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Abstract—Joint clustering of multiple networks has been
shown to be more accurate than performing clustering on
individual networks separately. Many multi-view and multi-
domain network clustering methods have been developed for joint
multi-network clustering. These methods typically assume there
is a common clustering structure shared by all networks, and
different networks can provide complementary information on
this underlying clustering structure. However, this assumption
is too strict to hold in many emerging real-life applications,
where multiple networks have diverse data distributions. More
popularly, the networks in consideration belong to different
underlying groups. Only networks in the same underlying group
share similar clustering structures. Better clustering performance
can be achieved by considering such groups differently. As a
result, an ideal method should be able to automatically detect
network groups so that networks in the same group share
a common clustering structure. To address this problem, we
propose a novel method, COMCLUS, to simultaneously group
and cluster multiple networks. COMCLUS treats node clusters
as features of networks and uses them to differentiate different
network groups. Network grouping and clustering are coupled
and mutually enhanced during the learning process. Extensive
experimental evaluation on a variety of synthetic and real
datasets demonstrates the effectiveness of our method.

I. INTRODUCTION

Network (or graph) clustering is a fundamental problem

to discover closely related objects in a network. In many

emerging applications, multiple networks are generated from

different conditions or domains, such as gene co-expression

networks collected from different tissues of model organisms

[1], social networks generated at different time points [2],

etc. These applications drive the recent research interests to

joint clustering of multiple networks, which has been shown

to significantly improve the clustering accuracy over single

network clustering methods [3].

The key superiority of multi-network clustering methods is

to leverage the shared clustering structure across all networks,

since a consensus clustering structure is more robust to the

incompleteness and noise in individual networks. For example,

multi-view network clustering methods [3]–[5] work on mul-

tiple representations (views) of the same set of data objects.

Different views can provide complementary information on

the underlying data distribution. Multi-domain network clus-

tering [6], [7] integrates networks of different sets of objects,

and uses mappings between objects in different networks to

penalize inconsistent clusterings.

To be successful, the existing multi-network clustering
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Fig. 1. An example of six networks. These networks can be grouped into
{A, B}, {C, D} and {E, F} according to their clustering structures.

methods typically assume different networks share a consensus

clustering structure. This very basic assumption, however, is

too simplified to real-world applications. Consider an impor-

tant bioinformatics problem, the gene co-expression network

clustering [1]. In a gene co-expression network, each node is a

gene and an edge represents the functional association between

two connected genes. To enhance performance, we can use

multiple gene co-expression networks collected in different

tissues. Recent studies show that genes have tissue-specific

roles and form tissue-specific interactions [8]. The same set

of genes may form a cluster (e.g., a functional module) in

similar tissues but not in others. Thus we cannot assume

that gene co-expression networks from different tissues form

similar clustering structures.

In this paper, we study a novel and generalized problem

where we cannot simply assume the given networks share

a consensus clustering structure. Consider the six networks

in Fig. 1, they may represent gene co-expression networks

from different tissues. Clearly, they do not share a common

clustering structure. For example, nodes {1, 2, 3} form a

cluster in network A but are in three different clusters in

network C. However, by a visual inspection, we can partition

these networks into three groups, i.e., {A, B}, {C, D} and {E,

F}, since {A, B} share an underlying clustering structure, and

so do {C, D} and {E, F}. This is practically reasonable. For

example, a set of similar tissues can share many similar gene

clusters. As another example, consider the co-author networks

of different research areas [9]. Similar areas usually attract

many similar author clusters (e.g., research sub-communities).



Thus an ideal method to cluster this collection of networks

should be able to (1) automatically detect network groups

s.t. networks in the same group share a common clustering

structure, and (2) enhance clustering accuracy by group-wise

consensus structures.

However, real-life networks are often diverse, noisy and

incomplete. Even a group of similar networks may not have

exactly the same clustering structure. Instead, they may only

share a subset of their clusters and the shared clusters may

only partially match. In Fig. 1, networks {C, D} only share

two clusters {1, 7, 6} and {2, 5, 8}, and other nodes are

irrelevant. Therefore, to effectively group together some net-

works, an ideal method should identify a subset of clusters

that are common among these networks. This is a novel and

non-trivial challenge. The existing multi-network clustering

methods either assume all clusters are common [3]–[5] or

simply enhance common clusters without identifying them [1],

[6], [7] thus cannot tackle this problem.

