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Abstract
Local community detection (or local clustering) is of fundamental importance in large net-
work analysis. Random walk-based methods have been routinely used in this task. Most
existing random walk methods are based on the single-walker model. However, without any
guidance, a single walker may not be adequate to effectively capture the local cluster. In
this paper, we study a multi-walker chain (MWC) model, which allows multiple walkers to
explore the network. Each walker is influenced (or pulled back) by all other walkers when
deciding the next steps. This helps the walkers to stay as a group and within the cluster. We
introduce two measures based on the mean and standard deviation of the visiting probabil-
ities of the walkers. These measures not only can accurately identify the local cluster, but
also help detect the cluster center and boundary, which cannot be achieved by the existing
single-walker methods.We provide rigorous theoretical foundation forMWC and devise effi-
cient algorithms to compute it. Extensive experimental results on a variety of real-world and
synthetic networks demonstrate that MWC outperforms the state-of-the-art local community
detection methods by a large margin.
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1 Introduction

Local community detection (or local clustering1) is of fundamental importance in large
network analysis. The goal is to find a cluster that contains the query node. Random walk-
based methods are routinely used in this task [3,17,33].

Most of the existing random walk methods are based on the single-walker model. The
basic idea is to allow awalker to randomly explore the network. A node having a high visiting
probability is considered to have high proximity to the query node thus should be included
in the local cluster. However, a single walker may not be able to capture the local clustering
structure effectively.

For illustration and comparison purposes, we use randomwalk with restart (RWR) [24,28]
as the representative of the single-walker models. The reason for choosing RWR as the
reference is that it is one of the most widely used methods and has recently been shown to
be the most effective in finding local clusters [17].

Figure 1 shows the results of RWR on an example network for different query nodes. The
nodes are colored according to their stationary probabilities generated by RWR. A darker
color represents a higher visiting probability. We can make a few key observations from the
figure. First, there is no significant difference between the nodes inside and outside the local
cluster (other than a few nodes near the query). Second, the identified local cluster is usually
centered around the query node. Thus, the accuracy of the local clustering results heavily
depends on the choice of the query node: a node in the center of the cluster might be a good
query node, while using a non-center node as the query can significantly bias the result [17].
Third, as shown in Fig. 1c, when the walker reaches a node on the boundary of the cluster,
there is no mechanism to prevent her from walking out of it. Note that similar observations
can also be made for other existing methods.

To address the limitations of the single-walker methods, in this paper, we propose a multi-
walker chain (MWC) model, which utilizes a group of walkers to explore the graph. The
walkers in MWC follow a sequential order to walk in the graph. When deciding the next
steps, each walker is pulled back by all other walkers so that the walkers will stay together as
a group. In particular, when a walker reaches the cluster boundary, she is less likely to walk
out of it because of the influence from other walkers. Thus, the entire group will be trapped
in the local cluster.

Figure 2 shows the results by applying MWC with a group of 5 walkers on the example
network. The nodes are colored according to the mean visiting probabilities of the walkers.
As we can see from the figure, the difference between the nodes inside and outside the local
cluster is clear. Moreover, MWC is robust to the choice of the query nodes. With different
query nodes, MWC returns consistent clustering results. Even when a node on the cluster
boundary is used as the query, MWC can still accurately find the local cluster as shown in
Fig. 2b, c. This demonstrates that the influence from other walkers help the entire group to
stay within the cluster.

In this paper, we introduce MWC and provide the rigorous theoretical foundation for
it. We study its convergence property and introduce two score vectors based on the mean
and standard deviation of the visiting probabilities of the walkers. These two score vectors
provide accurate and rich information about the local cluster. Theoretically, the classic RWR
can be treated as a special case of MWC. In RWR, the single walker is always pulled back (or
influenced) by the query node. In MWC, each walker is influenced by the current positions
of all other walkers.

1 We use local clustering and local community detection interchangeably in this paper.
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Fig. 1 Results of RWR for different query nodes

Fig. 2 Results of MWC for different query nodes

Compared to the existing single-walker models, MWC is more accurate and robust to
the choice of the query nodes. The influence from other walkers can effectively prevent any
walker from walking out of the cluster. Furthermore, the center nodes of the local cluster
tend to have the highest scores, as can be observed in Fig. 2. On the contrary, in the single-
walker model, the query node usually gets the highest score, and the identified local cluster
is centered around the query node. Another unique advantage of MWC is that by examin-
ing the dispersion between the visiting probabilities of different walkers, we can identify
boundary nodes of the local cluster. The intuition is that when a walker reaches a boundary
node, she will hesitate whether to stay in or walk out of the cluster. Thus, the discrep-
ancy between the visiting probabilities of different walkers will be high for the boundary
nodes.

We develop efficient algorithms to compute MWC. In particular, our method allows to
update only a very small subset of nodes while still achieves high accuracy. For example,
by updating less than 0.02% of the nodes, we can achieve 0.98 correlation between the
estimated and exact score vectors. We perform extensive experimental studies on a variety
of real-world and synthetic networks to evaluate the performance of the proposed MWC
method. The results show that MWC is more robust and achieves higher accuracy compared
to the state-of-the-art methods.
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1666 Y. Bian et al.

2 Related work

Finding the local cluster for a given query node has recently attracted intensive research inter-
ests due to its practical importance [3,4,16,17,22,27,33]. Random walks have been routinely
used to address this problem.

Single random walk models The classic PageRank–Nibble algorithm [3,4] first performs a
lazy random walk and ranks the nodes according to the degree-normalized visiting proba-
bilities. It then scans the ranking list to find the subset of top-ranked nodes that minimizes
the conductance as the local cluster. The query-biased local clustering method [33] uses the
visiting probabilities generated by random walks to assign weights to the nodes so that the
densest subgraph shifts to the neighborhood of the query node. The query-biased densest
subgraph is then identified as the local cluster. In [29], the authors studied various strategies
to choose the proper query node to improve the clustering accuracy. Random walk is then
used to find the local community that provides the optimal conductance. Comprehensive
experimental evaluations have been conducted in [17] and the results suggest that RWR is
the most effective in finding the local clusters. The recently proposed local spectral method
uses short random walks to estimate the invariant subspace (local spectra) and finds the local
community in the subspace [12,13,22]. The heat kernel method [16] uses the heat diffusion
model to replace RWR in the PageRank–Nibble algorithm to find the local cluster. Heat ker-
nel can be treated as a generalization of RWR. Random walk models are also used to detect
motif patterns (small subgraphs) around the query node [35,38]. These methods extend the
basic definition of conductance to high-order or motif conductance and iteratively detect a
subgraph with small high-order conductance from a given query node. Note that all these
methods are based on the single-walker model.

Multiple randomwalkers modelsVery limited work has been done onmulti-walker models to
detect local community. In [1], amulti-agentmethodwas developed for local clustering. Each
pair of agents is bounded by a rope with fixed length. The high space and time complexities
[both are O(n2a), where n is the number of nodes and a is the number of agents] render this
approach infeasible for large networks.

