
Ranking Causal Anomalies by Modeling Local
Propagations on Networked Systems

Jingchao Ni1, Wei Cheng2, Kai Zhang3, Dongjin Song2, Tan Yan2, Haifeng Chen2 and Xiang Zhang1

1College of Information Sciences and Technology, Pennsylvania State University
2NEC Laboratories America, 3Computer and Information Sciences Department, Temple University

1{jzn47, xzhang}@ist.psu.edu, 2{weicheng, dsong, yan, haifeng}@nec-labs.com, 3zhang.kai@temple.edu

Abstract—Complex systems are prevalent in many fields such
as finance, security and industry. A fundamental problem in
system management is to perform diagnosis in case of system
failure such that the causal anomalies, i.e., root causes, can be
identified for system debugging and repair. Recently, invariant
network has proven a powerful tool in characterizing complex
system behaviors. In an invariant network, a node represents
a system component, and an edge indicates a stable interaction
between two components. Recent approaches have shown that
by modeling fault propagation in the invariant network, causal
anomalies can be effectively discovered. Despite their success,
the existing methods have a major limitation: they typically
assume there is only a single and global fault propagation in
the entire network. However, in real-world large-scale complex
systems, it’s more common for multiple fault propagations to
grow simultaneously and locally within different node clusters
and jointly define the system failure status. Inspired by this
key observation, we propose a two-phase framework to identify
and rank causal anomalies. In the first phase, a probabilistic
clustering is performed to uncover impaired node clusters in the
invariant network. Then, in the second phase, a low-rank network
diffusion model is designed to backtrack causal anomalies in
different impaired clusters. Extensive experimental results on
real-life datasets demonstrate the effectiveness of our method.

I. INTRODUCTION

Complex systems are ubiquitous in modern manufacturing

industry and information services. Monitoring behaviors of

these large-scale systems generates massive log data, such as

the metric readings from the networked sensors distributed in

a power plant, and the flow intensities of system logs from

the cloud computing facilities in Google, Yahoo! and Amazon

[1], which have increased the demand for automatic system

managements [2]. A central task in managing these complex

systems is to diagnose system faults and detect anomalies. It

has been reported that 1 minute of downtime in an automotive

manufacturing plant could result in as much as $20,000 cost

[3]. Hence a timely diagnosis of system faults is crucial to

avoid serious money waste and business loss.

Due to its practical importance, there have been intensive

interests in developing algorithms to infer whether there is a

system failure at a time and if yes, which system components

(i.e., basic system units) are causal anomalies. An early ap-

proach is to examine individual time series recorded on system

components and infer anomalies by a thresholding method [4].

However, in practice it is difficult to set a proper threshold

due to the dynamics and heterogeneity of the data. More

effective and recent approaches typically start with building

Invariant Network

Tracking

Broken Invariants at time t

Invariant link Broken link

Fig. 1. Invariant network and broken invariants.

system profiles using historical time series data, and then

detect anomalies via analyzing patterns in the profiles [5], [6].

The invariant network model is a successful example in

profiling system behaviors [5], [7], [1], [2], [8], [9]. Its focus

is to discover stable and significant dependencies between

pairs of system components that are monitored through time

series recordings. A strong dependency is called an invariant

relationship. By combining the invariants learned from all

monitoring components, an invariant network can be con-

structed. As illustrated in Fig. 1 (left), in an invariant network,

a node represents a system component. A solid line represents

an invariant link/relationship between a pair of components.

The practical value of an invariant network is that it can

shed important light on abnormal system behaviors and in

particular the source of anomalies, by checking whether ex-

isting invariants are broken. In Fig. 1 (right), the dotted lines

indicate the invariant links are broken at time point t. Such

an broken invariant link usually implies abnormal behaviors

have occurred in one or both of its connected components [5].

Usually, a network including all system components and all

the broken invariant links at a given time is called a broken

network. For example, in Fig. 1 (right), a broken network will

contain all nodes and only those dotted lines.

With the use of invariant and broken networks, several

ranking algorithms were developed to diagnose system faults.

