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Abstract—Joint clustering of multiple networks has been shown to be more accurate than performing clustering on individual networks

separately. This is because multi-network clustering algorithms typically assume there is a common clustering structure shared by all

networks, and different networks can provide compatible and complementary information for uncovering this underlying clustering

structure. However, this assumption is too strict to hold in many emerging applications, where multiple networks usually have diverse

data distributions. More popularly, the networks in consideration belong to different underlying groups. Only networks in the same

underlying group share similar clustering structures. Better clustering performance can be achieved by considering such groups

differently. As a result, an ideal method should be able to automatically detect network groups so that networks in the same group share

a common clustering structure. To address this problem, we propose a new method, COMCLUS, to simultaneously group and cluster

multiple networks. COMCLUS is novel in combining the clustering approach of non-negative matrix factorization (NMF) and the feature

subspace learning approach of metric learning. Specifically, it treats node clusters as features of networks and learns proper

subspaces from such features to differentiate different network groups. During the learning process, the two procedures of network

grouping and clustering are coupled and mutually enhanced. Moreover, COMCLUS can effectively leverage prior knowledge on how to

group networks such that network grouping can be conducted in a semi-supervised manner. This will enable users to guide the

grouping process using domain knowledge so that network clustering accuracy can be further boosted. Extensive experimental

evaluations on a variety of synthetic and real datasets demonstrate the effectiveness and scalability of the proposed method.

Index Terms—Multi-network clustering, network grouping, non-negative matrix factorization

Ç

1 INTRODUCTION

NETWORK (or graph) clustering is a fundamental prob-
lem to discover closely related objects in a network. In

many emerging applications, multiple networks are gener-
ated from different conditions or domains, such as gene co-
expression networks collected from different tissues of
model organisms [1], co-author networks built in different
academic conferences [2], social networks generated at dif-
ferent time points [3], etc. These applications drive the recent
research interests to joint clustering of multiple networks,
which has been shown to significantly improve the cluster-
ing accuracy over single network clusteringmethods [4].

The key superiority of multi-network clustering methods
is to leverage the shared clustering structure across all net-
works, since a consensus clustering structure is more robust
to the incompleteness and noise in individual networks. For
example, multi-view network clustering methods [4], [5],
[6] work on multiple representations (views) of the same set

of data objects. Different views can provide complementary
information on the underlying data distribution. Multi-
domain network clustering methods [7], [8] integrate net-
works of different sets of data objects, and uses the map-
pings between objects in different networks to penalize
inconsistent clusterings.

To be successful, the existing multi-network clustering
methods typically assume different networks share a consen-
sus clustering structure. This very basic assumption, how-
ever, is too simplified to real-world applications. Consider an
important bioinformatics problem, the gene co-expression
network clustering [1], [9]. In a gene co-expression network,
each node is a gene and an edge represents the functional
association between two connected genes. To enhance perfor-
mance, we can use multiple gene co-expression networks
collected in multiple tissues. However, genes have tissue-
specific roles and often form tissue-specific interactions [10],
[11]. The same set of genes may form a cluster (e.g., a func-
tional module or gene pathway) in similar tissues but not in
others. Thus when we use such networks collected in differ-
ent tissues, we cannot simply assume they form similar clus-
tering structures.

In this paper, we study a novel and generalized problem
where we cannot simply assume the given networks share a
consensus clustering structure. Consider the six networks in
Fig. 1, they may represent gene co-expression networks
from different tissues. Clearly, they do not share a common
clustering structure. For example, nodes {1, 2, 3} form a clus-
ter in network A but are in three different clusters in net-
work C. However, by a visual inspection, we can partition
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these networks into three groups, i.e., {A, B}, {C, D} and {E,
F}, since {A, B} share an underlying clustering structure, and
so do {C, D} and {E, F}. This is practically reasonable. For
example, a set of similar tissues can share many similar
gene clusters so that similar functions can be supplied. As
another example, consider the co-author networks of differ-
ent research areas [2]. Similar areas usually attract many
similar author clusters (e.g., research sub-communities).
Therefore, an ideal method to cluster this collection of net-
works should be able to (1) automatically detect network
groups such that networks in the same group share a com-
mon clustering structure, and (2) enhance clustering accu-
racy by leveraging group-wise consensus structures.

However, real-life networks are often diverse, noisy and
incomplete. Even a group of similar networks may not have
exactly the same clustering structure. Instead, they may
only share a subset of their clusters and the shared clusters
may only partially match. In Fig. 1, networks {C, D} only
share two clusters {1, 7, 6} and {2, 5, 8}, and other nodes are
irrelevant. Therefore, to effectively group together some
networks, an ideal method should identify a subset of clus-
ters that are common among these networks. This is a novel
and non-trivial challenge. The existing multi-network clus-
tering methods either assume all clusters are common [4],
[5], [6] or simply enhance common clusters without identi-
fying them [1], [7], [8] thus cannot tackle this problem.

In this paper, we propose a novel method COMCLUS to
address these challenges. Briefly, COMCLUS is novel in treating
node clusters as features of networks and grouping together
networks sharing the same feature subspace (i.e., a common
subset of clusters). This is inspired by the field of subspace
clustering [12], which aim to cluster high-dimensional vector
data such that each cluster is associated with a relevant fea-
ture subspace. In COMCLUS, network grouping and common
cluster detection can mutually reinforce each other. Correctly
grouping networks sharing a common clustering structure
can resolve ambiguity hence refine detected common clus-
ters. Correctly detecting common clusters can reduce the pos-
sibility that a network goes to awrong group.

Furthermore, when prior knowledge on how to group
networks is available, COMCLUS can effectively leverage it
and further boost network clustering accuracy. This is espe-
cially desirable when users have domain knowledge that can
guide the grouping procedure. One common knowledge
form can be the constraints saying which networks should

be grouped together andwhich networks should be in differ-
ent groups. Another form can be the similarities between
different networks indicating how similar each pair of net-
works are. In this paper, we consider both forms of prior
knowledge and extendCOMCLUS to a semi-supervised setting
in a principledmanner.

In summary, the contributions of this paper are listed as
follows.

� We study a novel multi-network clustering problem,
where the goal is to enhance clustering accuracy by
automatically grouping networks sharing a common
clustering structure. This is different from some
existing community detection approaches [13], [14],
which aim to identify clusters that occur consistently
in multiple networks, but not to improve the cluster-
ing accuracy (See Section 2 for a detailed discussion).

� We propose a new method COMCLUS to address the
novel challenges. COMCLUS is novel in employing the
idea of feature subspace learning for joint multi-
network grouping and clustering.

� We extend COMCLUS to a semi-supervised setting
such that the prior knowledge on network grouping
can be effectively incorporated to further enhance
network clustering accuracy.

� We develop efficient optimization algorithms to both
of the unsupervised and semi-supervised problems.
A solid theoretical analysis on the algorithmic con-
vergence and complexity is also provided.

� We perform extensive experiments on synthetic
datasets as well as a variety of real-life datasets,
including newsgroup dataset, social networks, col-
laboration networks and biological interaction net-
works. The results demonstrate the effectiveness and
scalability of the proposed method.

The rest of the paper is organized as follows. Section 2
summarizes the related work. Section 3 describes the prob-
lem. Section 4 presents the COMCLUS algorithm and its theo-
retical analysis. Section 6 details how to leverage prior
knowledge. Section 7 presents the experimental evaluations.
Section 8 gives the concluding remarks.

2 RELATED WORK

There are several bodies of approaches developed for multi-
network clustering. Traditional multi-view clustering is
among the most popular ones [4], [5], [6]. In these methods,
views can be either networks or data-feature matrices about
the same set of objects. Ensemble clustering [15], [16] is highly
related to multi-view clustering, but it does not jointly cluster
multiple data views, but aims to find an agreement of individ-
ual clustering results. More recently, methods on multi-
domain network clustering [7], [8] were proposed to integrate
networks about different sets of objects by cross-network
object mapping relationships. All these methods are based on
a simplified assumption that multiple views or networks
share a single consensus clustering structure.

Multiple networks can also be represented by the tensor
model. However, existing tensor decomposition methods,
such as CP and Tucker decompositions [17], are good for
co-clustering multiple matrices [18] but are not designed for
network data where two modes of the tensor are symmetric.

Fig. 1. An example of six networks. These networks can be grouped into
{A, B}, {C, D}, and {E, F} according to their clustering structures.
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Moreover, tensor decomposition also limits all networks to
share a single common underlying clustering structure.

