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Abstract—The rapid growth of medical recording data has
increased the demand for automated analysis. An important
problem in recent medical research is automated medical diag-
nosis, which is to infer likely diseases for the observed symptoms.
Existing approaches typically perform the inference on a sparse
bipartite graph with two sets of nodes representing diseases and
symptoms, respectively. By using this graph, existing methods
basically assume no direct dependency exists between diseases (or
symptoms), which may not be true in practice. To address this
limitation, we propose to integrate two domain networks encoding
similarities between diseases and those between symptoms to
avoid information loss as well as to alleviate the sparsity problem
of the bipartite graph. Another limitation of the existing methods
is that they usually output a ranked list of diseases mixed
from very different etiologies which greatly limits their practical
usefulness. An ideal method should allow a clustered structure
in the disease ranking list so that both similar and different
diseases can be easily identified. Therefore, we formulate auto-
mated diagnosis as a novel cross-domain cluster ranking problem,
which identifies and ranks the disease clusters simultaneously
in the symptom-disease network. Our formulation employs a
joint learning scheme in which the dual procedures of cluster
finding and cluster ranking are coupled and mutually reinforced.
Experimental results on real-world datasets demonstrate the
effectiveness of our method.

I. INTRODUCTION

Recent advances in medical research have generated rich

data about human symptoms and diseases [1], which has

offered great opportunities for developing automated diagnosis

methods to help people do self-prognosis to understand their

health conditions. The general goal of automated medical

diagnosis is to identify possible diseases for a given set of

symptoms. Most existing methods are based on the Quick

Medical Reference (QMR) graphical model [2], [3]. In this

model, symptoms and diseases are regarded as two sets of

nodes forming a bipartite graph. Each pair of associated

symptom and disease are connected by an edge, with a weight

indicating the correlation level between the symptom and

disease [1]. The conditional probabilities of the diseases for

the given symptoms can be inferred based on this bipartite

graph. Then, the top ranked diseases will be examined by heath

experts in further details. Despite their success, the existing

methods are limited by the following two critical problems.

The first limitation is that by using the bipartite graph,

existing methods assume diseases (and symptoms) are inde-

pendent with each other, which is not precise in real-world

applications. More practically, many diseases are related one

another [1], such as disease “bronchitis” and disease “asthma”.
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Fig. 1. An example of the symptom-disease networks.

Sometimes, certain diseases can even cause other diseases to

happen [2]. On the other side, related symptoms frequently

occur together. For example, symptom “cough” often occur

together with symptoms “expectoration” and “sore throat”.

Therefore, ignoring such relationships may result in severe

information loss. Moreover, the current known associations

between diseases and symptoms are far from being complete

[1]. Thus using only the sparse associations in the bipartite

graph for diagnosis is insufficient to obtain reliable results.

Another limitation of existing methods is that it is often

difficult to interpret their outputs. For example, imagine a

patient having symptoms “cough”, “expectoration” and “sore

throat”, which can be caused by many kinds of diseases,

such as “cold” and “asthma”. Although they are relevant,

these diseases are very different in their underlying etiologies

[4]. Existing methods only account for the relevances of

diseases for given symptoms, and often mix different diseases

in the ranking list, such as {“cold”, “asthma”, “influenza”,

“bronchitis”, ...}. Such a mixed ranking list can be confusing

and even risky in practice since it may mislead the subsequent

therapies, considering that etiologically different diseases may

require different treatments [5].

To address the first limitation, we propose to integrate

two domain networks that represent the relationships between

symptoms and those between diseases. These domain networks

are made available by the recent advancements in network

medicine [4], [1]. Fig. 1 illustrates a symptom similarity

network (left) and a disease similarity network (right). Each

edge in the domain networks represents how similar the two

connected symptoms or diseases are. We refer to the bipartite

graph connecting symptoms and diseases as the cross-domain

association network. The rich information encoded in the



domain networks can supplement the association network and

alleviate the sparsity problem of the existing methods. To

our best knowledge, this is the first work to involve domain

networks for automated medical diagnosis.

