

CAST: Collaborative Agents for Simulating Teamwork

John Yen, Jianwen Yin, Thomas R. Ioerger,
Michael S. Miller, Dianxiang Xu, and Richard A. Volz

Department of Computer Science
H. R. Bright Building

Texas A&M University
College Station, TX 77843-3112, USA

{yen, jianweny, ioerger, mmiller, xudian, volz}@cs.tamu.edu

Abstract
Psychological studies on teamwork have shown that
an effective team often can anticipate information
needs of teammates based on a shared mental
model. Existing multi-agent models for teamwork
are limited in their ability to support proactive
information exchange among teammates. To
address this issue, we have developed and
implemented a multi-agent architecture called
CAST that simulates teamwork and supports
proactive information exchange in a dynamic
environment. We present a formal model for
proactive information exchange. Knowledge
regarding the structure and process of a team is
described in a language called MALLET. Beliefs
about shared team processes and their states are
represented using Petri Nets. Based on this model,
CAST agents offer information proactively to those
who might need it using an algorithm called
DIARG. Empirical evaluations using a multi-agent
synthetic testbed application indicate that CAST
enhances the effectiveness of teamwork among
agents without sacrificing a high cost for
communications.

1 Introduction
Teamwork has been the focus of a great deal of research,
spanning diverse disciplines from business management to
psychology [Ilgen et al., 1993]. There are many different
types of teams, from those that are hierarchical to those that
are more egalitarian. Some teams have fixed, clearly-
defined roles, while others allow for dynamic re -allocation
of tasks and responsibilities on the fly. Measuring the
performance of a team can involve both “outcome” as well
as “process” measures [Cannon-Bowers and Salas, 1997].

Several computational models of teamwork have been
developed for producing cooperative behavior among

intelligent agents. The fundamental aspect of a team that
distinguishes them from just a group of interacting agents
is that they share common goals. In the BDI framework
[Rao and Georgeff, 1991; Wooldridge and Jennings, 1995],
the mental state of having a team goal has been
characterized in terms of joint intentions [Cohen and
Levesque, 1991, Jennings, 1995]. Tambe [Tambe, 1997]
and his STEAM group have shown how these mental states
can be established and maintained through communication
protocols. Another framework for modeling teams is
through SharedPlans, via intentions to do certain steps
together [Grosz and Kraus, 1996]. These approaches have
been shown to be effective for simulating teamwork in a
wide range of agent-only environments [Jones et al, 1999;
Tidhar et al., 1998; Stone and Veloso, 1999].

However, these existing multi-agent teamwork models
have not been designed for supporting mixed human/agent
teams. Having humans in the loop places an additional
constraint on the agents, such that they must interact with
teammates in a natural way, e.g. by exchanging only the
most important information necessary for coordination,
without excessive or redundant communication. Efficient
teamwork relies heavily on information sharing, especially
in dynamic environments, but it must be done judiciously
not to overwhelm the human participants with message
passing. The key is to try to supply only the most relevant
information, and this requires reasoning about their goals
and responsibilities on the team.

Motivated by this observation, we have developed
CAST (Collaborative Agents for Simulating Teamwork), a
multi-agent architecture that simulates and supports
teamwork. While our ultimate goal involves supporting
both humans and agents, in this paper we will focus on
reducing communication with software agents (in
preparation for inclusion of humans) as a first step. Our
architecture provides a mechanism for building virtual
teams using software agents. We will first give an overview
about the goals and issues addressed by CAST. A formal

foundation for proactive information exchange in CAST is
then introduced. This is followed by a description of the
major components and features of the CAST architecture.
An empirical evaluation is used to assess the effectiveness
of teamwork simulated in CAST. Finally, we summarize
the main contribution of the work.

2 CAST Overview
CAST is designed to achieve two goals. First, it aims to
model effective teamwork by capturing both team
structures and teamwork processes. A well-defined team
structure is based on specifying pre-defined roles and the
responsibilities associated with them. A well-defined
teamwork process specifies goals, strategies, and plans for
accomplishing the team’s goal. The common prior
knowledge about the structure and the process of the team
enables members of the team to develop an “overlapping
shared mental model,” which is the source for team
members to reason about the states and the needs of others.

One of the major criticisms of other approaches toward
the goal above has been that they lack flexibility for
dealing with dynamic environments. Hence, another
equally important goal is to enable agents in a team to have
flexibility in adapting to changes in the environment. More
specifically, assignment of responsibilities to suitable
agents needs to be adapted to the current state of the world
and the team.

