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Modern world has witnessed a dramatic increase in our ability to collect, transmit and distribute real-

time monitoring and surveillance data from large-scale information systems and cyber-physical systems. De-

tecting system anomalies thus a�racts signi�cant amount of interest in many �elds such as security, fault

management, and industrial optimization. Recently, invariant network has shown to be a powerful way in

characterizing complex system behaviours. In the invariant network, a node represents a system component

and an edge indicates a stable, signi�cant interaction between two components. Structures and evolutions of

the invariance network, in particular the vanishing correlations, can shed important light on locating causal

anomalies and performing diagnosis. However, existing approaches to detect causal anomalies with the in-

variant network o�en use the percentage of vanishing correlations to rank possible casual components, which

have several limitations: 1) fault propagation in the network is ignored; 2) the root casual anomalies may not

always be the nodes with a high-percentage of vanishing correlations; 3) temporal pa�erns of vanishing cor-

relations are not exploited for robust detection; 4) prior knowledges on anomalous nodes are not exploited

for (semi-)supervised detection. To address these limitations, in this paper we propose a network di�usion

based framework to identify signi�cant causal anomalies and rank them. Our approach can e�ectively model

fault propagation over the entire invariant network, and can perform joint inference on both the structural,

and the time-evolving broken invariance pa�erns. As a result, it can locate high-con�dence anomalies that

are truly responsible for the vanishing correlations, and can compensate for unstructured measurement noise

in the system. Moreover, when the prior knowledges on the anomalous status of some nodes are available

at certain time points, our approach is able to leverage them to further enhance the anomaly inference ac-

curacy. When the prior knowledges are noisy, our approach also automatically learns reliable information

and reduces impacts from noises. By performing extensive experiments on synthetic datasets, bank informa-

tion system datasets, and coal plant cyber-physical system datasets, we demonstrate the e�ectiveness of our

approach.
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1 INTRODUCTION

With the rapid advances in networking, computers, and hardware, we are facing an explosive
growth of complexity in networked applications and information services. �ese large-scale, of-
ten distributed, information systems usually consist of a great variety of components that work
together in a highly complex and coordinated manner. One example is the Cyber-Physical System
(CPS) which is typically equipped with a large number of networked sensors that keep record-
ing the running status of the local components; another example is the large scale Information
Systems such as the cloud computing facilities in Google, Yahoo! and Amazon, whose composi-
tion includes thousands of components that vary from operating systems, application so�wares,
servers, to storage, networking devices, etc.
A central task in running these large scale distributed systems is to automatically monitor the

system status, detect anomalies, and diagnose system fault, so as to guarantee stable and high-
quality services or outputs. Signi�cant research e�orts have been devoted to this topic in the
literatures. For instance, Gertler et al. [8] proposed to detect anomalies by examining monitoring
data of individual component with a thresholding scheme. However, it can be quite di�cult to
learn a universal and reliable threshold in practice, due to the dynamic and complex nature of
information systems. More e�ective and recent approaches typically start with building system
pro�les, and then detect anomalies via analyzing pa�erns in these pro�les [5, 16]. �e system
pro�le is usually extracted from historical time series data collected by monitoring di�erent sys-
tem components, such as the �ow intensity of so�ware log �les, the system audit events and the
network tra�c statistics, and sometimes sensory measurements in physical systems.
�e invariant model is a successful example [16, 17] for large-scale system management. It fo-

cuses on discovering stable, signi�cant dependencies between pairs of system components that
are monitored through time series recordings, so as to pro�le the system status and perform sub-
sequent reasoning. A strong dependency between a pair of components is called invariant (cor-
relation) relationship. By combining the invariants learned from all monitoring components, a
global system dependency pro�le can be obtained. �e signi�cant practical value of such an in-

variant pro�le is that it provides important clues on abnormal system behaviors and in particular
the source of anomalies, by checking whether existing invariants are broken. Fig. 1 illustrates
one example of the invariant network and two snapshots of broken invariants at time t1 and t2,
respectively. Each node represents the observation from a monitoring component. �e green line
signi�es an invariant link between two components, and a red line denotes broken invariant (i.e.,
vanishing correlation). �e network including all the broken invariants at given time point is
referred to as the broken network.
Although the broken invariants provide valuable information of the system status, how to locate

true, causal anomalies can still be a challenging task due to the following reasons. First, system
faults are seldom isolated. Instead, starting from the root location/component, anomalous behavior
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Fig. 1. Invariant network and vanishing correlations(red edges).

