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Abstract 
Psychological studies on teamwork have shown that 
an effective team often can anticipate information 
needs of teammates based on a shared mental 
model.  Existing multi-agent models for teamwork 
are limited in their ability to support proactive 
information exchange among teammates. To 
address this issue, we have developed and 
implemented a multi-agent architecture called 
CAST that simulates teamwork and supports 
proactive information exchange in a dynamic 
environment. We present a formal model for 
proactive information exchange. Knowledge 
regarding the structure and process of a team is 
described in a language called MALLET. Beliefs 
about shared team processes and their states are 
represented using Petri Nets. Based on this model, 
CAST agents offer information proactively to those 
who might need it using an algorithm called 
DIARG. Empirical evaluations using a multi-agent 
synthetic testbed application indicate that CAST 
enhances the effectiveness of teamwork among 
agents without sacrificing a high cost for 
communications. 

1 Introduction 
Teamwork has been the focus of a great deal of research, 
spanning diverse disciplines from business management to 
psychology [Ilgen et al., 1993].  There are many different 
types of teams, from those that are hierarchical to those that 
are more egalitarian. Some teams have fixed, clearly-
defined roles, while others allow for dynamic re -allocation 
of tasks and responsibilities on the fly. Measuring the 
performance of a team can involve both “outcome” as well 
as “process” measures [Cannon-Bowers and Salas, 1997].  

Several computational models of teamwork have been 
developed for producing cooperative behavior among 

intelligent agents. The fundamental aspect of a team that 
distinguishes them from just a group of interacting agents 
is that they share common goals. In the BDI framework 
[Rao and Georgeff, 1991; Wooldridge and Jennings, 1995], 
the mental state of having a team goal has been 
characterized in terms of joint intentions [Cohen and 
Levesque, 1991, Jennings, 1995]. Tambe [Tambe, 1997] 
and his STEAM group have shown how these mental states 
can be established and maintained through communication 
protocols. Another framework for modeling teams is 
through SharedPlans, via intentions to do certain steps 
together [Grosz and Kraus, 1996]. These approaches have 
been shown to be effective for simulating teamwork in a 
wide range of agent-only environments [Jones et al, 1999; 
Tidhar et al., 1998; Stone and Veloso, 1999].   

However, these existing multi-agent teamwork models 
have not been designed for supporting mixed human/agent 
teams. Having humans in the loop places an additional 
constraint on the agents, such that they must interact with 
teammates in a natural way, e.g. by exchanging only the 
most important information necessary for coordination, 
without excessive or redundant communication. Efficient 
teamwork relies heavily on information sharing, especially 
in dynamic environments, but it must be done judiciously 
not to overwhelm the human participants with message 
passing. The key is to try to supply only the most relevant 
information, and this requires reasoning about their goals 
and responsibilities on the team. 

Motivated by this observation, we have developed 
CAST (Collaborative Agents for Simulating Teamwork), a 
multi-agent architecture that simulates and supports 
teamwork. While our ultimate goal involves supporting 
both humans and agents, in this paper we will focus on 
reducing communication with software agents (in 
preparation for inclusion of humans) as a first step. Our 
architecture provides a mechanism for building virtual 
teams using software agents. We will first give an overview 
about the goals and issues addressed by CAST. A formal 



  

foundation for proactive information exchange in CAST is 
then introduced. This is followed by a description of the 
major components and features of the CAST architecture. 
An empirical evaluation is used to assess the effectiveness 
of teamwork simulated in CAST. Finally, we summarize 
the main contribution of the work. 

2 CAST Overview 
CAST is designed to achieve two goals. First, it aims to 
model effective teamwork by capturing both team 
structures and teamwork processes. A well-defined team 
structure is based on specifying pre-defined roles and the 
responsibilities associated with them. A well-defined 
teamwork process specifies goals, strategies, and plans for 
accomplishing the team’s goal. The common prior 
knowledge about the structure and the process of the team 
enables members of the team to develop an “overlapping 
shared mental model,” which is the source for team 
members to reason about the states and the needs of others.   