While both goals are desirable, they conflict with each
other. The emphasis on predefined team structures and
processes often reduces the flexibility of the team, while
maximizing the flexibility of the team usually requires
making shared, redundant, and hence ambiguous role
assignments. To balance these two conflicting goals, we
need a practical and flexible computational framework for
representing and reasoning about the overlapping shared
mental models amo ng teammates. Such a framework would
enable an agent to dynamically reason about the status of
the entire team and adapt its behavior accordingly.

Representing a shared mental model is a challenging
problem. It can be viewed as a kind of belief reasoning,
which is generally intractable [Halpern and Moses, 1992].
Moreover, the content of the shared mental model is quite
broad, ranging from shared domain knowledge to a
common relevant picture of the situation. We tackle this
problem by focusing on two specific uses of the shared
mental model: making teamwork efficient through
anticipating the actions and expectations of others (e.g. by
knowing others’ roles, capabilities, and commitments), and
by information exchange (knowing who to ask for
information, or providing information proactively just
when it is needed by someone else to accomplish their
task). To avoid issues of computational complexity with
belief reasoning (e.g. higher-order modal logics), we use
Petri Nets as an approximate finite and computable model
of mental states.

The Petri Net is a natural representation for parallel
action and synchronization in a multi-agent world [Sowa,
2000]. Transitions can represent actions, with input places
corresponding to pre-conditions and output places
corresponding to effects. We extend the standard (colored)
Petri Net formalism with special kinds of places called
control nodes and belief nodes. Control nodes represent the
belief an agent has about the current goals and activities of
others in the team. Belief nodes represent the belief an
agent has about the world, when coupled with a
unification-based theorem-prover, can represent first-order
knowledge, including dynamic facts and inferences about
the world. In addition to serving as the shared mental
model, Petri Nets also play the dual role of monitoring and
tracking the execution of team plans.

CAST generates the Petri Net-based representation
using two kinds of knowledge: 1) team structures (roles
and responsibilities), and 2) teamwork process knowledge
(e.g., individual plans, team plans). They are described in a
knowledge representation language called MALLET (a
Multi-Agent Logic-based Language for Encoding
Teamwork). A Petri Net for a given team member
represents both the background knowledge for their
individual responsibilities (e.g. goals, operators), and how
their role is integrated with the rest of the team.

Based on the shared mental model, the CAST kernel
enables CAST agents to decide on the fly how to
accomplish desired goals, how to select responsibilities to
commit to or delegate, how to proactively assist others in
the team, and how to effectively communicate within the
team. This is achieved by dynamic role selection and
proactive information change. We will give a more detailed
description in later sections.

3 Formal Foundation of Proactive
Information Flows

In this section, we discuss the formal foundations
underlying the type of information exchange addressed in
CAST. In particular, we think it is important to specify,
under ideal conditions, what information should be
exchanged between whom, and at what time. The purpose
of information exchange must be oriented toward
improving the efficiency or performance of a team, but
otherwise is desired to be kept to a minimum to avoid the
cost of communications overhead (however this is defined
in the domain). In fact, a quantitative utility function that
incorporates such costs is actually used in STEAM
[Tambe, 1997] to help evaluate tradeoffs and decide when
to communicate within a team.

In CAST, we take a different approach to optimizing
information exchange by defining narrow criteria for the
exchange of only the most critical information.
Specifically, we want agents who know some fact to
communicate it to exactly those teammates who need the
information in the present context to carry out their goals,

and who furthermore (probably) do not already know it.
Clearly, this might involve some complex reasoning about
beliefs and goals, as well as tracking the state of other
agents. However, to the degree that some of these
inferences can be approximated, the team members can
make intelligent decisions to selectively choose their
interactions with one another.

We start by defining a simple belief language and
model theory to be able to talk about the mental states of
various. We model beliefs using a modal operator BEL,
e.g. (BEL bill (have joe hammer)), with the usual
possible worlds semantics [Cohen & Levesque, 1990]. We
need to be able to talk about ‘pieces’ of information, which
in this present context refer syntactically to sentences, but
semantically are equivalent to constraints over possible
worlds, i.e. those worlds satisfying the expression. Goals,
however, refer to specific steps in plans in MALLET, to
which agents can make commitments.