In [20], the authors developed a double-walker model for bilayer image segmentation.
One walker is used as the background walker and another as the foreground walker. The
repulsive restarting rule restricts each walker to stay only in one segment. The authors later
extended this approach for RGB-D image segmentation [21]. Some theoretical research has
been done to speed up the cover time of multiple random walkers without targeting any
specific application [2,7].

3 Multi-walker chain

In this section, we introduce the MWC model and study its theoretical foundation.

3.1 Preliminaries

Given an undirected and connected graph G, let W be its weighted adjacent matrix, where
W(i, j) is the weight on edge (i, j), and P be its transition matrix, where P(i, j) is the
transition probability from node i to j , i.e., P(i, j) = W(i, j)/

∑
j∈V W(i, j).
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Fig. 3 MWC with 4 walkers

Wefirst briefly reviewRWR. InRWR, a singlewalker randomlywalks in the graph starting
from a query node q . From time point t to (t + 1), the walker has a probability of α to follow
the transition probabilities in P, and a probability of (1− α) to jump back to q . In RWR, we
have

x(t+1) = αPᵀx(t) + (1 − α)v (1)

where x(t) is the node visiting probability column vector at time t , and v is a column vector
with value 1 for the qth entry and 0 for all other entries. Intuitively, v represents the influence
from the query to the walker, that is, the walk has (1 − α) probability to be influenced by q
and jump to it.

3.2 TheMWCmodel

In MWC, we have a group of K walkers {W1, . . . ,WK } (K > 1). These walkers take turns
to walk in the graph. When all walkers finish one iteration, another iteration begins. Figure3
shows an example of 4 walkers. We use τ (τ ≥ 0) as the index of the group iterations. In
Fig. 3, there are three group iterations.

In each group iteration, the node visiting probability vector of WK is only updated once.
Let x(τ )

k be the updated node visiting probability vector of Wk in the τ th group iteration.

When τ = 0, x(τ )
k is initialized so that the entry corresponding to the query node is 1 and all

other entries are 0. For τ ≥ 1, we have

x(τ+1)
k = αPᵀx(τ )

k + (1 − α)v(τ )
k (2)

where v(τ )
k is the influential vector. Next, we discuss how to determine the influential vector.

3.3 The influential nodes and vector

Intuitively, influential nodes represent the key positions visited by each walker. Thus, for
each walker, we can use the nodes with large visiting probabilities as its influential nodes.
Influential nodes can be selected in different ways. For example, suppose that for walkerWi ,
in group iteration τ , there are n (n ≥ 1) nodes with the largest visiting probability. These
n nodes can be treated as the influential nodes of Wi . We use vector e(τ )

i to represent the
influential nodes of Wi in τ . In this case, the entries corresponding to the n influential nodes
are set to 1/n, and all other entries are 0. We can also include the 1-hop or 2-hop neighbors
of the selected nodes as the influential nodes. Another way is to use the nodes with the top-
l percent largest visiting probabilities as the influential nodes. Please see Sect. 7.2.4 for a
comparison of different methods for selecting the influential nodes.
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The influential vector v(τ )
k in Eq. (2) represents the averaged influence from all other

walkers to Wk . That is,

v(τ )
k = 1

K − 1

∑

i∈{1...K },i �=k

e(τ )
i (3)

Intuitively, inMWC, eachwalker has a probability ofα to follow the transition probabilities
in P, and a probability of (1 − α) to jump to the set of influential nodes of other walkers. In
this way, each walker is pulled back by all other walkers when deciding the next steps, which
helps keep the walkers trapped in the local cluster.

3.4 Inhomogeneity of MWC

In RWR, let P = αP + (1 − α)1vᵀ, then we can rewrite Eq. (1) as

x(t+1) = P
ᵀx(t) (4)

Thus,P canbe treated as a transitionmatrixmodified from the original transitionmatrixP. The
modification results from the influence of the query node whose effect is represented by the
vector v. In RWR, themodified transitionmatrixP does not change over time. A randomwalk
modelwith such a stationary transitionmatrix is usually referred to as a homogeneousMarkov
chain [14,23]. Most existing random walk models [8,11,15,24,25,36] are homogeneous.

In MWC, for walker Wk , let P
(τ+1)
k = αP+ (1− α)1(v(τ )

k )ᵀ, then we can rewrite Eq. (2)
as

x(τ+1)
k = (P

(τ+1)
k )ᵀx(τ )

k (5)

InEq. (5), sincev(τ )
k changes in different group iterations due to the changeof the influential

nodes, we have P
(τ+1)
k �= P

(τ )
k . A model whose transition matrix dynamically changes is

referred to as an inhomogeneous Markov chain [14,23].
Note that P(τ+1)

k in Eq. (5) is stochastic for all τ ≥ 0, since P
(τ+1)
k 1 = αP1 + (1 −

α)1(v(τ )
k )ᵀ1 = 1.

While the convergence property of homogeneous random walk models is well studied,
the convergence property of the inhomogeneous MWC is more complicated and will be
discussed in the next section.

4 Convergence and score vectors

In the experiments, we observe that after certain number of group iterations, the influential
nodes of the walkers repeat periodically. This observation motivates us to study the conver-
gence properties of MWC assuming the recurrence of the influential nodes. Based on these
properties, we develop two score vectors that can be used for local clustering. Later, we also
discuss the convergence property for the general case without assuming the recurrence of the
influential nodes.
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4.1 Convergence within a period

We first discuss the case in which the influential nodes repeat with a period of T group
iterations after certain number of iterations. The following theorem shows that the probability
distribution of any walker will also repeat with a period of T .

Theorem 1 If the recurrence of the influential nodes occurs after τp group iterations and

has a period of T , then for any Wk, there exists a constant τc(τp ≤ τc ≤ τp + � log ε
logα

�) for a
computational tolerance ε such that when τ ≥ τc, x

(τ+T )
k = x(τ )

k .

Proof See Sect. 1. �	
Let h(τ )

k = 1
T

∑T
μ=1 x

(τ+μ)
k be the average probability distribution of walker Wk over a

period. The following corollary shows that the h(τ )
k also converges.

Corollary 1 h(τ+1)
k = h(τ )

k when τ ≥ τc.

In single-walker methods, the stationary probability distribution is usually used as a score
vector to measure the proximity between different nodes. For example, in RWR, a node with
a large stationary probability usually indicates it has high proximity to the query node and
should be included in the local cluster [3,33].

In MWC, we define the mean-score vector as follows, which can be used to measure the
proximity between the query node and other nodes.

Definition 1 When the period T exists, the mean-score vector φ is defined as

φ =
K∑

k=1

xk/K (6)

where xk = h(τc)
k = 1

T

∑T
μ=1 x

(τc+μ)
k represents the average of the probability distribution

of walker Wk over a period after convergence.
Next, we introduce the std-score (standard deviation score) vector, which can help deter-

mine whether a node is on the boundary of a cluster or not.