One of the major criticisms of other approaches toward 
the goal above has been that they lack flexibility for 
dealing with dynamic environments. Hence, another 
equally important goal is to enable agents in a team to have 
flexibility in adapting to changes in the environment. More 
specifically, assignment of responsibilities to suitable 
agents needs to be adapted to the current state of the world 
and the team.  

While both goals are desirable, they conflict with each 
other. The emphasis on predefined team structures and 
processes often reduces the flexibility of the team, while 
maximizing the flexibility of the team usually requires 
making shared, redundant, and hence ambiguous role 
assignments. To balance these two conflicting goals, we 
need a practical and flexible computational framework for 
representing and reasoning about the overlapping shared 
mental models amo ng teammates. Such a framework would 
enable an agent to dynamically reason about the status of 
the entire team and adapt its behavior accordingly.  

Representing a shared mental model is a challenging 
problem. It can be viewed as a kind of belief reasoning, 
which is generally intractable [Halpern and Moses, 1992]. 
Moreover, the content of the shared mental model is quite 
broad, ranging from shared domain knowledge to a 
common relevant picture of the situation. We tackle this 
problem by focusing on two specific uses of the shared 
mental model: making teamwork efficient through 
anticipating  the actions and expectations of others (e.g. by 
knowing others’ roles, capabilities, and commitments), and 
by information exchange (knowing who to ask for 
information, or providing information proactively just 
when it is needed by someone else to accomplish their 
task).  To avoid issues of computational complexity with 
belief reasoning (e.g. higher-order modal logics), we use 
Petri Nets as an approximate finite and computable model 
of mental states.  

The Petri Net is a natural representation for parallel 
action and synchronization in a multi-agent world [Sowa, 
2000]. Transitions can represent actions, with input places 
corresponding to pre-conditions and output places 
corresponding to effects.  We extend the standard (colored) 
Petri Net formalism with special kinds of places called 
control nodes and belief nodes. Control nodes represent the 
belief an agent has about the current goals and activities of 
others in the team. Belief nodes represent the belief an 
agent has about the world, when coupled with a 
unification-based theorem-prover, can represent first-order 
knowledge, including dynamic facts and inferences about 
the world. In addition to serving as the shared mental 
model, Petri Nets also play the dual role of monitoring and 
tracking the execution of team plans. 

CAST generates the Petri Net-based representation 
using two kinds of knowledge: 1) team structures (roles 
and responsibilities), and 2) teamwork process knowledge 
(e.g., individual plans, team plans). They are described in a 
knowledge representation language called MALLET (a 
Multi-Agent Logic-based Language for Encoding 
Teamwork). A Petri Net for a given team member 
represents both the background knowledge for their 
individual responsibilities (e.g. goals, operators), and how 
their role is integrated with the rest of the team.   

Based on the shared mental model, the CAST kernel 
enables CAST agents to decide on the fly how to 
accomplish desired goals, how to select responsibilities to 
commit to or delegate, how to proactively assist others in 
the team, and how to effectively communicate within the 
team. This is achieved by dynamic role selection and 
proactive information change. We will give a more detailed 
description in later sections. 

3  Formal Foundation of Proactive 
Information Flows  

In this section, we discuss the formal foundations 
underlying the type of information exchange addressed in 
CAST. In particular, we think it is important to specify, 
under ideal conditions, what information should be 
exchanged between whom, and at what time. The purpose 
of information exchange must be oriented toward 
improving the efficiency or performance of a team, but 
otherwise is desired to be kept to a minimum to avoid the 
cost of communications overhead (however this is defined 
in the domain).  In fact, a quantitative utility function that 
incorporates such costs is actually used in STEAM 
[Tambe, 1997] to help evaluate tradeoffs and decide when 
to communicate within a team. 

In CAST, we take a different approach to optimizing 
information exchange by defining narrow criteria for the 
exchange of only the most critical information.  
Specifically, we want agents who know some fact to 
communicate it to exactly those teammates who need the 
information in the present context to carry out their goals, 



  

and who furthermore (probably) do not already know it.  
Clearly, this might involve some complex reasoning about 
beliefs and goals, as well as tracking the state of other 
agents. However, to the degree that some of these 
inferences can be approximated, the team members can 
make intelligent decisions to selectively choose their 
interactions with one another. 