For example, the method in [2] determines causal anomalies by

the percentage of broken invariants within the neighborhood

of each node. However, this percentage can be easily biased by

fake broken invariants, which occur frequently due to environ-

mental noises in complex systems. More recently, researchers

found system faults are seldom isolated. Instead, starting from

the root nodes, anomalous behavior will propagate to neigh-

boring nodes in a cascading manner [5]. Such observations

have led to a number of successful examples in modeling fault

(a) Invariant Network

1 600 1273
Node ID

1

600

1273

N
od

e
ID

0

0.2

0.4

0.6

0.8

1
(b) Broken Network

1 600 1273
Node ID

1

600

1273

N
od

e
ID

0

0.2

0.4

0.6

0.8

1

Broken cluster

Fig. 2. The adjacency matrices of the invariant network and broken network
from a bank information system dataset.

propagations [8], [9]. Despite their success in identifying some

causal anomalies, a major limitation of these approaches lies

in their basic assumption. They typically assume there is a

single and global propagation over the entire network, which

is not precise in many emerging applications.

Fig. 2(a) and 2(b) show the adjacency matrices of an

invariant network and its corresponding broken network at a

system failure time point from a real-world bank information

system. Each entry in Fig. 2(a) represents an invariant link.

Each entry in Fig. 2(b) represents a broken link. In Fig. 2(a),

we can observe that there are several dense clusters, i.e.,

functional modules, in the invariant network. Among them,

three clusters highlighted by red, blue and green can also be

observed in the broken network in Fig. 2(b), which means they

are heavily impaired. It should be noted different clusters have

few connections in between. This means it will be difficult for

system faults to propagate across different clusters.

The above application illustrates some important properties

of system fault propagations, which have not been taken

into account by the existing methods: (1) system faults are

propagated locally within different clusters, rather than travers-

ing globally through the whole network; (2) there can be

multiple fault propagations spreading in parallel in different

clusters in the system. Therefore, by assuming a single and

global propagation in the network, the existing methods cannot

locate multiple impaired clusters. Consequently, many true

anomalous nodes cannot be accurately detected.

To address the limitations of the existing methods, in this

paper, we propose the Cluster Ranking based fault Diagnosis

(CRD) algorithm to rank causal anomalies in a fine-grained

two-phase manner. In Phase I, it identifies and ranks clusters

in the invariant network by their severities of impairments.

To enhance the accuracy of cluster finding, a joint clustering

scheme is designed to leverage the complementary information

in invariant and broken networks. In Phase II, a diffusion

based low-rank network reconstruction model is proposed to

backtrack causal anomalies in impaired clusters found in Phase

I. This model can capture local and paralleled fault propa-

gations in different clusters, making it suitable for locating

multiple causal anomalies. Experimental results on real-life

dataset suggest the effectiveness of our method.

II. PRELIMINARIES AND PROBLEM DEFINITION

In this section, we introduce the technique of the invariant

network model [5], and then describe the problem setting.

A. Invariant Network and Broken Invariants

The invariant model is used to uncover significant pairwise

relationships among massive set of time series. Let x(t) and

y(t) be a pair of time series under consideration, such as

two sensor readings on two system components, where t is

the time index, then their relationship can be described by

a linear regression function according to the AutoRegressive

eXogenous (ARX) model [10]:

y(t) = a1y(t− 1) + ...+ any(t− n)

+ b0x(t− k) + ...+ bmx(t− k −m)
(1)

where [n,m] is the order of the model, which determines

how many previous steps are affecting the current output. k

is a time delay factor between x and y. Parameters ai and bj
indicate how strongly a previous step is impacting the current

output, which can be learned by the least-square fitting of

Eq. (1) to the training data. In real-world applications such as

anomaly detection in physical systems, 0 ≤ m,n, k ≤ 2 is a

popular choice [5], [1].