In this paper, we propose a novel method COMCLUS to

address these challenges. COMCLUS is novel in combining

metric learning [10] with non-negative matrix factorization

[11]. Briefly, COMCLUS treats node clusters as features of net-

works and group together networks sharing the same feature

subspace (i.e., a common subset of clusters). In COMCLUS,

network grouping and common cluster detection are coupled

and mutually enhanced during the learning process. Correctly

grouping networks sharing a common clustering structure can

resolve ambiguities hence refine common cluster detection.

Correct detection of common clusters reduces the possibility

that a network goes to the wrong group. Experimental results

on both synthetic and real-life datasets suggest the effective-

ness of the proposed method.

II. RELATED WORK

Several approaches have been developed for multi-network

clustering. Multi-view clustering is among the most popular

ones [3]–[5]. In these methods, views can be either networks

or data-feature matrices of the same set of objects. Recent

methods on multi-domain network clustering [6], [7] integrate

networks of different sets of objects by cross-network object

mapping relationships. Ensemble clustering [12] does not

simultaneously clustering multiple data views, but aims to

find an agreement of individual clustering results. All these

methods simplify an assumption that multiple networks or

views share a consensus clustering structure.

Multiple networks can also be represented by the tensor

model. However, existing tensor decomposition methods, such

as CP and Tucker decompositions [13], are good for co-

clustering multiple matrices, but are not designed for network

data where two modes of the tensor are symmetric. Moreover,

tensor decomposition also limits all networks to share a single

common underlying clustering structure.

Some methods detect communities in multi-layer networks

[2], [14]. Each layer is a distinct network. The same set of

objects are represented by different layers. These approaches

aim to identify communities that are consistent in some

layers, not to enhance clustering accuracy by using consensus.

Thus they have a different goal from us (and the approaches

mentioned above) and cannot be applied to solve our problem.

In [1], the authors developed a method, NONCLUS, to

cluster multiple networks with multiple underlying clustering

structures. Our work differs markedly from [1]. [1] studies a

different problem: to enhance clustering accuracy by using the

network group information that is already known. In practice,

however, such network group information may not be available

beforehand. Thus NONCLUS can neither identify common

clusters among networks nor group networks by their different

clustering structures.

III. THE PROBLEM

Let A = {A(1), ...,A(g)} be the g given member networks.

Each network is represented by its adjacency matrix A
(i) ∈

R
ni×ni

+ , where ni is the number of nodes in A
(i). Moreover,

V(i) represents the set of nodes in A
(i), I(ij) = V(i) ∩ V(j)

represents the set of common nodes between A
(i) and A

(j).

A network group A(p) is a subset of A such that networks

in A(p) share a common underlying clustering structure. In

this paper, we consider each network to belong to one group.

That is, if there are k network groups, then ∪k
p=1A

(p) = A,

and for any p 6= q, A(p)∩A(q) = ∅. In Fig. 1, the six networks

can be grouped as {A, B}, {C, D} and {E, F}.

The member networks in the same group share a set

of common clusters. These clusters are used as features to

characterize each network group and distinguish one group

from another. In Fig. 1, the common clusters of network group

{C, D} are clusters {1, 7, 6} and {2, 5, 8}.

Our goal is to simultaneously grouping and clustering the

given member networks {A(i)}gi=1, such that (1) the member

networks are partitioned into k groups with each group sharing

a common set of clusters; and (2) the common clusters in each

group are identified and their accuracies are enhanced. Note

that we focus on finding non-overlapping clusters, which is

also the common setting of the existing multi-view (domain)

network clustering methods [1], [3]–[7].

IV. THE COMCLUS ALGORITHM

In this section, we introduce COMCLUS, a novel subspace

NMF method that incorporates metric learning [10] with NMF

to learn cluster-level features for simultaneously grouping and

clustering different member networks.