Definition 2 When the period T exists, the std-score vector ψ is defined as

ψ = max
1�μ�T

σ([x(τc+μ)
1 , x(τc+μ)

2 , . . . , x(τc+μ)
K ]) (7)

The σ(A) operation in the above definition returns a column vector with each entry repre-
senting the standard deviation of its corresponding row in matrix A. Thus, each entry ψ(u)

corresponds to node u and its value represents the maximum dispersion among the visiting
probabilities of the K walkers over a period. Intuitively, a node u on the boundary of the
local cluster will have high ψ(u) value since the visiting probabilities of different walkers
will be quite different.

4.2 The general case

Next, we study the convergence property of MWC without assuming the recurrence of the
influential nodes.
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In RWR (Eq. 4), it is known that x(t) will converge to a stationary vector x and
limn→∞||Pn − 1xᵀ||∞=0 [10,14]. That is, the power limit of P will converge to the con-
stant matrix 1xᵀ whose rows are all identical.

For a non-negative stochastic matrix A, the following measure is commonly used to
measure how different the row vectors are [10,14]:

δ(A) = max
w

max
v,v′ |A(v,w) − A(v′, w)|

The δ value measures the maximum difference between two entries in every column. By
definition, for any non-negative stochastic matrix A, 0 ≤ δ(A) ≤ 1. Intuitively, if all rows in
A are similar, δ will be small (with δ = 0 if all rows are identical).

Let P(i, j)
k = P

(i)
k P

(i+1)
k . . .P

( j)
k ( j ≥ i). Then Eq. (5) can be rewritten as

x(τ+1)
k = (P

(1,τ+1)
k )ᵀx(0)

k (8)

Theorem 2 If the transition matrix P is stochastic, irreducible and aperiodic,2 then for Wk,
for any ε > 0, there exists an integer ν(ε) such that, when τs ≥ ν(ε), δ(P

(1,τs )
k ) < ε. And

ν(ε) = log ε/ log(αλ(P)), where λ(P) = 1 − minv,v′
∑

w min(P(v,w),P(v′, w))

Proof See Sect. 1. �	
Theorem 2 shows after certain number of group iterations, the difference between row

vectors of P(1,τs )
k will become sufficiently small. This is different from limτs→∞ ||P(1,τs+1)

k −
P

(1,τs )
k ||∞ = 0, which implies the convergence of x(τs )

k . We refer to Theorem 2 as the weak
convergence property for the general case of MWC.

Since there is no guarantee that x(τ )
k will converge when the period does not exist, we

modify the mean-score vector and std-score vector definitions as follows for the general
case.

Definition 3 When the period does not exist, the mean-score vector φ is defined as

φ =
K∑

k=1

x(τs )
k /K (9)

Without loss of generality, τs is assumed to be large enough so that δ(P(1,τs )
k ) is sufficiently

small for all Wk (1 ≤ k ≤ K ).

Definition 4 When the period does not exists, the std-score vector ψ is defined as

ψ = σ([x(τs )
1 , x(τs )

2 , . . . , x(τs )
K ]) (10)

5 Algorithm

Computing the score vectors Algorithm 1 shows the overall algorithm, MWC, to compute
the mean-score and std-score vectors. Within each group iteration τ (Lines 2–10), for each
walker, the algorithm updates the node visiting probability vector by calling the UPDATE
procedure outlined in Algorithm 2 [which is based on Eq. (2)], stores its influential nodes in

2 This is the same set of conditions used to prove the convergence of RWR by the Perron–Frobenius theorem
[23].
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inodes, and detects the periodic recurrence of the influential nodes. If a period T is detected
(Line 11), it calls the MWC-Period procedure outlined in Algorithm 3 to compute the two
vectors based on Eqs. (6) and (7). Otherwise (Line 12), it computes the two vectors based on
Eqs. (9) and (10). The default value of τs is set to 20 since in practice the algorithm breaks
the while loop very fast (usually within 10 iterations).

Once the periodic recurrence of the influential nodes is detected, the MWC-Period proce-
dure finds the converged mean-score and std-score vectors. From Line 4–12, the algorithm
computes xk , which represents the average of the probability distribution vectors of walker
Wk over a period, and checks whether it is the same as that in the last period. If xk converges
for all the walkers, the final mean-score and std-score vectors are computed.

Complexity Given a graph G(V , E), if the period does not exist, the time complexity of
MWC is O(τs K (|E |+ |V |)). If the period T exists, the complexity is O(τcT K (|E |+ |V |)).
In practice, we usually have τc < 20, and T < 10.

Local clustering To find the local cluster, we first find the top-L nodes with the largest
mean-scores, where L is the largest possible cluster size with the default value 200. Let
{si }(1 ≤ i ≤ L) represent the list of top-L nodes sorted in descending order. Then for each i
(1 ≤ i ≤ L), we compute the conductance of the subgraph induced by node set {s1, . . . , si }.
The node set with the smallest conductance will be returned as the local cluster.

Complexity Generating the list of the top-L sorted nodes takes time O(|V | + L log L).
Computing the conductances and finding the smallest one need O(LdSL ), where dSL is the
average degree of the top-L nodes.

Algorithm 1:MWC
Input: P, K , α, q, τs
Output: φ, ψ

1 T = 0; τ = 1; xk = 0; xk (q) = 1; e(0)k = xk (1 ≤ k ≤ K )

2 while τ < τs do
3 for k = 1 to K do
4 Compute vk based on Equation (3);
5 xk =UPDATE(P, K , α, xk , vk );
6 Store the new influen. nodes of xk into inodes;
7 Compute ek ;

8 Detect T in inodes;
9 if T is detected then � = [x1, · · · , xK ]; break;

10 τ = τ + 1;

11 if T is detected then [φ, ψ]=MWC-Period(P, K , α, T , �);

12 else φ =
K∑

k=1
xk/K ; ψ = σ([x1, x2, · · · , xK ]);

13 return φ and ψ ;

6 Computational speed up

In this section, we discuss how to further reduce the computational cost of MWC. The key
idea is to only update a small subset of the nodes that are near the influential nodes.

Recall that in iteration τ , for walkerWk , the influential nodes are the set of nodes with the
largest visiting probability. Instead of updating all nodes, we only update a subset of nodes
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Algorithm 2: UPDATE

Input: P, K , α, x(τ )
k , v(τ )

k Output: x(τ+1)
k

1 x(τ+1)
k = αPᵀx(τ )

k + (1 − α)v(τ )
k ;

2 return x(τ+1)
k ;

Algorithm 3:MWC-Period
Input: P, K , α, T , �
Output: φ, ψ

1 x(μ)
k = 0 (1 ≤ k ≤ K , 1 ≤ μ ≤ T );

2 [x1 · · · xK ] = [x(1)
1 · · · x(1)

K ] = �;
3 Initialize the ek (1 ≤ k ≤ K ) according to �;
4 while any xk (1 ≤ k ≤ K ) has not converged do
5 for μ = 1 to T do
6 for k = 1 to K do
7 Compute vk based on Equation (3);

8 x(μ+1)
k =UPDATE(P, K , α, x(μ)

k , vk );

9 Update ek according to x(μ+1)
k ;

10 for k = 1 to K do

11 xk =
T∑

μ=1
x(μ)
k /T ;

12 x(1)
k = x(T+1)

k ;

13 φ =
K∑

k=1
xk/K ; ψ = max

1�μ�T
σ([x(μ)

1 , x(μ)
2 , · · · , x(μ)

K ]);
14 return φ and ψ ;

that (1) are in the neighborhood of the influential nodes, and (2) cover a significant amount
of probabilities.