Let θ = {a1, ..., an, b0, ..., bm} be the model parameters,

after it is obtained, the prediction of y(t) can be found using

Eq. (1) by feeding θ and observations y(t − 1), ..., y(t −
n), x(t − k), ..., x(t − k − m). Let ŷ(t, θ) represent the

prediction, once it is obtained, a fitness score F (θ) [11] is

used to evaluate how well the learned model θ fits the real

observations as

F (θ) = 1−

√

∑N

t=1 |y(t)− ŷ(t,θ)|2
∑N

t=1 |y(t)− ȳ|2
(2)

where N and ȳ are the length and mean of the time series y(t),
respectively. A large fitness score indicates a better fitting of

the model. Then, an invariant is declared on a pair of times

series x and y if the fitness score is larger than a pre-defined

threshold. A network including all the invariant links is called

an invariant network.

After training the invariant model, each invariant will be

tracked using a normalized residual R(t) [11], [1]:

R(t) = |y(t)− ŷ(t,θ)|/εmax (3)

where εmax = max1≤t≤N |y(t)− ŷ(t, θ)| is the maximal error.

If the residual exceeds a prefixed threshold, then the invariant

is declared as “broken”, i.e., the corresponding dependency

relationship vanishes. At time t = Tb, A network including all

nodes in the invariant network and all broken edges is called

a broken network at time Tb.

B. Problem Description

We represent the invariant network and broken network

by their corresponding adjacency matrices A ∈ {0, 1}n×n

and B ∈ {0, 1}n×n, where n is the number of nodes (i.e.,

system components) in the system. The two matrices can

be obtained as discussed in Sec. II-A. An entry Axy equals

1 indicates an invariant dependency exists between nodes x

and y; 0 otherwise; and an entry Bxy equals 1 indicates the

invariant link between nodes x and y is broken; 0 otherwise.

The proposed CRD algorithm also allows A and B to be

continuous. In this case, Axy and Bxy can be weighted by

fitness score F (θ) (Eq. (2)) and residual R(t) (Eq. (3)),

respectively.

The goal of this work is to detect abnormal nodes in

invariant network A that are most likely to be the causes of

the broken edges in B. Since such anomalies may exist in

multiple clusters, we call them multifaceted causal anomalies.

Accurately detecting multifaceted causal anomalies will be

extremely useful for debugging complex system problems that

are jointly defined by different impaired functional modules

(i.e., broken node clusters).

III. THE CRD ALGORITHM

In this section, we introduce our CRD algorithm, which

is a two-phase framework. In Phase I, CRD identifies and

ranks multiple broken clusters. In Phase II, it backtracks causal

anomalies by modeling multiple local fault propagations in

different broken clusters.

A. Phase I: Broken Cluster Identification

First, we propose a probabilistic clustering model to jointly

cluster invariant network and broken network, and in the

meantime, rank broken clusters. The intuition for the joint

clustering is that, a set of nodes that work coordinately in

normal status and break concurrently in abnormal status are

more likely to be in the same cluster. Therefore, jointly

clustering the two networks will be useful to enhance the

accuracy of identifying broken clusters.

The Basic Clustering Method. We adopt the doubly stochas-

tic matrix decomposition as the basic method to cluster an

invariant network due to its superior performance on sparse

networks [12], which is introduced as following.

Suppose there are k clusters in an invariant network A, let

U ∈ R
n×k
+ be a cluster membership matrix with Uxi = P (i|x)

indicating the probability that node x belongs to cluster i. Then

a doubly stochastic approximation to A is defined by

Âxy =
k

∑

i=1

UxiUyi
∑n

z=1Uzi

(4)

where i is the cluster index, x, y and z are node indexes. Note

Â ∈ R
n×n
+ is symmetric and both of its columns and rows

sum up to 1. Therefore, it is referred to as doubly stochastic.

The clustering problem is to infer U by minimizing the

approximation error of the KL-Divergence DKL(A||Â). After

removing some constants, this is equivalent to minimize

−
∑

(x,y)∈EA

Axy log Âxy (5)

where EA represents the set of all edges in network A.