Evolutionary clustering approaches [3], [19] work only
on temporally ordered multi-network. These methods
assume two consecutive networks have consistent cluster-
ing structures but the clustering structures can gradually
vary in a long-term. The goal of such methods is to enhance
clustering accuracy but they cannot be applied on general
multi-network, nor to solve our problem.

Some methods are developed to detect communities in
multi-layer networks [13], [14], [20], [21], [22], where each
layer is a distinct network. All layers are about the same set
of objects but have different topologies. These methods aim
to identify communities that are consistent in some layers,
not to enhance clustering accuracy by using consensus and
common clustering structure. Thus they have a different
goal from us (as well as the approaches mentioned above)
and cannot be applied to solve our problem.

In [1], a method NONCLUS is developed to cluster multiple
networks with multiple underlying clustering structures. The
problem studied in [1] is markedly different from ours. In [1],
the problem is to enhance clustering accuracy by using the
network group information that is already known. In practice,
however, such network group information may not be avail-
able beforehand. ThusNONCLUS can neither identify common
clusters among networks nor group networks automatically
through their different clustering structures.

Note that our work is different from subspace clustering
[12], which is motivated by the observation that, in high-
dimensional vector data, irrelevant features may obfuscate
clustering structure when using full-space clustering meth-
ods. Its goal is to discover meaningful clusters associated
with feature subspace projections. It is also worth to men-
tion the so-called multi-view subspace clustering [23]. It is
highly related to subspace clustering but not the multi-view
clustering mentioned above. Its goal is to find multiple clus-
tering results of the same vector-space data such that differ-
ent results are associated with different subspaces of the
data features. A clustering result is a “view” of the data. All
these methods neither study data represented by multiple
views as mentioned above nor network data.

3 THE PROBLEM

Let Y ¼ fAð1Þ; . . . ;AðgÞg be the g given member networks. Each
network is represented by its adjacency matrix AðiÞ 2 R

ni�niþ ,
where ni is the number of nodes in AðiÞ. Let VðiÞ represents
the set of nodes in AðiÞ, and IðijÞ represents the set of com-
mon nodes between AðiÞ and AðjÞ, i.e., IðijÞ ¼ VðiÞ \ VðjÞ. In
Fig. 1, the common nodes between member networks A and
C are {1, 2, 3, 6, 7, 8}.

A network group YðpÞ is a subset of Y such that networks in
YðpÞ share a common underlying clustering structure. In this
paper, we consider each network to belong to one group.

That is, if there are k network groups, then [kp¼1YðpÞ ¼ Y, and
for any p 6¼ q, YðpÞ \ YðqÞ ¼ ;. A more general scenario could
allow each network to belong to more than one groups, in
which analyzing shared common clustering structure is
more complicated. As an initial work considering network
grouping, we focus on the first case and leave the general
case as a future study. In Fig. 1, the six networks can be
grouped as {A, B}, {C, D} and {E, F}.

The member networks in the same group share a set of
common clusters. In this paper, we consider any two clusters
from two different networks as common clusters if they are
about the same subset of nodes and they form dense clus-
ters in their respective networks. These clusters are used as
features to characterize each network group and distinguish
one group from another. In Fig. 1, the common clusters of
network group {C, D} are clusters {1, 7, 6} and {2, 5, 8}.

Our goal is to simultaneously group and cluster the
given member networks fAðiÞggi¼1, such that (1) the member
networks are partitioned into k groups with each group
sharing a common set of clusters; and (2) the common clus-
ters in each network group are identified and their accura-
cies are enhanced. Note that we focus on finding non-
overlapping clusters, which is also the common setting of
the existing multi-view (domain) network clustering meth-
ods [1], [4], [5], [6], [7], [8]. Table 1 summarizes the impor-
tant symbols used in this paper.

4 THE COMCLUS ALGORITHM

In this section, we introduce COMCLUS, a novel method that
integrates NMF and metric learning [24] for jointly group-
ing and clustering multiple networks.

4.1 Preliminaries

Non-negative matrix factorization (NMF) [25] is widely used
for clustering. We adopt the symmetric version of NMF
(SNMF) [26] as the basic approach for clustering a single net-
work,whichminimizes the following objective function

LGðHÞ ¼
Xl
i;j¼1
ðBij � zi�zTj�Þ2 ¼ kB� ZZTk2F ; (1)

TABLE 1
Summary of Symbols

Symbol Description

AðiÞ the ith member network
V the network grouping indicator matrix
U the global latent factor matrix of all nodes
sðjÞ the centroid vector of network group j
S S ¼ ½sð1Þ; . . . ; sðkÞ� is the common cluster

indicator matrix
wðiÞ the cluster-level feature vector of AðiÞ.wðiÞp

indicates how likely the pth latent cluster will
appear in AðiÞ.

D
ðiÞ
W a diagonal matrix with diagonal values beingwðiÞ, i.e.,

D
ðiÞ
W ¼ diagðwðiÞÞ

W a stacked matrixW ¼ ½wð1Þ; . . . ;wðgÞ�
OðiÞ a mapping matrix between AðiÞ and

U.OðiÞðx; yÞ ¼ 1means the xth row of AðiÞ

and the yth row of U represent the same node;
OðiÞðx; yÞ ¼ 0 otherwise.

g the number of member networks
ni the number of nodes in AðiÞ
k the number of network groups
h the number of latent dimensions in U

Y the member networks Y ¼ fAð1Þ; . . . ;AðgÞg
YðpÞ the pth network group YðpÞ � Y
VðiÞ the set of nodes in AðiÞ
I ðijÞ the common node set IðijÞ ¼ VðiÞ \ VðjÞ
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where k � kF is the Frobenius norm, zi� 2 R1�r
þ is a r-dimen-

sional latent vector of node i, and Z ¼ ½zT1�; . . . ; zTl��T is the
factor matrix of B. An entry Zij indicates to which degree
the node i belongs to the cluster j.

4.2 Clusters as Network Features

Next, we develop a subspace SNMF method to learn the set
of clusters that can be used as features to characterize each
member network in fAðiÞggi¼1. Let V ¼ [gi¼1VðiÞ be the global
set of nodes in all member networks. In the SNMF, i.e.,
Eq. (1), each node i is represented in an r-dimensional latent
space by zi� for a single network. Given multiple networks
fAðiÞggi¼1, we aggregate their latent spaces into a single global
h-dimensional latent space, where h is the number of latent
dimensions. Then for each node x in V, it is represented by
a global latent vector ux� 2 R1�h

þ .
In Eq. (1), each entry Bij is approximated by the inner

product between zi� and zj�, where the full spaces of the
r-dimensional latent vectors zi� and zj� are used for approx-
imation. Since each dimension of zi� represents a cluster, all
clusters in network B are used for the approximation. In our
method, to learn which subset of clusters appearing in a
network AðiÞ, when approximating an entry AðiÞxy , we only
use a subspace (i.e., a subset of dimensions/clusters) of the
global h-dimensional latent vectors ux� and uy�.

Specifically, for each network AðiÞ, we define a metric
vector wðiÞ 2 Rh�1

þ whose entry wðiÞp indicates the impor-
tance of the global latent dimension p to network AðiÞ.
Therefore, when we approximate an entry AðiÞxy , we use
ux�diagðwðiÞÞuT

y�, where diagðwðiÞÞ is a diagonal matrix with
the diagonal vector as wðiÞ. Let D

ðiÞ
W ¼ diagðwðiÞÞ, using

square loss function, we can collectively approximate AðiÞ

by minimizing

Xni
x;y¼1
ðAðiÞxy � ux�D

ðiÞ
WuT

y�Þ2; (2)

where ni ¼ jVðiÞj is the number of nodes in AðiÞ.
In general, different networks can have different node

sets VðiÞ, thus having different sizes. Let n ¼ jVj. We define
for each network AðiÞ a mapping matrix OðiÞ 2 f0; 1gni�n
such that OðiÞðx; yÞ ¼ 1 if node x in VðiÞ and node y in V rep-
resent the same object. Let U ¼ ½uT

1�; . . . ;u
T
n��T 2 Rn�h

þ be a

global latent factor matrix, then we can obtain the matrix form
of Eq. (2) as following:

kAðiÞ � ðOðiÞUÞDðiÞW ðOðiÞUÞTk2F : (3)

Then for all member networks, we have a loss function as

LAðU; fDðiÞW ggi¼1Þ ¼
Xg
i¼1
kAðiÞ � ðOðiÞUÞDðiÞW ðOðiÞUÞTk2F : (4)