In group iteration τ , for walkerWk , let Y
(τ )
l represent the l-hop neighbors of the influential

nodes of Wk , and D(τ ) represent the set of influential nodes of all other walkers. The core
node set of Wk is defined as

C (τ )
k = D(τ ) ∪ Y (τ )

l ,

where l is the smallest hopnumber such that the sumof the visiting probabilities of the nodes in
C (τ )
k is above certain threshold. More specifically, we require Pr(C (τ )

k ) = ∑
i∈C(τ )

k
x(τ )
k (i) ≥

θ , where x(τ )
k (i) is the i th entry in x(τ )

k , and θ is the threshold representing the proportion of
the probabilities that the core node set should cover.

Intuitively, the nodes that are not in the core node set are less important for local clustering,
since they are far away from the influential nodes and only have small visiting probabilities.
Thus, it is unlikely that these nodes are parts of the local cluster.

For example, suppose that we are interested in finding the core node set for W1 in a 2-
walker MWC, and node visiting probabilities of W1 are shown as in Fig. 4. The influential
nodes of W1 and W2 are { 1©} and { 7©}, respectively, and θ = 0.9. We have D(τ ) = { 7©},
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Fig. 4 An example of partial
nodes updating

Fig. 5 The single iteration and
cumulative errors
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Y (τ )
l=1 = { 1©, 2©, 3©, 4©, 6©, 7©, 8©}, and Pr(D(τ ) ∪ Y (τ )

l=1) = 0.93 > θ . Thus, the core node
set is { 1©, 2©, 3©, 4©, 6©, 7©, 8©} as highlighted by the red dotted curve in the figure.

Instead of updating all the nodes, we only update the nodes in the core node set and their
direct neighbors. Let 
 represent the difference between the exact and estimated probability
vectors. The following theorem gives a loose error bound on 
. Its proof and a tighter bound
can be found in “Appendix A.3.”

Theorem 3


 ≤ 2(1 − θ)

Figure 5 shows the estimation errors on the real-world Live Journal network, which has
about 4 million nodes and 34 million edges. The parameter settings are K = 5, α = 0.6,
and θ = 0.6. The blue line shows the error in each group iteration and the red line shows
the cumulative error over all iterations. The results are averaged on 200 randomly selected
query nodes. As can be seen from the figure, both single iteration and cumulative errors are
small. In practice, we only need to update less than 0.02% of the nodes to achieve more than
0.98 correlation between the estimated and the exact score vectors. The detailed evaluation
on the core node set updating strategy can be found in Sect. 7.1.6.

7 Experimental results

We conduct extensive experiments to evaluate the performance of the proposedmethod using
a variety of real-world and synthetic networks. All experiments are performed on a server
with 64G memory, Intel Xeon 2.6GHz CPU, and Redhat OS. The source code of MWC is
available at http://sites.psu.edu/yuchenbian/mwc/.
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Table 1 Statistics of the real networks

Name AZ DB YT LJ OT

|V | 334,863 317,080 1,134,890 3,997,962 3,072,441

|E | 925,872 1,049,866 2,987,624 34,681,189 117,185,083

Density 2.76 3.31 2.63 8.67 38.14

# Cluster 75,149 13,477 8385 287,512 6,288,363

7.1 Evaluation on real networks

7.1.1 Datasets and state-of-the-art methods

The statistics of the real networks are shown in Table 1 (AZ: Amazon; DB: DBLP; YT:
YouTube; LJ: LiveJournal; OT: Orkut). These datasets are provided with ground-truth cluster
labels and are publicly available at http://snap.stanford.edu.

We compare MWC with several state-of-the-art local clustering methods. PageRank–
Nibble (PRN) adopts the degree-normalized RWR score to rank the nodes and finds the local
cluster that minimizes the external conductance [3]. MARW uses multiple agents with a
rope of fixed length to find the local cluster [1]. The query-biased dense connected subgraph
detection (QDC) method uses RWR to assign weights to the nodes and find the query-biased
densest subgraph [33]. LEMON finds the local cluster by seeking a sparse vector in the span
of the local spectra such that the query is in its support [22]. The heat kernel (HK)method uses
the heat kernel diffusion process instead of random walk and adopts the PageRank–Nibble
framework to find local clusters [16].

7.1.2 Accuracy evaluation

We first evaluate the accuracy of the selected methods. We use F-score and consistency to
measure the accuracy of the detected clusters. Given the discovered local cluster S′ and the
ground-truth cluster S, F-score is defined as:

F(S′, S) = 2 · prec(S
′, S) × rec(S′, S)

prec(S′, S) + rec(S′, S)
,

where prec(S′, S) = |S′∩S|
|S′| is the precision and rec(S′, S) = |S′∩S|

|S| is the recall.
Consistency measures the variation of the F-scores of the identified local clusters given

different query nodes from the same cluster. It is defined as

1 −
√

1

|S|
∑

s′∈S
(F(S′, S) − Fmean)2,

where s′ is a node in the detected cluster S, S′ is the detected cluster when s′ is the
query, and F(S′, S) is the F-score of S′ when S is used as the ground-truth, and Fmean =
1

|S|
∑

s′∈S F(S′, S). If a method has both high F-score and high consistency, it suggests that
the method is accurate and robust to different choices of the query nodes. On the other hand,
if a method has a low F-score and a high consistency value, this does not mean the method
is robust to different choices of the query nodes. The high consistency value is merely due
to the consistently low F-scores.
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Table 2 F-scores of the selected methods

Methods MWC PRN QDC MARW LEMON HK

AZ 0.9010 0.7774 0.8083 0.8444 0.8195 0.5209

DB 0.4929 0.3962 0.4368 0.4010 0.4551 0.3021

YT 0.1943 0.1299 0.1129 0.0862 0.1412 0.0920

LJ 0.7033 0.6378 0.6586 0.3895 0.6635 0.5056

OT 0.3363 0.2597 0.2850 0.1333 0.2880 0.1787

The best performers are shown in bold

Table 3 Consistency of the selected methods

Methods MWC PRN QDC MARW LEMON HK

AZ 0.9803 0.8746 0.9532 0.9273 0.8277 0.6869

DB 0.8441 0.7021 0.7634 0.7938 0.6265 0.7863

YT 0.6793 0.6018 0.6434 0.6346 0.5582 0.9162

LJ 0.8417 0.8086 0.8021 0.8223 0.5602 0.7784

OT 0.7472 0.7303 0.7056 0.6149 0.7452 0.8632

The best performers are shown in bold

Unless otherwise mentioned, in MWC, K and α are set to 5 and 0.6, respectively. For all
other methods, we tune their parameters to achieve their best performance. All results are
averaged on 200 randomly selected query nodes.