To provide control of the sparsity of U, a Dirichlet prior on

U can be introduced [12], which gives the following objective

function for individual network clustering

JA(U) = −
∑

(x,y)∈EA

Axy log Âxy − (α− 1)
∑

xi

logUxi

s.t. U ≥ 0, U1k = 1n

(6)

where α (α ≥ 1) is a parameter in the Dirichlet distribution,

1k is a column vector of length k with all 1’s. The equality

constraint preserves the probabilistic interpretation of Uxi.

Ranking Broken Clusters. Next, we develop a method to rank

clusters by their broken severities. Our method uses a genera-

tive process to model broken invariants in B. The intuition is

that, if two nodes x and y reside in the same severely broken

cluster, the invariant link (x, y) is more likely to break. Here,

we need a metric to quantify how severe a cluster is broken.

Thus for each cluster i in the invariant network, we define an

unknown broken score as si (0 ≤ si ≤ 1). A higher si means

a more severely broken cluster i.

To evaluate how likely an invariant link (x, y) will break,

we need a probability for this event. According to the above

intuition, this probability should satisfy two criteria: (1) within

[0, 1]; and (2) it is large only if nodes x and y belong to

the same cluster i and cluster i has a high broken score si.

Therefore, we propose to use

Pb(x, y) =
k

∑

i=1

UxiUyisi (7)

as the broken probability of an invariant (x, y). It is easy

to verify Pb(x, y) satisfies the above two criteria. Then, to

model the sparse occurrences of broken edges, we follow

the convention of modeling sparse networks [13] and use

Bernoulli distribution to simulate the generation of a broken

invariant (x, y) by

Bxy ∼ Bernoulli
(

Pb(x, y)
)

(8)

Let EB be the set of all edges in B, then the probability to

collectively generate a broken network is

P (B|U, s) =
∏

(x,y)∈EB

Pb(x, y)
∏

(x,y)∈EA\EB

[1− Pb(x, y)] (9)

Let W ∈ {0, 1}n×n be an indicator matrix, with Wxy = 1
iff (x, y) ∈ EA \ EB , i.e., (x, y) is a non-broken invariant link.

Then we can write the negative log-likelihood function as

JB(U, s) = −
∑

xy

Bxy log (
∑

i

UxiUyisi)

−
∑

xy

Wxy log (1−
∑

i

UxiUyisi)
(10)

which is our objective for learning to rank broken clusters.

Here, the to be learned si serves as the ranking score.

A Unified Objective Function. As discussed in the beginning

of this section, to leverage the complementary information in

invariant and broken networks, we integrate JA in Eq. (6) and

JB in Eq. (10) into a joint optimization problem

min
U,s

JCR(U, s) = JA + βJB

s.t. U1k = 1n, U ≥ 0, 0 ≤ si ≤ 1, ∀1 ≤ i ≤ k
(11)

where β is a parameter to balance the two terms.

B. Phase II: Causal Anomaly Ranking

To infer causal anomalous nodes, we consider the very

practical scenario of fault propagation, namely anomalous

system status can always be traced back to a set of initial seed

nodes, i.e., causal anomalies. These anomalies can propagate

along the invariant network, most probably towards neighbors

via paths represented by the invariant links in A. To model

this process, we employ the label propagation technique [14].

Suppose there is an unknown seed vector e ∈ R
n×1
+ with ex

denoting the degree that node x is a causal anomaly. After

propagation, each node x will obtain a status score rx to

indicate to what extent it is impacted by the causal anomalies.

Then the propagation from e to r can be modeled by the

following optimization problem

min
r≥0

crT (In − Ã)r+ (1− c)‖r− e‖2F

= c
∑

xy

Axy(rx/Dxx − ry/Dyy)
2 + (1− c)

∑

x

(rx − ex)
2

(12)

where In is an n × n identity matrix, Ã = D
− 1

2

A AD
− 1

2

A is a

symmetrically normalized matrix of A, and DA is a diagonal

matrix with (DA)xx =
∑n

y=1 Axy .