Using this framework, we can formally characterize the
(normative) conditions under which information exchange
should take place. Information I should be sent from one
agent A to another agent B when: 1) agent A knows the
truth-value of I, 2) agent A believes that agent B does not
currently know I, and 3) B has a current goal G, the
achievement of which depends on knowing I, i.e. if B does
not believe I, then it will never be able to accomplish it’s
goal, but if it knew I, it would be able to:

(BEL A I) ∧ (BEL A ¬(BEL B I)) ∧
(BEL A (GOAL B G)) ∧
[¬(BEL B I) → ¬(DONE B G)] ∧
[(BEL B I) → ¬ ¬(DONE B G)]
→ (GOAL A (Inform B I))

where is the temporal operator for ‘always’. In CAST, we
use the pre-conditions of operators to determine the
information I that an agent needs to know to achieve its
goals. Note, the communication is suppressed only when
(A believes that) B already believes I is true; but if B does
not have a belief about the truth value of I at all, or B
incorrectly believes it is false, then the message will be
sent. For simplicity, we assume that all agents share
common (and correct) knowledge of the team, e.g. team
goals and plans, roles and responsibilities, operator pre-
conditions, etc.

Clearly this approach requires A to monitor B’s mental
state, both in terms of what his beliefs and goals
(commitments) are. This might be easy to do in a highly
observable environment, but might require extensive
communication in other cases (e.g. verbal updates of what
each teammate is currently doing). Alternatively, agents
might use a probabilistic mechanism like Bayesian
reasoning to infer the likely states of their teammates,
based on observations of the effects of their actions
reflected in the environment. Regardless of how difficult
this state estimation or tracking might be to implement, the
definition above describes the ideal conditions under which

one would want to communicate. As much as possible, we
want to restrict communication to cases where it can be
inferred to be useful, which is what the DIARG algorithm
below is designed to approximate.

4 Specifying Team Knowledge in MALLET
In this section, we briefly describe MALLET, the team
knowledge representation language in CAST. MALLET
provides descriptors for encoding knowledge about
operators and plans of individuals and the team, as well as
definitions of roles and responsibilities on the team. An
important ontological commitment in MALLET is that
roles are fundamentally treated as references to specific
steps in team plans, to which certain agents on the team can
externally be assigned. That is, the meaning of a role is
defined by a certain step in a team plan that is dedicated for
the agents playing that role to carry out.

MALLET syntax is based loosely on LISP, in the sense
of using s-expressions and prefix notation. Variables are
indicated with ‘?’ prefix. Operators are simply names of
atomic actions that can be taken in the environment.
Operators may list a set of pre-conditions and/or post-
conditions, each as a conjunction of literals (first-order
predicates or their negations). Here is an example for
climbing over a pit:

(operator climb-over (?pit)
(pre-cond (have-ladder)))

There are two types of operators: individual operators and
team operators. Individual operators are assumed to be
executed by only one agent at a time. However, team
operators have the possibility of being invoked on a set of
agents (e.g. those playing a given role). How the agents
handle the team operators depends on what sub-type it has.
We have identified three modes of operator-sharing:
• AND operators, which require simultaneous action by

all the agents involved
• XOR operators, which require at most one agent to act

(mutual exclusion, e.g. to avoid conflicts)
• OR operators, which can be execute by any of the

agents (possibly >1) without conflict
Hence team operators contain an extra component that
defines the “share-type.” For example, an operator for
lifting a heavy object might be written as:

(t-operator lift-heavy (?x)
(share-type AND)
(pre-cond (movable ?x)))
(effect (holding ?x)))

Plans in MALLET are essentially designed to describe
processes. Processes consist of invocations of atomic
actions, or arbitrary combinations using various constructs
such as sequential, parallel, contingent, or iterative. The
syntax of processes can be defined recursively according to
five constructs, with obvious intuitive meanings:

(seq P Q), (par P Q), (if (cond C) P
[Q]), (while (cond C) P), (do T)

where P and Q are sub-processes, C is condition
(conjunction), and T is an operator or plan instantiation
(with arguments). These constructs for describing complex
processes can be given a semantics in various formalisms
such as dynamic logic [Harel, 1984].

Individual plans have pre-conditions and effects, and
also a process description. Team plans are similar to
individual plans, but they have two extra features related to
assignment of roles. First, we have declarations of role
variables of the form (role <role-name> <role-
variable> <constraints>), where the constraints are a
conjunctive set of conditions that put restriction on the role
variable, which candidates must satisfy. For example, the
team plan below requires two agents, one with the carrier
role, the other with the fighter role. The fighter agent has
an additional constraint, i.e. satisfying the predicate
closestToWumpus.

