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Abstract—Local community detection, which aims to find a
target community containing a set of query nodes, has recently
drawn intense research interest. The existing local community
detection methods usually assume all query nodes are from the
same community and only find a single target community. This
is a strict requirement and does not allow much flexibility. In
many real-world applications, however, we may not have any
prior knowledge about the community memberships of the query
nodes, and different query nodes may be from different com-
munities. To address this limitation of the existing methods, we
propose a novel memory-based random walk method, MRW, that
can simultaneously identify multiple target local communities
to which the query nodes belong. In MRW, each query node
is associated with a random walker. Different from commonly
used memoryless random walk models, MRW records the entire
visiting history of each walker. The visiting histories of walkers
can help unravel whether they are from the same community
or not. Intuitively, walkers with similar visiting histories are
more likely to be in the same community. Moreover, MRW
allows walkers with similar visiting histories to reinforce each
other so that they can better capture the community structure
instead of being biased to the query nodes. We provide rigorous
theoretical foundation for the proposed method and develop
efficient algorithms to identify multiple target local communities
simultaneously. Comprehensive experimental evaluations on a
variety of real-world datasets demonstrate the effectiveness and
efficiency of the proposed method.

I. INTRODUCTION

Local community detection (or local clustering) [2]–[8]
has recently attracted much attention due to its fundamental
importance in large network analysis. Given a network and a
set of query nodes, the goal is to find a community (or cluster)
that the query nodes belong to. Random walk based methods
have been shown to be effective in capturing local community
structures and routinely used in this task [3]–[5].

Despite of their success, most existing local community
detection methods assume that all query nodes are from the
same target community, and thus only aim to identify a
single community to include all query nodes [2], [5], [6],
[9], [10]. This is a stringent requirement and does not allow
much flexibility. However, in many real-world applications,
the query nodes may be in different communities and we
often have no prior knowledge about community memberships
of the query nodes. For example, in genetics, many complex
diseases are caused by multiple genetic factors that belong
to different biological pathways (which can be modelled as
communities in biological networks) [11]–[13]. Thus given
several disease candidate genes as the query nodes, we cannot
simply assume that all of them belong to the same pathway

and identify a single pathway to include all candidate genes.
As another example, in microscopic image retrieval [14], the
query images may belong to different disease subtypes and
we need to identify multiple image clusters (communities)
that correspond to different disease subtypes in the image
similarity network. Similarly, in a collaboration network where
nodes represent researchers, a number of interested researchers
may belong to different research communities even if they
collaborate on the same research project [15]. Therefore, an
ideal local community detection method should provide the
flexibility to allow certain query nodes to belong to different
communities.

Figure 1(a) shows an example network with three query
nodes from two different communities. Nodes 1© and 2©
are from the left community and node 3© is from the right
community. A straightforward solution is to assume that all
three query nodes are in the same community and to apply
existing local clustering methods to find the community that
they belong to. In Figure 1(a), the red dotted curve shows the
local community identified by the classic PageRank-Nibble
algorithm [2]. PageRank-Nibble adopts a lazy random walk
approach which gradually expands from the query nodes and
finds the cluster with the minimum conductance as the target
community. As we can see, the identified community includes
nodes from both clusters. Thus, we cannot simply assume all
query nodes are from the same community in this situation.

Since we have no prior knowledge of community member-
ships of the query nodes, an alternative solution is to separately
detect the target community for each query node. We refer to
this approach as the basic approach. Figure 1(b) shows the
result of applying PageRank-Nibble to detect communities for
the three query nodes separately. The detected communities
are represented by dotted curves with colors corresponding
to the colors of the query nodes. We can observe that the
detected communities are biased toward their corresponding
query nodes. Some neighbors of the query node that are
outside of the target community are also included in the result.

There are two key limitations in the basic approach de-
scribed above. The first is that the random walkers tend to
be trapped in the neighbourhood of the query nodes. This is
common in the existing methods [2], [5], [6], since the walkers
do not have any memory of their past visiting histories and
they often need to jump back to the query nodes and restart
[16]. Another limitation is that each walker finds its own
community independently and there is no interaction between
the walkers.
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(a) Result of PageRank-Nibble (as-
suming all query nodes are in the same
community)

(b) Result of PageRank-Nibble (detect-
ing community for each query node
separately)

(c) Result of MRW (detecting com-
munities simultaneously for all query
nodes)

0 10 20 30
0

0.5

1

Time point

C
os

S
im

 o
f S

co
re

 V
ec

to
rs

 

 

 

ρ
1,2

ρ
1,3

ρ
2,3

(d) Cosine similarity of the visiting his-
tory score vectors of the three walkers in
MRW

Fig. 1. An example network with three query nodes from two communities

To address the limitations of the existing local community
detection methods, in this paper, we propose MRW, a memory-
based random walk model, to simultaneously identify multiple
target local communities for a given set of query nodes.
MRW does not assume all query nodes are from the same
community. Similar to the basic approach described above, we
use one walker for each query node. The difference is that, in
MRW, we (1) record the visiting history for each walker, and
(2) introduce interactions among the walkers based on their
visiting histories. In MRW, each walker is associated with a
score vector representing the visiting history of that walker.
More specifically, we use a sliding window to record the key
positions of previous steps and aggregate the entire visiting
history for each walker. The visiting history score vectors
can then be utilized to introduce interactions between the
walkers. In particular, walkers with similar visiting histories
can mutually reinforce each other so that their score vectors
can better represent the community structures instead of being
biased to the query nodes.