We start by defining a simple belief language and 
model theory to be able to talk about the mental states of 
various.  We model beliefs using a modal operator BEL, 
e.g. (BEL bill (have joe hammer)), with the usual 
possible worlds semantics [Cohen & Levesque, 1990].  We 
need to be able to talk about ‘pieces’ of information, which 
in this present context refer syntactically  to sentences, but 
semantically  are equivalent to constraints over possible 
worlds, i.e. those worlds satisfying the expression.  Goals, 
however, refer to specific steps in plans in MALLET, to 
which agents can make commitments. 

Using this framework, we can formally characterize the 
(normative) conditions under which information exchange 
should take place. Information I should be sent from one 
agent A to another agent B when: 1) agent A knows the 
truth-value of I, 2) agent A believes that agent B does not 
currently know I, and 3) B  has a current goal G, the 
achievement of which depends on knowing I, i.e. if B does 
not believe I, then it will never be able to accomplish it’s 
goal, but if it knew I, it would be able to: 

(BEL A I) ∧  (BEL A ¬(BEL B I)) ∧   
(BEL A (GOAL B G)) ∧   
[¬(BEL B I) →  ¬(DONE B G)] ∧   
[(BEL B I) → ¬ ¬(DONE B G)] 
→  (GOAL A (Inform B I)) 

where   is the temporal operator for ‘always’. In CAST, we 
use the pre-conditions of operators to determine the 
information I that an agent needs to know to achieve its 
goals.  Note, the communication is suppressed only when 
(A believes that) B already believes I is true; but if B does 
not have a belief about the truth value of I at all, or B  
incorrectly believes it is false, then the message will be 
sent. For simplicity, we assume that all agents share 
common (and correct) knowledge of the team, e.g. team 
goals and plans, roles and responsibilities, operator pre-
conditions, etc.    

Clearly this approach requires A to monitor B’s mental 
state, both in terms of what his beliefs and goals 
(commitments) are. This might be easy to do in a highly 
observable environment, but might require extensive 
communication in other cases (e.g. verbal updates of what 
each teammate is currently doing). Alternatively, agents 
might use a probabilistic mechanism like Bayesian 
reasoning to infer the likely states of their teammates, 
based on observations of the effects of their actions 
reflected in the environment.  Regardless of how difficult 
this state estimation or tracking might be to implement, the 
definition above describes the ideal  conditions under which 

one would want to communicate.  As much as possible, we 
want to restrict communication to cases where it can be 
inferred to be useful, which is what the DIARG algorithm 
below is designed to approximate. 

4  Specifying Team Knowledge in MALLET  
In this section, we briefly describe MALLET, the team 
knowledge representation language in CAST. MALLET 
provides descriptors for encoding knowledge about 
operators and plans of individuals and the team, as well as 
definitions of roles and responsibilities on the team. An 
important ontological commitment in MALLET is that 
roles are fundamentally treated as references to specific 
steps in team plans, to which certain agents on the team can 
externally be assigned.  That is, the meaning of a role is 
defined by a certain step in a team plan that is dedicated for 
the agents playing that role to carry out.  

MALLET syntax is based loosely on LISP, in the sense 
of using s-expressions and prefix notation. Variables are 
indicated with ‘?’ prefix. Operators are simply names of 
atomic actions that can be taken in the environment.  
Operators may list a set of pre-conditions and/or post-
conditions, each as a conjunction of literals (first-order 
predicates or their negations).  Here is an example for 
climbing over a pit: 

(operator climb-over (?pit)  
(pre-cond (have-ladder))) 

There are two types of operators: individual  operators and 
team operators.  Individual operators are assumed to be 
executed by only one agent at a time. However, team 
operators have the possibility of being invoked on a set of 
agents (e.g. those playing a given role).  How the agents 
handle the team operators depends on what sub-type it has. 
We have identified three modes of operator-sharing:  
• AND operators, which require simultaneous action by 

all the agents involved 
• XOR operators, which require at most one agent to act 

(mutual exclusion, e.g. to avoid conflicts) 
• OR operators, which can be execute by any of the 

agents (possibly >1) without conflict 
Hence team operators contain an extra component that 
defines the “share-type.” For example, an operator for 
lifting a heavy object might be written as: 