 (t-plan explore-cave ()
 (role carrier ?ca)
 (role fighter ?fi ((closestToWumpus ?fi))
 (process (seq
 (do ?ca (find-wumpus))
 (do ?fi (moveto-wumpus))
 (do ?fi (kill-wumpus)))))

The general idea is that an appropriate agent meeting the
constraints will be selected from the set of those assigned
to play the role, and bound to the role variable within the
plan. These role variables can then be used within
processes to specify which agents will do certain steps
(operators or sub-plans). An important implication of
allowing constraints in the role specification is that it
introduces flexibility to the teamwork process because the
selection of such roles needs to be made dynamically at run
time to assure that the constraint is satisfied. We will
elaborate on the role selection scheme in the next section.

Finally, MALLET also provides simple descriptors for
defining the members on the team, the roles they play, and
their capabilities and responsibilities. While capabilities are
treated simplistically (as static associations between agents
and operators), the meaning of a responsibility is more
interesting. It is similar to a role, in the sense that it defines
agents who are supposed to do certain actions, but they are
not tied to specific steps in the context of specific plans.
Instead, the responsibility of an agent for an operator
means that, whenever the action needs to be done at any
time, the agent knows that it should act or at least
coordinate with others who share the responsibility.

MALLET descriptions are converted into Petri Nets on
which the agent’s reasoning algorithm operate. A Petri-Net
generation algorithm constructs transitions for each atomic
operator in a team plan, connects them with control nodes,
and links their inputs and outputs to appropriate belief
nodes based on pre- and post-conditions. Since plans can
be hierarchical, the sub-plans are expanded by calling the
Petri-Net generation algorithm recursively, and linked into

the main Petri Net through control nodes such that all the
action nodes ground out in operators. Thus for each team
goal, there is a single Petri Net that describes its plan for
solving it. By placing tokens on the topologically-first
node(s) of the Petri Net, and moving them forward
whenever steps are completed, agents can keep track of the
progress of the team. Though not every agent is involved in
or responsible for every step, this Petri-Net model of the
overall team plan forms a common understanding of the
team’s goals and process, which they use to determine how
their individual actions fit together, and is thus a primary
constituent of their shared mental model.

The knowledge compiler also performs a static
information-flow analysis [Yin et al., 2000] for the online
DIARG algorithm. An information-flow relation I is
defined as a 3-tuple, <Info,needers,providers>, where Info
is the predicate name together with 0 or more arguments,
needers is a list of agents who might need to know such
information, and providers is a list of agents who might
know the information. We determine the needers of
information by analyzing the pre-conditions of operators
for which each agent might be responsible. And we
determine the potential providers of information by
analyzing the post-conditions of operators for which the
agents might be responsible. In particular, if P is a post-
condition of operator O, then we assume that an agent will
know P after executing O, since we can expect agents to
know the (direct) consequences of their own actions.

5 CAST Agent Kernel
The CAST kernel refers to a set of algorithms that CAST
agents use to determine what actions and communications
they will take at each time step. CAST agents execute a
standard sense/decide/act loop. During the sense phase,
they make queries to the simulation server to update their
knowledge of the state of the world. Agents also check a
queue for messages from other agents at this time. During
the decide phase, each agent examines the Petri-Net
representation of the team plan to see if there are any
pending actions for which it is responsible. In cases of
ambiguity, the agents might have to communicate in order
to determine who will take the action and when. Before
finally taking actions, the agents attempt to determine if
there are any interactions they can initiate. For proactive
information exchange, this is accomplished by DIARG.

CAST also uses a back-chaining theorem-prover called
JARE (also implemented in Java) for making inferences
using domain knowledge written in the form of a separate
Horn-clause knowledge base. JARE is used to determine
the truth-value of conditions or constraints that need to be
evaluated in interpreting MALLET expressions at run-time.

5.1 Dynamic Role Selection
The algorithm for Dynamic Role Selection (DRS) is used
to support reasoning about role assignments and to generate

the necessary interactions among agents to correctly
execute the team plan with appropriate actors for each step.
It has the following main steps:

DRS(step)
1 let A be the set of agents potentially

involved in the step, A=InvolvedAgents(step)
2 remove from A any agents that are incapable of

taking the action
3 remove from A any agents that do not satisfy

the role constraints, if defined for that step
4 if A is empty, do nothing
5 if |A|=1 and member(self,A), do(step)
6 else

6a. if step is an AND operator,
 synchronize(step)
6b. if step is an OR operator,
 attempt-in-parallel(step)
6c. if step is an XOR operator,
 disambiguate(step)