In Eq. (4), all member networks share the same latent fac-
tor matrix U. When approximating AðiÞ, a sub-block of U is
used. Fig. 2 illustrates the idea. In this process, OðiÞ selects
the rows of U for AðiÞ, which corresponds to the selection of
node set VðiÞ from V. DðiÞW selects the columns of U for AðiÞ,
which corresponds to the selection of latent subspace (i.e.,
clusters). Then, we can consider OðiÞUðDðiÞW Þ

1
2 as the sub-

block selected for approximatingAðiÞ. In Fig. 2, shaded areas
of the sub-blocks represent columns with large entries, as
selected by D

ðiÞ
W . Therefore, if two networks AðiÞ and AðjÞ

share many nodes, they will have large overlap in the rows
of U. If AðiÞ and AðjÞ further show similar clustering struc-
tures, it is highly possible that they will share similar
columns in U, i.e., similar D

ðiÞ
W and D

ðjÞ
W . This is because

using similar sub-blocks of U would achieve good approxi-
mations for both AðiÞ and AðjÞ at this time. On the other
hand, if AðiÞ and AðjÞ have dissimilar clustering structures,
using similar subspaces of U (i.e., similar sub-blocks of U)
to approximate both AðiÞ and AðjÞ will result in large loss
function value. By minimizing LA in Eq. (4), D

ðiÞ
W and D

ðjÞ
W

then tend to lie in separate subspaces of U.
In Eq. (1), the latent dimensions (i.e., columns) of Z repre-

sent clusters of nodes. Thus in our subspace SNMF, the col-
umns of U represent latent clusters. Each wðiÞ (recall
D
ðiÞ
W ¼ diagðwðiÞÞ) is a cluster-level feature vector where an

entry wðiÞp indicates the selection the pth latent cluster for
network AðiÞ. Therefore, wðiÞ carries the clustering structure
information of network AðiÞ and can be used as a feature for
network grouping.

Discussion. The existing NMF or spectral based multi-net-
work/view clustering methods usually either define a latent
factor matrix for each network and require all factor matri-
ces to be consistent [1], [4], [6], [7], or use the same factor
matrix for all views [5]. In our subspace SNMF, however,
different networks use different sub-blocks of a global latent
factor matrix U. The sub-blocks can be (partially) shared by
different networks, depending on whether the networks
share common clusters. Thus our method is different from
the existing ones by automatically determining whether net-
works share common clusters. If they do, common clusters

can be automatically identified (by fDðiÞW ggi¼1) for grouping
purpose and their accuracies are then enhanced.

Also note that subspace SNMF in Eq. (4) is different
from the symmetric non-negative matrix tri-factorization
(SNMTF) [26]. SNMTF is used for single network clustering
and its middle factor matrix has no constraints. In contrast,
subspace SNMF is designed for multi-network clustering

and fDðiÞW ggi¼1 are diagonal and non-negative. Thus each D
ðiÞ
W

is positive semi-definite with diagonal entries representing
weights for dimension selection, similar to a metric matrix
in metric learning [24]. In this view, subspace SNMF is a

Fig. 2. An illustration of the subspace-based SNMF for two networks.

OðiÞ (i ¼ 1; 2) is a binary mapping matrix to align nodes between AðiÞ and
U.D

ðiÞ
W is a diagonal matrix to select important columns (i.e., clusters) for

AðiÞ. We can considerOðiÞUðDðiÞW Þ
1
2 as the sub-block selected for approxi-

mating AðiÞ. Here, shaded areas represent columns with large entries,

as selected byD
ðiÞ
W.
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novel method combining SNMF and metric learning
approaches, as desired for solving the problem of learning
clusters as network features.

4.3 Regularization on Network Node Sets

In this section, we develop a regularizer to encode the simi-
larity between node sets of different networks. The intuition
is based on the following observation. Let us consider a spe-
cial case when two networks Að1Þ and Að2Þ share few or no
nodes, which makes Oð1Þ and Oð2Þ different. Their selected
sub-blocks from U will have few overlap and be separated
vertically. Using the example in Fig. 2, in this case, the lower
sub-block may lie vertically below the higher one. At this
time, Að1Þ and Að2Þ can be well approximated by the two dif-
ferent sub-blocks of U no matter wð1Þ and wð2Þ are similar or
not. Thus it is likely that wð1Þ and wð2Þ are similar while Oð1Þ

and Oð2Þ are different. However, this is counterintuitive
since two networks having few common nodes should be
considered dissimilar because they are about different rela-
tionships of different node entities. Thus we expect them to
have dissimilar structural feature vectors wð1Þ and wð2Þ. To
address this issue, we employ the regularization on the net-
work node set similarity. The details are shown in the
following.

First, we measure the similarity between wðiÞ and wðjÞ by
their inner product ðwðiÞÞTwðjÞ. To penalize the similarity
when AðiÞ and AðjÞ share few nodes, we propose the follow-
ing penalty function

LFðfwðiÞggi¼1Þ ¼
Xg
i;j¼1

FFijðwðiÞÞTwðjÞ; (5)

where FFi;j is the penalty strength on ðwðiÞÞTwðjÞ. A proper
FFi;j should have a high value when jIðijÞj is small and a low
value when jI ðijÞj is large. Thus we use a logistic function1

as following to measure the penalty strength

FFij ¼
1

1þe��þ2�JaccardðVðiÞ ;VðjÞÞ
i 6¼ j

0 i ¼ j;

(
(6)

where JaccardðVðiÞ;VðjÞÞ ¼ jVðiÞ\VðjÞjjVðiÞ[VðjÞj, � (� > 0) is a parameter

that can be used to control the range of FFij. From Eq. (6),

the largest possible range of FFij is ½0; 1�. To make the value
of FFij has sufficiently large varying space, we can choose �

to make the range of FFij approximate ½0; 1�. For example, we

set � ¼ log ð999Þ, then FFij 2 ½10�3; 1� 10�3�. There are other

reasonable � values, but they have minor impacts, since

they do not change the most important role of FFij, i.e., pen-

alty strength, as defined in Eq. (6).

Let W ¼ ½wð1Þ;wð2Þ; . . . ;wðgÞ� 2 R
h�g
þ and FF 2 R

g�g
þ whose

ði; jÞth entry is FFij. Then we can rewrite Eq. (5) by

LFðfwðiÞggi¼1Þ ¼ LFðWÞ ¼ kFF 	 ðWTWÞk1; (7)

where 	 is the entry-wise product, and k � k1 is the ‘1 norm.

4.4 Network Grouping

In order to assign member networks into k groups while
detecting common clusters within each network group, we
define k centroid vectors fsðjÞgkj¼1, where sðjÞ 2 Rh�1

þ
(1 
 j 
 k). The intuition is to enforce member networks in
the same group to share the same centroid vector. That is, if
network AðiÞ belongs to group YðjÞ, we want to minimize
the difference kwðiÞ � sðjÞk2F . Therefore, sðjÞ represents the
consistent cluster feature subspace of member networks in
group YðjÞ and large entries in sðjÞ indicate the shared latent
dimensions, i.e., common clusters, in network groupYðjÞ.

Let vi� 2 f0; 1g1�k be the group membership vector of
AðiÞ, i.e., vij ¼ 1 if AðiÞ 2 YðjÞ and vij ¼ 0 otherwise. Also
denote S ¼ ½sð1Þ; . . . ; sðkÞ�. Then we can collectively minimize
the difference between the cluster feature vectors and the
centroid vectors by minimizing

LRðS; fvi�ggi¼1; fwðiÞggi¼1Þ ¼
Xg
i¼1
kwðiÞ � SvTi�k2F : (8)

Equivalently, let V ¼ ½vT1�; . . . ; vTg��T , we have

LRðS;V;WÞ ¼ kW� SVTk2F : (9)

Eq. (9) can be explained as a co-clustering of W by NMF
[25], [27]. Thus we can relax the f0; 1g constraint on V such
that V 2 R

g�k
þ to avoid the mixed integer programming [28],

which is difficult to solve. Then Vij indicates to which
degree network AðiÞ belongs to network group YðjÞ.

4.5 The Unified Model

Combining the loss function of subspace SNMF in Eq. (4),
the penalty function in Eq. (7) and the loss function of net-
work grouping in Eq. (9), we obtain a unified objective func-
tion for joint multi-network grouping and clustering

LðU;V;S;WÞ ¼ LAðU; fDðiÞW ggi¼1Þ þ aLFðWÞ
þ bLRðS;V;WÞ; (10)

where a and b are two parameters controlling the importances
of the penalty function and network grouping, respectively.
Note thatW and fDðiÞW ggi¼1 are two different representations of
the same variables, we keep both of them in our algorithm.