The first term in Eq. (12) encourages neighboring nodes

to have similar status scores, and the second term penalizes

large bias from the initial seeds. c is a parameter balancing

the two terms. It can be verified that the closed-form solution

to Eq. (12) is
r = (1− c)(In − cÃ)−1

e (13)

which establishes an explicit relationship between r and e.

In real-world applications, causal anomalies often propagate

their impacts inside their associated clusters. Thus for each

cluster i, we define e
(i) ∈ R

n×1
+ as a cluster-specific seed

vector. Moreover, instead of directly using e
(i)
x as the causal

anomaly score of node x, we use Uxie
(i)
x , where Uxi is

obtained in Phase I, to emphasize that, node x is a causal

anomaly of cluster i if it resides in cluster i (with a large Uxi

value) and is abnormal (with a large e
(i)
x value).

Correspondingly, different clusters will have different status

score vectors r
(i) ∈ R

n×1
+ . Then the propagation relationship

between e
(i) and r

(i) can be represented by

r
(i) = (1− c)(In − cÃ)−1(U∗i ◦ e

(i)) (14)

where ◦ is entry-wise product, U∗i is the ith column of U.

To exploit broken edge pattern, we propose to use {r(i)}ki=1

to reconstruct the broken network B. The intuition is as

following. When an invariant link (x, y) is broken, i.e., Bxy

is large, then at least one node of x and y should be perturbed

by some causal anomalies from some clusters. That is, either

r
(i)
x or r

(i)
y is large for some i. This suggests a reconstruction

error as
∑

(x,y)∈EA

(

k
∑

i=1

r
(i)
x r

(i)
y −Bxy)

2
(15)

Let E = [e(1), ..., e(k)], R = [r(1), ..., r(k)], and H = (1 −
c)(In−cÃ)−1, from Eq. (14), we have R = H(U◦E). Then,

let C ∈ {0, 1}n×n be an indicator matrix with Cxy = 1 iff

(x, y) ∈ EA, we can rewrite Eq. (15) by a matrix form and

obtain the following objective function

min
E≥0

JH = ‖C ◦ [H(U ◦ E)(U ◦ E)T
H

T]−B‖2F + τ‖E‖1 (16)

Here, an ℓ1 norm on E is added to encourage sparsity

of E because practically often a few nodes could be causal

anomalies. τ is a controlling parameter, a larger τ typically

results in more zeros in E.

C. Ranking with Unified Scores

To integrate the results from Phase I and II, we propose a

unified causal anomaly score fx for each node x. Ideally, this

score should place more priority to a node x if it is a causal

anomaly to some cluster i (with large Uxie
(i)
x) and cluster i is

broken severely (with large si). This suggests a simple form

fx = Uxie
(i)
x si. Equivalently, the score vector f is

f = (U ◦E)s (17)

To summarize, in CRD algorithm, we first optimize JCR

in Eq. (11) to solve U and s in Phase I, then plug U into JH

in Eq. (16) and solve E. Finally, all nodes are sorted using f

in Eq. (17), with most suspicious nodes on the top.

D. The Learning Algorithm

For Phase I, since Eq. (11) is not jointly convex in U and s,

we take an alternating minimization framework that alternately

solves U and s until a stationary point is achieved. For Phase

II, we develop an iterative updating algorithm for solving E,

which monotonically decreases the objective value in Eq. (16)

until convergence. For brevity, we omit the details here.

IV. EXPERIMENTAL RESULTS

A. Dataset Description

Bank Information Systems (BIS). The BIS dataset [2], [8]

contains 1, 273 flow intensity time series monitoring different

aspects of the system, such as CPU usage, disk I/O, etc. The

training data is collected at normal system states, where 168
time points are collected for each time series. The invariant

network is then generated on the training data as described

in Sec. II-A, which has 1, 273 nodes and 39, 116 edges. The

testing data are collected during abnormal system states, where

169 time points are collected for each of the 1, 273 time series.