For each active step in the team plan (nodes marked with a
token in the process net), DRS starts by determining the set
of agents that could be involved. This is done by
considering several different ways of assignment, in a
particular order of precedence:

InvolvedAgents(step)

if step is of the form do(agent,action),
 then return {agent}
if step is of the form do(role,action),

then return {Ai} forall agents that were
assigned to play that role,
Ai∈RoleSet(role)

if step refers to an operator op for which
some agent has been assigned
responsibility, then return {Ai} forall
agents such that Resp(Ai,op)

else return all the agents on the team,
 {Ai} forall agents such that Ai∈team

Assignments of specific agents are considered first, and
then role specifications, where several agents may be
assigned to the role for a given step in the plan. If no
agents or roles are directly assigned, then the search for
involved agents expands to considering any agents that
might be responsible in general for such actions. Finally, if
it is still undefined who should perform a step, then all the
agents in the team are included, since this is ultimately a
step in a plan to which they are all jointly committed.
 After determining the set of agents potentially involved
in the action, those agents that are unacceptable are filtered
out. For example, if an agent is incapable of performing
the action, then it is removed from the set. In addition, if
any constraints were associated with the role definition,
then only those agents that satisfy the constraints are
retained. This is accomplished by making a query to the
agent’s knowledge base that is constructed from the
conjunctive conditions of the constraint by substituting any
variables that are bound in the current scope, plus replacing
the agent/role variable with the identity of each candidate.
Those agents that do not satisfy the query are removed

from the set of involved agents. Other factors could also be
considered at this stage, such as removing agents from
consideration whose workload is too high.
 After determining the set of involved agents, steps 4-6
are used by the agents to decide what to do based on the
size of this set. If the set is empty, then there is simply
nothing to do; the team must wait until an acceptable agent
becomes available. If there is a single (unique) agent
involved in the step, then the agent may act right away,
without any coordination. In these cases, CAST agents are
intelligent enough to act on their own. This illustrates one
of the sources of efficiency in teamwork gained from a
priori role assignments - agents can sometimes figure out
what to do on their own. If there are multiple agents
involved in the step (line 6 in the algorithm), then each
agent’s response depends on the type of operator it is. If it
is an AND operator, then all the involved agents must act
simultaneously. This synchronization can be accomplished
by broadcasting a ready signal and waiting until they have
heard the same from all the other agents. If the operator is
an OR operator, then any of the agents may take the action.
Hence they all commit to trying to carry it out. Several
might actually succeed (independently) in performing the
act. However, not be too wasteful, we require agents to
broadcast a success message when they have completed the
step, at which point the other agents involved are permitted
to drop their commitment (this is what attempt-in-
parallel means in step 6b of the DRS algorithm above).
Finally, if the step refers to an XOR operator, only one of
the agents involved may take the action, otherwise some
interference might occur. Therefore, agents must agree
amongst themselves who will take responsibility for the
action. This disambiguation can be accomplished through
a variety of protocols, such as first-come-first-served, but
they all require communication. Hence agents exchange
messages to select a delegate, and then this agent make a
commitment to do the action and the others do not have to.
 While the current algorithm for Dynamic Role
Selection produces flexible teamwork that is adaptive to
specific situations, it does not handle all possible situations.
For example, if agents could die, lose their connection to
the team, or become incapable dynamically within the
environment, then the team might need to react to these
changes and adjust its operation. The possibilities range on
a spectrum of complexity from using redundant role
assignments for providing backup behavior and load-
balancing, to dynamic re-configuration of the whole team.
These features could be added to the DRS algorithm, but
are left for future work.

5.2 DIARG algorithm
The DIARG algorithm (Dynamic Inter-Agent Rule
Generator), an extension of IARG [Yin et al., 2000]), is
responsible for identifying opportunities for proactive
information exchange. Instead of sending information to all

possible needers and asking all possible providers for
information, agents with DIARG can keep track of the
teamwork status and only send information to whom it is
relevant in the current context, and ask those agent who
might know the information at the moment. This makes the
DIARG algorithm more dynamic. DIARG is run by each
agent during each cycle, independent of the other decision-
making activities, and could result in agents sending
additional messages to one another. In particular, agents
attempt to identify pieces of information that other agents
might need to know and inform them via TELL operations.
In addition, if agents need some information and they can
figure out who might know it, they can generate ASK
operations. These inferences are accomplished partly by
examining the information-flow relations, coupled with
analysis of the current state of the team.