Table 2 shows the F-scores of different local clustering methods. We can see that MWC
achieves the highest F-scores on all datasets. The performances of two recently proposed
methods, QDC and LEMON, are the second best. Let a be the F-score of MWC on one
dataset and a′ be the highest F-score of all other methods on the same dataset. We use a−a′

a′
represent the ratio of how much MWC outperforms other methods. The ratio ranges from 6
to 38% on the 5 datasets, with the average being 16%. This shows that MWC outperforms
other methods by a large margin.

Table 3 shows the results on consistency. MWC has the highest consistency on datasets
AZ, DB, and LJ, and the second highest consistency on datasets YT and OT. HK has the
highest consistency on YT and OT. This is due to the low F-scores of HK on these two
datasets. As shown in Table 2, the F-scores of HK on YT and OT are 0.092 and 0.1787,
respectively. A high consistency value combined with a lower F-score value suggests that
the method consistently gets relatively low F-scores on these two datasets.

7.1.3 Cluster quality evaluation

Next, we use conductance, density, relative density, and cohesiveness as metrics to evaluate
the quality of the identified clusters [26,34].

The conductance measures how well the cluster is separated from the remaining part of
the network. It is defined as e(S,V \S)

min{e(S),e(V \S)} , where e(S, V \S) is the cut between S and V \S,
and e(S) is the number of edges in S.

The density of S is the ratio between the number of edges e(S) and the number of nodes
in S, i.e., e(S)

|S| . The relative density is defined as e(S)
e(S)+e(S,V \S)

.
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Fig. 6 Conductance, density, relative density, and cohesiveness of the identified clusters in the LJ dataset

The cohesiveness of S is defined as the minimum internal conductance in the subgraph
induced by S, i.e.,

min
S′⊂S

e(S′, S\S′)
min{e(S′), e(S\S′)} .

A good cluster usually has low conductance, high density, high relative density, and high
cohesiveness.

Figure 6 shows the average value of the identified clusters in the LJ dataset when using
these fourmetrics. As can be seen from the figure,MWCachieves the highest relative density,
the highest cohesiveness, the second lowest conductance, and the second highest density.

7.1.4 Comparing randomwalk methods

Next, we compare MWC with other random walk methods. The goal is to see whether
the ranking results generated by these random walk methods can effectively capture the
local clustering structure. We compare MWC to the state-of-the-art random walk methods
including RWR, SimRank [15] and Panther [37]. The SimRank value between two nodes
measures the expected number of steps required before two walkers, one starting from each
node, meet at the same node if they walk in lock-step [15]. Panther is a recently proposed
proximity measure based on both common neighbors and structural contexts of the nodes
[37].

We use the LJ (LiveJournal) dataset as an example, and randomly select query nodes from
clusters with sizes between 20 and 40.3 Figure 7 shows the F-scores of different random
walk methods when the top-ranked nodes are considered as the local clusters. We can see that
MWC clearly outperforms other methods. This shows that the top-ranked nodes are more
likely to be in the local cluster of the query node when using MWC. If we simply use the
top-ranked nodes as the local cluster, MWC will achieve the highest accuracy.

We further evaluate how similar the ranking results are if we use different query nodes
in the same cluster. We randomly select a pair of nodes from the same cluster, and examine
the correlation between the two ranking lists generated for the two query nodes. To capture

3 For the well-structured top-5000 clusters in LiveJournal that are suggested to use in the original paper [34],
the averaged community size is 28.
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Fig. 7 F-scores of the top-ranked
nodes of different random walk
methods
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Fig. 8 Correlation between the lists of top-ranked nodes when two nodes from the same cluster are used as
the query nodes

the local cluster effectively, an ideal method should return highly correlated ranking results
since the two nodes are taken from the same cluster.

Figure 8a, b shows the Spearman’s rank correlation and Pearson correlation of the top-
ranked nodes using different random walk methods. The results are averaged on 1000 query
pairs. As we can see, MWC achieves much higher correlations compared to other methods.
The reason is that the ranking results of RWR, SimRank and Panther are biased toward the
query node. Thus, if the query node is not at the center of the local cluster, the nodes outside
the cluster but close to the query node will also be included in the result. On the other hand,
MWC gives consistent ranking results suggesting that it is robust to the choice of the query
nodes.

7.1.5 Detecting the cluster center and boundary

We evaluate the capacity of MWC to detect the center nodes and boundary nodes of the
local cluster. We adopt the betweenness centrality [6] to quantify a node’s role in the cluster.
Intuitively, the center nodes should have high betweenness centrality within the subgraph
induced by the cluster. On the other hand, the boundary nodes should have high betweenness
centrality when considering nodes from different clusters since they serve as the bridges
connecting these clusters.
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Fig. 9 Detecting the center nodes and boundary nodes of the local cluster

We first evaluate MWC’s ability to detect the center nodes. We consider the top-5 nodes
with the highest betweenness centrality values within the subgraph induced by the local
cluster as the true cluster center nodes. For each ranking method, we report the recall of the
top-5 ranked nodes, i.e., among the top-5 ranked nodes, how many are true cluster center
nodes.

Figure 9a shows the results on the LJ dataset. We can see that the recall of MWC is around
70%. This indicates that MWC can consistently rank the cluster center nodes among the top
nodes. Other random walk methods are biased toward the query nodes.

Next we evaluate MWC’s ability to detect the boundary nodes based on their std-scores.
Using the ground-truth cluster labels, we find the true boundary nodes, which are in the
target cluster but have connections to the outside nodes. The betweenness centrality value of
a boundary node is the number of shortest paths that connect the nodes in the target cluster
and nodes in the neighborhood clusters and go through the boundary node.

We generate two ranking lists and examine the recall. One list includes the true boundary
nodes arranged in descending order based on their betweenness centrality values. Another
list includes the top-ranked nodes according to their std-scores identified byMWC. Figure 9b
shows the recall when we use the top-ranked nodes in the first list as ground truth. Note that
the average number of true boundary nodes is about 22 in our experiments. From the figure,
we can see that the recall is about 0.80 when comparing the lists of the top-22 ranked nodes.
This demonstrates that the std-score is a good indicator of the boundary nodes. Other random
walk methods cannot provide any information about the boundary nodes since they are based
on the single-walker models.