As described in Sec. II-A, we use the testing data to track

the changes of the invariant network, and generate broken

networks. Among the 169 times points in the testing data,

system experts observed a system failure at t = 120 and

t = 122. Thus two broken networks on these time points

are generated for performing anomaly ranking. There are

18, 052 and 16, 089 broken edges on t = 120 and t = 122,

respectively. According to system experts, “DB16-” related

system components are responsible for the problem. So we

extract all time series with prefix “DB16-” in their titles and

regard them as ground truth anomalies. In total, there are 80
such time series. Our goal is to evaluate the capabilities of

different methods to detect these causal anomalies.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

200
400
600
800

1000
1200

Time points

A
bn

or
m

al
 s

co
re

5732
5940

6080 6950

Fig. 3. Abnormal scores at different time points on PPS dataset.

Power Plant Sensors (PPS). This dataset is collected by

NEC Lab (www.nec-labs.com). It contains 6, 049 times series

monitored by sensors distributed in a power plant system.

Similar to the BIS data, the invariant network is trained

using the time series collected in one normal day, where each

time series is collected every 10 seconds and contains 8, 639
time points. The obtained invariant network contains 6, 049
nodes and 16, 361 edges. On another day when system failure

happened, system experts generated an “abnormal score” for

each collected time point, as shown in Fig. 3. This score

is proportional to the total residual (Eq. (3)) at each time

point. To detect causal anomalies, four time points with

peak abnormal scores (as pinpointed in Fig. 3) are picked to

generate four broken networks, which have 883, 930, 1, 032
and 1, 022 broken edges, respectively. Among them, t = 5, 940
is the reported time when a system failure is observed by

system operators. According to system experts, the problem

is related to “XY2-” and “XY345-” sensors. Thus we extract

such time series and regard them as ground truth. In total,

there are 67 such time series.

B. Experimental Setup

The State-of-the-art Methods. We compare the performance

of CRD with several state-of-the-art methods, including (1)

mRank [2]; (2) gRank [2]; (3) LBP [8]; (4) RCA family

algorithms [9]. The mRank and gRank methods rank causal

anomalies mostly by the percentage of associated broken

invariants with each node. The difference is that mRank only

considers broken invariants directly linked to each node while

gRank considers broken invariants within several hops to each

node. LBP models a broken network by Markov Random

Fields and infers anomalies using a loopy belief propaga-

tion algorithm. RCA family algorithms are based on label

propagation but simply assume a single global propagation

along a whole network. There are four variants, RCA, R-

RCA, RCA-SOFT and R-RCA-SOFT. Here “R-” represents

a relaxed version that runs faster than basic RCA. “-SOFT”

means a softmax normalization is employed to avoid too large

or too small ranking scores. We consider all these algorithms

for comparison. The parameters of all methods are tuned to

achieve their optimal performance.

To study the effectiveness of each individual component of

CRD, we examine three degraded variants of CRD, i.e., CRD-

rd, CRD-mn and CRD-sp. CRD-rd only uses Phase I where

nodes in a cluster with high broken score si are ranked higher

than those in a cluster with low si. The nodes in the same

cluster are randomly ordered. CRD-mn only uses Phase II and

mRank
gRank

LBP
RCA

RCA SOFT
R RCA

R RCA SOFT
CRD rd

CRD mn
CRD sp

CRD

BIS(120) BIS(122) PPS(5732) PPS(5940) PPS(6080) PPS(6950)0

0.1

0.2

0.3

0.4

0.5

P
R

A
U

C

(a) PRAUC comparison

BIS(120) BIS(122) PPS(5732) PPS(5940) PPS(6080) PPS(6950)0
0.1
0.2
0.3
0.4
0.5
0.6

nD
C

G

(b) nDCG comparison

Fig. 4. Effectiveness evaluation on BIS and PPS datasets.

the anomaly score of a node x is fx = mean(Ex∗). CRD-

sp is the same as CRD except that in Phase I, it optimizes

JA and JB separately (see Eq. (11)). Comparing with the

first two variants can show the importance of integrating the

two phases. Comparing with the third variant can show the

effectiveness of joint optimization in Phase I.