ProactiveTell()
 If I is a newly-sensed piece of information,
 or I is a post-condition of the last action
 P taken by self, then
 if I is not in the knowledge base,

 assert I into knowledge base
 for each information-flow
 <predicate, needers, providers>

 if I matches predicate name and self is
 included in the providers, then

 for each agent x in the needers,
 if agent x plays a role in an active
 step,

 TELL(x,I)

ActiveAsk()

for each active step s in the plan in which
self is involved

let o be the operator to which s refers
for each pre-condition I of s
 if not(know(self, I)), then

let Info-flow = <predicate, needers,
providers> be the information flow in
which I matches predicate name
select the agent y from providers
(active agents first),

 do ASK(y,I)

These algorithms are designed to generate inter-agent
communications based on approximation of the criteria set
forth in Section 3 for ideal conditions under which it is
desirable to exchange information. In principle, we want
agents to communicate only when it is likely to be useful,
to minimize network traffic (use of bandwidth). The formal
criteria are difficult to achieve in practice, particularly due
to the need for belief reasoning. While we do not model the
complete belief state of other agents, our static analysis of
information flow identifies agents which might know or
need to know certain information based on their
involvement in the team plan (i.e. through actions for
which they might be responsible). When some information
changes, for example due to the action of an agent, and
there is an effect of the action that others cannot observe, or
when an agent observes some new information, then it

might want to inform the others (proactively). The sending
of these messages is restricted to those agents who
conceivably might need to know the information. Whether
or not an agent really needs to know a piece of information
also depends on whether it supports one of their current
goals, which we predict from active nodes in the Petri Net.

However, these algorithms cannot guarantee perfectly
optimal information flow. For example, it depends on what
they can observe and what they can infer. Also, while we
assume that agents are never forgetful, information might
change dynamically (non-deterministically) at different
rates in different environments, and not all agents might be
able to observe changes in all information, making the
problem of maintaining consistent and correct distributed
knowledge in a team very difficult in general [Singhal and
Zyda, 1999]. However, the DIARG algorithm is
implemented at an appropriate level for supporting
interactions in mixed human-agent teams, since it does not
require direct access to (or simulation of) the mental state
of other team members, and is able to derive potentially
useful information flows based only on analysis of
common (shared) knowledge of the team plan, individuals’
roles, and the current state of progress, which can be
assumed to be monitored by all the members of the team.

6 A Testbed Application
We have constructed a testbed application based on a

multi-agent extension of the Wumpus World [Russell and
Norvig, 1995]. These agents can act as part of a team by
playing the role of a fighter, to shoot the wumpus, or a
carrier, to carry the gold they find. To generate the need for
information flow between team members, the two types of
roles have different sensing capabilities. While both of
them can sense a stench (from a wumpus), a breeze (from
pits), and glitter (from gold), only the carrier can pin-point
the exact location of the wumpus when it is in an adjacent
room in the cave. These experiments use a team plan and
individual plans, along with other related teamwork
knowledge, to find and kill multiple wumpuses and collect
gold. Agents can communicate in three ways: (1) proactive
tell, (2) broadcast information, and (3) broadcast control
tokens for coordination purposes.

Table 1. Different teams used in experiments

Exper
iment

Team #of
Carriers

#of
Fighters

Team
work

Communication DRS

A 1 1 Yes Proactive Info
Exchange

No

B 1 1 Yes Broadcast
Every New Info

No

1

C 1 1 No No No
D 1 3 Yes Proactive Info

Exchange
No 2

E 1 3 Yes Proactive Info
Exchange

Yes

 In order to evaluate the effectiveness of different

features supported by CAST - shared mental models,
proactive information exchange, and dynamic role
selection - we have devised two sets of experiments and
five multi-agent teams for comparison. The differences
among the five teams are listed in Table 1. Experiment 1 is
run on Team A, Team B, and Team C to show the benefit
of using shared mental models and proactive information
exchange. Experiment 2 is run on Team D and Team E to
show the benefit of dynamic role selection.