A. Preliminaries

Non-negative matrix factorization (NMF) [15] is widely

used for clustering. We adopt the symmetric version of NMF

(SNMF) [11] as the basic approach for clustering a single

network, which minimizes the following objective function

LG(V) =

g
∑

i,j=1

(Gij − vi∗v
T
j∗)

2 = ‖G−VV
T ‖2F (1)

where ‖ · ‖F is the Frobenius norm, vi∗ ∈ R
1×k
+ is a k-

dimensional latent vector of node i, and V = [vT
1∗, ...,v

T
g∗]

T

is the factor matrix of G. An entry Vij indicates to which

degree the node i belongs to the cluster j.
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Fig. 2. An illustration of the subspace-based SNMF for two networks.

B. Clusters as Network Features

In the next, we develop a subspace SNMF method to learn

the set of clusters that can be used as features to characterize

each member network in {A(i)}gi=1. Let V = ∪g
i=1V

(i) be the

global set of nodes in all member networks. In the SNMF, i.e.,

Eq. (1), each node i is represented in a k-dimensional latent

space by vi∗ for a single network. Given multiple networks

{A(i)}gi=1, we aggregate their latent spaces into a single global

h-dimensional latent space, where h is the number of latent

dimensions. Then for each node x in V , we represent it by a

global latent vector ux∗ ∈ R
1×h
+ .

In Eq. (1), each entry Gij is approximated by the inner

product between vi∗ and vj∗, where the full spaces of the

k-dimensional latent vectors vi∗ and vj∗ are used for approx-

imation. In our method, when approximating an entry A
(i)
xy

in one member network A
(i), we only use a subspace of the

global h-dimensional ux∗ and uy∗.

Specifically, for each network A
(i), we define a metric vec-

tor w(i) ∈ R
h×1
+ whose entry w

(i)
p indicates the importance of

the global latent dimension p to network A
(i). Therefore, when

we approximate an entry A
(i)
xy , we use ux∗diag(w(i))uT

y∗,

where diag(w(i)) is a diagonal matrix with the diagonal vector

as w(i). Let D
(i)
W = diag(w(i)), using square loss function, we

can collectively approximate A
(i) by minimizing

Li({ux∗}
ni

x=1,D
(i)
W ) =

ni
∑

x,y=1

(A(i)
xy − ux∗D

(i)
W u

T
y∗)

2
(2)

In general, different networks can have different node sets

V(i), thus have different sizes. Let n = |V|. We define for

each network A
(i) a mapping matrix O

(i) ∈ {0, 1}ni×n s.t.

O
(i)(x, y) = 1 iff node x in V(i) and node y in V represent

the same object. Let U = [uT
1∗, ...,u

T
n∗]

T ∈ R
n×h
+ be a global

latent factor matrix, we can obtain the matrix form of Eq. (2)

Li(U,D
(i)
W ) = ‖A(i) − (O(i)

U)D
(i)
W (O(i)

U)T ‖2F (3)

Then for all member networks, we have

LA(U, {D
(i)
W }gi=1) =

g
∑

i=1

Li(U,D
(i)
W ) (4)

In Eq. (4), all member networks share the same latent factor

matrix U. When approximating A
(i), a sub-block of U is

used. Fig. 2 illustrates the idea. In this process, O(i) selects

the rows of U for A
(i), which corresponds to the selection

of node set V(i) from V . D
(i)
W selects the columns of U for

A
(i), which corresponds to the selection of latent subspace.

Therefore, if two networks A
(i) and A

(j) share many nodes,

they will have large overlap in the rows of U. If A
(i) and

A
(j) further show similar clustering structures, it is highly

possible that they will share similar columns in U, i.e., similar

D
(i)
W and D

(j)
W . This is because using similar sub-blocks of U

would achieve good approximations for both A
(i) and A

(j) at

this time. On the other hand, if A(i) and A
(j) have dissimilar

clustering structures, using similar subspaces of U (i.e., similar

sub-blocks of U) to approximate both A
(i) and A

(j) will

result in large loss function value. By minimizing LA, D
(i)
W

and D
(j)
W then tend to lie in separate subspaces of U.

In Eq. (1), the latent dimensions (i.e., columns) of V

represent clusters of nodes. Thus in our subspace SNMF,

the columns of U represent latent clusters. Each w
(i) (recall

D
(i)
W = diag(w(i))) is a cluster-level feature vector where

an entry w
(i)
p indicates the selection the pth latent cluster for

network A
(i). Therefore, w(i) carries the clustering structure

information of network A
(i) and can be used as a feature for

network grouping.