Figure 1(c) shows the detected local communities by MRW
in the example network. We can see that MRW successfully
identified the two target communities that the three query
nodes belong to. To gain further insight about the intermediate
steps of MRW, Figure 1(d) shows the cosine similarity of
the visiting history score vectors of the three walkers. As
we can see, the cosine similarity between every two score
vectors corresponding to the queries in the same community,
i.e., nodes 1© and 2©, becomes stronger during the process,
while the cosine similarity between the score vectors of the
queries in different communities, i.e., node-pair 1© and 3©, and
node-pair 2© and 3©, becomes weaker. This shows the effect
of mutual reinforcement between the walkers based on their
visiting histories. It helps to alleviate the query bias issue in
traditional local community detection methods.

The rest of this paper is organized as follows. Section II
summarizes the related work. Section III-A introduces the
memory-based random walk method MRW for a single query
node. Section III-C discusses how multiple random walkers
can mutually reinforce each other and improve the perfor-
mance. Section IV presents algorithms to compute the score
vectors and to find the target local communities. Section V
shows the results of comprehensive experimental evaluations.
Section VI gives the concluding remarks.

II. RELATED WORK

Basic random walk models. Many existing local community
detection methods are based on random walks. The PageRank-
Nibble algorithm [2] uses a lazy random walker to explore
a graph and ranks nodes by the degree-normalized visiting
probabilities. It then sweeps the ranking list to find the
subset of top-ranked nodes with the minimum conductance.
The heat kernel method [6] replaces the decay factors in
PageRank-Nibble with heat diffusion parameters to find the
local cluster. In [9], comprehensive experimental evaluations
suggest that random walk with restart is one of the most
effective models to find the local community. The query-biased
local clustering method [5] assigns weights to nodes based on
the visiting probabilities of a random walker. The query-biased
densest subgraph is then identified and considered as the target
community. Random walk models are also used to detect motif
patterns around the query node [17], [18]. However, all these
methods use only one walker to explore the network and have
no record the visiting history.

Advanced random walk models. Recently, several more
advanced methods have been developed to address the lim-
itation of basic random walk models. In [16], the authors
show that traditional memoryless random walk models are
usually biased to the query nodes and propose a second-order
random walk method. However, this method only memorizes
one immediate step before current step and does not leverage
the history before that. A multi-agent random walk method
[7] is developed to find local community by restricting the
distance between different agents. In [19], [20], the authors
developed a double-walker model (the background walker
and the foreground walker) for bilayer image segmentation.
The multi-walker chain method [8] treats multiple walkers as
an integrated group to find a single target local community.
Nevertheless, the walkers in this method are also memoryless.

Other methods for local community detection. In addition
to random walks, spectral clustering has also be used for local
community detection [21]–[23]. The general idea is to project
the spectral space to a low dimensional space and identify the
local community in the projected subspace. The tensor spectral
clustering method [24] takes advantages of higher-order struc-
tures such as triangles to improve the accuracy of the detected
local community. The localized Label propagation method [25]
propagates the label from a query node until convergence to
form a community. Optimization based algorithms have also
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TABLE I
SYMBOLS AND DEFINITIONS

Symbol Definition
G = (V,E) graph G with node set V and edge set E

P transition matrix
Q, qi, S query node set Q; query node qi ∈ Q; S = |Q|
α, β, γ α, β are decay factors; γ is the reinforcement factor
K sliding window length
x
(t)
i score vector of qi at time point t

�
(t)
i reinforced score vector of qi at time point t

v
(t) visiting history vector at time point t

e
(t) vector for key positions at time point t

R̂, R R̂: reinforcement matrix; R: column-normalized R̂

been developed for local community finding. In these methods,
the local community structure is usually captured by certain
measures such as local modularity [26], k-clique [27]–[29], k-
truss [30]–[32], and k-core [33], [34]. A comprehensive survey
of these optimization based algorithms can be found in [35].

Note that most of the methods discussed above assume that
the query nodes are from the same community and try to find
a single target local community. None of them addresses the
problem of finding multiple local communities for multiple
queries simultaneously, which is the focus of this paper.

Connection Subgraph Finding. The problem of connection
subgraph finding is related to local community detection [36]–
[39]. Different from local community detection, the goal of
connection subgraph finding is to identify a small number of
additional nodes to connect the query nodes. For example, the
center-piece subgraph problem [36] tries to find a subgraph to
connect all query nodes with a budget b of additional nodes.
In [37], the connecting nodes are selected by following the
Minimum Description Length principle. The minimum Wiener
connector is introduced in [38] to connect the query nodes.
Most methods for connection subgraph finding require the
returned subgraph to be connected. The method in [39] allows
disconnected subgraphs. In this method, network inefficiency
is used as the cohesiveness measure to select connecting
nodes.