will propagate to neighboring components [16], and di�erent types of system faults can trigger
diverse propagation pa�erns. Second, monitoring data o�en contains a lot of noises due to the
�uctuation of complex operation environments.
Recently, several ranking algorithms were developed to diagnose the system failure based on

the percentage of broken invariant edges associated with the nodes, such as the egonet based
method proposed by Ge et al. [7], and the loopy belief propagation (LBP) based method proposed
by Tao et al. [26]. Despite the success in practical applications, existing methods still have certain
limitations. First, they do not take into account the global structure of the invariant network,
neither how the root anomaly/fault propagates in such a network. Second, the ranking strategies
rely heavily on the percentage of broken edges connected to a node. For example, the mRank
algorithm [7] calculated the anomaly score of a given node using the ratio of broken edges within
the egonet 1 of the node. �e LBP-based method [26] used the ratio of broken edges as the prior
probability of abnormal state for each node. We argue that, the percentage of broken edges may
not serve as a good evidence of the causal anomaly. �is is because, although one broken edge can
indicate that one (or both) of related nodes is abnormal, lack of a broken edge does not necessary
indicate that related nodes are problem free. Instead, it is possible that the correlation is still there
when two nodes become abnormal simultaneously [16]. �erefore the percentage of broken edges
could give false evidences. For example, in Fig. 1, the causal anomaly is node i©. �e percentage
of broken edges for node i© is 2/3, which is smaller than that of node h© (which is equal to 1).
Since there exists a clear evidence of fault propagation on node i©, an ideal algorithm should
rank i© higher than h©. �ird, existing methods usually consider static broken network instead
of multiple broken networks at successive time points together. While we believe that, jointly
analyzing temporal broken networks can help resolve ambiguity and achieve a denoising e�ect.
�is is because, the root casual anomalies usually remain unchanged within a short time period,
even though the fault may keep prorogating in the invariant network. As an example shown in
Fig. 1, it would be easier to detect the causal anomaly if we jointly consider the broken networks
at two successive time points together.
Furthermore, in some applications, system experts may have prior knowledges on the anoma-

lous status of some components (i.e., nodes) at certain time points, such as a numeric value indi-
cating the bias of the monitoring data of a component from its predicted normal value [6]. �us it
is highly desirable to incorporate them to guide the causal anomaly inferences. However, to our
best knowledge, none of these existing approaches can handle such information.
To address the limitations of existing methods, we propose several network di�usion based

algorithms for ranking causal anomalies. Our contributions are summarized as follows.

1An egonet is the induced 1-step subgraph for each node.
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(1) We employ the network di�usion process to model propagation of causal anomalies and
use propagated anomaly scores to reconstruct the vanishing correlations. By minimizing
the reconstruction error, the proposed methods simultaneously consider the whole invari-
ant network structure and the potential fault propagation. We also provide rigid theoretical
analysis on the properties of our methods.

(2) We further develop e�cient algorithms which reduce the time complexity from O (n3) to
O (n2), where n is the number of nodes in the invariant network. �is makes it feasible to
quickly locate root cause anomalies in large-scale systems.

(3) We employ e�ective normalization strategy on the ranking scores, which can reduce the
in�uence of extreme values or outliers without having to explicitly remove them from the
data.

(4) We develop a smoothing algorithm that enables users to jointly consider dynamic and
time-evolving broken network, and thus obtain be�er ranking results.

(5) We extend our algorithms to semi-supervised se�ings to leverage the prior knowledges
on the anomalous degrees of nodes at certain time points. �e prior knowledges are al-
lowed to partially cover the nodes in the invariant network, as practically suggested by
the limitation of such information.

(6) We also improve our semi-supervised algorithms to allow automatic identi�cation of noisy
prior knowledges. By assigning small weights to nodes with false anomalous degrees,
our algorithms can reduce the negative impacts of prior knowledges and obtain robust
performance gain.

(7) We evaluate the proposed methods on both synthetic datasets and two real-life datasets,
including the bank information system and the coal plant cyber-physical system datasets.
�e experimental results demonstrate the e�ectiveness of the proposed methods.

2 BACKGROUND AND PROBLEM DEFINITION

In this section, we �rst introduce the technique of the invariant model [16] and then de�ne our
problem.