7.1.6 The core node set updating strategy

We evaluate the core node set updating strategy introduced in Sect. 6. Figure10 shows the
results on the LJ datasets. The blue line shows the Spearman’s rank correlation between the
exact and estimatedmean-score vectors for the top-200 ranked nodes when varying θ , and the
red line shows the percentage of the nodes need to be updated. We can see that the high rank
correlation can be achieved by only updating a very small portion of the nodes. For example,
by updating 0.02% nodes, we can still archive 0.98 rank correlation between the exact and
estimated vectors. This demonstrates the effectiveness of the core node set updating strategy.
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7.1.7 Parameter sensitivity and runtime

MWC has two parameters, K , the number of walkers, and α, the weight of the influence
from other walkers. Figure11 shows the F-scores of MWC when varying K and α on the LJ
dataset. We can see that MWC is robust to a wide range of parameter settings. The F-score
slightly decreases for larger α values. Intuitively, a larger α value means that each walker
is more independent, while a smaller α value allows stronger influence among the group of
walkers.

Figure 12 shows the running time of the selected local clustering methods on the real
networks. On all datasets,MWC is the second fastest method. TheHKmethod runs the fastest
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Table 4 Synthetic datasets with
different sizes (SDI)

Name SD11 SD12 SD13 SD14

|V | 105 5 × 105 106 1.5 × 106

|E | 106 5 × 106 107 1.5 × 107

Density 10 10 10 10

μ 0.30 0.30 0.30 0.30

Table 5 Synthetic datasets with
different mixing parameters μ

(SDII)

Name SD21 SD22 SD23 SD24

|V | 105 105 105 105

|E | 106 106 106 106

Density 10 10 10 10

μ 0.15 0.30 0.45 0.60

due to its relaxation strategy used to estimate the heat kernel diffusion process. However, as
discussed in Sect. 7.1.2, the accuracy of HK is not as high as other local clustering methods.
The exact MARW method is very time consuming due to its exponential search space.
Here, we adopt the simulation process as suggested in the original paper. The results are
approximate, and there is no theoretical guarantee on how accurate the estimations are.

7.2 Evaluation on synthetic datasets

To gainmore insights about the performance ofMWC,we use the benchmark graph generator
[18] to generate a collection of synthetic datasets to evaluate the performance ofMWC. These
synthetic datasets can be tuned with different parameters and have accurate cluster labels.

Tables 4 and 5 summarize two groups of synthetic datasets generated by the benchmark
graph generator [18]. We denote them as SDI and SDII, respectively. To evaluate the scala-
bility of proposed algorithm, the generated synthetic datasets contains millions of nodes and
tens of millions of edges. The four datasets in SDI have different sizes and the same density
and mixing parameter μ. The four datasets in SDII have different μ and the same size and
density. In the network generating model, μ indicates the proportion of a node’s neighbors
that are outside the target cluster. The boundaries between different clusters become less
clear for larger μ values. By tuning μ, we can vary the clearness of the clustering structure.
We use the default settings for all other parameters.

7.2.1 Accuracy evaluation

Figure 13a shows the F-scores of the selectedmethods with different dataset sizes (with fixed
μ = 0.3). As can be seen from the figure, MWC achieves the highest accuracy compared
to other methods. Specifically, the F-score of MWC is above 0.95. Figure 13b shows the
F-scores when varying μ (with fixed |V | = 105 and |E | = 106 in Table 5). As we can see,
the F-scores of all methods decrease when increasing μ, i.e., lowering the clearness of the
clustering structure. MWC has the highest F-score, and clearly outperforms other methods.
Moreover, the performance gap between MWC and other methods tends to become bigger
for larger μ values, which demonstrates that MWC is more robust to μ.
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Fig. 13 Accuracy on the synthetic datasets

Fig. 14 F-scores of the
top-ranked nodes of different
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7.2.2 Comparison with other proximity measures

In synthetic networks, we use dataset SD23 as an example to study the ranking results
of MWC, RWR, SimRank [15] and Panther [37] to see how well they capture the local
clustering structure for a given query node. We randomly select 200 query nodes from the
ground-truth clusters. Figure14 shows the F-scores of different proximitymeasureswhen the
top-ranked nodes are considered as the local clusters. The results show thatMWCconsistently
outperforms other proximity measures.

Applying the same experimental setting in Sect. 7.1.4, we further evaluate how similar the
ranking results are given two different query nodes in the same cluster for each proximity
measure. We randomly select 1000 pairs of nodes from the same cluster. Figure 15a, b
shows the averaged Spearman’s rank correlation and Pearson correlation of top-ranked nodes
for different proximity measures. As we can see, MWC achieves much higher correlations
compared to other measures.

7.2.3 Detecting the cluster center and boundary

Next, we evaluate the capacity of MWC to detect the center nodes and boundary nodes of
the local cluster on synthetic networks with the same experimental setting of real networks.

Figure 16a shows the cluster center nodes detection results on dataset SD23. We can see
that the recall of MWC can reach as high as 90%. This shows that MWC can consistently
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Fig. 15 Correlation between the lists of top-ranked nodes when two nodes from the same cluster are used as
the query nodes
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Fig. 16 Detecting the center nodes and boundary nodes on synthetic networks

rank the cluster center nodes among the top nodes. Other proximity measures are all biased
toward the query nodes.

Figure 16b shows the recall of cluster boundary nodes detection using std-score vector.
Note that the average number of true boundary nodes is about 35 in our experiments. From the
figure, we can see that the recall is about 0.85 when comparing the lists of the top-35 ranked
nodes. This demonstrates that the std-scores are good indicators of the boundary nodes of
the local cluster.

7.2.4 Influential nodes selection

We compare two different approaches to select the influential nodes. The first is that for each
walker, we use the r -hop neighbors of the nodes with the largest visiting probability as its
influential nodes. Another approach is to use the nodes with the top-l percent largest visiting
probabilities as the influential nodes. With larger r or l, more nodes will be selected as the
influential nodes.

We run 200 trials on dataset SD23 using a 5-walker chain to evaluate the performance of
different r and l. From Fig. 17, we can see the F-score becomes smaller for larger r and l.
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Fig. 17 Influential nodes selection evaluation
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Fig. 18 Running time on synthetic datasets

This is intuitive since the influential nodes should represent the key positions visited by each
walker. Including more irrelevant nodes will decrease the performance.

7.2.5 Running time evaluation

Figure 18a shows the runtime of the selected local clustering methods on synthetic networks
with different sizes.We can see thatMWC is among the top-3 fastest algorithms. The runtime
of all methods except MARW and LEMON is linear to the size of network. Figure 18b shows
the runtime for different μ values. MWC, HK, LEMON and QDC are not sensitive to μ.
MARW is not sensitive to the network size but sensitive toμ. This is because in the simulation
process, it becomes harder to accept a valid step when the clustering structure is less clear.
For PRN, both the approximation and sweep processes take longer time for networks with
larger μ values because of the blurred cluster boundaries.