III. THE MRW MODEL

In this section, we first introduce MRW for a single query,
and then discuss how to generalize it for multiple queries by
introducing reinforcement between different walkers. Impor-
tant symbols are listed in Table I.

A. Single Query MRW

Given an undirected and connected graph G = (V,E), we
use W to represent its adjacent matrix, where entry W(i, j)
is the weight of edge (i, j) ∈ E. Let P represent the transition
matrix, where P(i, j) is the transition probability from node
i to j, i.e., P(i, j) = W(i, j)/

∑
j∈V W(i, j).

We first briefly review the well-known random walk with
restart (RWR) model which has been routinely used in the
existing local community detection methods [2], [5], [9], [16].

In RWR, starting from a query node q, a single walker
randomly explores the network. At each time point, the walker
has probability α (0 < α < 1) to follow the transition
probabilities in P, and probability (1−α) to jump back to q.
Formally, we have

x(t+1) = αPᵀx(t) + (1− α)q (1)

where x(t) is the node visiting probability vector at time t,
and q is a vector with value 1 for the q-th entry and 0 for all
others. Note that RWR is memoryless since the next step of
the walker only depends on the current node and the query
node q.

The key difference between our method MRW and RWR is
that in MRW we use a sliding window to memorize the key
positions that the walker has previously visited and aggregate
the entire visiting history of the walker. Moreover, the next
step of the walker depends not only on the current node and q
but also where the walker has visited. Specifically, in MRW,
we have

x(t+1) = αPᵀx(t) + (1− α)v(t) (2)

where v(t) represents the aggregated history of the previous
steps. Next, we discuss how to obtain v(t).

At time t, we refer to the node(s) with the largest visiting
probability as key positions of the walker. We use vector e(t) to
represent these key positions. More specifically, suppose that
there are n ≥ 1 key positions, the entries in e(t) corresponding
to the n key positions are set to 1/n, and all other entries are
0.

To record the visiting history, we use a sliding window of
length K to aggregate these key positions. That is,

v(t) = (1− βt−1)v(t−1) + βt−1 1

K

∑K

k=1
e(t+1−k) (3)

where 1
K

∑K
k=1 e

(t+1−k) represents the average of the key
position vectors in the current time window, i.e., the past K
steps. Intuitively, v(t) combines the previous visiting history
(represented by v(t−1)) and the average of key position vectors
in the current time window with a tuning parameter β (0< β
<1). Note that, initially, when t < K , e(t−K) is set to be e(0)

and v(0) = e(0), where e(0) is the same as the vector q in
RWR which represents the query node q.

B. Convergence

The following lemma shows that the difference between the
score vectors at time points t and (t+ 1) will decrease when
t becomes larger, thus the convergence of x(t) is guaranteed.

Lemma 1:

Δ(t+1) ≤

{
2

|β−α| max{βt, αt} if α �= β

2tβt−1 if α = β

where Δ(t+1) =‖ x(t+1) − x(t) ‖1.
Proof: Based on Equation (3), we have

‖ v(t) − v
(t−1) ‖1= β

t−1||v(t−1) −
1

K

K∑
k=1

e
(t+1−k)||1 ≤ 2βt−1
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Then according to Equation (2) and ‖ Pᵀ ‖1= 1, we have

Δ(t+1) =‖ x(t+1) − x(t) ‖1

≤α ‖ Pᵀ(x(t) − x(t−1)) ‖1 +(1− α) ‖ v(t) − v(t−1) ‖1

≤αΔ(t) + (1− α)2βt−1

≤αtΔ(1) + 2(1− α)βt−1
t−1∑
m=0

(
α

β
)m

≤2[αt + (1− α)βt−1
t−1∑
m=0

(
α

β
)m]

If α �= β, we have

Δ(t+1) ≤
2

β − α
[(1− α)βt − (1− β)αt)]

≤
2

|β − α|
max{βt, αt}

If α = β, we have Δ(t+1) ≤ 2tβt−1.
The following theorem shows that, in practice, we can set

a small tolerance value ε (ε > 0) as the stopping criteria.
Theorem 1: There exists a constant tc such that when t > tc,

Δ(t+1) =‖ x(t+1) − x(t) ‖1< ε for a small tolerance ε > 0.
Proof: From Lemma 1, if α �= β, Δ(t+1) ≤

2
|β−α| max{βt, αt}, then tc = � log (ε|β−α|/2)

log(max{α,β})	; if α = β,

Δ(t+1) ≤ 2tβt−1, then tc = �W−1(εβ ln β/2)
lnβ 	, where W−1

is the negative branch of the Lambert-W function 1.
In practice, the score vector usually converges very fast. For

example, when α = 0.2, β = 0.4, ε = 10−3, tc is about 10 on
the real-world datasets used in our experiments.

C. Multi-Query MRW

Next, we discuss how to extend the basic MRW model to
handle multiple queries simultaneously. Given a set of query
nodes Q, for each query node qi ∈ Q (1 ≤ i ≤ S, S = |Q|),
we assign a random walker to qi. Let x

(t)
i be the visiting

probability vector of the walker associated with qi at time point
t (as defined in Equation (2)). Intuitively, if two query nodes
qi and qj are in the same community, their corresponding
vectors x

(t)
i and x

(t)
j should have high similarity; otherwise

their similarity should be low. Thus for walkers whose score
vectors are highly similar, we allow them to reinforce each
other.