Formally, we forlumate a joint optimization problem as

min
U;V;S;W

LðU;V;S;WÞ þ rðkVk1 þ kUk1 þ kSk1Þ
s.t. U � 0; V � 0; S � 0;

W � 0; D
ðiÞ
W ¼ diagðwðiÞÞ; 81 
 i 
 g:

(11)

In Eq. (11), we add ‘1 norms on U, V and S to provide the
option on sparseness constraints. This is useful since each
node (member network) usually belongs to a small number
of clusters (network groups) [27], making U (V) sparse, and
the networks in each network group usually do not have
many clusters in common, making S sparse. Here, r is a
parameter controlling the sparseness. Typically, a larger r

enforces more entries in fU;V;Sg to approach zero values.
Moreover, r provides the stability of our learning algorithm
in Eqs. (12), (13), and (14), as will be seen in Section 5.1.

Example. Consider the example in Fig. 1. By minimizing
Eq. (11), we learnW and S as the following:

1. Other functions can also be used. We choose logistic function
because of the easy control of its range and shape.
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W ¼

0 0 :04 :05 :01 0

0 0 :02 :02 0 :02

0 0 :06 :06 0 0

0 0 0 0 :14 :09

:27 :24 0 0 0 0

:21 :12 0 0 0 0

0 0 0 0 :18 :11

2
666666666664

3
777777777775
; S ¼

0 :17 :01

0 :06 :02

0 :21 0

0 0 :33

:76 0 0

:51 0 0

0 0 :41

2
666666666664

3
777777777775
:

InW, each column is a h-dimensional cluster-level feature of a
network (ordered from A to F), where h ¼ 7. For {A, B}, wA

and wB share two latent dimensions representing the two
shared clusters. Similarly, {C, D} and {E, F} share three and two
clusters, respectively. Moreover, networks in different groups
have almost orthogonal features since they have different
underlying clustering structures. Each column of S is a cen-
troid vector of a network group. As discussed in Section 4.4,
large entries in S indicate common clusters. For example, in
the results, the largest two entries in the second column of S,
i.e., 0.17 and 0.21, correspond to the clusters {1, 7, 6} and {2, 5,
8}, which are common clusters in {C, D}. This demonstrates the
capability of ourmethod to identify common clusters.

In Fig. 1, networks {E, F} have different nodes from
those in {A, B, C, D}. This is the special case discussed in
Section 4.3. The W shown above is learned using LF (i.e.,
Eq. (7)). The learned Wwithout using LF is shown below

W ¼

0 :09 0 0 :17 0

0 0 :20 :24 0 :18

:32 :17 0 0 :21 :04

0 0 :23 :25 0 :19

0 0 :25 :28 0 :20

0 0 :13 :14 0 :11

:50 :30 0 0 :41 :06

2
666666666664

3
777777777775
:

Here wE and wF can share the same subspace with other
networks which makes the features less discriminative and
not effective to group networks. This shows the importance
to consider node set information (i.e., LF) in our model.

5 LEARNING ALGORITHM

Since the objective function in Eq. (11) is not jointly convex,
we optimize it by an alternating minimization approach,
i.e., the objective function is alternately minimized w.r.t.
one variable while fixing others. This process repeats until a
stationary point is achieved. Next, we provide the solutions
to the subproblems w.r.t. U, V, S andW, respectively.

5.1 Solutions to U;V;Sf g
Considering the non-negative constraints, we use the auxil-
iary function approach [25] to derive iterative updating
rules for U, V and S, which are summarized in Theorem 1.
A theoretical analysis will be provided in Section 5.3.

Theorem 1 (Auxiliary Function of LUðUÞ). Fixing other
variables, alternately updating U, V and S according to
Eqs. (12), (13), and (14) monotonically decreases the value of
the objective function in Eq. (11) until convergence

U U 	
�
4
Pg

i¼1 Q
ðiÞUD

ðiÞ
W

4
Pg

i¼1 R
ðiÞ þ r

�1
4

(12)

V V 	
�

2bWTS

2bVSTSþ r

�1
2

(13)

S S 	
�

2bWV

2bSVTVþ r

�1
2

; (14)

where RðiÞ ¼ ðOðiÞÞTOðiÞUD
ðiÞ
WUT ðOðiÞÞTOðiÞUD

ðiÞ
W and QðiÞ ¼

ðOðiÞÞTAðiÞOðiÞ.
In Eqs. (12), (13) and (14), 	, ½��½��, ð�Þ

1
2 and ð�Þ14 are entry-wise

operators.

5.2 Solution toW

In our objective function in Eq. (11), we have two represen-
tations W and fDðiÞW ggi¼1 for the same variables, both of
which will be kept in our algorithm. Considering the diago-
nal constraints on fDðiÞW ggi¼1, we optimize fDðiÞW ggi¼1 (i.e., W)
using the efficient coordinate descent method [27], which
gives the following updating formula that solves each sub-
problem optimally

ðDðiÞW Þpp  max ðDðiÞW Þpp �
z1
z2

; 0

� �

Wpi  ðDðiÞW Þpp;
(15)

where ð�Þpp (ð�Þpi) is the ppth (pith) entry of a matrix, and

z2 ¼ ðÛT ÛÞ2pp þ b

z1 ¼ ðÛT ÛD
ðiÞ
W ÛT ÛÞpp � ðÛTAðiÞÛÞpp þ awp�ff�i

þ bðDðiÞW Þpp � bsp�vTi�:

(16)

Here, Û ¼ OðiÞU, wp� is the pth row of W, ff�i is the ith
column of FF, sp� is the pth row of S, vi� is the ith row
of V.

Algorithm 1 summarizes our alternating minimization
algorithm according to the solutions of U, V, S andW.

Algorithm 1. COMCLUS

Input:member networks fAðiÞggi¼1; mapping matrices
fOðiÞggi¼1; number of network groups k; latent dimen-
sion h; parameters a, b and r

Output: U, V, S andW
1 Normalize fAðiÞggi¼1 by Frobenius norm;
2 Initialize U, V, S,Wwith random values within ð0; 1�;
3 Construct FF according to Eq. (6);
4 repeat
5 repeat
6 Update U by Eq. (12);
7 Update V by Eq. (13);
8 Update S by Eq. (14);
9 until Convergence
10 for i 1 to g do
11 for p 1 to h do
12 Update ðDðiÞW Þpp by Eq. (15);
13 UpdateWpi  ðDðiÞW Þpp;
14 end
15 end
16 until Convergence
17 return U, V, S andW.
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5.3 Algorithm Analysis

5.3.1 Convergence Analysis

In the next, we first provide the convergence analysis of the
updating rule of U in Eq. (12) using the auxiliary function
approach [25]. Then we analyze the convergence of Algo-
rithm 1. The proofs for the convergences of V in Eq. (13) and
S in Eq. (14) are similar and hence are omitted for brevity.

Definition 1. [25] A function Zðu; ~uÞ is an auxiliary function
for a given function LðuÞ if the conditions Zðu; ~uÞ � LðuÞ and
Zðu; uÞ ¼ LðuÞ are satisfied.

Lemma 1. [25] If Z is an auxiliary function for L, then L is non-
increasing under the update uðtþ1Þ ¼ arg minu Zðu; uðtÞÞ.
The following theorem gives the auxiliary function for

the objective function in Eq. (11) w.r.t. U.

Theorem 2. Let LUðUÞ denote the sum of all terms in the objec-
tive function in Eq. (11) that contains U, then the following
function

ZðU; ~UÞ ¼ �2
X
i¼1

X
prtq

QðiÞpr ~UrtðDðiÞW Þtq ~Upq 1þ log
UrtUpq

~Urt
~Upq

 !

þ
X
i¼1

X
pq

~RðiÞpq
U4

pq

~U3
pq

þ r

4

X
pq

U4
pq þ 3~U4

pq

~U3
pq

;

(17)
where

QðiÞ ¼ ðOðiÞÞTAðiÞOðiÞ
~RðiÞ ¼ ðOðiÞÞTOðiÞ ~UD

ðiÞ
W ð~UÞT ðOðiÞÞTOðiÞ ~UD

ðiÞ
W ;

is an auxiliary function for LUðUÞ. It is also a convex function
in U and its global minimum is

U ¼ ~U 	
�
4
Pg

i¼1 Q
ðiÞ ~UD

ðiÞ
W

4
Pg

i¼1 ~R
ðiÞ þ r

�1
4

: (18)

Proof. The formal proof can be found in the Supplementary
Material, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TKDE.2017.2771762. tu
Next we show the convergence of updating U by Eq. (12)

in Theorem 3.