7.3 Additional applications of MWC

MWC can also be used in other local clustering related applications. In this section, we use
graph-based semi-supervised learning and image auto-annotation as examples to illustrate
the effectiveness of MWC. Our intention is not to show that MWC outperforms the methods
specifically designed for these applications. We only use the datasets generated in these
applications to show the potential applicability of MWC, since RWR has also been proposed
to solve these problems.
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Table 6 The handwritten image
datasets

Name BDIGT USPS MNIST

# Cluster 36 10 10

Cluster size 39 1000 5000

Labeled images 72 20 20

k of kNN 10 20 30

|V | 1404 1 × 104 5 × 104

|E | 14,040 2 × 105 1.5 × 106

Fig. 19 Handwritten image
prediction accuracy
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7.3.1 Graph-based semi-supervised learning

In this application, graphs are utilized for classification [39]. An edge represents the similarity
between two connected data objects. The goal is to classify the unlabeled data objects based
on the partially labeled objects. We compare the performances of MWC and RWR in this
application.

We use three handwritten image datasets publicly available at http://www.cs.nyu.edu/
~roweis/data.html. Table6 shows the detailed information of these datasets. The weighted
kNNgraphs are constructed following the strategy in [32]. For each query image, we compute
the scores with the labeled images and use the label of the nearest labeled neighbor as the
predicted label. Figure19 shows the classification accuracy of MWC and RWR. We can see
that MWC achieves higher accuracy than RWR on all 3 datasets.

7.3.2 Image auto-annotation

Image auto-annotation is an important problem in computer vision. The goal is to automati-
cally annotate related keywords to a newly added image from the keyword list based on an
annotated image dataset [5,9,24]. RWR has been proposed for this application [24].

We use the 10 Corel image datasets in [5,24]. Each image dataset includes about 5200
annotated images, 1740 test images, and 160 keywords. Each annotated image is captioned
with 3–4 keywords. A mixed media graph (MMG) is constructed following the strategy in
[24]. For each dataset, the graph consists of about 55,000 nodes and 170,000 edges. We run
one trial for each test image and calculate the annotation accuracy, which is the percentage of
correctly predicted keywords [24]. Figure20 shows the average accuracy for all test images
in the 10 datasets. We can see that MWC outperforms RWR by about 10% in terms of the
accuracy.
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Fig. 20 Corel image
auto-annotation accuracy
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8 Conclusion

In this paper, we propose themulti-walker chain (MWC)model for effective local community
detection in large networks. Different from the traditional single-walker models, MWC uses
multiple walkers to explore the network. The walkers influence each other; thus, it is less
likely for the entire group of walkers to walk out of the cluster. We develop two measures
based on the mean and standard deviation of the node visiting probabilities of the walkers.
The mean-scores can be used to detect the local cluster and the std-scores can provide insight
about the cluster boundary nodes. In our experiments, MWC can identify local clusters more
accurately than alternatives. Moreover, MWC is not sensitive to the choice of different query
nodes in the same cluster. Our partial node updating strategy allows to update only a very
small portion of the nodes without compromising the accuracy.

Acknowledgements This work was partially supported by the National Science Foundation Grants IIS-
1664629 and CAREER.

Appendix A

A.1 The Proof of Theorem 1

Before proving Theorem 1, we first prove the following lemma. Without loss of generality,
we use Wk as an example and omit the subscript k in our discussion.

Lemma 1 For any walker in MWC, if P is stochastic, irreducible and aperiodic (SIA), then
for any τ ≥ 1, P(1,τ ) = P

(1)
P

(2) . . .P(τ ) is also SIA.

Proof Based on Eq. (5), for any τ ≥ 1, P(τ ) is stochastic, so is P(1,τ ) since the product of
stochastic matrices is also stochastic.

Furthermore, we have

P
(1,τ ) = P

(1,τ−1)
P

(τ )

= P
(1,τ−1)[αP + (1 − α)1(v(τ−1))ᵀ]
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= αP(1,τ−1)P + (1 − α)1(v(τ−1))ᵀ

= ατPτ +
τ−1∑

m=1

αm(1 − α)1(v(τ−1−m))ᵀPm + (1 − α)1(v(τ−1))ᵀ

Due to the last term, (1 − α)1(v(τ−1))ᵀ, we know that there is at least one column of P(1,τ )

whose entries are all positive. Thus, P(1,τ ) is irreducible (Please refer to Corollary 4 in [31]).
The self-loop represented by the diagonal of (1 − α)1(v(τ−1))ᵀ can guarantee that P(1,τ )

is aperiodic. �	
If T exists, P(τ+1)=P(τ+T+1) (τ ≥ τp), since v(τ )=v(τ+T ) in Eq. (3). Thus, P(τ+1,τ+T ) =

P
(τ+T+1,τ+2T ). Now we only discuss the sequence {P(τ )}∞τ=τp+1 after τp , and define

P = P
(τp+1,τp+T ) = P

(τp+T+1,τp+2T )

Then we know that the chain {P} is homogeneous. Suppose the graph has finite nodes set,
and it’s undirected, connected, and its corresponding P is SIA. Then based on Lemma 1, in
MWC, themodified transitionmatricesP(τ ) andP are also SIA. Thenwe have lim

n→∞ ||Pn+1−
Pn ||∞ = 0 [10,14].

Proof of Theorem 1 For 1 ≤ μ ≤ T , we have

‖ x(τp+(n+1)T+μ) − x(τp+nT+μ) ‖1
=‖ (Pn+1)ᵀx(τp+μ) − (Pn)ᵀx(τp+μ) ‖1
≤‖ Pn+1 − Pn ‖∞‖ x(τp+μ) ‖1
≤‖ Pn+1 − Pn ‖∞

For a sufficient large n such that Pn+1 = Pn = Q, let τ ′
c = τp + nT .

Then we have x(τ ′
c+T+μ) = x(τ ′

c+μ). That is, for any τ ≥ τ ′
c, x

(τ+T ) = x(τ ).
Next, we estimate τ ′

c. To reach a computational tolerance ε > 0, i.e., ||Pn+1−Pn ||∞ < ε,
a rough estimate of n is log ε/ log(αT ) [19], because

P =P
(τp+1,τp+T )

=αTPT +
T−1∑

m=0

αm(1 − α)1(v(τp+T−1−m))ᵀPm

Then τ ′
c = τp + nT ≤ τp + �log ε/ logα�.

For the entire group of K walkers, we set τc as the largest τ ′
c of all walkers and we have

τp ≤ τc ≤ τp + �log ε/ logα�. �	

A.2 The Proof of Theorem 2

Theorem 2 directly follows from the following lemma.