Evaluation Criteria. Similar to existing works [2], [8], [9],

we use area under precision-recall curve (PRAUC) [15] and

normalized Discounted Cumulative Gain (nDCG) [16] to eval-

uate causal anomaly detection accuracy.
The precision-recall curve is calculated by varying the rank

threshold from 1 up to K , where K is typically chosen as

twice the actual number of ground truth causal anomalies [16],

[8]. PRAUC has been considered to be better than AUC (area

under the ROC curve) because PRAUC punishes highly ranked

false positives much more than AUC does [15].
The nDCG at top-p ranking result is defined as nDCGp =

DCGp

IDCGp
, where DCGp =

∑p

x=1
2relx−1

log
2
(1+x) is defined on the

inferred ranking list, and relx = 1 iff node x is a ground

truth anomaly. IDCGp is the DCGp value on the ground truth

ranking list. Here p is smaller than or equal to the number of

ground truth causal anomalies.

C. Effectiveness Evaluation

Fig. 4 shows the PRAUC and nDCG values of different

methods on the BIS and PPS datasets. Here nDCGp is the

value with p equal to the number of ground truth of each

dataset. From the results, we have several key observations.

First, CRD significantly outperforms other methods by large

margins on all datasets. The PRAUC improvement over the

best competing method on each dataset varies from 14.20%
to 31.64%. This demonstrates the importance of identifying

broken clusters before tracking causal anomalies. Moreover,

by comparing CRD with CRD-rd and CRD-mn, we see

the importance of integrating Phases I and II as a coherent

approach. Furthermore, the comparison with CRD-sp shows

the effectiveness of joint optimization in Phase I of CRD. This

mRank gRank LBP RCA CRD rd CRD mn CRD sp CRD

Proposed Method

0.00

0.25

0.50

0.75

1.00

0.0 0.1 0.2 0.3 0.4 0.5
Recall

P
re

ci
si

on

(a) PR-curve (t = 120)

Proposed Method

0.00

0.25

0.50

0.75

1.00

0 20 40 60 80
p

nD
C

G
p

(b) nDCG (t = 120)

Proposed Method

0.00

0.25

0.50

0.75

1.00

0.0 0.1 0.2 0.3 0.4 0.5
Recall

P
re

ci
si

on

(c) PR-curve (t = 122)

Proposed Method

0.00

0.25

0.50

0.75

1.00

0 20 40 60 80
p

nD
C

G
p

(d) nDCG (t = 122)

Fig. 5. The Precision-Recall and nDCGp curves on the BIS dataset.

0 1 2 3 4 5 6
Cluster ID

0

0.2

0.4

0.6

0.8

1

B
ro

ke
n

sc
or

e

0.003
0.045

0.305

0.414

1.000

Fig. 6. The broken cluster scores.

implies that an inferior clustering in Phase I can largely reduce

the subsequent anomaly inference accuracy.

To better understand the difference between CRD and other

methods, we have examined the Precision-Recall and nDCGp

curves of different methods. For example, Fig. 5 presents these

curves on BIS dataset. Here for clarity, we use R-RCA-SOFT

to represent the RCA family since it generally performs better

than other RCA algorithms on this data. From these results,

we find the top ranked nodes by CRD contain more ground

truth nodes than other methods, as demonstrated by the high

heads of the curves of CRD. Hence CRD is practically more

useful than other methods since system experts usually only

check the top ranked nodes in a regular diagnosis.

We also perform a detailed evaluation of the broken cluster

ranking component in Phase I of CRD. In Fig. 2(a) and (b),

we have shown the invariant and broken networks for dataset

BIS (t = 122). There are five clusters in the invariant network,

3 of which are broken and are highlighted in Fig. 2(b). Fig.

6 shows the broken scores learned by CRD for all detected

clusters (i.e., si in Eq. (11)). The colors of the bars correspond

to the clusters in Fig. 2(b). As we can see, the scores accurately

reflect the broken degrees of different clusters. Furthermore,

there is a clear difference between the scores of the broken

clusters and unbroken clusters.