Let R̂(t) be the similarity matrix of score vectors at time
t. The initial value R̂(0) = 0. When t > 0, for i �= j,
R̂(t)(i, j) = cos(x

(t)
i ,x

(t)
j ) if cos(x

(t)
i ,x

(t)
j ) > θ, where

cos(x
(t)
i ,x

(t)
j ) is the cosine similarity between the two vectors.

Here we only consider the similarity values larger than a small
threshold (e.g., 0 ≤ θ ≤ 0.01) since smaller similarity imply
that there are no or only a small proportion of the entries in
the two vectors with similar scores, which indicates that the
two query nodes are in different communities.

1The Lambert-W function is a transcendental function defined by solutions
of the equation W (x)eW (x) = x. For real values of the argument, x, it has
two branches, W0 and W−1, the principal and the negative branches [40].

To maintain the stochastic property of score vectors, we
normalize columns of R̂ to get R such that

R(t)(i, j) =

⎧⎨
⎩R̂(t)(i, j)/

S∑
i=1

R̂(t)(i, j) if
S∑

i=1

R̂(t)(i, j) > 0

0 otherwise
(4)

We reinforce each score vector x
(t)
i by adding positive

effects from others. Specifically, the reinforced score vector
is

�
(t)
i =

⎧⎪⎪⎨
⎪⎪⎩

(1− γ)x
(t)
i + γ

S∑
j=1

R
(t)(j, i)x

(t)
j if

S∑
j=1

R
(t)(j, i) = 1

x
(t)
i if

S∑
j=1

R
(t)(j, i) = 0

(5)
where γ (0 ≤ γ < 1) is a factor to adjust the reinforcement
effect. If γ = 0, there is no effect from other walkers.

At the next time point (t+1), to compute vector x(t+1)
i , we

set x(t)
i ← �

(t)
i and compute x

(t+1)
i based on Equation (2).

The proof of the convergence of x
(t)
i is more complicated

after introducing reinforcements between the walkers. We omit
the proof here due to the space limit. Interested readers are
referred to Appendix C available in [1] for further details.

IV. ALGORITHM

In this section, we first present the algorithm for computing
the score vectors x

(t)
i . We then introduce several strategies to

speed up the computation. Finally we discuss how to perform
local clustering based on the reinforced score vectors.

A. Score Vector Computing

Algorithm 1 shows the overall process for computing x
(t)
i

for all query nodes qi ∈ Q. During the process, we use a
table keyP1,...,S (0,. . .,t) to store key positions from time
point 0 to t, such that keyPi(t) stores key positions of �

(t)
i .

At time point (t + 1), for each query node qi, the algorithm
first updates the intermediate vector x(t+1)

i based on Equation
(2) (Line 6). Then we obtain the reinforcement matrix R̂ by
computing the cosine similarity of each pair of x

(t+1)
i and

x
(t+1)
j (Lines 7 to 12). Next we get the reinforced vector

�
(t+1)
i by adding reinforced effects if others have positive

affects on x
(t+1)
i (Lines 15 to 16). Otherwise we keep the

score vectors unchanged (Line 17). After that we prepare the
visiting history vector v(t+1)

i for the next step at (t+2) (Lines
18 to 20). In this process, we append keyPi with a new
entry to store key positions of �

(t+1)
i (Line 18) and update

vectors e
(t+2−k)
i (1 ≤ k ≤ K) based on keyPi (Line 19).

Finally, we set x
(t+1)
i ← �

(t+1)
i (Line 21) and check if it

has converged (Line 22). The updating process will continue
until all x(t)

i (1 ≤ i ≤ S) converge. Then we obtain the final
converged score vectors and the reinforcement matrix R̂.

Complexity Analysis: Given a graph G(V,E) and a set of
query nodes Q = {q1, . . . , qS}, the time complexity of MRW
in Algorithm 1 is O(tcS(|E|+S|V |+K)), in which all score
vectors x

(t)
i (1 ≤ i ≤ S) converge at tc. At each time point,
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Algorithm 1: Memory-based Random Walk (MRW)

Input: P, α, β, γ, K , Q = {q1, . . . , qS}, ε, θ
Output: x(t)

i (1 ≤ i ≤ S), reinforcement matrix R̂

t = 0;1

for i = 1 : S do2

x
(0)
i = 0;x

(0)
i (qi) = 1; �(0)i = x

(0)
i ; keyPi(0) = qi;3

Init. uniform values for key posi. in e
(0)
i and v

(0)
i ;4

while any score vector xi does not converge do5

for i = 1 : S do x
(t+1)
i = αPᵀx

(t)
i + (1− α)v

(t)
i ;6

Initialize the reinforcement matrix R̂ = 0;7

for i = 1 : S do8

for j = i+ 1 : S do9

if cos(x(t+1)
i ,x

(t+1)
j ) > θ then10

R̂(i, j) = cos(x
(t+1)
i ,x

(t+1)
j );11

R̂(j, i) = R̂(i, j);12

R← Column-wise normalize R̂;13

for i = 1 : S do14

if
∑S

j=1 R(j, i) == 1 then15

�
(t+1)
i = (1−γ)x

(t+1)
i +γ

∑S
j=1 R(j, i)x

(t+1)
j ;16

else �
(t+1)
i = x

(t+1)
i ;17

Assign keyPi(t+ 1) with the key posi. of �
(t+1)
i ;18

Compute e
(t+2−k)
i (1 ≤ k ≤ K) based on keyPi;19

Update v
(t+1)
i based on Equation (3);20

x
(t+1)
i ← �

(t+1)
i ;21

Check whether x(t+1)
i has converged;22

t = t+ 1;23

return x
(t)
i (1 ≤ i ≤ S), R̂;24

updating their intermediate score vectors x
(t)
i (1 ≤ i ≤ S)