In Experiment 1, Teams A and B both use teamwork,
whereas C does not. Furthermore, Team A uses proactive
information exchange (the DIARG algorithm is turned on),
whereas agents in Team B just broadcast each new piece of
information indiscriminately to all the members on the
team. Agents in Teams A and B use a MALLET
specification of a team plan that requires the carrier to first
find the wumpus, then navigate a fighter to a room adjacent
to the wumpus and shoot the wumpus. Agents in Team C
merely wander around randomly, independently looking
for wumpuses to shoot and gold to pick up. To make the
comparison fair, agents in Team A and Team B also use
individual plans in MALLET to perform this wandering
behavior when not busy. So there is teamwork based on the
shared mental model of the team plan for agents in Team A
and Team B, but in Team C, there is no communication
and no teamwork. Experiment 2 is meant to show the
benefit of dynamic role selection. Team D is similar to
team A except that Team D has more fighters; however,
Team D does not use dynamic role selection. Team E
implements the dynamic role selection protocol for each of
its agents. All five teams use the same knowledge base (i.e.
JARE rules) for reasoning about the environment and for
determining the priority of actions.

Table 2. Comparison of performance for teams that
differ in teamwork and information exchange.

Team Static V1 V2 V3 V4 V5
Average 3.6 7.35 2.6 1 2.2 A
Std. Dev. 0.82 3.79 1.35 0 0.62
Average 3.5 6.55 2.55 138 0 B
Std. Dev. 0.76 3.52 1.32 12.7 0
Average 1.6 7.85 2.2 0 0 C
Std. Dev. 0.88 5.58 1.94 0 0

 V1: # Wumpuses Killed V2: # of Arrows Used
 V3: # of Gold Found V4: # of Messages Broadcast
 V5: # of Proactive Information Exchanges
Experiment 1 was performed on 20 randomly generated
maps for a world (cave) with 10 by 10 cells (rooms), 5
wumpuses, 2 pits, and 10 piles of gold. Each team is
allowed to operate for a fixed number of total actions. The
performance of each team for each case is measured by (1)
the number of wumpuses killed, (2) the number of arrows
used, (3) the amount of gold gathered (4) the number of

messages broadcast, and (5) the number of proactive tell
messages. The average and standard deviation of the
experiments are summarized in Table 2.

As shown in the Table 2, Team A and Team B achieve
comparable performance, because they use an identical
shared mental model specified in MALLET. However,
Team B has a much higher communication overhead (V4).
Team A and Team B both have better performance in terms
of number of wumpuses killed, because there is teamwork
among agents in Team A and Team B. Whenever the
carrier in Team A and Team B finds any wumpus, it will
tell the fighter to go kill it, which gives the whole team a
better chance to kill more wumpuses. However, picking up
gold is an individual activity, so from the table, we can not
see much difference among the three teams. One more
advantage of Team A is that the fighter only needs one
arrow to shoot a wumpus with known location. This is
achieved because the carrier agent tells the fighter agent
proactively about the location of the wumpus, using
DIARG to infer that the fighter needs the information to
navigate to the wumpus. In contrast, the fighter in Team C
has to randomly choose a direction for shooting when it
senses a stench, and cannot get any help from the carrier to
locate the wumpus. Consequently, Team C consumes the
same number of arrows to get half as many wumpuses as
both Team A and Team B, and thus has worse resource
utilization.

Figure 1 - The Comparison of teamwork with and without
dynamic role selection in increasingly complex environments

Experiment 2 was performed on 4 sets of 5 randomly
generated maps for a world with 10 by 10 cells, 5 wumpus,
and 10 piles of gold. The difference between the sets of
maps is that we incrementally increase the complexity of
the world by changing the number of pits in the cave, from
2 to 5 to 10 to 15 pits respectively. Each team is allowed to
operate for a fixed number of actions. The performance of
each team for each case is measured by the same metrics
we used in the first experiment. The performance
difference is shown in Figure 1.

From Figure 1, we can see that with dynamic role
selection, Team E performed better than Team D and the
difference becomes larger when the complexity of the

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20

Complexity of the problem measured by
number of pits

P
er

fo
rm

an
ce

 m
ea

su
re

d
 b

y
n

u
m

b
er

o

f w
u

m
p

u
s

ki
lle

d

no dynamic role
selection

dynamic role
selection

problem scales up. Because the most appropriate fighter
will always be chosen to kill the wumpus whenever the
carrier finds one, more wumpuses can be killed in a limited
number of actions. And in worlds with more pits, it is even
harder for the fighter to navigate to the wumpus found, so
choosing the closest fighter becomes much more important.
But when the world has so many pits that even the carrier
gets trapped, teamwork becomes impossible and the
performance of both teams will drop significantly.