To address the second limitation, we propose to output a list

of ranked disease clusters instead of individual diseases. For

example, the list {{1st class: “cold”, “influenza”}, {2nd class:

“bronchitis”, “asthma”}, ...}, is more desirable than a mixed

list of individual diseases. In our approach, similar diseases are

grouped together, and the clusters are ranked by their relevance

to the symptoms. This allows easy identification of disease

categories and increases the interpretability of the results .

Motivated by the above discussions, we formulate auto-

mated diagnosis as the problem of inferring a probability

distribution for the disease clusters given a symptom cluster

based on the symptom-disease network. Note that symptoms

are also considered at the cluster-level, since related symptoms

often occur together. We refer to this problem as the cross-

network cluster ranking problem.

The duality between the cluster finding and cluster ranking

proposes new challenges that cannot be readily handled by the

existing network analysis methods. For example, the existing

network clustering algorithms [6], [7], [8] cannot handle the

cluster ranking problem. The co-clustering algorithms [9],

[10], [11] do not fully exploit the domain network structures.

Therefore, we propose a novel approach, CROSSCR, to simul-

taneously cluster domain networks and infer the conditional

probabilities of clusters in one domain for clusters in another.

By leveraging the duality between clustering networks and

ranking clusters across domains, both procedures are mutually

reinforced in the learning process. Experimental results on

real-life datasets demonstrate the effectiveness of our method.

II. PROBLEM DEFINITION

We present our method in a general form so that it is

applicable to any number of domain networks, although our

primary application has two domains.

We represent the ith domain network by its adjacency matrix

A
(i) ∈ R

ni×ni

+ , where ni is the number of nodes in domain i.

Each entry A
(i)
xy measures the similarity between nodes x and

y in domain i. Suppose we have g domains, for any pair of

A
(i) and A

(j), nodes in the two domains may be linked by

an association network B
(ij) ∈ R

ni×nj

+ , with B
(ij)
xy measuring

the weight between node x in A
(i) and node y in A

(j).

Our goal is to find clusters in each domain network, and for

each cluster u in one domain, assign a relevance score to each

cluster v in other domains. The score represents the relevance

of cluster v to cluster u. More formally, suppose there are ki
clusters in domain network A

(i) (1 ≤ i ≤ g), our goal is

to (1) for each node x in A
(i), infer the cluster membership

probabilities P (u|x), which indicates the probability that node

x belongs to cluster u (1 ≤ u ≤ ki); and (2) for any pair of

domains i and j, infer the conditional probabilities P (v|u)
for cluster v of domain j given cluster u of domain i. Here,

P (u|x) is used for assigning nodes to clusters, while P (v|u)
is used for ranking clusters across domains.

III. THE CROSSCR ALGORITHM

Our method CROSSCR (Cross-network Clustering and

Ranking) has two major components. For domain network

clustering, we adopt a doubly stochastic matrix decomposition

approach due to its superiority in clustering real-world sparse

networks [8]. For cluster ranking, we develop a second-order

random walk model to infer the cross-domain conditional

probabilities of clusters. To leverage the complementary in-

formation in domain networks and association networks, we

integrate the two procedures into a unified objective and

optimize the two components jointly.

A. Domain Network Clustering

We employ the doubly stochastic matrix decomposition

approach [8] as the basic method to cluster individual domain

networks. This method has been shown to be more effective

in clustering real-world sparse networks than many popular

single-network clustering algorithms, such as spectral cluster-

ing and non-negative matrix factorization [8].

Suppose there are ki clusters in domain network A
(i).

Let H
(i) ∈ R

ni×ki

+ be a cluster membership matrix with

H
(i)
xu = P (u|x) indicating the probability that node x belongs

to cluster u. A doubly stochastic approximation to the domain

network A
(i) is defined by

Â
(i)
xy =

ki∑

u=1

H
(i)
xuH

(i)
yu

∑ni

z=1 H
(i)
zu

(1)

where x, y and z are different node variables. Note Â
(i) ∈

R
ni×ni

+ is symmetric and both of its columns and rows sum

up to 1. Therefore, it is referred to as doubly stochastic.