needs O(S|E|). The reinforcement matrix R̂ can be calculated
with O(S2|V |). Adding reinforced effects needs O(S2|V |).
Computing e

(t+2−k)
i (1 ≤ k ≤ K) and v

(t+1)
i to prepare next

updating process costs O(S|V |+SK). Checking convergence
status costs O(S|V |).

B. Speeding-up Strategies

In this section, we introduce two strategies to speed up the
score vector computation.

Strategy 1. We can make the algorithm more efficient by
merging highly similar score vectors. Specifically, at each time
point t, according to the reinforcement matrix R̂(t), if the
similarity between a pair of vectors x(t)

i and x
(t)
j is high, e.g.,

above 0.8, we consider the two corresponding query nodes qi
and qj are from the same community. We update x

(t)
i as the

average of the two vectors, i.e., x(t)
i ← (x

(t)
i + x

(t)
j )/2 and

set R̂(t)(i, j) = R̂(t)(j, i) = 1. In the next steps, we only
continue updating x

(t)
i but not x(t)

j .
Moreover, from Theorem 1, we know that for a single query

node, its score vector will converge after time point tc. To

further reduce the cost associated with similarity computing,
we can stop updating the similarity values after tc steps.

Strategy 2. We can reduce the number of updating steps
without losing much accuracy. Recall that Theorem 1 shows
that for each query node, when t > tc = � log (ε|β−α|/2)

log(max{α,β})	,

the error of x
(t)
i (we omit the subscript “i” for simplicity

in the following analysis) will be less than the tolerance ε.
If we expand Equation (3), we can see that v(t) is a linear
combination of e(τ)(0 ≤ τ ≤ t), i.e.,

v(t) =

t∑
τ=0

ψ(t)
τ (β)e(τ) (6)

where ψ(t)
τ (β) is the weight of e(τ). Moreover, we can verify

that when t > tβ = log ε/ log β, ψ(t)
τ (β) approaches to 0.

(Interested readers are referred to Theorem 5 in Appendix A
available in [1] for details.) This means that when t > tβ , e(t)

has no effect on v(t), x(t) and �
(t).

Theorem 2: For any query node qi ∈ Q, when t > tβ =

log ε/ logβ, as ε→ 0, ||x(t)
i −x

(tβ)
i ||1 = O(ε| log ε|) if α = β;

otherwise, ||x(t)
i − x

(tβ)
i ||1 = O(εmin{1,logβ α}).

The proof is omitted here due to the space limit. The
detailed proof can be found in Appendix B available in [1].

From Theorem 2, we can stop the algorithm earlier at time
tβ instead of tc without losing much accuracy.

C. Local Clustering

To detect local communities, for each vector (after merging),
we first find nodes with the top-L largest scores. We set the
default value of L to be 200 since most communities in real-
world datasets are not very large [41]. Let {li}(1 ≤ i ≤ L)
represent the list of top-L nodes sorted in descending order.
For each i (1 ≤ i ≤ L), we compute the conductance [42] of
the subgraph induced by node set {l1, . . . , li}. The node set
with the smallest conductance will be returned as the target
community.

Complexity Analysis: For each query node, generating the
list of the top-L sorted nodes takes time O(|V | + L logL).
Computing the conductances and finding the smallest one need
O(LdL), where dL is the average degree of the top-L nodes.

V. EXPERIMENTAL RESULTS

We conduct extensive experiments to evaluate the perfor-
mance of the proposed method using a variety of real-world
networks. All experiments are performed on a server with 64G
memory, Intel Xeon 2.6GHz CPU, and Redhat OS. The code
and datasets can be found in [1].

A. Datasets and State-of-the-Art Methods

Table II shows the statistics of the network datasets used in
our experiments (AZ: Amazon; DB: DBLP; YT: YouTube;
LJ: LiveJournal; OT: Orkut). The columns correspond to
the number of nodes |V |, number of edges |E|, number of
communities (#Com.), and the average and standard deviation
of the community size. These datasets are provided with
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TABLE II
STATISTICS OF THE REAL NETWORKS

|V | |E| # Com. Aver. Com. Size (std)2

AZ 334,863 925,872 75,149 15.06 (14.15)
DB 317,080 1,049,866 13,477 10.91 (20.49)
YT 1,134,890 2,987,624 8385 10.68 (19.56)
LJ 3,997,962 34,681,189 287,512 24.39 (25.66)
OT 3,072,441 117,185,083 6,288,363 188.50 (195.87)

ground-truth community labels and are publicly available at
http://snap.stanford.edu.