(t-operator lift-heavy (?x)  
(share-type AND) 
(pre-cond (movable ?x)))  
(effect (holding ?x))) 

Plans in MALLET are essentially designed to describe 
processes. Processes consist of invocations of atomic 
actions, or arbitrary combinations using various constructs 
such as sequential, parallel, contingent, or iterative.  The 
syntax of processes can be defined recursively according to 
five constructs, with obvious intuitive meanings:  

(seq P Q), (par P Q), (if (cond C) P 
[Q]), (while (cond C) P), (do T) 



  

where P and Q are sub-processes, C is condition 
(conjunction), and T is an operator or plan instantiation 
(with arguments). These constructs for describing complex 
processes can be given a semantics in various formalisms 
such as dynamic logic [Harel, 1984]. 

Individual plans have pre-conditions and effects, and 
also a process description. Team plans are similar to 
individual plans, but they have two extra features related to 
assignment of roles. First, we have declarations of role 
variables of the form (role <role-name> <role-
variable> <constraints>), where the constraints are a 
conjunctive set of conditions that put restriction on the role 
variable, which candidates must satisfy.  For example, the 
team plan below requires two agents, one with the carrier 
role, the other with the fighter role.  The fighter agent has 
an additional constraint, i.e. satisfying the predicate 
closestToWumpus.  

 
 (t-plan explore-cave () 
  (role carrier ?ca) 
  (role fighter ?fi ((closestToWumpus ?fi) ) 
  (process (seq 
            (do ?ca (find-wumpus)) 
            (do ?fi (moveto-wumpus)) 
          (do ?fi (kill-wumpus)) ) ) ) 
 
The general idea is that an appropriate agent meeting the 
constraints will be selected from the set of those assigned 
to play the role, and bound to the role variable within the 
plan. These role variables can then be used within 
processes to specify which agents will do certain steps 
(operators or sub-plans). An important implication of 
allowing constraints in the role specification is that it 
introduces flexibility to the teamwork process because the 
selection of such roles needs to be made dynamically at run 
time to assure that the constraint is satisfied. We will 
elaborate on the role selection scheme in the next section. 

Finally, MALLET also provides simple descriptors for 
defining the members on the team, the roles they play, and 
their capabilities and responsibilities. While capabilities are 
treated simplistically (as static associations between agents 
and operators), the meaning of a responsibility is more 
interesting.  It is similar to a role, in the sense that it defines 
agents who are supposed to do certain actions, but they are 
not tied to specific steps in the context of specific plans. 
Instead, the responsibility of an agent for an operator 
means that, whenever the action needs to be done at any 
time, the agent knows that it should act or at least 
coordinate with others who share the responsibility.   

MALLET descriptions are converted into Petri Nets on 
which the agent’s reasoning algorithm operate. A Petri-Net 
generation algorithm constructs transitions for each atomic 
operator in a team plan, connects them with control nodes, 
and links their inputs and outputs to appropriate belief 
nodes based on pre- and post-conditions. Since plans can 
be hierarchical, the sub-plans are expanded by calling the 
Petri-Net generation algorithm recursively, and linked into 

the main Petri Net through control nodes such that all the 
action nodes ground out in operators.  Thus for each team 
goal, there is a single Petri Net that describes its plan for 
solving it. By placing tokens on the topologically-first 
node(s) of the Petri Net, and moving them forward 
whenever steps are completed, agents can keep track of the 
progress of the team. Though not every agent is involved in 
or responsible for every step, this Petri-Net model of the 
overall team plan forms a common understanding of the 
team’s goals and process, which they use to determine how 
their individual actions fit together, and is thus a primary 
constituent of their shared mental model.   

The knowledge compiler also performs a static 
information-flow analysis [Yin et al., 2000] for the online 
DIARG algorithm. An information-flow relation I is 
defined as a 3-tuple, <Info,needers,providers>, where Info 
is the predicate name together with 0 or more arguments, 
needers is a list of agents who might need to know such 
information, and providers is a list of agents who might 
know the information. We determine the needers of 
information by analyzing the pre-conditions of operators 
for which each agent might be responsible. And we 
determine the potential providers of information by 
analyzing the post-conditions of operators for which the 
agents might be responsible.  In particular, if P is a post-
condition of operator O, then we assume that an agent will 
know P after executing O, since we can expect agents to 
know the (direct) consequences of their own actions. 