C. Regularization on Network Node Sets

In this section, we develop a regularizer to encode the simi-

larity between node sets of different networks. The intuition is

based on the following observation. Let us consider a special

case when two networks A
(1) and A

(2) share few or no

nodes, which makes O
(1) and O

(2) different. Their selected

sub-blocks from U will have few overlap and be separated

vertically. Using the example in Fig. 2, in this case, U(2) may

lie vertically below U
(1). At this time, A(1) and A

(2) can be

well approximated by the two different sub-blocks of U no

matter w(1) and w
(2) are similar or not. Thus it is likely that

w
(1) and w

(2) are similar while O
(1) and O

(2) are different.

However, this is counterintuitive since two networks having

few common nodes should be considered dissimilar and we

expect them to have dissimilar structural feature vectors w
(1)

and w
(2). To address this issue, we employ the regularization

on the network node set similarity. The details are shown in

the following.

We measure the similarity between w
(i) and w

(j) by their

inner product (w(i))Tw(j). To penalize the similarity when

A
(i) and A

(j) share few nodes, we propose the following

penalty function.

LΦ({w
(i)}gi=1) =

g
∑

i,j=1

Φij(w
(i))Tw(j)

(5)

where Φi,j is the penalty strength on (w(i))Tw(j). A proper

Φi,j should have a high value when |I(ij)| is small and a

low value when |I(ij)| is large. We use a logistic function1 as

1Other functions can also be used. We choose logistic function because of
the easy control of its range and shape.



following to measure the penalty strength.

Φij =

{

1

1+e−λ+2λJaccard(V(i),V(j))
i 6= j

0 i = j
(6)

where Jaccard(V(i),V(j)) = |V(i)∩V(j)|
|V(i)∪V(j)|

, λ is a parameter that

can be set to log(999) s.t. Φij ∈ [10−3, 1− 10−3].
Let W = [w(1),w(2), ...,w(g)] ∈ R

h×g
+ and Φ ∈ R

g×g
+

whose (i, j)th entry is Φij . Then we have

LΦ({w
(i)}gi=1) = LΦ(W) = ‖Φ ◦ (WT

W)‖1 (7)

where ◦ is the entry-wise product, and ‖ · ‖1 is the ℓ1 norm.

D. Network Grouping

In order to assign member networks into k groups while de-

tecting common clusters within each network group, we define

k centroid vectors {s(j)}kj=1, where s
(j) ∈ R

h×1
+ (1 ≤ j ≤ k).

Member networks in the same group share the same centroid

vector. That is, if network A
(i) belongs to group A(j), we

want to minimize the difference ‖w(i)−s
(j)‖2F . Therefore, s(j)

represents the consistent cluster feature subspace of member

networks in group A(j) and large entries in s
(j) indicate the

shared latent dimensions, i.e., common clusters, in group A(j).

Let vi∗ ∈ {0, 1}1×k be the group membership vector of

A
(i), i.e., vij = 1 iff A(i) ∈ A(j), let S = [s(1), ..., s(k)], we

can collectively minimize the difference between the cluster

feature vectors and centroid vectors by minimizing

LR(S, {vi∗}
g
i=1, {w

(i)}gi=1) =

g
∑

i=1

‖w(i) − Sv
T
i∗‖

2
F (8)

Equivalently, let V = [vT
1∗, ...,v

T
g∗]

T , we have

LR(S,V,W) = ‖W − SV
T ‖2F (9)

Eq. (9) can be explained as a co-clustering of W by NMF

[15], [16]. Thus we can relax the {0, 1} constraint on V s.t.

V ∈ R
g×k
+ to avoid the mixed integer programming [17],

which is difficult to solve. Then an entry Vij indicates to

which degree A
(i) belongs to network group A(j).

E. The Unified Model

Combining the loss function of subspace SNMF in Eq. (4),

the penalty function in Eq. (7) and the loss function of network

grouping in Eq. (9), we obtain a unified objective function for

simultaneous multi-network grouping and clustering.

L(U,V,S,W) = LA(U, {D
(i)
W }gi=1) + αLΦ(W)

+ βLR(S,V,W)
(10)

where α and β are two parameters controlling the importances

of the penalty function and network grouping, respectively.