The clustering problem is to infer H
(i) by minimizing the

approximation error of the KL-Divergence DKL(A
(i)||Â(i)).

After removing some constants, this is equivalent to minimize

−
∑

(x,y)∈E(i)

A
(i)
xy log Â

(i)
xy (2)

where E(i) represents the set of all edges in network A
(i).

To provide control of the sparsity of H(i), a Dirichlet prior

on H
(i) can be introduced [8], which gives the following

objective function for individual domain network clustering

J
(i)
A = −

∑

(x,y)∈E(i)

A
(i)
xy log Â

(i)
xy − (α− 1)

∑

xu

logH(i)
xu

s.t. H
(i) ≥ 0, H

(i)
1ki

= 1ni

(3)

where α (α ≥ 1) is a parameter in the Dirichlet distribution,

1ki
is a column vector of length ki with all 1’s. The equality

constraints preserves the probabilistic interpretation of H
(i)
xu.

B. Cross-Network Cluster Ranking

Next, we propose a second-order random walk model [12] to

infer cross-domain cluster ranking scores. We first consider the

case when there are two domain networks. Then we generalize

our method to multiple domain networks.

Given two domain networks A
(1) and A

(2), we first aug-

ment them by two sets of latent nodes U = {u}k1

u=1 and
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Fig. 2. An example of the augmented network.

V = {v}k2
v=1. The latent nodes in U represent the hidden

clusters in A
(1), and the latent nodes in V represent the hidden

clusters in A
(2). Furthermore, every node in A

(1) is linked to

every nodes in U , every node in A
(2) is linked to every nodes

in V , and every node in U is linked to every nodes in V .

Thus the augmented network consists of A(1), A(2), and three

complete bipartite graphs {A(1),U}, {A(2),V} and {U ,V}.

Fig. 2 shows an example of the augmented network. The

four squared latent nodes, e.g., u, on the left represent latent

clusters of symptom domain, the three squared latent nodes,

e.g., v, on the right represent latent clusters of disease domain.

For clarity, the edges incident on latent nodes are omitted.

In the next, we present our method in one direction, i.e.,

given clusters in A
(1), ranking clusters in A

(2). The another

direction can be obtained in a similar way.

Using the augmented network in Fig. 2, P (u|x) can be

regarded as a one-step transition probability for a random

walker to jump from a node x in A
(1) to a latent node u,

which can be obtained from H
(1)
xu by applying Eq. (3) on A

(1).

Similarly, we have P (v|y) from a node y to a latent cluster

v in A
(2). Moreover, we have the cross-domain transition

probability P (y|x) from node x in A
(1) to node y in A

(2),

which can be estimated by P (y|x) = B
(12)
xy /

∑n2

z=1 B
(12)
xz .

Our goal is to estimate P (v|u), which represents the im-

portance of a cluster v in A
(2) given a cluster u in A

(1).

We observe that from a node x to a latent node v, the

random walk probabilities form two kinds of second-order

random walk paths, as illustrated in Fig. 2:

(1) Real path (x y  v): Pr(v|x) =

n2∑

y=1

P (v|y)P (y|x)

(2) Latent path (x u v): Pl(v|x) =

k1∑

u=1

P (v|u)
︸ ︷︷ ︸

unknown

P (u|x)

We refer to x y  v as a real path, since the bridge node

y is a real node, and x  u  v as a latent path, since the

bridge node u is a latent node.

To find P (v|u), we can use the latent path transition proba-

bility Pl to approximate the real path transition probability Pr.