5 CAST Agent Kernel 
The CAST kernel refers to a set of algorithms that CAST 
agents use to determine what actions and communications 
they will take at each time step.  CAST agents execute a 
standard sense/decide/act loop.  During the sense phase, 
they make queries to the simulation server to update their 
knowledge of the state of the world.  Agents also check a 
queue for messages from other agents at this time.  During 
the decide  phase, each agent examines the Petri-Net 
representation of the team plan to see if there are any 
pending actions for which it is responsible.  In cases of 
ambiguity, the agents might have to communicate in order 
to determine who will take the action and when. Before 
finally taking actions, the agents attempt to determine if 
there are any interactions they can initiate. For proactive 
information exchange, this is accomplished by DIARG.  

CAST also uses a back-chaining theorem-prover called 
JARE (also implemented in Java) for making inferences 
using domain knowledge written in the form of a separate 
Horn-clause knowledge base. JARE is used to determine 
the truth-value of conditions or constraints that need to be 
evaluated in interpreting MALLET expressions at run-time. 

5.1 Dynamic Role Selection 
The algorithm for Dynamic Role Selection (DRS) is used 
to support reasoning about role assignments and to generate 



  

the necessary interactions among agents to correctly 
execute the team plan with appropriate actors for each step. 
It has the following main steps: 
 
DRS(step) 
1 let A be the set of agents potentially 

involved in the step, A=InvolvedAgents(step) 
2 remove from A any agents that are incapable of 

taking the action 
3 remove from A any agents that do not satisfy 

the role constraints, if defined for that step 
4 if A is empty, do nothing  
5 if |A|=1 and member(self,A), do(step) 
6 else 

6a. if step is an AND operator, 
  synchronize(step) 
6b. if step is an OR operator,  
  attempt-in-parallel(step) 
6c. if step is an XOR operator,  
  disambiguate(step) 

 
For each active step in the team plan (nodes marked with a 
token in the process net), DRS starts by determining the set 
of agents that could be involved. This is done by 
considering several different ways of assignment, in a 
particular order of precedence: 
 
InvolvedAgents(step) 

if step is of the form do(agent,action),  
  then return {agent} 
if step is of the form do(role,action),  

then return {Ai} forall agents that were 
assigned to play that role, 
Ai∈RoleSet(role) 

if step refers to an operator op for which 
some agent has been assigned 
responsibility, then return {Ai} forall 
agents such that Resp(Ai,op) 

else return all the agents on the team, 
  {Ai} forall agents such that Ai∈team 

 
Assignments of specific agents are considered first, and 
then role specifications, where several agents may be 
assigned to the role for a given step in the plan.  If no 
agents or roles are directly assigned, then the search for 
involved agents expands to considering any agents that 
might be responsible in general for such actions.  Finally, if 
it is  still undefined who should perform a step, then all the 
agents in the team are included, since this is ultimately a 
step in a plan to which they are all jointly committed. 
 After determining the set of agents potentially involved 
in the action, those agents that are unacceptable are filtered 
out.  For example, if an agent is incapable of performing 
the action, then it is removed from the set.  In addition, if 
any constraints were associated with the role definition, 
then only those agents that satisfy the constraints are 
retained.  This is accomplished by making a query to the 
agent’s knowledge base that is constructed from the 
conjunctive conditions of the constraint by substituting any 
variables that are bound in the current scope, plus replacing 
the agent/role variable with the identity of each candidate.  
Those agents that do not satisfy the query are removed 