Theorem 3. Convergence of Eq. (12). When other variables are
fixed, updatingU according to Eq. (12) monotonically decreases
the value of the objective function in Eq. (11) until convergence.

Proof. From Theorem 2, the global minimum in Eq. (18) of
the auxiliary functionZðU; ~UÞ is consistent with the updat-
ing rule ofU in Eq. (12). Therefore, each timeU is updated
using the global minimum of the auxiliary function
ZðU; ~UÞ. According to Definition 1 and Lemma 1, at any
iteration k � 0 during updatingU, we have

LUðUðkÞÞ ¼ ZðUðkÞ;UðkÞÞ � ZðUðkþ1Þ;UðkÞÞ � LUðUðkþ1ÞÞ;
where UðkÞ denotes the updated U at kth iteration. Thus
LUðUÞ monotonically decreases. Note that LUðUÞ is the
objective function in Eq. (11) w.r.t. U. Since the objective

function in Eq. (11) is bounded below by 0, the updating
of Uwill converge. tu
Similarly, the convergence of Eqs. (13) and (14) can be

proved. Therefore, in Algorithm 1, alternately updating U,
V and S by Eqs. (12), (13) and (14) monotonically decreases
the value of the objective function in Eq. (11). The coordi-
nate descent method for updating W also monotonically
decreases the value of the objective function in Eq. (11).
Since the objective function in Eq. (11) is bounded below by
0, Algorithm 1 is guaranteed to converge.

5.3.2 Cluster Membership Inference

After obtaining U, V, S, and W, we can infer the network
group of AðiÞ by j� ¼ arg maxj Vij. We can infer the cluster
membership of node x in network AðiÞ by p� ¼ arg maxp
ðOðiÞUD

ðiÞ
W Þxp. Also, for a node x, we can infer its membership

to a common cluster shared in network group j by p� ¼
arg maxp ðUdiagðsðjÞÞÞxp, where sðjÞ is the centroid vector of
network group j. More uniquely, we can sort the values in sðjÞ

in descending order to identify the most common clusters in
network group j.

5.3.3 Complexity Analysis

Let N and M be the maximal number of nodes and edges in
any member network. Based on Eq. (12), with proper order
of multiplication, updating U requires OðgðMhþNh2ÞÞ.
Based on Eqs. (13) and (14), updating V and S both require
OðghkÞ. Based on Eq. (15), updating fDðiÞW ggi¼1 requires
OðgðMhþNh2ÞÞ. Thus the overall time complexity of our
algorithm is OðIgðMhþNh2 þ hkÞÞ where I is the total
number of iterations before convergence. In practice, k is
much smaller than N and M, h is usually a small constant.
Therefore, the actual time complexity can be denoted as
OðIgðM þNÞÞ. In real applications, fAðiÞggi¼1 are often
sparse, whereM is almost linear w.r.t. N , hence our method
is efficient. The experimental results show that our algo-
rithm is almost linear w.r.t. g and N , respectively.

6 LEVERAGING PRIOR KNOWLEDGE

In real-life applications, we may have prior knowledge on
the member networks that can help enhance performance.
Here we consider two common types of prior knowledge
that can be easily incorporated into our model.

6.1 Semi-Supervised Network Grouping

Semi-supervised clustering methods [29], [30] can dramati-
cally improve clustering quality by exploring both labelled
and unlabelled data. Here we discuss how to extend COM-

CLUS to a novel semi-supervised problem setting, where the
supervision is enforced on network grouping, in contrast to
that on clustering in the above mentioned methods.

Following the convention, suppose we have a set of pair-
wise must-link constraintsM, where ði; jÞ 2 M implies that
networks i and j should be in the same group, and a set of
cannot-link constraints C, where ði; jÞ 2 C implies that net-
works i and j should be in different groups. Intuitively, for
any pair ði; jÞ 2 M (ði; jÞ 2 C), the group assignments of net-
works i and j should be similar (dissimilar). We measure
the network group assignment similarity by inner product,
i.e., vi�vTj�, and penalize the following square loss function
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LQQðfvi�ggi¼1Þ ¼
X
i;j2M

ðuij � vi�vTj�Þ2 þ
X
i;j2C
ðvi�vTj�Þ2;

where uij is a large value (e.g., uij ¼ 1) to enforce the similar-
ity between vi� and vj�.

Let S ¼M[ C. We define VV 2 f0; 1gg�g such that VVij ¼ 1
if ði; jÞ 2 S, and QQ 2 f0; uijgg�g such that QQij ¼ uij if
ði; jÞ 2 M. Then the above loss function becomes

LQQðVÞ ¼ kVV 	 ðQQ�VVT Þk2F :
LQQ can be incorporated into our model by replacing L in

Eq. (11) by

LSemiðU;V;S;WÞ ¼ LðU;V;S;WÞ þ LQQðVÞ: (19)

6.2 Leveraging Similarity Between Networks

When we have prior knowledge about the pairwise similar-
ity between member networks, we can form a similarity
matrix G 2 Rg�g with Gij indicating the similarity between

the member networks AðiÞ and AðjÞ. Then we can utilize
such information to partition the member networks. In our
model, we only need to replace L in Eq. (11) by

LSimðU;V;S;WÞ ¼ LðU;V;S;WÞ þ LGðVÞ; (20)

where LGðVÞ is the same as the loss function in Eq. (1)
except that B is replaced byG and Z is replaced by V.

The objective functions using Eqs. (19) and (20) can be
optimized similarly as before in Algorithm 1, except when
updating V, instead of using Eq. (13), we use

V V 	
�

2bWTSþ 4PP

2bVSTSþ 4LLþ r

�1
4

; (21)

where PP ¼ ðVV 	QQÞV, LL ¼ ðVV 	 ðVVT ÞÞV for LSemi, and
PP ¼ GV, LL ¼ VVTV for LSim.

Discussion. With the priori knowledge, users can guide
COMCLUS to find common clusters that best fit the desired
network groups. Note since Eq. (9) can be explained as a co-

clustering ofW by NMF, fsðjÞgkj¼1 can be considered as k dif-

ferent row entity clusters of W. Thus Eq. (9) encourages
fsðjÞgkj¼1 to be dissimilar to each other. Hence COMCLUS

tends to find clusters that are common within a network
group but are rare in other groups, like features that charac-
terize each network group.

7 EXPERIMENTAL RESULTS

In this section, we evaluate the performance of COMCLUS on
a variety of synthetic and real-world datasets.

7.1 Effectiveness Evaluation

We first evaluate the effectiveness of COMCLUS. We consider
multiple networks with different clustering structures and
apply COMCLUS to see whether network grouping and clus-
tering can enhance each other.

7.1.1 Simulation Study

We first evaluate the clustering accuracy of COMCLUS using
synthetic datasets. The member networks and network
groups are generated as follows. Suppose we have k net-
work groups. For each network group, we first generate an

underlying clustering structure with dc clusters (30 nodes
per cluster). The k underlying clustering structures have the
same set of nodes but different node cluster memberships.
Then member networks are generated from each underly-
ing clustering structure. Based on an underlying clustering
structure, each member network is appended with dn irrele-
vant (“noisy”) clusters (30 nodes per cluster). The noisy
clusters of different networks have different nodes. Thus
they represent clusters that are not common in any groups.
Then, we can evaluate whether the proposed method can
effectively identify common clusters from noisy clusters.

Fig. 3a shows an example clustering structure using
dc ¼ 3 and dn ¼ 3, where non-zero entries are set to 1. To
embed noises when generating a member network, we ran-
domly flipv0 fraction of “1” entries in thematrix of its under-
lying clustering structure to “0”, and v1 fraction of “0”
entries to “1”. To make networks of different sizes, we ran-
domly remove or add " fraction of nodes in the matrix from
the previous step. " follows normal distribution withmean m

and standard deviation s and its value is set between 0 and
1. Thus different networks will have different proportions of
nodes to be added or removed, depending on a specific value
of ", whosemean value is controlled bym.

In general, we want to generate synthetic networks that
are not too noisy (i.e., v1 is not too large) nor having too
dense clusters (i.e., v0 is not too small). Note v1 is usually
much smaller than v0 because there are significantly more
“0” entries than “1” entries in the matrix. A reasonable m is
a relatively small value so that not too many nodes are
removed or added. An example member network with a
reasonable parameter setting, v0 ¼ 80%, v1 ¼ 5%, m ¼ 0:1,
s ¼ 0:05, is shown in Fig. 3b, which contains 193 nodes.