Note that W and {D
(i)
W }gi=1 are two different representations

of the same variables, we keep both of them in our algorithm.

Formally, we forlumate a joint optimization problem as

min
U,V,S,W

L(U,V,S,W) + ρ(‖V‖1 + ‖U‖1 + ‖S‖1)

s.t. U ≥ 0, V ≥ 0, S ≥ 0,

W ≥ 0, D
(i)
W = diag(w(i)), ∀1 ≤ i ≤ g

(11)
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Fig. 3. Synthetic dataset generation, shown by network adjacency matrices.

In Eq. (11), we also add ℓ1 norms on U, V and S to

provide the option on sparseness constraints. This can be

useful when nodes (member networks) do not belong to many

clusters (network groups) [16] and each network group do

not have many common clusters. ρ is a controlling parameter.

Intuitively, the larger the ρ the more sparse the {U,V,S}.

V. LEARNING ALGORITHM

Since the objective function in Eq. (11) is not jointly convex,

we take an alternating minimization framework that alternately

solves U, V, S and W until a stationary point is achieved. For

the details, please refer to an online Supplementary Material2.

Cluster Membership Inference. After obtaining U, V, S,

and W, we can infer the network group of A
(i) by j∗ =

argmaxj Vij . We can infer the cluster membership of node

x in A
(i) by p∗ = argmaxp (O(i)

UD
(i)
W )xp. Also, for a node

x, we can infer its membership to a common cluster shared in

network group j by p∗ = argmaxp (Udiag(s(j)))xp. More

uniquely, we can sort the values in s
(j) in descending order

to identify the most common clusters in network group j.

VI. EXPERIMENTAL RESULTS

Simulation Study. We first evaluate COMCLUS using syn-

thetic datasets. The member networks are generated as follows.

Suppose we have k network groups. For each network group,

we first generate an underlying clustering structure with dc
clusters (30 nodes per cluster). The k underlying clustering

structures have the same set of nodes but different node cluster

memberships. Then member networks are generated from

each underlying clustering structure. Based on an underlying

clustering structure, each member network is appended with

dn irrelevant (“noisy”) clusters (30 nodes per cluster). The

noisy clusters of different networks may have different nodes.

Fig. 3(a) shows an example using dc = 3 and dn = 3, where

non-zero entries are set to 1. To embed noises, we randomly

flip ω0 fraction of 1 in the matrix to 0 and ω1 fraction of 0
to 1. To generate member networks with different sizes, we

randomly remove or add ε fraction of nodes in the previous

matrix. ε follows normal distribution with mean µ and standard

2The supplementary material, experimental codes and datasets are available
at http://filer.case.edu/jxn154/ComClus.



TABLE I
CLUSTERING ACCURAY ON SYNTHETIC DATASETS.

Method
SynView dataset SynNet dataset

NMI ACC NMI ACC

SNMF 0.4853 0.6900 0.3391 0.7659
Spectral 0.4723 0.6698 0.3145 0.7408

PairCRSC 0.3280 0.5437 − −
CentCRSC 0.6541 0.8155 − −

CTSC 0.4604 0.6587 − −
TF 0.4803 0.5431 − −

CGC 0.1291 0.3322 0.4498 0.7625
NONCLUS 0.5572 0.7320 0.3824 0.7454
COMCLUS 0.9764 0.9766 0.8605 0.9896

deviation σ and its value is set between 0 and 1. An example

member network with 193 nodes generated using ω0 = 80%,

ω1 = 5%, µ = 0.1, σ = 0.05 is shown in Fig. 3(b).

Using this generation process, we generate two types of

synthetic datasets, both have k = 5 network groups where

each group has 10 networks (thus 50 networks in total). In

the first dataset, dc = 6 and dn = 0. All member networks

have the same set of 180 nodes. ω0 and ω1 are set to 80% and

5% respectively to simulate noise. We refer to this dataset as

SynView dataset. In the second dataset, dc = 3 and dn = 3.

To simulate noise, we set ω0 = 80%, ω1 = 5%, µ = 0.1,

σ = 0.05. Thus different networks have different node sets

and sizes. We refer to this dataset as SynNet dataset.