from the set of involved agents.  Other factors could also be 
considered at this stage, such as removing agents from 
consideration whose workload is too high. 
 After determining the set of involved agents, steps 4-6 
are used by the agents to decide what to do based on the 
size of this set.  If the set is empty, then there is simply 
nothing to do; the team must wait until an acceptable agent 
becomes available. If there is a single (unique) agent 
involved in the step, then the agent may act right away, 
without any coordination.  In these cases, CAST agents are 
intelligent enough to act on their own.  This illustrates one 
of the sources of efficiency in teamwork gained from a 
priori role assignments - agents can sometimes figure out 
what to do on their own. If there are multiple agents 
involved in the step (line 6 in the algorithm), then each 
agent’s response depends on the type of operator it is.  If it 
is an AND operator, then all the involved agents must act 
simultaneously. This synchronization can be accomplished 
by broadcasting a ready signal and waiting until they have 
heard the same from all the other agents.  If the operator is 
an OR operator, then any of the agents may take the action.  
Hence they all commit to trying to carry it out. Several 
might actually succeed (independently) in performing the 
act.  However, not be too wasteful, we require agents to 
broadcast a success message when they have completed the 
step, at which point the other agents involved are permitted 
to drop their commitment (this is what attempt-in-
parallel means in step 6b of the DRS algorithm above).  
Finally, if the step refers to an XOR operator, only one of 
the agents involved may take the action, otherwise some 
interference might occur.  Therefore, agents must agree 
amongst themselves who will take responsibility for the 
action.  This disambiguation can be accomplished through 
a variety of protocols, such as first-come-first-served, but 
they all require communication.  Hence agents exchange 
messages to select a delegate, and then this agent make a 
commitment to do the action and the others do not have to. 
 While the current algorithm for Dynamic Role 
Selection produces flexible teamwork that is adaptive to 
specific situations, it does not handle all possible situations.  
For example, if agents could die, lose their connection to 
the team, or become incapable dynamically within the 
environment, then the team might need to react to these 
changes and adjust its operation.  The possibilities range on 
a spectrum of complexity from using redundant role 
assignments for providing backup behavior and load-
balancing, to dynamic re-configuration of the whole team. 
These features could be added to the DRS algorithm, but 
are left for future work. 

5.2 DIARG algorithm 
The DIARG algorithm (Dynamic Inter-Agent Rule 
Generator), an extension of IARG [Yin et al., 2000]), is 
responsible for identifying opportunities for proactive 
information exchange. Instead of sending information to all 



  

possible needers and asking all possible providers for 
information, agents with DIARG can keep track of the 
teamwork status and only send information to whom it is 
relevant in the current context, and ask those agent who 
might know the information at the moment. This makes the 
DIARG algorithm more dynamic. DIARG is run by each 
agent during each cycle, independent of the other decision-
making activities, and could result in agents sending 
additional messages to one another.  In particular, agents 
attempt to identify pieces of information that other agents 
might need to know and inform them via TELL operations. 
In addition, if agents need some information and they can 
figure out who might know it, they can generate ASK 
operations. These inferences are accomplished partly by 
examining the information-flow relations, coupled with 
analysis of the current state of the team.   
 
ProactiveTell() 
  If I is a newly-sensed piece of information, 
      or I is a post-condition of the last action 
      P taken by self, then  
    if I is not in the knowledge base,  

   assert I into knowledge base  
 for each information-flow  
     <predicate, needers, providers>  

      if I matches predicate name and self is  
          included in the providers, then  

      for each agent x in the needers,  
       if agent x plays a role in an active 
       step,  

          TELL(x,I) 
 
ActiveAsk() 

for each active step s in the plan in which 
self is involved  

let o be the operator to which s refers  
for each pre-condition I of s  
  if not(know(self, I)), then  

let Info-flow = <predicate, needers, 
providers> be the information flow in 
which I matches predicate name  
select the agent y from providers 
(active agents first),  

   do ASK(y,I) 
 
These algorithms are designed to generate inter-agent 
communications based on approximation of the criteria set 
forth in Section 3 for ideal conditions under which it is 
desirable to exchange information.  In principle, we want 
agents to communicate only when it is likely to be useful, 
to minimize network traffic (use of bandwidth). The formal 
criteria are difficult to achieve in practice, particularly due 
to the need for belief reasoning. While we do not model the 
complete belief state of other agents, our static analysis of 
information flow identifies agents which might know or 
need to know certain information based on their 
involvement in the team plan (i.e. through actions for 
which they might be responsible). When some information 
changes, for example due to the action of an agent, and 
there is an effect of the action that others cannot observe, or 
when an agent observes some new information, then it 

might want to inform the others (proactively).  The sending 
of these messages is restricted to those agents who 
conceivably might need to know the information. Whether 
or not an agent really needs to know a piece of information 
also depends on whether it supports one of their current 
goals, which we predict from active nodes in the Petri Net.  