Using this generation process, we generate two types of
synthetic datasets, both have k ¼ 5 network groups where
each group has 10 networks (thus 50 networks in total). In the
first dataset, dc ¼ 6 and dn ¼ 0. All member networks have
the same set of 180 nodes.v0 andv1 are set to 80 and 5 percent
respectively to simulate noise.We refer to this dataset asSyn-
View dataset. In the second dataset, dc ¼ 3 and dn ¼ 3. To
simulate noise, we set v0 ¼ 80%, v1 ¼ 5%, m ¼ 0:1, s ¼ 0:05.
Thus different networks have different node sets and sizes.
We refer to this dataset asSynNetdataset.Moreover, we gen-
erate 50 networks forming one network group, whose param-
eter setting is the same as SynView dataset except for k ¼ 1.
We refer to it as OneGroup dataset, which is used to under-
stand the effectiveness of COMCLUS in the conventional multi-
network setting.

Fig. 3. An illustration for synthetic dataset generation, as shown by net-
work adjacency matrices.
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We compare COMCLUS with the state-of-the-art methods,
including (1) SNMF [26]; (2) Spectral clustering (Spectral)
[31]; (3) Multi-view pair-wise co-regularized spectral clus-
tering (PairCRSC) [4]; (4) Multi-view centroid-based co-reg-
ularized spectral clustering (CentCRSC) [4]; (5) Multi-view
co-training spectral clustering (CTSC) [6]; (6) Tensor factori-
zation (TF) [17]; (7) multi-domain co-regularized graph
clustering (CGC) [7]; (8) NONCLUS [1]; and (9) Naive: a naive
approach that first groups member networks by clustering
them using the similarities between them and then applies
one of the above multi-view/domain clustering methods in
each network group that gives the best accuracy.

SNMFand spectral clusteringmethods can only be applied
on single networks. PairCRSC, CentCRSC and CTSC are
multi-view graph clusteringmethods and can only be applied
on OneGroup and SynView datasets. For TF, we use both CP
and Tucker decomposition and report the best performance
[17]. TF is similar to multi-view methods thus can only be
applied onOneGroup and SynViewdatasets. CGC is a recent
multi-domain graph clusteringmethod that can be applied on
SynNet dataset. NONCLUS and Naive can be applied on all
datasets given that the similarity between networks is avail-
able. To apply them, we generate a similaritymatrix for the 50
member networks using the same method described above
by setting v0 ¼ 80%, v1 ¼ 5%, m ¼ 0, s ¼ 0. The generated
similarity matrix allows to partition member networks into 5
groups.

The accuracies of common clusters are evaluated using
both normalized mutual information (NMI) and purity accu-
racy (ACC), which are standard evaluation metrics. Table 2
shows the averaged results of different methods over 100
runs. The NMIs and ACCs are averaged over all member net-
works. The parameters are tuned for optimal performance of
all methods.

From Table 2, we observe that COMCLUS achieves signifi-
cantly better performance than other methods on SynView

and SynNet datasets. The multi-view/domain clustering
methods, PairCRSC, CentCRSC, CTSC, TF and CGC, assume
all networks share the same underlying clustering structure
thus perform well on OneGroup dataset but are not able to
handle the other two datasets. NONCLUS andNaive differenti-
ate network clustering structures completely based on the
similarity between member networks, which makes them
sensitive to the noise in the similaritymatrix. In contrast, COM-

CLUS is able to automatically group networks based on their

shared clusters and use the grouping information to improve
the clustering of individual networks.

Fig. 4 shows the learned W matrices of COMCLUS. Recall
each column wðiÞ is a cluster-level feature vector of network
AðiÞ and a large entrywðiÞp indicates the selection of the latent
cluster p for AðiÞ. From the figure, we can observe COMCLUS

clearly detects 5 network groups (i.e., column groups) in
both datasets. There are 6 shared latent dimensions, i.e.,
common clusters, in each network group in the SynView

dataset and 3 shared latent dimensions in the SynNet data-
set. These results demonstrate that COMCLUS can effectively
group networks and correctly find common clusters in each
network group.

7.1.2 20Newsgroup Dataset

Next, we evaluate the clustering accuracy of COMCLUS using
the 20Newsgroup dataset.2 Here, the networks of docu-
ments are constructed as following.

We use 12 news groups of 3 categories, Comp, Rec and
Talk,3 corresponding to 3 underlying clustering structures,
each with 4 clusters (news groups). In this study, we gener-
ate 10 member networks from each category. Thus there are
30 member networks forming 3 groups corresponding to
the 3 categories. Each member network contains randomly
sampled 200 documents from the 4 news groups (50 docu-
ments from each news group) in a category. The adjacency
matrix of documents is computed based on cosine similarity
between the word frequencies of documents.

The common nodes in different member networks are
generated as follows. For any two networks from the same
category, a document in one network is randomly mapped
to a document with the same cluster label (e.g., comp.
graphics) in another network. For any two networks from
different categories, the documents are randomly mapped
with one-to-one relationship. We vary the ratio of common
nodes, g, from 0 to 1 to evaluate its effects.

For comparison, the single network clustering methods
SNMF and Spectral clustering are performed on individual
member networks. The widely used k-means clustering [32]
is also selected as a baselinemethod, it is applied on the origi-
nal document-wordmatrix instead of the network data. Note
that multi-view clustering methods PairCRSC, CentCRSC,
CTSC, and TF cannot be applied here since they require full
mapping of nodes between networks. We omit CGC since it
is very slow on tens of networks (see Section 7.3). To apply

TABLE 2
Clustering Accuracy on Three Types of Synthetic Datasets

Method
OneGroup SynView SynNet

NMI ACC NMI ACC NMI ACC

SNMF 0.4683 0.6769 0.4853 0.6900 0.3391 0.7659
Spectral 0.4519 0.6484 0.4723 0.6698 0.3145 0.7408
PairCRSC 0.9948 0.9933 0.3280 0.5437 � �
CentCRSC 0.9441 0.9659 0.6541 0.8155 � �
CTSC 0.9914 0.9897 0.4604 0.6587 � �
TF 1.0000 1.0000 0.4803 0.5431 � �
CGC 0.9729 0.9672 0.1291 0.3322 0.4498 0.7625
Naive 0.9897 0.9867 0.6834 0.8233 0.4692 0.7584
NONCLUS 0.9879 0.9943 0.5572 0.7320 0.3824 0.7454
COMCLUS 1.0000 1.0000 0.9764 0.9766 0.8605 0.9896

Fig. 4. The learned cluster-level feature matrices.

2. http://qwone.com/%7Ejason/20Newsgroups/
3. Comp: comp.graphics, comp.os.ms-windows.misc, comp.sys. ibm.

pc.hardware, comp.sys.mac.pc.hardware; Rec: rec.autos, rec. motor-
cycles, rec.sport.baseball, rec.sport.hockey; Talk: talk.politics.guns, talk.
politics.mideast, talk.politics.misc, talk.religion.misc.
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NONCLUS, we calculate the cosine similarity between the
overall word frequencies of member networks.

Fig. 5 shows the averaged NMI and ACC of common
clusters detected by different methods over 100 runs. In
Fig. 5, there are slight initial decreases of NMI and ACC of
different methods. This is because when common node ratio
g is very small, the sizes of the evaluated common clusters
are small. The small sizes may affect the evaluated accuracy.
However, when g is reasonably large, e.g., g � 0:3, the
results are less affected by cluster sizes, which will demon-
strate the general trends of different methods w.r.t. g. In
general, COMCLUS achieves better performance than other
methods. Note COMCLUS is better than NONCLUS although
NONCLUS uses the high quality similarity information
between member networks. This shows the importance to
group and cluster multiple networks simultaneously. The
blue dotted curves in Fig. 5 shows that COMCLUS achieves
increased NMI and ACC of network grouping as more com-
mon nodes are added. This confirms that better common
cluster detection enhances network grouping.

In this study, we also test a multi-layer network commu-
nity detection method MLCS [21]. It can run on 20News-

group dataset only when g ¼ 1. However, it runs out of
memory on a 16 GB machine. Thus we reduce the size of the
dataset such that it contains 6 networks forming 2 groups
and each network has 80 nodes. ThenMLCS detects 179 clus-
ters of sizes between 5 and 13. However, each ground truth
cluster has a size of 20. Since its clusters cannot match the
ground truth well, its averaged NMI is 8.98 percent. In com-
parison, the NMI of ComClus, SNMF and spectral clustering
are 17.32, 11.87 and 10.52 percent, respectively. These results
validate the discussion in Section 2, i.e., MLCS aims to detect
consistent clusters, but not to improve clustering accuracy.
In contrast, our method is effective to improve clustering
accuracy usingmultiple networks.