The intuition is as follows. Suppose that node x belongs to

cluster u (i.e., P (u|x) is large), and node y belongs to cluster v
(i.e., P (v|y) is large). If cluster v is important to u (i.e., P (v|u)

is large), then it is more likely to generate a link from node x to

node y, i.e., P (y|x) is large; otherwise, P (y|x) is small. This

generative idea inspires us to use Pl to approximate Pr. More

specifically, we want to minimize the approximation error

D(Pr ||Pl) for some divergence measure D(·||·). Since we are

measuring the difference between probability distributions, a

natural choice is KL-Divergence DKL(·||·). This gives the

following loss function for all pairs of (x, v):

−

n1∑

x=1

k2∑

v=1

Pr(v|x) logPl(v|x) (4)

Formally, we define a conditional probability matrix S
(12) ∈

R
k1×k2
+ with S

(12)
uv = P (v|u). Let B̃(12) be the row normalized

version of B(12), i.e., B̃
(12)
xy = B

(12)
xy /

∑n2

z=1 B
(12)
xz . Then it is

easy to verify

Pr(v|x) = (B̃(12)
H

(2))xv, Pl(v|x) = (H(1)
S
(12))xv

Therefore, by enforcing a stochastic constraint on S
(12), i.e.,

S
(12) ≥ 0 and S

(12)
1k2 = 1k1 , Eq. (4) can be rewritten in a

matrix form as

J
(12)
R = −

∑

xv

(B̃(12)
H

(2))xv
︸ ︷︷ ︸

real paths

log (H(1)
S
(12))xv

︸ ︷︷ ︸

latent paths

(5)

which is our loss function for cross-domain cluster ranking.

C. A Unified Objective Function

A principled way to infer the clustering of nodes and the

ranking of clusters is to jointly train the objective functions in

Eq. (3) and Eq. (5), which allows the mutual reinforcement of

the two procedures. Suppose I = {(i, j)} represents the set of

all domain pairs and {B(ij)}(i,i)∈I represents the correspond-

ing association networks. Then, by integrating Eq. (3) and

Eq. (5), and generalizing the concept to any pair of domains

in I, we reach a joint optimization problem

min J ({H(i)}, {S(ij)}) =

g
∑

i=1

J
(i)
A + β

∑

(i,j)∈I

J
(ij)
R

s.t. H
(i) ≥ 0, H

(i)
1ki

= 1ni

S
(ij) ≥ 0, S

(ij)
1kj

= 1ki
, ∀1 ≤ i, j ≤ g, i 6= j

(6)

where β is a parameter to balance the importance between

the network clustering and the cross-domain cluster ranking.

When β = 0, Eq. (6) degenerates to g independent network

clustering. Intuitively, the more reliable the association net-

works, the larger the value of β.

D. Prioritizing Nodes in Each Cluster

So far, we have considered how to order clusters in domain

networks. Next, we derive a strategy to prioritize nodes within

each cluster by their importances to that cluster.

Once we have obtained the cluster membership probabilities

P (u|x) (i.e., H
(i)
xu) in domain i from Eq. (6), we can calcu-

late the probability P (x|u) by using the Bayes formula and

expansion rule, which gives

P (x|u) =
P (u|x)P (x)

∑ni

z=1 P (u|z)P (z)
=

P (u|x)
∑ni

z=1 P (u|z)
(7)



where the second equality comes from the uniform prior on

nodes that is imposed by stochastic matrix decomposition.

Let D
(i)
H be a ki-by-ki diagonal matrix with (D

(i)
H )uu =

∑ni

z=1 H
(i)
zu, the above equation can be rewritten by

P (x|u) = (H(i)(D
(i)
H )−1)xu (8)

Here, P (x|u) indicates the importance of node x to cluster

u in domain i. Thus, we can sort the entries in each column of

H
(i)(D

(i)
H )−1 to obtain the most representative nodes in each

cluster. In practice, showing several top ranked nodes in each

cluster can help quick understanding of the category of the

disease cluster and hence facilitate efficient retrieval.