However, these algorithms cannot guarantee perfectly 
optimal information flow. For example, it depends on what 
they can observe and what they can infer.  Also, while we 
assume that agents are never forgetful, information might 
change dynamically (non-deterministically) at different 
rates in different environments, and not all agents might be 
able to observe changes in all information, making the 
problem of maintaining consistent and correct distributed 
knowledge in a team very difficult in general [Singhal and 
Zyda, 1999]. However, the DIARG algorithm is 
implemented at an appropriate level for supporting 
interactions in mixed human-agent teams, since it does not 
require direct access to (or simulation of) the mental state 
of other team members, and is able to derive potentially 
useful information flows based only on analysis of 
common (shared) knowledge of the team plan, individuals’ 
roles, and the current state of progress, which can be 
assumed to be monitored by all the members of the team. 

6 A Testbed Application 
We have constructed a testbed application based on a 

multi-agent extension of the Wumpus World [Russell and 
Norvig, 1995]. These agents can act as part of a team by 
playing the role of a fighter, to shoot the wumpus, or a 
carrier, to carry the gold they find. To generate the need for 
information flow between team members, the two types of 
roles have different sensing capabilities. While both of 
them can sense a stench (from a wumpus), a breeze (from 
pits), and glitter (from gold), only the carrier can pin-point 
the exact location of the wumpus when it is in an adjacent 
room in the cave. These experiments use a team plan and 
individual plans, along with other related teamwork 
knowledge, to find and kill multiple wumpuses and collect 
gold. Agents can communicate in three ways: (1) proactive 
tell, (2) broadcast information, and (3) broadcast control 
tokens for coordination purposes.   

 
Table 1. Different teams used in experiments 
 
Exper
iment  

Team #of 
Carriers 

#of 
Fighters 

Team
work 

Communication DRS 

A 1 1 Yes Proactive Info 
Exchange 

No 

B 1 1 Yes Broadcast 
Every New Info 

No 

1 

C 1 1 No No No 
D 1 3 Yes Proactive Info 

Exchange 
No 2 

E 1 3 Yes Proactive Info 
Exchange 

Yes 



  

 
 In order to evaluate the effectiveness of different 

features supported by CAST - shared mental models, 
proactive information exchange, and dynamic role 
selection - we have devised two sets of experiments and 
five multi-agent teams for comparison. The differences 
among the five teams are listed in Table 1. Experiment 1 is 
run on Team A, Team B, and Team C to show the benefit 
of using shared mental models and proactive information 
exchange. Experiment 2 is run on Team D and Team E to 
show the benefit of dynamic role selection. 

In Experiment 1, Teams A and B both use teamwork, 
whereas C does not.  Furthermore, Team A uses proactive 
information exchange (the DIARG algorithm is turned on), 
whereas agents in Team B just broadcast each new piece of 
information indiscriminately to all the members on the 
team. Agents in Teams A and B use a MALLET 
specification of a team plan that requires the carrier to first 
find the wumpus, then navigate a fighter to a room adjacent 
to the wumpus and shoot the wumpus. Agents in Team C 
merely wander around randomly, independently looking 
for wumpuses to shoot and gold to pick up.  To make the 
comparison fair, agents in Team A and Team B also use 
individual plans in MALLET to perform this wandering 
behavior when not busy. So there is teamwork based on the 
shared mental model of the team plan for agents in Team A 
and Team B, but in Team C, there is no communication 
and no teamwork.  Experiment 2 is meant to show the 
benefit of dynamic role selection. Team D is similar to 
team A except that Team D has more fighters; however, 
Team D does not use dynamic role selection. Team E 
implements the dynamic role selection protocol for each of 
its agents. All five teams use the same knowledge base (i.e. 
JARE rules) for reasoning about the environment and for 
determining the priority of actions. 
 
Table 2. Comparison of performance for teams  that 
differ in teamwork and information exchange. 
 