7.1.3 Reality Mining Dataset

In this section, we evaluate COMCLUS on the MIT reality min-
ing proximity networks [33]. From the original dataset, we
obtain 371 proximity networks about 91 subjects (e.g., facul-
ties, staffs, students). Each network is constructed in one
day between July 2004 and July 2005. In a network, any pair
of subjects are linked if their phones detect each other
(within certain distance) at least once in that day.

As analyzed in [33], subjects have different roles during
work and out of campus, which reflects in different subject
clusters (e.g., working groups or social communities) in on-
and off-campus. Some clusters that occur in campus may
disappear or split after work while new clusters may

appear. As suggested by [33], we separate each of the 371
proximity networks by time 8 p.m. to obtain two groups of
networks for on- and off-campus, respectively.

Since many proximity networks are very sparse without
obvious structures, we take two steps to process them. First,
we extract networks from September to December 2004,
which generally has more data collected than other periods.
Then we aggregate the networks by month. Finally we have
dataset RM-month: 8 proximity networks, 4 of them are on-
campus and 4 of them are off-campus.

Next we evaluate COMCLUS to see if it can (1) automati-
cally group on (off)-campus networks together; and (2)
enhance the qualities of common subject clusters.

First, in our results, we observe COMCLUS correctly groups
on-campus and off-campus networks. To evaluate the subject
clusters in on-campus networks, we use the ground truth
from the dataset, which indicates the subjects’ affiliations, i.e.,
MIT media lab or business school. The averaged NMIs (over
all on-campus networks) of different methods are shown in
Table 3. Here NONCLUS is omitted because network similarity
is not available in this dataset. For spectral basedmethods, we
report the best results, which is given by CTSC. As can be
seen, COMCLUS exactly discovers the subject clusters in on-
campus networks, while none of the baseline methods can
achieve this accuracy. This shows the importance to group
networks and enhance clustering by group-wise consensus.
For off-campus networks, since there is no ground truth, we
use internal density [34] as the cluster quality measure. As
shown in Table 3, COMCLUS achieves the best averaged den-
sity, which indicates its capability to discover meaningful
clusters in off-campus networks. These results imply that sub-
jectsmay have different communities during and afterwork.

7.2 Leveraging Prior Knowledge

In the next, we evaluate how well COMCLUS can incorporate
prior knowledge as discussed in Section 6.

7.2.1 Semi-Supervised Network Grouping

First, we show our model in Eq. (19) can effectively incorpo-
rate user-provided network group labels using two data-
sets. The first is the 20Newsgroup dataset, for which we fix
the common node ratio g ¼ 0:3 and enlarge the size of each
network to be 400 (100 nodes per cluster). Setting a rela-
tively small g can ensure there is enough room for network
grouping performance to be improved by providing labels,
while increasing the network size can make the networks
more informative so that we can observe clear performance
gain given labels. The second dataset is RM-week. In Section
7.1.3, we aggregate 371 proximity networks by month and
obtain RM-month dataset. Here, to involve more networks,
we aggregate the proximity networks by week and obtain
30 networks (15 on-campus and 15 off-campus).

Following [29], [30], we take a 2-fold cross validation
scheme, that is, each time we use 50 percent of the member

Fig. 5. Performance on 20Newsgroup dataset with various common
node ratio. The blue dotted curve shows the network grouping perfor-
mance of COMCLUS.

TABLE 3
Performance on RM-month Dataset

Measure SNMF CTSC CGC TF COMCLUS

NMI 0.7278 0.8705 0.9083 0.9066 1.0000
Density 0.2019 0.1822 0.1702 0.1852 0.2253
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networks as training data and the remaining as test data. The
must-links and cannot-links are randomly sampled from the
training set. COMCLUS then runs on all networks, but the per-
formance is evaluated only on the test set. The number of
constraints varies from 0 to the maximal number of pairs in
the training set. The results are averaged over 100 runs.

Fig. 6 shows the averaged NMIs of network grouping
and clustering on both datasets. As can be seen, with more
constraints, COMCLUS is able to effectively boost network
grouping quality, which in turn improves the common clus-
ter detection accuracy. In Fig. 6a, we observe a slight
decrease of NMI when initial constraints are provided. This
behavior is also observed in some existing semi-supervised
clustering methods [29], [30]. One reason may be that a few
constraints will distort the clustering results but are not
informative enough to refine the results. Generally, COM-

CLUS can improve network grouping and clustering quality
with a small number of constraints. These results also con-
firm that better network grouping enhances common cluster
detection. Also, considering the results shown in Fig. 5, i.e.,
better network clustering enhances network grouping, we
confirm the mutual enhancement of the two procedures of
multi-network grouping and common cluster detection.

7.2.2 Leveraging Similarity Between Tissue-Specific

Gene Co-Expression Networks

In this section, we apply COMCLUS on a real-world dataset,
the tissue-specific gene co-expression networks, for case
study. In a gene co-expression network, each node is a gene
and an edge represents the functional association between
two connected genes. By detecting gene clusters in such net-
work, we can uncover functional modules containing genes
that are functionally similar, which are useful in biomedical
analysis [16], [35]. As demonstrated by [1], [7], jointly clus-
tering multiple gene networks can enhance clustering
accuracy. Thus, we construct multiple gene co-expression
networks from different human tissues, which may form
several tissue groups (i.e., network groups). In this study,
our goal is to evaluate the capability of COMCLUS to incorpo-
rate the pairwise similarities between gene networks.

We select 8 tissues, Blood, Lymph node, Tonsil, Thymus,
Brain, Caudate nucleus, Hypothalamus, and Cerebellum,
from a recently published global map of human gene
expression dataset [9]. For each tissue, we extract genes that
are expressed in it, and use the expression data of these
genes to construct its tissue-specific gene co-expression net-
work. Then we have 8 different networks for 8 tissues. The
edges in a network are weighted by the Pearson’s correla-
tion coefficient (normalized between ½0; 1�) between two
connected genes. There are in total 5,455 nodes and 21,097
edges in these networks. A tissue-tissue genetic similarity

network is also constructed as the prior knowledge. The
similarity is calculated using the pairwise correlation of the
expression data of genes in each tissue.

We compare the supervised COMCLUS algorithm in
Eq. (20) with NONCLUS, which is also applicable when the
network similarities are known [1]. In [1], NONCLUS has been
shown to be better than SNMF, spectral clustering and CGC.
Here, multi-view clusteringmethods cannot be applied since
different networks are about different nodes. To evaluate
performance, we use the standard Gene Set Enrichment
Analysis (GSEA) [16]. Specifically, for each identified gene
clusters with at least 5 genes, the most significant Gene
Ontology (GO) term in the biological process category [36] is
assigned to it. The significance is assessed by Hypergeomet-
ric distribution [16]. Raw p-values are adjusted for multiple
testing by False Discovery Rate (FDR) [37].

First, we observe both NONCLUS and COMCLUS identify
two tissue network groups: {Blood, Lymph node, Tonsil,
Thymus} and {Brain, Caudate nucleus, Hypothalamus,
Cerebellum}. The first group includes gland tissues and the
second group includes tissues related to the brain. To
understand of importance of leveraging prior knowledge in
this particular application, we also apply the unsupervised
COMCLUS algorithm (Eq. (11)) on this dataset and observe it
identifies two network groups {Blood, Lymph node, Tonsil,
Hypothalamus} and {Brain, Caudate nucleus, Cerebellum,
Thymus}. Here it incorrectly groups the networks of Hypo-
thalamus and Thymus. This is because the networks in this
application are too noisy to provide sufficiently clear clus-
tering structures that are effective for grouping them auto-
matically. Hence, in the following, we focus on supervised
COMCLUS and compare its clustering with NONCLUS.

To compare the common gene clusters detected by NON-
CLUS and COMCLUS, we take the following strategy. For each
method, we have a list of enriched GO terms for each net-
work, each term corresponding to a detected gene cluster. If
a GO term is significantly enriched in at least t (t ¼ 3 or
t ¼ 4) tissues in a group and is not enriched in any tissue in
another group, we consider it as a discriminative GO term.
We collect all gene clusters corresponding to all discrimina-
tive GO terms from all networks, sort these clusters in
ascending order of their p-values.