E. Learning Algorithm

Since the objective function in Eq. (6) is not jointly convex

in all variables, we take an alternating minimization framework

that alternately solves {U(i)} and {S(ij)} until a stationary

point is achieved. To solve {U(i)} and {S(ij)}, we develop

multiplicative updating rules with solid theories about the

algorithmic convergence. For brevity, we omit the details here.

IV. RELATED WORK

The existing computational methods for medical diagnosis

are mostly based on the bipartite graph model [2], [13], [3].

As discussed before, these methods ignore the relationships

between diseases and symptoms, and usually output a list of

diseases mixed from different categories, which makes their

results sub-optimal in practice.

The proposed method is also related to multi-network

clustering and co-clustering methods. The goal of most multi-

network clustering approaches is to improve clustering accu-

racy by exploring the shared clustering structure in different

domain networks [14], [15], [16]. However, these methods do

not consider the relationships between clusters from different

networks thus cannot handle the cluster ranking problem. Co-

clustering methods [9], [10], [11] can be applied to partition

rows and columns of the adjacency matrix of an association

network. It has been shown that using domain networks

to regularize the co-clustering can improve accuracy [11].

However, when the association network is sparse, the effec-

tiveness of graph regularization becomes limited. In contrast,

our method performs clustering directly on domain networks,

and explicitly models the conditional probabilities between

clusters from different domains, which is both intuitive and

theoretically sound. Our experimental results also shows the

clear advantage of our method over these methods.

V. EXPERIMENTS

In this section, we perform extensive experiments to evalu-

ate our method using real-world datasets.

A. The State-of-the-Art Methods

We compare CROSSCR with the state-of-the-art single

network clustering methods and (network-regularized) co-

clustering methods. The single network clustering methods
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Fig. 3. The clustering performance comparison of different methods on the
symptom-disease networks.

include (1) SNMF (symmetric non-negative matrix factoriza-

tion using Euclidean distance [7]), (2) SNMF KL (SNMF

using KL-Divergence [17]), (3) Spectral (spectral clustering

[6]), and (4) DCD (stochastic matrix decomposition approach

[8]). For these methods, we adopt a two-step strategy to

generate cluster ranking scores. Suppose that there are two

domain networks A
(1) and A

(2). We first apply each method

to cluster A
(1) and A

(2) individually. Then, we count the

number of associations between every cluster in A
(1) and

every cluster in A
(2), and use the row normalized counts

as the ranking scores. Comparing with these single network

clustering methods can demonstrate the importance of joint

cluster finding and ranking.

The co-clustering methods include (1) NMTF [18], (2)

DRCC [9], and (3) MCA [11]. NMTF is a basic matrix

tri-factorization approach that can only be applied on the

association network. The entries of its inferred middle factor

matrix can be regarded as the relationship strengths between

row and column clusters, but there is no clear theoretical

basis for such meanings. DRCC and MCA are both graph

regularized NMTF approaches. The major difference is that

MCA generates non-negative cluster-level relationships while

DRCC does not have this constraint.

B. Evaluation on Symptom-Disease Networks

Dataset Description. The symptom-disease network dataset

is collected from the largest medical website in China

(http://www.xywy.com/). It contains a disease similarity net-

work of 9, 721 disease nodes and 29, 332 edges, a symptom

similarity network of 5, 093 symptom nodes and 22, 548 edges,

as well as an association network with 5, 337 symptom-disease

associations. The disease (symptom) similarity is calculated by

the cosine similarity between a pair of vectorial representations

of diseases (symptoms). The vectorial representations are

trained by the w2v model [19] using 60 million medical Q&A

descriptions about diseases and symptoms on the website. The

association between a symptom and a disease is calculated

based on their co-occurrence in the Q&A texts.