Lemma 2 [30] Let � = {A(1), . . . ,A(τ )} be a set of square stochastic matrices of the same
order such that for any m ≥ 1, the product B = A

(i1) . . .A(im ) (1 ≤ i j ≤ τ for 1 ≤ j ≤ m)
is SIA. Then for any ε > 0, there exists an integer ν(ε) such that any B of length n ≥ ν(ε)

satisfies δ(B) < ε.
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Proof of Theorem 2 Let � be the set that contains all possible modified transition matrices in
MWC. From Lemma 1, we know that the product of matrices from � with any length and
order is SIA. Based on Lemma 2, we know that for any ε > 0, there exists an integer ν(ε)

such that when τs ≥ ν(ε), δ(P(1,τs )) < ε.
For ν(ε), based on Lemma 2 in [30], we know that δ(P(1,τs )) ≤ ∏τs

τ=1 λ(P(τ )). Because
the rows in 1(v(τ−1))ᵀ are identical, then

λ(P(τ )) = 1 − min
v,v′

∑

w

min{P(τ )(v, w),P(τ )(v′, w)}

= 1 − min
v,v′

∑

w

min{[αP + (1 − α)1(v(τ−1))ᵀ](v,w),

[αP + (1 − α)1(v(τ−1))ᵀ](v′, w)}
= 1 − αmin

v,v′

∑

w

min{P(v,w),P(v′, w)} − (1 − α)

= α(1 − min
v,v′

∑

w

min{P(v,w),P(v′, w)})

= αλ(P)

So δ(P(1,τs )) ≤ (αλ(P))τs . To satisfy the tolerance ε, we can set ν(ε) = log ε/ log(αλ(P)).
�	

For a stochastic matrix P, the measure λ(P) shows the difference of its row vectors and we
have 0 ≤ λ(P) ≤ 1. In practice, the transition matrix P is sparse and has block structure. We
can select two rows from P that have no overlapping nonzero entries to make λ(P) reach the
maximum value 1. So in the worst case, we can set τs = �log ε/ logα� to stop the algorithm.

A.3 The Proof of Theorem 3

In this section, we analyze the error bound on the difference between the exact and estimated
probability vectors for Wk in the (τ + 1)th group iteration. We first define the probability
flow, and provide a tight error bound in Theorem 4. The proof of Theorem 3 then follows.
For simplicity, we omit the subscript “k” and use x(τ+1) and x̂(τ+1) to represent the exact and
estimated probability vectors, respectively.

Let U (τ ) represent the set of nodes whose probability will be updated in the (τ + 1)th
iteration, i.e., U (τ ) = C (τ ) ∪ Γ (C (τ )), where Γ (C) represents the direct neighbors of the
nodes in C , and let S(τ ) represent the remaining nodes. We only update the scores for nodes
in U (τ ) in the (τ + 1)th iteration, i.e.,

x̂(τ+1)(i) =
{
update based on Eq. (2) if i ∈ U (τ );
x(τ )(i) otherwise.

(11)

The estimation error is thus 
 = || x̂(τ+1)

||x̂(τ+1)||1 − x(τ+1)||1
Definition 5 The probability flow from a set of nodes B to another set A in the (τ + 1)th
group iteration is defined as

FB→A =
∑

g∈A

∑

i∈Ng∩B

P(i, g)x(τ )(i),

where Ng represents the direct neighbors of g.
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The probability flows during the (τ + 1)th iteration are (we omit the superscript “(τ )” for
U (τ ) and S(τ ) below):

⎧
⎪⎨

⎪⎩

a := FU→S = α
∑

g∈S
∑

i∈Ng∩U P(i, g)x(τ )(i);
b := FS→S = α

∑
g∈S

∑
j∈Ng∩S P( j, g)x(τ )( j);

c := FS→U = α
∑

g∈U
∑

j∈Ng∩S P( j, g)x(τ )( j).

(12)

Theorem 4


 ≤ 1

1 − γ
[(γ + |γ |)(1 − γ − β) + 2β],

where γ = 1− ‖ x̂(τ+1) ‖1= a + b − β and β = (c + b)/α.

Proof According to Eqs. (11) and (12), we have

γ =1− ‖ x̂(τ+1) ‖1= 1− ‖ [ x
(τ+1)
U

x(τ )
S

] ‖1

= ‖ x(τ+1)
S ‖1 − ‖ x(τ )

S ‖1
= FU→S + FS→S −

∑

g∈S x
(τ )(g)

= a + b − (c + b)/α

= a + b − β

where xU and xS are the sub-vector projections of x on U and S, respectively, and β =
(c + b)/α.

Thus, we have


 =‖ x̂(τ+1)

||x̂(τ+1)||1 − x(τ+1) ‖1

=‖ [ x
(τ+1)
U

x(τ )
S

]/(1 − γ ) − [ x
(τ+1)
U

x(τ+1)
S

] ‖1

= |γ |
1 − γ

‖ x(τ+1)
U ‖1 + ‖ x(τ )

S

1 − γ
− x(τ+1)

S ‖1

≤ |γ |
1 − γ

(1− ‖ x(τ+1)
S ‖1) + ‖ x(τ )

S ‖1
1 − γ

+ ‖ x(τ+1)
S ‖1

= |γ |
1 − γ

(1 − γ − β) + β

1 − γ
+ (γ + β)

= 1

1 − γ
[(γ + |γ |)(1 − γ − β) + 2β]

�	
The proof of Theorem 3 is as follows.

Proof (1) If γ ≤ 0, we have


 ≤ 2β

1 − γ
≤ 2β = 2

∑

g∈S x
(τ )(g)

≤ 2
∑

g∈V \C(τ )
x(τ )(g) = 2(1 − Pr(C (τ ))) ≤ 2(1 − θ)
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Algorithm 4: UPDATE-Core

Input: P, K , α, x(τ )
k , inodes, θ Output: x(τ+1)

k

1 Find C(τ )
k by BFS starting from the influential nodes of Wk ;

2 U (τ )
k = C(τ )

k ∪Γ (C(τ )
k );

3 for i ∈ U (τ )
k do Update x̂(τ+1)

k (i) according to Eq. (2);

4 for i /∈ U (τ )
k do x̂(τ+1)

k (i) = x(τ )
k (i);

5 return x̂(τ+1)
k / ‖ x̂(τ+1)

k ‖1.

(2) If γ > 0, we have 
 ≤ 2(β + γ ) = 2(a + b).
Let δU = {g ∈ U |∃i ∈ S, s.t ., (i, g) ∈ E} be the set of boundary nodes of U . We have

a + b ≤ FδU∪S→S ≤ FV \C(τ )→V ≤ 1 − θ .
Thus, 
 ≤ 2(1 − θ). �	
Algorithm 4 shows the overall process of the partial node set updating strategy for walker

Wk , which can be used to replace the UPDATE in Algorithm 2. The algorithm first finds the
core node set C (τ )

k by a breadth first search starting from the influential nodes of walker Wk

(Line 1). In Line 2, the updating node set U (τ )
k can be obtained as the union of the nodes in

C (τ )
k and their direct neighbors. Lines 3 and 4 update the node visiting probabilities according

to Eq. (11). Line 5 returns the normalized probability vector.
The breath first search costs O(d|U (τ )

k |), where d is the average degree of nodes in U (τ )
k .

In each iteration, the updating time is reduced from O(|V | + |E |) to O(d|U (τ )
k |) for Wk .
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