Fig. 7 shows the p-values of the discriminative gene clusters
of both methods, using significance threshold 0.05. In both
cases, COMCLUS detects more such clusters than NONCLUS.
Moreover, the discriminative gene clusters detected by COM-

CLUS are more significant (i.e., with smaller p-values) than
those identified by NONCLUS. This is because COMCLUS tends

Fig. 6. Performance of semi-supervised network grouping of COMCLUS.

Fig. 7. Evaluation on tissue-specific gene co-expression networks
(Lower curve is better).
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to detect cluster-level features that are distinct to each network
group, as discussed in Section 6.2, while NONCLUS does not
consider to use clusters to enhance network groups. Thus the
clusters detected by COMCLUS aremoremeaningful thanNON-
CLUS w.r.t. each network group. For example, in the results of
COMCLUS, GO:0050771 is enriched in all networks in the tissue
group related to brain but none in another group. It is ranked 2
in S by COMCLUS (recall sðjÞp indicates the commonalities of
cluster p to group j). The annotation of this GO term is
“negative regulation of axonogenesis”, which is known to
relate to the activities of axon, neuron and brain [38].

7.2.3 A Case Study on Co-Author Networks

Next, we perform a case study on co-author networks of dif-
ferent research conferences. Here, node clusters represent
author communities, network groups represent research
areas. Since there is no ground truth labels of author clusters
in this dataset, some clusters detected by COMCLUS will be
discussed as case studies.

We extract 12 top conferences4 from the DBLP biblio-
graphic dataset [39]. These conferences form four areas, data
mining (DM), database (DB), machine learning (ML) and the-
ory (TH).We first extract productive authors that have at least
5 papers. Then for each conference, we construct its co-author
network using authors that have papers in it. An edge in a co-
author network is weighted by the number of papers the two
connected authors cooperated in one conference. Moreover,
for each network, we use its largest component to ensure the
network is connected. Then the number of nodes in each net-
work varies from440 to 1,256, and the number of edges ranges
from 918 to 4,585. There are in total 10,486 nodes and 27,239
edges in these networks. A conference-conference topic simi-
larity network is also constructed. The topic similarities are
calculated using the pairwise cosine similarity between the
bag-of-words vectors of conferences, where the keywords are
obtained from all the paper titles in each conference.

As analyzed in Sectoin 5.3.2, the entries in each column of
S can be sorted to identify the most common clusters to a
network group. Our goal of this study is to evaluate this
unique property of COMCLUS. Next, we apply COMCLUS to
see what author clusters are most common (thus important)
to each research area (network group). To our best knowl-
edge, there is no existing methods to address such common
cluster ranking task.

First, the detected conference groups are {KDD, ICDM},
{VLDB, SIGMOD, ICDE}, {NIPS, ICML, IJCAI, AAAI},
{FOCS, STOC, SODA}. This matches our intuition. Similar
to Section 7.2.2, we also apply the unsupervised COMCLUS

on this dataset. It detects conference groups {KDD}, {ICDM,
SODA}, {VLDB, SIGMOD, ICDE} and {NIPS, ICML, IJCAI,
AAAI, FOCS, STOC}. As can be seen, it obtains partially cor-
rect groups, demonstrating the importance of the prior
knowledge in this application.

The top 1 ranked author clusters by the supervised COM-

CLUS in DM area are shown in Fig. 8. In Fig. 8, we observe
the clusters are formed mostly by Dr. Jiawei Han’s collabo-
rators, which is a well known group in DM area. The red
nodes represent common nodes. Here we also show some

uncommon nodes in each conference that are also densely
connected in the clusters. Note only the clusters induced by
common nodes represent common clusters. The internal
densities of these two clusters are 0.1890 and 0.1179, respec-
tively. As a reference, the averaged densities (over 100 runs)
of random node sets of the same sizes to these two clusters
in their respective networks are 0.0095 and 0.0142, respec-
tively. Thus the detected clusters are meaningful consider-
ing the sparsity of the networks.

Moreover, in the top 10 detected clusters in the DM area,
we observe Dr. Philip S. Yu’s group, Dr. Christos Faloutsos’s
group, Dr. Wei Wang’s group and so on. All are well known
and relevant. Similar results are also found in the other three
areas. These results further validate the capability of COM-

CLUS to identify common clusters in network groups.

7.3 Performance Evaluation

7.3.1 Running Time Evaluation

In this section, we evaluate the efficiency of COMCLUS w.r.t.
the size and number of member networks. For this purpose,
we use SynView dataset such that other multi-view/
domain network clustering methods can be applied for
comparison (CTSC is omitted since it does not guarantee
convergence). In the experiment, each method is running 10
times and the averaged results are reported.

Fig. 9a shows the running time w.r.t. the size of the mem-
ber networks. There are 6 networks, the network size is
measured by the total number of nodes in all networks. We
omit some results of PairCRSC, CentCRSC and CGC
because of their high memory and running time costs.
Fig. 9b shows the running time w.r.t. the number of net-
works, where we fix the number of nodes of each network
to be 2500 and increase the number of networks. From the
results, we observe COMCLUS has almost linear running time
w.r.t. the size and number of networks, respectively. This is
consistent with the complexity analysis in Section 5.3.3.
COMCLUS is faster than other multi-view/domain network
clustering methods since PairCRSC and CGC perform time-
consuming pairwise regularization between networks, and
the eigendecomposition of PairCRSC and CentCRSC on
non-sparse matrices are both time and space consuming.

7.3.2 Convergence Evaluation

Next, we evaluate the algorithmic convergence of COMCLUS.
Fig. 9c shows the value of the objective function in Eq. (11)
w.r.t. the number of iterations on different datasets. As can
be seen, the objective values monotonically decrease, which

Fig. 8. The top 1 ranked clusters by COMCLUS in two DM conferences.
The edge width is proportional to the number of co-author papers. The
red nodes are common nodes. The clusters induced by common nodes
represent common clusters in DM area.

4. KDD, ICDM, VLDB, SIGMOD, ICDE, NIPS, ICML, IJCAI, AAAI,
FOCS, STOC, and SODA.
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is consistent with our theoretical analysis in Section 5.3.1.
Typically, 100 � 200 iterations are sufficient for COMCLUS to
converge. This suggests its efficiency in terms of iteration.

7.3.3 Parameter Study

There are four major parameters, a, b, h and k in the pro-
posed model. a controls the regularization on network node
sets (see Section 4.3). b balances the contribution of network
grouping (see Section 4.4). h is the global latent dimension.
k is the number of network groups. There is an optional
parameter r which can be used to enforce the sparseness of
the learned variables or simply be set as a small value to
provide stabilities of the updating rules in Eqs. (12), (13)
and (14). Next, we use the 20Newsgroup dataset to study
the impact of each parameter on the clustering accuracy.

Fig. 10 shows the trends ofNMI by varying each parameter
in turn while fixing others. Generally, COMCLUS performs sta-
bly in a relatively wide range of each parameter. Specifically,
the best a is around 10�2, indicating the importance to con-
sider node set regularization. The best b lies between 1 to 10,
verifying that better network grouping helps better network
clustering. For h and k, their best values are around 10 and 3
(or 4), respectively, which are exactly the number of all clus-
ters (i.e., 12) and the number of groups (i.e., 3) in this dataset.
Finally, a small r works well on this dataset, suggesting a
moderate sparseness. When r becomes too large, all variables
tend to be zero, resulting in the sharp accuracy drop in the
figure. In our experiments, the configurations for a, b and r as
discussed above apply to other datasets. k and h are usually
set according to the number and size of member networks in
different applications. Generally, we can determine them as
following. Suppose there are in total n nodes in all member
networks, we can assume the average cluster size to be z, and
test h by n

z for several z values, such as n
10,

n
20,

n
30, and use the one

with the best performance (in terms of accuracy or conduc-
tance). Usually, k can be tested using several values smaller
than 10. This is because in many applications, the number of
network groups is small.

8 CONCLUSION

In this paper, we study multi-network clustering by consid-
ering network groups. The existing approaches assume all
networks agree on a common underlying clustering struc-
ture. However, real-world applications suggest shared clus-
tering structures in underlying network groups. To enhance
clustering accuracy, we propose COMCLUS that can detect
networks sharing similar clustering structures and group
them together. COMCLUS treats node clusters as features of
networks, and jointly group networks and infer shared clus-
ter-level feature subspaces in network groups. Moreover,
we extend COMCLUS to a semi-supervised setting that can
leverage prior knowledge on network grouping to further
boost clustering accuracy. Extensive experimental results
demonstrate the effectiveness of the proposed method.
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