Clustering Evaluation. First, we evaluate the clustering per-

formance of the selected methods. The ground truth class

labels of the diseases are collected from WHO ICD-10 (In-



TABLE I
TOP RANKED DISEASE CLUSTERS GIVEN BY CROSSCR.

symptom cluster 1st disease cluster (probability) 2nd disease cluster (probability) 3rd disease cluster (probability)

(1)

expectoration cold

(0.6424)

bronchopneumonia

(0.2937) − (<0.1000)sore throat varicose veins bronchitis

cough upper respiratory tract infection asthma

(2)

bloating reflux esophagitis

(0.7877)

duodenal inflammation

(0.1351) − (<0.1000)burp gastroesophageal reflux antral erosion

stomachache gastritis superficial gastritis

(3)

blurred vision conjunctivitis

(0.6153)

macular degeneration

(0.1741) − (<0.1000)dry eyes keratitis retinal detachment

eyestrain pink eye vitreous opacities

(4)

eye fissure macular degeneration

(0.5002)

amblyopia

(0.1569)

conjunctivitis

(0.1330)photophobia retinal detachment hyperopia keratitis

pupillary block vitreous opacities esotropia pink eye

(5)

cerebral hemorrhage cerebral infarction

(0.5400)

skull fracture

(0.1449)

diabetes

(0.1161)intracranial hemorrhage brainstem infarction epidural hematoma hypertension

increased intracranial pressure stroke brain contusion dyslipidemia

ternational Classification of Diseases) data1. There is a two-

level hierarchy of disease categories. Level-1 is more general

than level-2. Level-1 has 17 categories and covers 1447
diseases (14.89%), Level-2 has 47 categories and covers 958
diseases (9.85%). There are no ground truth labels available

for symptoms in this dataset.

Since only partial labels are available, we use purity accu-

racy (ACC) as the evaluation metric to evaluate the disease

clustering results, instead of using normalized mutual infor-

mation (NMI), which requires fully labeled data.

We also adopt the widely used conductance as a quality

measure to evaluate both disease and symptom clusters. Con-

ductance is independent of any ground truth and can be used to

evaluate whether a set of nodes shows a cluster-like structure

in a network. It is defined as

Cond(C) =
|∂(C)|

min (Vol(C),Vol(C̄))
(9)

where C is a set of nodes, |∂(C)| is the number of edges with

one endpoint inside of C and another outside of C, Vol(C) is the

sum of node degrees in C, and C̄ is the set of nodes outside C.

Usually, a lower conductance implies a better cluster structure.

Fig. 3 shows the clustering accuracy comparison in terms

of the level-1 and level-2 ground truths, as well as the

conductance comparison. From Fig. 3(a), we can see that

the methods integrating both domain networks and their as-

sociations, such as MCA and CROSSCR, outperform their

single network counterparts. This confirms the complementary

interaction between the two domain networks. Moreover, the

best accuracy of CROSSCR demonstrates the importance to

directly modeling the clustering structures of domain networks

rather than using them as regularizers. It also validates the

importance to correctly modeling the many-to-many and or-

dered cluster relationships across domains. Fig. 3(b) shows

the conductances of the detected clusters. From the results,

we can see that SNMF KL, DCD and CROSSCR achieve

the best conductances. This indicates the clusters detected

by them are more cluster-like than other methods. It should

1http://www.cdc.gov/nchs/icd/icd10cm.htm

TABLE II
TOP RANKED DISEASES GIVEN BY A QMR-DT ALGORITHM.

Symptom # Top ranked diseases

(1) tonsillitis, cold, asthma, heart disease, fracture

(2) gastritis, cold, heart disease, fracture, epilepsy

(3) dry eye, conjunctivitis, diabetes, cold, heart disease

(4) cataract, uveitis, ocular trauma, keratitis, pink eye

(5) subarachnoid hemorrhage, aneurysm, hypertension, cold

be noted that although SNMF KL and DCD are comparable

with CROSSCR in terms of conductance, which are very

small with little room to improve, their purity accuracies are

lower than CROSSCR. This means the clusters detected by

CROSSCR make more sense in both medical context and

network topology than other competing approaches.