We compare COMCLUS with the state-of-the-art methods,

including (1) SNMF [11]; (2) Spectral clustering (Spectral)

[18]; (3) Multi-view pair-wise co-regularized spectral clus-

tering (PairCRSC) [3]; (4) Multi-view centroid-based co-

regularized spectral clustering (CentCRSC) [3]; (5) Multi-

view co-training spectral clustering (CTSC) [5]; (6) Tensor

factorization (TF) [13]; (7) multi-domain co-regularized graph

clustering (CGC) [6]; and (8) NONCLUS [1].

SNMF and spectral clustering methods can only be applied

on single networks. PairCRSC, CentCRSC, CTSC and TF

can only be applied on SynView dataset. CGC is a recent

multi-domain graph clustering method that can be applied

on SynNet dataset. NONCLUS can be applied on SynNet

dataset given that the similarity between networks is available.

Thus, we generate a similarity matrix for the 50 member

networks using the same method described above by setting

ω0 = 80%, ω1 = 5%, µ = 0, σ = 0. The generated similarity

matrix allows to partition member networks into 5 groups.

The accuracies of common clusters are evaluated using both

normalized mutual information (NMI) and purity accuracy

(ACC), which are standard evaluation metrics. Table I shows

the averaged results of different methods over 100 runs. The

NMIs and ACCs are averaged over all member networks. The

parameters are tuned for optimal performance of all methods.

From Table I, we observe that COMCLUS achieves sig-

nificantly better performance than other methods on both

datasets. The multi-view/domain clustering methods, Pair-

CRSC, CentCRSC, CTSC, TF and CGC, assume all member

networks share the same underlying clustering structure thus

are not able to handle these datasets. NONCLUS differentiates

SNMF Spectral K−means NoNClus ComClus ComClus Grouping
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Fig. 4. Performance on 20Newsgroup dataset with various common node
ratio. The blue dotted curve shows the grouping performance of COMCLUS.

network clustering structures completely based on the simi-

larity between member networks, which makes it sensitive to

the noise in the similarity matrix. In contrast, COMCLUS is

able to automatically group networks based on their shared

clusters and use the grouping information to further improve

the clustering of individual networks.

20Newsgroup Dataset. Next we evaluate COMCLUS using

the 20Newsgroup dataset3. We use 12 news groups of 3
categories, Comp, Rec and Talk4, corresponding to 3 un-

derlying clustering structures, each with 4 clusters (news

groups). In this study, we generate 10 member networks from

each category. Thus there are 30 member networks forming

3 groups corresponding to the 3 categories. Each member

network contains randomly sampled 200 documents from the

4 news groups (50 documents from each news group) in a

category. The adjacency matrix of documents is computed

based on cosine similarity between document contents.

The common nodes in different member networks are gener-

ated as follows. For any two member networks from the same

category, a document in one network is randomly mapped to a

document with the same cluster label (e.g., comp.graphics) in

another network. For any two member networks from different

categories, the documents are randomly mapped with one-to-

one relationship. We vary the ratio of common nodes, γ, from

0 to 1 to evaluate its effects.

For comparison, the single network clustering methods

SNMF and Spectral clustering are performed on individual

member networks. The widely used k-means clustering [19] is

also selected as a baseline method, it is applied on the original

document-word matrix instead of the network data. Note that

multi-view clustering methods PairCRSC, CentCRSC, CTSC,

and TF cannot be applied here since they require full mapping

of nodes between networks. We omit CGC since it is very

slow on tens of networks. To apply NONCLUS, we calculate

the cosine similarity between the overall word frequencies of

member networks.

Fig. 4 shows the averaged NMI and ACC of different

methods over 100 runs. In general, COMCLUS achieves better

performance than other methods. Note COMCLUS is better

3http://qwone.com/%7Ejason/20Newsgroups/
4Comp: comp.graphics, comp.os.ms-windows.misc, comp.sys.ibm.pc.

hardware, comp.sys.mac.pc.hardware; Rec: rec.autos, rec.motorcycles, rec.
sport.baseball, rec.sport.hockey; Talk: talk.politics.guns, talk.politics.mideast,
talk.politics.misc, talk.religion.misc.



TABLE II
PERFORMANCE ON RM-MONTH DATASET.

