Vu, S. Setty, A. J. Blumberg, and M. Walfish. A hybrid architecture
for interactive verifiable computation. In Proc. of IEEE Symposium on
Security and Privacy, 2013.

[29] Yongzhi Wang and Jinpeng Wei. Viaf: Verification-based integrity
assurance framework for mapreduce. In IEEE International Conference
on Cloud Computing (CLOUD), pages 300–307. IEEE, 2011.

[30] W. Wei, J. Du, T. Yu, and X. Gu. Securemr: A service integrity
assurance framework for mapreduce. In Proc. of Computer Security
Applications Conference, ACSAC, pages 73–82, 2009.

[31] Zhifeng Xiao and Yang Xiao. Accountable mapreduce in cloud comput-
ing. In Computer Communications Workshops (INFOCOM WKSHPS),
2011 IEEE Conference on, pages 1082–1087. IEEE, 2011.

[32] Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael
Jordan. Online system problem detection by mining patterns of console
logs. In Data Mining, 2009. ICDM’09. Ninth IEEE International
Conference on, pages 588–597. IEEE, 2009.

[33] Shanyu Zhao, Virginia Lo, and CG Dickey. Result verification and
trust-based scheduling in peer-to-peer grids. In Peer-to-Peer Computing,
2005. P2P 2005. Fifth IEEE International Conference on, pages 31–38.
IEEE, 2005.