2.1 System Invariant and Vanishing Correlations

�e invariant model is used to uncover signi�cant pairwise relations among massive set of time
series. It is based on the AutoRegressive eXogenous (ARX) model [21] with time delay. Let x (t )
and y (t ) be a pair of time series under consideration, where t is the time index, and let n andm be
the degrees of the ARX model, with a delay factor k . Let ŷ (t ;θ ) be the prediction of y (t ) using the
ARX model parametarized by θ , which can then be wri�en as

ŷ (t ;θ ) =a1y (t − 1) + · · · + any (t − n) (1)

+ b0x (t − k ) + · · · + bmx (t − k −m) + d

=φ (t )⊤θ , (2)

whereθ = [a1, . . . ,an ,b0, . . . ,bm,d]
⊤ ∈ Rn+m+2,φ (t ) = [y (t−1), . . . ,y (t−n), x (t−k ), . . . , x (t−k−

m), 1]⊤ ∈ Rn+m+2. For a given se�ing of (n,m,k ), the parameter θ can be estimated with observed
time points t = 1, . . . ,N in the training data, via least-square ��ing. In real-world applications
such as anomaly detection in physical systems, 0 ≤ n,m,k ≤ 2 is a popular choice [6, 16]. We can
de�ne the “goodness of �t” (or �tness score) of an ARX model as

F (θ ) = 1 −

√√
∑N

t=1
��y (t ) − ŷ (t ;θ )��2

∑N
t=1

��y (t ) − ȳ��2 , (3)

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39. Publication date: January 2017.



Ranking Causal Anomalies via Dynamical Analysis on Vanishing Correlations 39:5

Table 1. Summary of notations

Symbol De�nition

n the number of nodes in the invariant network
c, λ, τ the parameters 0 < c < 1, τ > 0, λ > 0
σ (·) the so�max function

Gl the invariant network
Gb the broken network for Gl

A (Ã) ∈ Rn×n the (normalized) adjacency matrix of Gl
P (P̃) ∈ Rn×n the (normalized) adjacency matrix of Gb
M ∈ Rn×n the logical matrix of Gl

d (i ) the degree of the ith node in network Gl
D ∈ Rn×n the degree matrix: D = diaд(d (i ), ...,d (n))

r ∈ Rn×1 the prorogated anomaly score vector
e ∈ Rn×1 the ranking vector of causal anomalies

RCA the basic ranking causal anomalies algorithm
R-RCA the relaxed RCA algorithm

RCA-SOFT the RCA with so�max normalization
R-RCA-SOFT the relaxed RCA with so�max normalization

T-RCA the RCA with temporal smoothing
T-R-RCA the R-RCA with temporal smoothing

T-RCA-SOFT the RCA-SOFT with temporal smoothing
T-R-RCA-SOFT the R-RCA-SOFT with temporal smoothing
RCA-SEMI the RCA in semi-supervised se�ing

W-RCA-SEMI the semi-supervised RCA with weight learning

where ȳ is the mean of the time series y (t ). A higher value of F (θ ) indicates a be�er ��ing of the
model. An invariant (correlation) is declared on a pair of time series x and y if the �tness score of
the ARX model is larger than a pre-de�ned threshold. A network including all the invariant links
is referred to as the invariant network. Construction of the invariant network is referred to as the
model training. �e model θ will then be applied on the time series x and y in the testing phase
to track vanishing correlations.
To track vanishing correlations, we can use the techniques developed in [6, 18]. At each time

point, we compute the (normalized) residual R(t ) between the measurement y (t ) and its estimate
ŷ (t ;θ ) by

R(t ) =
��y (t ) − ŷ (t ;θ )��

εmax
, (4)

where εmax is the maximum training error εmax = max1≤t ≤N
|y (t ) − ŷ (t ;θ ) |. If the residual exceeds a pre�xed threshold, then we declare the invariant as “bro-
ken”, i.e., the correlation between the two time series vanishes. �e network including all the
broken edges at given time point and all nodes in the invariant network is referred to as the bro-
ken network.