V. RELATED WORK

There are many methods using invariant graphs for anomaly

analysis [5], [7], [1], here we discuss the most relevant ones. In

[2], mRank and gRank were proposed to detect anomalies in

an invariant network. However, these methods ignore the fault

propagation and heavily rely on the percentage of broken in-

variants within the neighborhood of each node. In [8] and [9],

two different ways were proposed to model fault propagation,

both of which assume a single global propagation in the whole

network. As has been discussed, this is not precise in many

emerging applications. In fact, multiple local propagations

happening in different clusters can jointly define a system

fault. Such global methods are not aware of this scenario,

making them sub-optimal in locating causal anomalies.

VI. CONCLUSION

Automatically detecting causal anomalies is a crucial task

in system management. The existing methods assume a single

and global fault propagation in the invariant network, which

cannot model the multiple and local fault propagations in

different clusters of the invariant network. To address this

problem, we propose a novel algorithm CRD in this paper.

CRD first finds and ranks broken clusters, then backtracks

causal anomalies in different clusters using a low-rank network

diffusion model. Experimental results on real-life datasets

demonstrate CRD consistently outperforms the competitors.

ACKNOWLEDGMENT

This work was partially supported by the National Science

Foundation grants IIS-1664629 and CAREER.

REFERENCES

[1] H. Chen, H. Cheng, G. Jiang, and K. Yoshihira, “Exploiting local
and global invariants for the management of large scale information
systems,” in ICDM, 2008.

[2] Y. Ge, G. Jiang, M. Ding, and H. Xiong, “Ranking metric anomaly in
invariant networks,” ACM Trans. Knowl. Discov. Data., vol. 8, no. 2,
p. 8, 2014.

[3] D. Djurdjanovic, J. Lee, and J. Ni, “Watchdog agent-an infotronics-based
prognostics approach for product performance degradation assessment
and prediction,” Adv. Eng. Inform., vol. 17, no. 3, pp. 109–125, 2003.

[4] J. Gertler, Fault detection and diagnosis in engineering systems. Marcel
Dekker, 1998.

[5] G. Jiang, H. Chen, and K. Yoshihira, “Discovering likely invariants of
distributed transaction systems for autonomic system management,” in
ICAC, 2006.

[6] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,”
ACM Comput. Surv., vol. 41, no. 3, p. 15, 2009.

[7] G. Jiang, H. Chen, and K. Yoshihira, “Modeling and tracking of
transaction flow dynamics for fault detection in complex systems,” IEEE

Trans. Dependable Secure Comput., vol. 3, no. 4, pp. 312–326, 2006.
[8] C. Tao, Y. Ge, Q. Song, Y. Ge, and O. A. Omitaomu, “Metric ranking

of invariant networks with belief propagation,” in ICDM, 2014.
[9] W. Cheng, K. Zhang, H. Chen, G. Jiang, and W. Wang, “Ranking

causal anomalies via temporal and dynamical analysis on vanishing
correlations,” in KDD, 2016.

[10] L. Ljung, System identification: theory for the user, 2nd ed. Prentice
Hall PTR, 1999.

[11] G. Jiang, H. Chen, and K. Yoshihira, “Efficient and scalable algorithms
for inferring likely invariants in distributed systems,” IEEE Trans.

Knowl. Data Eng., vol. 19, no. 11, pp. 1508–1523, 2007.
[12] Z. Yang and E. Oja, “Clustering by low-rank doubly stochastic matrix

decomposition,” in ICML, 2012.
[13] J. Yang, J. McAuley, and J. Leskovec, “Community detection in net-

works with node attributes,” in ICDM, 2013, pp. 1151–1156.
[14] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf, “Learning

with local and global consistency,” in NIPS, 2004.
[15] J. Davis and M. Goadrich, “The relationship between precision-recall

and roc curves,” in ICML, 2006.
[16] K. Järvelin and J. Kekäläinen, “Cumulated gain-based evaluation of ir

techniques,” ACM Trans. Inf. Syst., vol. 20, no. 4, pp. 422–446, 2002.