7 Conclusion
Developing a computational framework for capturing the
shared mental model among members of effective teams is
a challenging and critical issue for applications ranging
from team training to supporting teamwork. The CAST
architecture supports flexibility in its teamwork knowledge
specification and in dynamic role selection at run time. At
the same time, it leverages shared knowledge about the
structure and the process of a team to reason about
information needs of teammates efficiently. We believe the
CAST architecture achieves a reasonable tradeoff between
the flexibility and the efficiency for simulating proactive
information exchange among teammates. While our
experimental results demonstrate anticipated benefits of
CAST, it also reveals some limitations of the current CAST
implementation. For example, we plan to extend the role
selection method for finding backups when an agent dies or
becomes non-functional. With such an extension, we hope
to simulate more complex teamwork behavior.

8 Acknowledgements
This research described in this paper is supported by a
DOD MURI grant F49620-00-1-0326 administered through
AFOSR and partially supported by internal seed funds
from the College of Engineering through the Training
Systems Science and Technology Initiative.

References
[Cannon-Bowers and Salas, 1997] Canon-Bowers, J.

A. and Salas, E. A framework for developing team
performance measures in training, in Brannick, M.
T., Salas, E. and Prince, C.,editors , Team
Performance Assessment and Measurement:
Theory, Methods, and Applications, Lawrence
Erlbaum Associates: Hillsdale, NJ. 1997.

 [Cohen and Levesque, 1990] Cohen, P.R. and
Levesque, H.J. Intention is choice with
commitment. Artificial Intelligence, 42(3), 1990.

[Cohen and Levesque, 1991] Cohen, P.R. and
Levesque, H.J. Teamwork. Nous, 25(4):487-512,
1991.

 [Grosz and Kraus, 1996] Grosz, B., and Kraus, S.
Collaborative plans for complex group action.
Artificial Intelligence , 86:269-357, 1996.

[Halpern and Moses, 1992] Halpern, J.Y. and Moses,
Y. A guide to completeness and complexity for
modal logics of knowledge and belief, Artificial
Intelligence, 54:319-379, 1992.

[Harel, 1984] Harel, D. Dynamic logic. In Handbook of
Philosophical Logic. Gabbay, D. & Guenther ,F.
(eds.). Reidel Publishing : Dordrecht, Netherlands,
1984.

[Ilgen et al., 1993] Ilgen, D. R., Major, D. A., and
Hollenbeck J. R. Leadership and research:
Perspectives and Directions, San Diego: Academic
Press, 1993.

[Jennings, 1995] Jennings, N. Controlling cooperative
problem solving in industrial multi-agent systems
using joint intentions. Artificial Intelligence,
75(2):195-240, 1995.

[Jones et al, 1999] Jones, R., Laird, J., Nielson, P.,
Coulter, K., Kenny, P., and Koss, F. Automated
intelligent pilots for combat flight simulation. AI
Magazine, 20(1):27-41, 1999.

[Rao and Georgeff, 1991] Rao, A.S. and Georgeff, M.P.
Modeling rational agents within a BDI Architecture.
Principles of Knowledge Representation and
Reasoning, Proceedings of the Second International
Conference, 473-484, 1991.

[Russell and Norvig, 1995] Russell, S. and Norvig P.
Artificial Intelligence: A Modern Approach.
Prentice Hall, New Jersey, 1995.

 [Singhal and Zyda 1999] Singhal, S. and Zyda M.
Networked Virtual Environments. New York, New
York, ACM Press, 1999.

[Sowa, 2000] Sowa, J.F. Knowledge Representation:
Logical, Philosophical, and Computational
Foundation . Brooks/Cole: Pacific Grove, CA,
2000.

[Stone and Veloso, 1999] Stone, P., and Veloso, M.
Task decomposition, dynamic role assignment, and
low-bandwidth communication for real-time
strategic teamwork. Artificial Intelligence, 110:241-
273, 1999.

[Tambe, 1997] Tambe, M. Towards flexible teamwork.
Journal of Artificial Intelligence Research, 7:83-
124, 1997.

[Tidhar et al., 1998] Tidhar, G. and Heinze, C. and
Selvestrel, M. Fly ing together: Modelling air
mission teams. Journal of Applied Intelligence, 1(1)
pp1-1, 1998.

[Wooldridge and Jennings, 1995] Wooldridge, M., and
Jennings, N., Intelligence agents: Theory and
practice. Knowledge Engineering Review,
10(2):115-152, 1995.

[Yin et al., 2000]Yin, J., Miller, M., Ioerger, T.R., Yen,
J., and Volz, R.A. A knowledge-based approach for
designing intelligent team training systems. In:
Proc. of the Fourth International Conference on
Autonomous Agents, pp. 427-434, 2000.