Measure SNMF CTSC CGC TF COMCLUS

NMI 0.7278 0.8705 0.9083 0.9066 1.0000

Density 0.2019 0.1822 0.1702 0.1852 0.2253

than NONCLUS although NONCLUS uses the high quality

similarity information between member networks. This shows

the importance to group and cluster multiple networks simulta-

neously. The blue dotted curve in Fig. 4 shows that COMCLUS

achieves increased NMI and ACC of network grouping as

more common nodes are added. This confirms that better

common cluster detection enhances network grouping.

Reality Mining Dataset. In this section, we evaluate COM-

CLUS on the MIT reality mining proximity networks [20].

From the original dataset, we obtain 371 proximity networks

about 91 subjects (e.g., faculties, staffs, students). Each of the

network is constructed in one day between July 2004 and July

2005. In a proximity network, any pair of subjects are linked

if their phones detect each other (within certain distance) at

least once in that day.

As analyzed in [20], subjects have different roles during

work and out of campus, which reflects in different subject

clusters (e.g., working groups or social communities) in in-

and off-campus. As suggested by [20], we separate each of the

371 proximity networks by time 8 p.m. to obtain two groups

of networks for in- and off-campus, respectively.

Since many proximity networks are very sparse without

obvious structures, we take two steps to process them. First,

we extract networks from September to December 2004, which

generally has more data collected than other periods. Then

we aggregate the networks by month. Finally we have dataset

RM-month: 8 proximity networks, 4 of them are in-campus

and 4 of them are off-campus.

Next we evaluate COMCLUS to see if it can (1) automati-

cally group in (off)-campus networks together; and (2) enhance

common subject clusters in in (off)-campus networks.

First, in our results, we observe COMCLUS correctly groups

in-campus and off-campus networks. To evaluate the subject

clusters in in-campus networks, we use the ground truth from

the dataset, which indicates the subjects’ affiliations, i.e., MIT

media lab or business school. The averaged NMIs (over all

in-campus networks) of different methods are shown in Table

II. Here NONCLUS is omitted because network similarity is

not available in this dataset. For spectral based methods, we

report the best results, which is given by CTSC. As can be

seen, COMCLUS exactly discovers the subject clusters in in-

campus networks, while none of the baseline methods can

achieve this accuracy. This shows the importance to group

networks and enhance clustering by group-wise consensus. For

off-campus networks, since there is no ground truth, we use

internal density [21] as the cluster quality measure. As shown

in Table II, COMCLUS achieves the best averaged density,

which indicates its capability to discover meaningful clusters

in off-campus networks. These results imply that subjects may

have different communities during and after work.

VII. CONCLUSION

In this paper, we generalize the existing multi-network

clustering methods to consider network groups and use group-

wise consensus to enhance clustering accuracy. We treat node

clusters as features of networks and propose a novel method

COMCLUS to infer the shared cluster-level feature subspaces

in network groups. COMCLUS is not only able to simultane-

ously group networks and detect common clusters, but also

mutually enhance the performance of both procedures. Exten-

sive experiments on synthetic and real datasets demonstrate

the effectiveness of our method.
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[14] B. Boden, S. Günnemann, H. Hoffmann, and T. Seidl, “Mining coherent
subgraphs in multi-layer graphs with edge labels,” in KDD, 2012.

[15] D. D. Lee and H. S. Seung, “Algorithms for non-negative matrix
factorization,” in NIPS, 2001.

[16] C.-J. Hsieh and I. S. Dhillon, “Fast coordinate descent methods with
variable selection for non-negative matrix factorization,” in KDD, 2011.

[17] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2004.

[18] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE

Trans. Pattern Anal. Mach. Intell., vol. 22, no. 8, pp. 888–905, 2000.
[19] J. MacQueen et al., “Some methods for classification and analysis of

multivariate observations,” in Proceedings of the fifth Berkeley sympo-

sium on mathematical statistics and probability, vol. 1. California,
USA, 1967, pp. 281–297.

[20] N. Eagle, A. S. Pentland, and D. Lazer, “Inferring friendship network
structure by using mobile phone data,” Proc. Natl. Acad. Sci. USA, vol.
106, no. 36, pp. 15 274–15 278, 2009.

[21] J. Leskovec, K. J. Lang, and M. Mahoney, “Empirical comparison of
algorithms for network community detection,” in WWW, 2010.


