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Abstract. Searching local graph clusters is an important problem in big
network analysis. Given a query node in a graph, local clustering aims
at finding a subgraph around the query node, which consists of nodes
highly relevant to the query node. Existing local clustering methods are
based on single networks that contain limited information. In contrast,
the real data are always comprehensive and can be represented better
by multiple connected networks (multi-network). To take the advantage
of heterogeneity of multi-network and improve the clustering accuracy,
we advance a strategy for local graph clustering based on Multi-network
Random Walk with Restart (MRWR), which discovers local clusters on a
target network in association with additional networks. For the proposed
local clustering method, we develop a localized approximate algorithm
(AMRWR) on solid theoretical basis to speed up the searching process.
To the best of our knowledge, this is the first elaboration of local clus-
tering on a target network by integrating multiple networks. Empirical
evaluations show that the proposed method improves clustering accuracy
by more than 10% on average with competently short running time, com-
pared with the alternative state-of-the-art graph clustering approaches.

1 Introduction

Networks (or graphs) are natural representations of real-world relationships. Net-
work clustering is a fundamental problem and is the basis of many applications
such as online recommendation, medical diagnosis, social networks and biologi-
cal networks analysis [1, 2, 3, 4]. The clustering of a network aims to find groups
of nodes that are closely related to each other. Unlike global clustering which
retrieves all clusters from a network, local clustering focuses on the subgraph
within neighborhood of the query node and is less demanding in computation [5].
With the increasing size of networks, recently local clustering has attracted lots
of research interest [6, 7, 8, 9].

Local clustering takes a cohesive group of nodes as the target cluster. The co-
hesiveness is either evaluated by goodness metrics such as conductance and den-
sity [6], or the proximity between nodes according to the network topology [10].
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Fig. 1: An example of the Disease-Symptom network. Black nodes are symptoms.
Green nodes are lung diseases. Yellow nodes and orange nodes are of tuberculosis
and osteomyelitis, respectively.

While existing local clustering approaches are based on single networks, cohe-
siveness of single network does not always reveal the real clustering structure,
since the single network is often noisy and incomplete. On the contrary, complete
information is usually available through multiple connected networks.

For example, Fig. 1 is a corner of a disease network and an associated symp-
tom network. Because of the incompleteness of the disease network, the lung
disease cluster is divided into subgroups with relatively sparse connections in-
between. When querying a lung disease from one subgroup, the lung diseases
in other groups are hard to be enclosed into the desired local cluster due to
the sparse inter-group connections. However, if the symptom network is taken
into account, the symptom nodes serve as bridges between lung diseases groups,
which integrate the lung diseases into a whole cluster. Moreover, the symptom
nodes help to distinguish the lung diseases from tuberculosis and osteomyelitis,
since the lung diseases share lots of common symptoms while the tuberculosis
and osteomyelitis nodes are left aside.

Fig. 2 provides another example of 16 scholars from research areas of data
mining, database and information retrieval. In the coauthor network, the data
mining researchers are isolated into two groups. Associating the authors to their
top-3 most published conferences, it is clear that the data mining researchers are
linked with each other by various conferences while the authors considered as
database or information retrieval researchers are linked to conferences of their
specialized domains. For example, among all the authors only Xiaofei He fre-
quently publishes papers in SIGIR. A similar case concerns Flip Korn and H.
Jagadish et al., who are intensively relevant to database conferences such as
SIGMOD, VLDB and ICDE.

In this paper, we propose a local clustering method which integrates multiple
networks. The method targets on a specific network and uses other networks to
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Fig. 2: An example of the Author-Conference network. Blue nodes are data min-
ing researchers. Green nodes are researchers more relevant to information re-
trieval and red nodes are researchers closer to the database area.

improve the clustering accuracy. To use the links from various networks, we
introduce a Multi-network Random Walk with Restart (MRWR) model, which
allows the random surfer goes into different networks with differentiated cross-
network transition probabilities. Our theoretical analysis shows that MRWR
can measure nodes proximity across multiple networks by capturing the multi-
network heterogeneity.

As in the local clustering task, only proximity of nodes close to the query node
is necessary, we propose a localized approximate MRWR (AMRWR) algorithm
for the multi-network node-proximity calculation based on solid theoretical basis.
By the AMRWR algorithm, running time of the proposed method is limited and
the method is scalable to large networks. To the best of our knowledge, the
proposed method is the first local clustering approach that considers multiple
networks. The effectiveness and efficiency are validated by both theoretical and
empirical studies in the following sections.