We compare MRW with several state-of-the-art local com-
munity detection methods. PageRank-Nibble (PRN) [2] adopts
the degree normalized random walk with restart (RWR) score
to rank nodes and finds the local cluster that minimizes
the external conductance. The heat kernel (HK) method [6]
replaces the decay factors in PageRank-Nibble by the heat
kernel parameters to find local clusters. The query-biased dens-
est connected subgraph detection (QDC) method [5] assigns
weights to nodes using RWR scores and finds the query biased
densest subgraph. LEMON [22] finds the local cluster by
seeking a sparse vector in a low-dimensional Krylov subspace
spanned by the query vector. The multi-walker chain (MWC)
method [8] uses an integrated team of walkers to capture the
local community structure. MARW [7] uses multiple agents
with a rope of fixed length to restrict them from travelling
too far away from each other. The second-order random walk
model (RWR2) computes the second-order RWR scores with
edge-transition probabilities to alleviate the query-bias issue
of the memoryless first-order RWR model. k-core [33] and
k-truss [30] are two algorithms based on optimizing certain
structural measurements.

Note that all the methods discussed above aim to find a
single target community. To compare MRW with these single
target community detection methods, we degenerate MRW by
removing the reinforcement process represented by Equation
(5). We use MRW-sc (sc stands for single community) to
represent this simplified version of MRW. Thus MRW-sc is
only based on Equation (2) which can be applied to find a
single target community for each query node at a time.

We also compare MRW with the methods that can handle
multiple queries. OCSG [29] finds γ-quasi-k-clique compo-
nents for the query nodes. MIS [39] and MDL [37] are
connection subgraph finding methods. These two methods
allow to find multiple connection subgraphs for a set of query
nodes. As discussed in Section II, the goal of connection
subgraph finding is to find a small number of nodes to connect
the query nodes instead of the communities the query nodes
belong to.

B. Accuracy Evaluation

In each trial, we randomly select 200 ground truth com-
munities in each network and randomly select 4 nodes from

2The community size statistics are obtained based on the selected commu-
nities using the 3-sigma rule from the well structured top-5000 clusters of
each network after deleting duplicated clusters [41].

each selected community as the query nodes. We apply the
selected methods to detect local communities for these 200×4
query nodes. This process is repeated 100 times. We use F1-
score to measure the accuracy of detected local communities.
Given the discovered local community C′ and the ground-truth
community C, F1-score is defined as

F (C ′, C) = 2 ·
prec(C ′, C)× rec(C ′, C)
prec(C ′, C) + rec(C ′, C)

where prec(C ′, C) = |C′∩C|
|C′| is the precision and rec(C ′, C) =

|C′∩C|
|C| is the recall.
The parameters of all methods are tuned to achieve their

optimal performances. More detailed parameter sensitivity
evaluations can be found in Section V-F.

Table III shows the average F1-score results of the selected
methods. We divide these methods into two groups, i.e., the
ones that allow multiple target communities/subgraphs and
the ones that are designed to find a single target community.
For the methods that allow multiple target communities, i.e.,
MRW, OCSG, MIS, and MDL, it is clear that MRW achieves
the best performance. Note that both MIS and MDL aim to find
connection subgraphs. Their returned subgraphs are usually
small. MDL cannot run into completion after two days on
the three larger datasets, YT, LJ, and OT, due to its pair-wise
shortest path computation. For OCSG, the required γ-quasi-k-
clique components are hard to obtain in certain datasets such
as YT and OT. Most of the communities in these datasets are
star structures [41].

Among the methods that find one target community for each
query node, we can see that MRW-sc achieves the best results.
The advantage of MRW-sc comes from the strategy that the
walker memorizes its visiting history. This strategy can help
the walker to effectively capture the local community structure
instead of being biased to the query node. Other random
walk-based methods, MWC, RWR2, and QDC, and local
spectral method, LEMON, also achieve reasonable results. The
substructure optimization based methods, k-core and k-truss,
usually cannot identify community structures that satisfy the
definitions in their methods.

Furthermore, comparing the performance of MRW and
MRW-sc in Table III, we can see that MRW performs better
than MRW-sc. This demonstrates the effectiveness of the
reinforcement process among the walkers. In the next section,
we provide more detailed evaluation on the effectiveness of
the reinforcement process.

C. Effectiveness of the Reinforcement

To further examine the effectiveness of the reinforcement
process, we study how the performance of MRW will change
with more query nodes taken from the same community.