Ranking Evaluation. Next, we examine the disease cluster

ranking lists generated by CROSSCR. We select the symptoms

and diseases that are relatively common in our population so

that the general audience without background in medicine can

still see their relationships. Table I shows the top-3 disease

clusters for 5 symptom clusters. The disease clusters are

sorted in descending order by their probabilities (i.e., Suv in

Eq. (6)), which are shown in the parentheses. Each symptom

(or disease) cluster is represented by its top 3 representative

symptoms (or diseases), as discussed in Sec. III-D. The disease

clusters with probabilities less than 0.1 are filtered out. From

the table, we can make several key observations. First, the dis-

eases in the same cluster are from the same disease category.

Second, the top ranked disease clusters are valid candidates

for the symptoms. Third, the gap between the probability of

the top-ranked disease cluster and those of the remaining ones

is large. These properties are highly desirable and demonstrate

the importance of simultaneous cluster finding and ranking.

For comparison of the ranking lists, we also apply a

well-known QMR-DT based medical diagnosis algorithm,

quickscore [2], on the same dataset. This algorithm only runs

on the symptom-disease association network and returns a

single ranking list of mixed diseases. Table II shows its top

ranked diseases for the same set of symptoms as in Table I. We
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Fig. 4. The clustering performance comparison on the disease-gene networks.

can see that the lists in Table II mix diseases from different

categories, such as cold and asthma. This makes the results

hard to interpret and limits their usefulness. Moreover, in Table

II, we have highlighted relevant diseases in each line using the

bold italics font. As can be seen, only a part of the diseases

in each list are relevant to the corresponding symptoms.

For example, heart disease and fracture are clearly irrelevant

to the symptoms in (1) and (2). Such false inferences are

caused by the limitation of only using the association network.

This demonstrates the importance of integrating disease and

symptom domain networks when performing diagnosis.

C. Additional Application of CROSSCR

Although CROSSCR is motivated from the application of

automated medical diagnosis, it can also be applied to other

problem settings. In this section, we further evaluate its

performance on a disease-gene dataset [20].

The disease-gene dataset consists of a disease network and

a gene network. The disease network has 5, 080 nodes and

19, 729 edges. Each node represents a specific disease pheno-

type and an edge signifies the similarity between two diseases

according to their co-occurrences in the clinical synopsis in

OMIM records [20]. In the gene network, a node is a gene

and an edge indicates a functional interaction between a pair

of proteins transcribed from the genes. There are 8, 503 nodes

and 32, 189 edges in this gene network. In addition, diseases

and genes from the two domains are connected by 2, 107
disease-gene associations. In the dataset, there are 20 disease

classes which cover 691 diseases (13.60%) in the disease

domain. For the genes, there are 200 pathway labels (i.e., class

labels), covering 2, 615 genes (30.75%) in the network.

Fig. 4 shows the clustering results on the disease-gene

network dataset. We can see that all algorithms achieve higher

accuracies in the disease domain than the gene domain. This

is because there are less classes in disease domain than in

gene domain, resulting in purer labeled clusters. Similar to the

results on the symptom-disease networks, methods integrating

both domain networks and their associations outperform their

single network counterparts. CROSSCR achieves the highest

accuracy among all methods, while obtains competitive con-

ductances in both domains. Therefore, CROSSCR is better than

other compared methods considering the domain knowledge

and network topology together.

VI. CONCLUSION

Developing computational methods for medical diagnosis

is an important data mining problem. Traditional diagnosis

algorithms often assume no direct dependency exists between

diseases (or symptoms), making them suffer from severe

information loss. To address this limitation, we introduce two

domain networks to model the relationships between diseases

and those between symptoms. To improve the interpretability

of the diagnostic outcomes, we further study a novel cross-

domain cluster ranking problem. In contrast to output a

single ranking list of mixed diseases, we develop CROSSCR

that allows a clustered structure in the ranking list so that

locating diseases can be effective. Our method employs a joint

learning scheme to reinforce both procedures of cluster finding

and cluster ranking. Experimental results on real-life datasets

demonstrate the effectiveness of CROSSCR.
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