2 Related Work

As all current multi-network clustering approaches are global clustering [11, 12,
13, 14, 15, 2, 1], our method is more relevant to single network local clustering [6,
16, 9, 7, 8].

Single network local clustering methods can be classified into three categories:
local search [17, 5], dense subgraph [6, 8, 16] and node proximity based meth-
ods [10, 9, 7]. Conventional local search algorithms examine nodes around query
node to improve a goodness function [6] by greedy or combinatorial optimiza-
tion methods [17, 5]. The searching efficiency of such approaches is limited [7].
The dense subgraph methods try to find a dense subgraph around the query
node, which can be a k-core [8], k-truss [18], k-plex [19], etc. The limitation of
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these methods is that many relevant nodes are not in a dense subgraph and may
not be enclosed into the local clusters. Recently random walk and node prox-
imity based methods are successful in local community detection [7, 9]. These
approaches rank nodes with respect to the query node and cut a part of nodes
with high ranking scores as the local community. All these methods are created
for single networks and ignore the heterogeneity of multi-networks.

3 Problem Definitions

In this paper, the multi-network or N -network G consists of N interconnected
single networks. The ith single network is represented by the weighted graph
G(i) = (V (i), E(i)) with adjacency matrix A(i) ∈ Rni×ni

+ , where ni = |V (i)|,
and each entry A

(i)
xy of matrix A(i) is the weight of edge between node V

(i)
x

and node V
(i)
y in network G(i). In this multi-network model, the connection

between single networks G(i) and G(j) is represented by bipartite graph G(ij) =
(V (i), V (j), E(ij)) with adjacency matrix C(ij) ∈ Rni×nj

+ , where ni = |V (i)| and

nj = |V (j)|. The entry C
(ij)
xy is the weight of link between node V

(i)
x and V

(j)
y .

In this work, we focus on the clustering of a specific network, while other
networks provide extra information to improve the clustering accuracy. Without
loss of generality, we assume the clustering targets on the network G(1) with
node set V (1). Given a query node q ∈ V (1), the goal of local clustering on
multi-network G is to find a local cluster S ⊆ V (1) such that q ∈ S. The nodes
in S should be cohesive not only through G(1), but also through other networks
connected with G(1).

In the following section, we will discuss the cross-graph cohesiveness measure
and the consequent local clustering method. We adopt the widely used random-
walk-based proximity score as the cohesiveness criterion since it has been shown
to be most effective in capturing local clustering structures [10, 9].

4 Methods

Random-walk-based approaches such as Random Walk with Restart (a.k.a. Per-
sonalized PageRank) are commonly used to evaluate the node proximity in the
single network [20, 21]. Compared with other methods, random walk takes
advantage of local neighborhood structure of the network and thus has higher
performance [7]. In this work, we generalize the single-network random walk to
multi-network and propose local clustering methods based on the multi-network
random walk.

4.1 Random Walk on Single Network

In Random Walk with Restart (RWR), a random surfer starts from the query
node q, and randomly walks to a neighbor node according to the edge weights.
At each time point (t + 1), the surfer goes on with probability α or returns to
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the query node q with probability (1 − α). The proximity score of node p with
respect to node q is defined as the converged probability that the surfer visits
node p [21]:

r(t+1) = α · r(t) ·P + (1− α) · s, (1)

where s is the row vector of the initial distribution with qth entry as 1 and all
other entries 0, and r is the row vector whose pth entry is the visiting probability
of node p. P is the row-stochastic transition matrix with entries Pxy =

Axy∑
y Axy

.

An alternative perspective of Random Walk with Restart is the walk-
view [10]. Repeatedly insert the right-hand side of Eq. (1) into r, then

r = (1− α)

∞∑
k=0

αksPk
(2)

Since Pk contains probabilities of all possible length-k walks on the graph,
Eq. (2) can be interpreted as that the converged vector r contains accumulated
probabilities of all possible walks for q to each node. As the probabilities of
length-k walks are discounted by factor αk, the proximity is large when there
are many short walks between a certain node and the query node.