From each of the 200 communities of each dataset in Sec-
tion V-B, we randomly choose {2, 4, 6, 8} distinct nodes as the
query nodes. That is we use {200×2, 200×4, 200×6, 200×8}
query nodes in MRW. For each setting, we perform 100 trials
and report the average result. Table IV shows the average F1-
scores for different settings. We can see that MRW tends to
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TABLE III
F1-SCORES OF DETECTED COMMUNITIES FOR 200 × 4 QUERIES (200 RANDOM SELECTED COMMUNITIES AND 4 QUERIES FROM EACH COMMUNITY)

Methods
Multiple target communities Single target community

MRW OCSG MIS MDL MRW-sc MWC MARW RWR2 QDC HK PRN LEMON k-core k-truss

AZ 0.9100 0.7950 0.3696 0.4191 0.8999 0.8915 0.8246 0.8501 0.8213 0.5413 0.7834 0.8249 0.2937 0.7128
DB 0.5301 0.3586 0.2938 0.4213 0.5223 0.5056 0.4056 0.3703 0.4461 0.3058 0.4084 0.4314 0.1359 0.2192
YT 0.2010 0.0643 0.0234 – 0.1884 0.1864 0.0940 0.1046 0.1211 0.1089 0.0558 0.1519 0.0162 0.0859
LJ 0.7090 0.4202 0.1861 – 0.7045 0.7005 0.3716 0.6626 0.6400 0.4868 0.5406 0.6417 0.0833 0.4476
OT 0.3609 0.0350 0.0282 – 0.3588 0.3405 0.1428 0.2286 0.3019 0.1862 0.2452 0.2812 0.0111 0.0020

Aver. 0.5422 0.3346 0.1802 – 0.5348 0.5249 0.3677 0.4432 0.4661 0.3258 0.4067 0.4662 0.1080 0.2935

TABLE IV
F1-SCORES OF MRW FOR DIFFERENT NUMBER OF QUERIES

# Queries 200× 2 200× 4 200 × 6 200× 8

AZ 0.9100 0.9100 0.9112 0.9127
DB 0.5012 0.5301 0.5513 0.5654
YT 0.1606 0.2010 0.2154 0.2421
LJ 0.6936 0.7090 0.7114 0.7212
OT 0.3525 0.3609 0.3628 0.3685

Avg. 0.5236 0.5422 0.5504 0.5620
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Fig. 2. The average cosine similarity between the visiting history score vectors
in the same community

perform better when more query nodes are from the same
community. This is due to the effectiveness of reinforcement
process.

Next, we study the similarity values in the reinforcement
matrix R̂. Figure 2 shows the average similarity value of score
vectors corresponding to the queries from the same ground
truth community. As we can see, for datasets AZ, DB and
LJ, the similarities are very high. This is consistent with the
accuracy results in Table IV. For datasets YT and OT, the
average similarity value is around 0.4. The p-value of cosine
similarity value 0.4 with 200 sample size (the typical size
of sub-vectors based on which the similarity is calculated) is
10−4, which is still statistically significant. This verifies that
the walkers from the same community tend to have similar
visiting histories.

D. Effectiveness of the Sliding Window

Equation (6) shows that v(t) can be treated as the summa-
rization of all previous key positions vectors e(τ)(0 ≤ τ ≤ t).
Figure 3 shows the distribution of weight ψ(t)

τ of previous key
positions for different β and K . The weight distribution in
Figure 3 shows that MRW assigns weights to key positions
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Fig. 3. Aggregated key position weight ψ(t)
τ for different K and β (t = 10)

with a focus on the neighborhood of the query. This is ideal
since we want the walker to be seen in the neighbourhood of
the query nodes. The existing memoryless methods (e.g., the
widely used RWR) usually only assign a weight to the query
node (e.g., (1− α)q in Equation (1)) and do not consider the
neighbourhood in later steps of the walker.

E. Efficiency Evaluation

In this section, we evaluate the efficiency of selected meth-
ods. The connection subgraph methods MIS and MDL are not
included since they do not really find the target communities
as shown in Table III.

Figure 4 shows the running time of different local commu-
nity detection methods averaged on 800 query nodes. From
the figure, we can see that MRW and MRW-sc are always
among the top-3 fastest methods. PRN and HK are fast
because of their “push” strategy that is used to approximate
the scores. LEMON’s fast speed comes from its sampling
process which first gets a subgraph around the query node,
and then applies spectral clustering in the small subgraph.
However, these methods do not provide competitive accuracy
results. Optimization-based algorithms, OCSG, k-core and k-
truss, are slow since they need to recursively find subgraphs
satisfying their cohesiveness definitions. The methods that
focus on complex models, such as MWC and MARW, which
use multiple walkers or agents for each query node, and
RWR2, which is based on the dense second-order transition
matrix, are usually computationally expensive. MRW is much
more efficient than these methods. In MRW, only one walker is
associated with each query node. The score vectors of walkers
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can be merged during the reinforcement process thus further
reducing the computing time.

Figures 5(a) and 5(b) show the running time and average
F1-score of MRW for the 200× 4 query nodes on LJ dataset
(as discussed in Section V-C) with and without speeding-up
strategies by tuning β. From Figure 5(a), we can see that
smaller β can shorten the convergence time which verifies the
theoretical analysis in Sections III-B and IV-B. In addition,
the speeding-up strategies can save computing time without
significant accuracy loss as shown in Figure 5(b).

Figure 6 shows the running time of MRW for different
numbers of query nodes. Based on the complexity analysis
in Section IV-A, since the network size is usually much larger
than the size of input query node set, i.e., |V | >> S, in
practice, the running time of MRW would be roughly linear
with respect to S. Figure 6 verifies this observation.