Team Static V1 V2 V3 V4 V5 
Average 3.6 7.35 2.6 1 2.2 A 
Std. Dev. 0.82 3.79 1.35 0 0.62 
Average 3.5 6.55 2.55 138 0 B 
Std. Dev. 0.76 3.52 1.32 12.7 0 
Average 1.6 7.85 2.2 0 0 C 
Std. Dev. 0.88 5.58 1.94 0 0 

 V1: # Wumpuses Killed V2: # of Arrows Used 
 V3: # of Gold Found  V4: # of Messages Broadcast 
 V5: # of Proactive Information Exchanges 
Experiment 1 was performed on 20 randomly generated 
maps for a world (cave) with 10 by 10 cells (rooms), 5 
wumpuses, 2 pits, and 10 piles of gold. Each team is 
allowed to operate for a fixed number of total actions. The 
performance of each team for each case is measured by (1) 
the number of wumpuses killed, (2) the number of arrows 
used, (3) the amount of gold gathered (4) the number of  

messages broadcast, and (5) the number of proactive tell 
messages.  The average and standard deviation of the 
experiments are summarized in Table 2. 

As shown in the Table 2, Team A and Team B achieve 
comparable performance, because they use an identical 
shared mental model specified in MALLET. However, 
Team B has a much higher communication overhead (V4). 
Team A and Team B both have better performance in terms 
of number of wumpuses killed, because there is teamwork 
among agents in Team A and Team B. Whenever the 
carrier in Team A and Team B finds any wumpus, it will 
tell the fighter to go kill it, which gives the whole team a 
better chance to kill more wumpuses. However, picking up 
gold is an individual activity, so from the table, we can not 
see much difference among the three teams. One more 
advantage of Team A is that the fighter only needs one 
arrow to shoot a wumpus with known location.  This is 
achieved because the carrier agent tells the fighter agent 
proactively about the location of the wumpus, using 
DIARG to infer that the fighter needs the information to 
navigate to the wumpus. In contrast, the fighter in Team C 
has to randomly choose a direction for shooting when it 
senses a stench, and cannot get any help from the carrier to 
locate the wumpus. Consequently, Team C consumes the 
same number of arrows to get half as many wumpuses as 
both Team A and Team B, and thus has worse resource 
utilization. 

 

Figure 1 - The Comparison of teamwork with and without 
dynamic role selection in increasingly complex environments 

Experiment 2 was performed on 4 sets of 5 randomly 
generated maps for a world with 10 by 10 cells, 5 wumpus, 
and 10 piles of gold. The difference between the sets of 
maps is that we incrementally increase the complexity of 
the world by changing the number of pits in the cave, from 
2 to 5 to 10 to 15 pits respectively. Each team is allowed to 
operate for a fixed number of actions. The performance of 
each team for each case is measured by the same metrics 
we used in the first experiment. The performance 
difference is shown in Figure 1. 

From Figure 1, we can see that with dynamic role 
selection, Team E performed better than Team D and the 
difference becomes larger when the complexity of the 
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problem scales up. Because the most appropriate fighter 
will always be chosen to kill the wumpus whenever the 
carrier finds one, more wumpuses can be killed in a limited 
number of actions. And in worlds with more pits, it is even 
harder for the fighter to navigate to the wumpus found, so 
choosing the closest fighter becomes much more important. 
But when the world has so many pits that even the carrier 
gets trapped, teamwork becomes impossible and the 
performance of both teams will drop significantly. 

7 Conclusion 
Developing a computational framework for capturing the 
shared mental model among members of effective teams is 
a challenging and critical issue for applications ranging 
from team training to supporting teamwork. The CAST 
architecture supports flexibility in its teamwork knowledge 
specification and in dynamic role selection at run time.  At 
the same time, it leverages shared knowledge about the 
structure and the process of a team to reason about 
information needs of teammates efficiently. We believe the 
CAST architecture achieves a reasonable tradeoff between 
the flexibility and the efficiency for simulating proactive 
information exchange among teammates. While our 
experimental results demonstrate anticipated benefits of 
CAST, it also reveals some limitations of the current CAST 
implementation.  For example, we plan to extend the role 
selection method for finding backups when an agent dies or 
becomes non-functional. With such an extension, we hope 
to simulate more complex teamwork behavior.  
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