4.2 Random Walk on Multi-network

The single-network RWR has no knowledge of the heterogeneity of networks,
where we can not control the surfer’s behavior towards different networks. In this
paper, we propose a Multi-network Random Walk with Restart (MRWR) model,
in which the surfer knows the environments and chooses different transition
probabilities to distinct networks.

Gstart 1

(a) Random walk on single network

G(1)start G(2)

β(12)

β(11)

β(21)

β(22)

(b) Random walk on 2-network

Fig. 3: Cross-network transition probabilities of random walk on single network
and multi-network that contains two networks G(1) and G(2). β(ij) is the transi-
tion probability between network G(i) and G(j).

In single-network random walk, the random surfer stays in the network with
probability β = 1 (Fig. 3a). However, for a multi-network with N networks,
there are N × N different transition probability β. Fig. 3b gives an example
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of 2-network, where β(11) is the chance of the random surfer staying in G(1),
β(12) is the chance that the random surfer goes from G(1) to G(2), etc. All these

transition probabilities form a matrix B =

β
(11) . . . β(1N)

...
. . .

...
β(N1) . . . β(NN)

 .
The matrix B is also row-stochastic since the sum of probabilities to all

networks must be 1. The cross-network decision of random surfer is made by
these probabilities. There exist two kinds of MRWR with special matrix B:
every row is identical (rank-1), or the matrix is symmetric. We name these
two special MRWR as Biased MRWR and Symmetric MRWR, respectively. In
Biased MRWR, the random surfer is likely to walk into the networks with large
entry value in B at any time. In Symmetric MRWR, however, the surfer walks
between an arbitrary pair of network G(i) and G(j) back and forth with equal
probabilities, as β(ij) = β(ji). In this work we focus on the Biased MRWR since
we bias the target network.

Comparing with single-network random walk, we may formulate the walk-
view of multi-network by the following equation.

r =
∑
σ

(1− α)αkβσsPσ =
∑
σ

(1− α)αk
k∏
i=1

β(σiσi+1)s

k∏
i=1

P(σiσi+1)

=
∑
σ

(1− α)αks

k∏
i=1

β(σiσi+1)P(σiσi+1),

(3)

where σ = 〈σ1, σ2, . . . σk+1〉 is an arbitrary walk with length k ≥ 0, whose ith

node is in network G(σi), 1 ≤ σi ≤ N . Similar with single-network RWR, α acts
as the discount factor for length of walks. Pσ =

∏k
i=1 P(σiσi+1) is the transition

matrix of walk σ, and βσ =
∏k
i=1 β

(σiσi+1) is the heterogeneous discount factor

of walk σ. For the transition matrix on multi-network, P
(ij)
xy =

A(i)
xy∑

y A
(i)
xy

if i = j,

otherwise P
(ij)
xy =

C(ij)
xy∑

y C
(ij)
xy

.

4.3 Localized Algorithm for MRWR

Due to the nature of local clustering, only proximity of nodes close to the query
node is important. The exact RWR vector is not necessary and a localized ap-
proximation vector is enough in practice. In this section, we propose an Approx-
imate MRWR calculation method (AMRWR), motivated by the approximate
Personalized PageRank (APPR) algorithm [10]. The APPR algorithm simulates
ε-approximation of the RWR score vector by a slightly different starting vector
s′, where sx − s′x ≤ εd(x) for every node x, ε is the pair-wise error bound and
d(x) is the degree of node x. Instead of calculating RWR score directly, APPR
uses a local network diffusion strategy where values of the initial vector s diffuse
towards both the target score vector p and itself through the network. Once
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each entry x of s is less than εd(x), the target vector p is the approximation of
RWR score r.

Our method is different with APPR for the following aspects. First, instead
of getting approximated RWR/PPR score on unweighted graph, we extend the
calculation to weighted graph. Second, the original APPR is not aware of dif-
ferent networks during the diffuse operations. We solve this problem by pushing
different values from vector s to nodes of different networks, according to the
cross-network transition matrix B. Moreover, at each diffuse step, we push as
much value as possible from the initial vector to reduce the running time.