F. Sensitivity Evaluation

Figure 7 shows the effect of α, β, γ and K on F1-score
in LJ dataset (similar trends occur in other datasets). We
can observe that when 0.3 ≤ β ≤ 0.6, MRW achieves the
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Fig. 7. Sensitivity evaluation on LJ

best performance. Increasing K gives slightly better results.
Intuitively, larger K means that the current sliding window
memorizes more previous steps. A smaller α value gives better
performance. This is also intuitive since a smaller α value
indicates that visiting history plays a more important role in
deciding next steps of the walker. γ balances the walkers
own memory history and the influence from others. When
0.2 ≤ γ ≤ 0.4, MRW achieves the best.

G. Case Study

In this section, we apply MRW to two interesting real-
world networks, the human brain network and the flavor
compound network, to show its effectiveness in the real-world
applications.

1) Human Brain Network: Network analysis has been
increasingly used in human brain studies [43]. In our case
study, we apply MRW in a human brain co-activation network
[44] and show that the detected communities have spatial and
functional meanings.

The brain network in [44] has 638 nodes which correspond
to the cortical areas of the human brain and 18625 edges which
measure the functional associations between the cortical areas.
The 3D coordinates of the nodes in the human brain are also
provided. Based on their coordinates, we can map the nodes
into the 52 Brodmann areas (e.g., using the Talairach Client3)
with known functions.

We randomly select five nodes from two Brodmann areas.
Two query nodes are from area 2 and the other three are from

3http://www.talairach.org/
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Fig. 8. Local communities detected in the brain co-activation network. The query nodes are labelled in red and yellow.

area 21. The functionalities associated with these two areas
are somatosensory and language, respectively4.

The local communities detected by MRW for the five query
nodes in the brain co-activation network are shown in Figure
8(a). The two query nodes in area 2 are colored in red and the
three query nodes in area 21 are in yellow. From the figure, we
can see that MRW automatically detect the two communities
(represented by purple nodes and blue nodes, respectively)
that the five query nodes belong to. We further map the nodes
in the detected communities to the 3D brain cortical surface
using BrainNet Viewer [45]. The result is shown in Figure
8(b). The two communities are clearly separated. In terms of
the functionality, most of the purple nodes are associated with
somatosensory (corresponding to area 2) and most of the blue
nodes are associated with language (corresponding to area 21).
These results show that MRW successfully detects the relevant
brain regions that the query nodes belong to.

We also show the results of other methods in Figures 8(c)-
8(e). We can see that OCSG (Figure 8(c)) includes almost all
the nodes in the detected communities (the green nodes are
overlapping nodes of two communities). MIS (Figure 8(d))
adds only one more node in the right hemisphere in the result.
Figure 8(e) shows the result of MWC, which is applied to
find community for each query node and then merge highly
overlapping ones. The detected communities contain many
nodes corresponding to functionalities that are irrelevant to
the target communities.

2) Flavor Compound Network: Culinary practice plays
an important role in human history. Nowadays people pay
much attention to the flavor compound profiles of culinary
ingredients to build personalized diet. The flavor compound
network which represents the compound similarity between
different ingredients can be used for this purpose [46]. Nodes
in the flavor compound network represent ingredients. There
is an edge between two ingredients if they share similar flavor
compounds. One can build new recipes from existing ones
according to the detected communities in the flavor network
for the key ingredients. For instance, in our case study, for

4The functionalities of the Brodmann areas can be obtained from
http://www.fmriconsulting.com/brodmann/Interact.html

Fig. 9. Local communities detected in the flavor compound network. The
query ingredients are tuna, black pepper, and lime, which are colored in red,
dark green, and yellow respectively.

a common recipe Tuna with Lime and Black Pepper Sauce,
we use its three main ingredients, i.e., tuna, black pepper, and
lime, as the query nodes in the flavor compound network.
We apply MRW to detect their corresponding communities to
identify potential ingredient replacements that contain similar
flavor compounds.

The detected communities are shown in Figure 9. The query
ingredients, tuna, black pepper, and lime, are colored in red,
dark green, and yellow, respectively. MRW identifies three
communities that the three query ingredients belong to. We
find that the ingredients in each community do share similar
compounds with their corresponding query ingredient. For
query ingredient tuna, its community members are various
kinds of fish. For query black pepper, its community members
are different peppers and cayenne. For query lime, most its
community members are orange related ingredients. Based on
the detected communities, we may build another dish such as
Salmon With Lemon and Bell Pepper Saute providing similar
flavor compounds with the tuna recipe.

We also applied other methods on the flavor compound
network and found that their results are similar to the ones
in the brain network. For example, OSCG returns very large
communities while MIS returns small ones. MWC includes
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irrelevant nodes in the identified community.

VI. CONCLUSION

In this paper, we propose a memory-based random walk
model, MRW, to automatically identify target communities for
multiple query nodes. The existing methods assume that all
query nodes are from the same community. This assumption
is not true in many real-world applications. In MRW, we
assign a walker to each query node and use a sliding window
approach to aggregate the visiting history for each walker.
The walkers coming from the same community can mutually
reinforce each other during the process. We devise efficient
algorithms to compute the visiting probability score vectors
and provide rigorous theoretical foundation of the proposed
method. Extensive experimental evaluations on various real-
world datasets demonstrate the effectiveness and efficiency of
the proposed MRW model.
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