Algorithm 1: Approximate Multi-network RWR (AMRWR)

Input : Multi-network G, query node q, forward probability α, cross-network
transition matrix B, error bound ε

Output: Approximate RWR vector r̂(1) for network G(1)

1 /* Initialization */
2 px ← 0 for all nodes x of G;
3 sx ← 0 for all nodes x 6= q; sq ← 1;
4 /* Multi-network diffuse operation */

5 while sx ≥ εd(x) for node x ∈ V (i) do
6 /* d(x) is degree of x on multi-network G */
7 δ ← sx − εd(x)/2; px ← px + (1− α)δ; sx = sx − δ;
8 for each neighbor y ∈ V (j) of x do
9 /* Differentiated push */

10 sy ← sy + P
(ij)
xy β

(ij)αδ/d(x);

11 end

12 end

13 r̂
(1)
x ← px for all nodes x ∈ V (1);

14 return r̂(1);

The overall MRWR algorithm is demonstrated in Algorithm 1. In the algo-
rithm, Line 2 to 3 are the initialization steps. The while loop from Line 5 to 12
process multi-network diffusion. Finally Line 13 and 14 output the RWR score
of nodes in G(1). Here we prove the correctness of Algorithm 1 by Lemma 1 and
Theorem 1. All the proofs in this paper can be found in the full version [22].

Lemma 1. The multi-network diffuse operations in Algorithm 1 construct an
ε-approximate RWR vector from initial vector s through graph

P̃ =

 β
(11)P(11) . . . β(1N)P(1N)

...
. . .

...
β(N1)P(N1) . . . β(NN)P(NN)

 .
Proof. See Section A.1 in the full version [22].
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Theorem 1 (Effectiveness of the AMRWR Algorithm). The Algorithm 1
generates an ε-approximate vector for MRWR scores r in Eq. (3).

Proof. See Section A.2 in the full version [22].

Theorem 2 (Time Complexity of AMRWR). The local diffusion process
in Algorithm 1 runs in O( 1

ε(1−α) ) time.

Proof. See Section A.3 in the full version [22].

After calculating the proximity score of each node with respect to the query
node, the clusters can be generated in two ways, the cut process (MRWR-cut)
or the sweep process (MRWR-cond). Specifically, MRWR-cut chooses the top-k
nodes with largest proximity scores as the target local cluster, while MRWR-
cond sorts the node by the proximity score in descending order, and then scans
from the top node to get a cluster with minimal conductance.

5 Experiment

We perform extensive experiments to evaluate the effectiveness and efficiency of
the proposed method on a variety of real networks and synthetic graphs. The
experiments are performed on a PC with 16GB memory, Intel Core i7-6700 CPU
at 3.40GHz frequency, and the Windows 10 operating system. The core functions
are implemented by C++.

5.1 Datasets and Baseline Methods

We have 6 multi-networks from 3 real data sources for our experiments.
Disease-Symptom Networks [1]. This dataset contains a disease similarity
network with 9,721 diseases and a symptom similarity network with 5,093 symp-
toms. In this dataset, there are two sets of clustering ground truth for the disease
network: level-1 and level-2, where the clusters in level-1 are larger than those of
level-2. We use both sets of ground truth, and denote the experiments by DS1
and DS2, accordingly.
Gene-Disease Networks [23]. The gene network represents the functional re-
lationship between 8,503 genes. The disease network is a phenotype similarity
network with 5,080 diseases. By flipping these two networks, we have two multi-
networks: the Disease-Gene network (DG) and the Gene-Disease network (GD).
Author-Conference Networks [24]. The dataset comprises 20,111 authors
and 20 conferences from 4 research areas. Since we have labels of both au-
thors and conferences, we use this dataset as two multi-networks: the Author-
Conference network (AC) and the Conference-Author network (CA).

We compare our approaches with six state-of-the-art methods, including
densest subgraph methods Query-biased Densest Connected Subgraph (QDC) [6]
and k-core clustering [8]; attributed graph clustering methods Attributed Com-
munity Query (ACQ) [25] and Focused clustering (FOC) [26]; node proximity
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measures Random Walk with Restart (RWR) [7] and Heat Kernel Diffusion
(HKD) [9]. To be fair, all the baseline methods run on multi-networks and are
tuned to their best performances. For attributed network clustering method,
nodes of additional network are taken as the attributes of node in the target
network. All results are averaged on 10,000 queries if not specifically stated.

5.2 Effectiveness Evaluation

To evaluate effectiveness of the selected methods, we use precision and F1-score
as metrics of clustering accuracy. Given the cluster node set U and the ground
truth node set V , the F1-score integrates both precision and recall, and is defined

as F (U, V ) = 2 · p×rp+r , where p = |U∩V |
|U | is the precision and r = |U∩V |

|V | is the

recall. The experiments are deployed on real networks. For each multi-network,
we randomly pick up query nodes from the labeled ground truth. The β of biased

cross-network transition matrix B =

[
β 1− β
β 1− β

]
is 0.6 by default, and the forward

probability α is 0.99. We set β > 0.5 as we emphasize the target network more
than the additional network. Expected cluster sizes of both MRWR-cut and
RWR are set to be the average cluster size of ground truth. For sensitivity of
parameter β please see section B.1 in the full version [22].
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Fig. 4: Improvement of MRWR precision, from clustering on single target net-
work, to the multi-network clustering.

Firstly we evaluate the precision improvement of MRWR on the multi-
network, comparing with MRWR on the target network only. In Fig. 4 we can see
that the precision increases on every dataset, for both MRWR-cut and MRWR-
cnd. The biggest performance gain is achieved by the Conference-Author (CA)
network, meaning that the conference network is very noisy and much infor-
mation is from the additional network. Actually the conference network is a
full graph simply created by cosine similarity of keyword vectors, as shown par-
tially in Fig. 2. The precision increment of MRWR-cnd is more obvious for most
datasets (Fig. 4b). It is worth reporting that, on multi-networks, the cluster
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size of MRWR-cnd is 33% less than on the single networks and is closer to the
ground truth cluster size. In other words, the clusters generated by MRWR-
cnd on multi-network are more dense and reasonable than their single-network
counterparts.

Table 1: Accuracy comparison of all selected methods on real multi-networks.

F1-scores CUT CND k-core QDC ACQ FOC RWR HKD

DS1 0.40 0.36 0.15 0.15 0.09 0.08 0.31 0.22
DS2 0.47 0.50 0.07 0.33 0.03 0.22 0.40 0.41
DG 0.35 0.33 0.14 0.18 0.05 0.12 0.29 0.28
GD 0.16 0.17 0.04 0.06 0.11 0.12 0.12 0.06
AC 0.40 0.22 0.32 0.02 0.05 0.04 0.35 0.30
CA 0.93 0.75 0.40 0.40 – 0.58 0.47 0.58

For the accuracy of selected approaches, we use F1-score as it is fair in com-
paring performance of different methods. Table 1 shows that our methods are
overall the best on all networks. For networks DS2 and GD, MRWR-cnd is better
than MRWR-cut. For all other networks, MRWR-cut has the best performance.
ACQ hits the timeout on network CA and has no result in the table. The MRWR
methods are balanced between precision and recall than the baselines. For ex-
ample, ACQ and FOC have high precision but very low recall, as the methods
can hardly enclose more nodes other than the query node due to the sparse links
to the additional networks. QDC tends to detect small dense clusters, which
decreases its performance on large cluster structures. On the contrary, k-core
clustering inclines to a large number of nodes unrelated to the query node. Con-
sequently, its recall is high but the precision is quite low, which also results in
low F1-score.

5.3 Efficiency Evaluation

Fig. 5 illustrates the average running time of all selected algorithms. For all
datasets, the speed of our method outperforms all other approaches except k-
core. On the DG and GD networks, MRWR is faster by 1 to 3 orders of mag-
nitude in comparison with other algorithms except for the k-core clustering.
Though k-core method is fast in clustering, its accuracy is not competent with
other approaches (Table 1). The FOC takes long running time because its global
searching strategy. ACQ reaches timeout on the AC network, so we omit its
running time in the figure. We also measure the efficiency of MRWR on large
synthetic datasets and report the result in section B.2 in the full version [22]. It
shows that MRWR runs within seconds on networks with millions of nodes.
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Fig. 5: Average running time of a single query in milli-seconds, comparing all
methods on all networks.

6 Conclusion

In this paper, we have introduced a local graph clustering method on multi-
networks. The clustering is based on the node proximity measurement by
multi-network random walk. Compared with the single network local clustering
algorithms, our method takes advantage of both additional network connection
and the local network structure. Empirical studies show that our method is
both accurate and fast in comparison with alternative approaches. The future
work is to make the random walk on multi-network more smart by learning the
network heterogeneity online.
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