2.2 Problem Definition

Let Gl be the invariant network with n nodes. Let Gb be the broken network for Gl . We use two
symmetric matrices A ∈ Rn×n , P ∈ Rn×n to denote the adjacency matrix of network Gl and Gb ,
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respectively. �ese two matrices can be obtained as discussed in Section 2.1. �e two matrices
can be binary or continuous. For binary case of A, 1 is used to denote that the correlation exists
between two time series, and 0 denotes the lack of correlation; while for P, 1 is used to denote that
the correlation is broken (vanishing), and 0 otherwise. For the continuous case, the �tness score
F (θ ) (3) and the residual R(t ) (4) can be used to �ll the two matrices, respectively.
Our main goal is to detect the abnormal nodes in Gl that are most responsible for causing the

broken edges in Gb . In this sense, we call such nodes “causal anomalies”. Accurate detection of
causal anomalous nodes will be extremely useful for examination, debugging and repair of system
failures.

3 RANKING CAUSAL ANOMALIES

In this section, we present the algorithm of Ranking Causal Anomalies (RCA), which takes into
account both the fault propagation and ��ing of broken invariants simultaneously.

3.1 Fault Propagation

We consider a very practical scenario of fault propagation, namely anomalous system status can
always be traced back to a set of root cause anomaly nodes, or causal anomalies, as initial seeds. As
the time passes, these root cause anomalies will then propagate along the invariant network, most
probably towards their neighbors via paths identi�ed by the invariant links in Gl . To explicitly
model this spreading process on the network, we have employed the label propagation technique
[19, 28, 31]. Suppose that the (unknown) root cause anomalies are denoted by the indicator vector
e, whose entries ei ’s (1 ≤ i ≤ n) indicate whether the ith node is the casual anomaly (ei = 1) or not
(ei = 0). At the end of propagation, the system status is represented by the anomaly score vector
r, whose entries tell us how severe each node of the network has been impaired. �e propagation
from e to r can be modeled by the following optimization problem

min
r≥0

c

n∑

i, j=1

Ai j | |
1
√
Dii

ri −
1
√
Dj j

rj | |2 + (1 − c )
n∑

i=1

| |ri − ei | |2,

where D ∈ Rn×n is the degree matrix of A, c ∈ (0, 1) is the regularization parameter, r is the
anomaly score vector a�er the propagation of the initial faults in e. We can re-write the above
problem as

min
r≥0

cr⊤ (In − Ã)r + (1 − c ) | |r − e| |2F , (5)

where In is the identity matrix, Ã = D−1/2AD−1/2 is the degree-normalized version of A. Similarly

we will use P̃ as the degree-normalized P in the sequel. �e �rst term in Eq. (5) is the smoothness

constraint [31], meaning that a good ranking function should assign similar values to nearby nodes
in the network. �e second term is the ��ing constraint, which means that the �nal status should
be close to the initial con�guration. �e trade-o� between these two competing constraints is
controlled by a positive parameter c: a small c encourages a su�cient propagation, and a big c

actually suppresses the propagation. �e optimal solution of problem (5) is [31]

r = (1 − c ) (In − cÃ)−1e, (6)

which establishes an explicit, closed-form solution between the initial con�guration e and the �nal
status r through propagation.
To encode the information of the broken network, we propose to use r to reconstruct the broken

network Gb . �e intuition is illustrated in Fig. 2. If there exists a broken link in Gb , e.g., P̃i j is
large, then ideally at least one of the nodes i and j should be abnormal, or equivalently, either ri
or rj should be large. �us, we can use the product of ri and rj to reconstruct the value of P̃i j . In

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39. Publication date: January 2017.



Ranking Causal Anomalies via Dynamical Analysis on Vanishing Correlations 39:7

i 

j 

a 
b 

v 

 

 

P 

i 

 

 

r 

j 

1 

ri 

rj 

ii 1i

i

j

G
b 

Invariant link
 

Broken link
 ri·rj   is large 

Fig. 2. Reconstruction of the broken invariant network using anomaly score vector r.

Section 5, we’ll further discuss how to normalize them to avoid extreme values. �en, the loss of
reconstructing the broken link P̃i j can be calculated by (ri · rj − P̃i j )2. �e reconstruction error of

the whole broken network is then | |(rr⊤)◦M− P̃| |2F . Here, ◦ is element-wise operator, andM is the

logical matrix of the invariant network Gl (1 with edge, 0 without edge). Let B = (1−c ) (In−cÃ)−1,
by substituting r we obtain the following objective function.

min
ei ∈{0,1},1≤i≤n

| |(Bee⊤B⊤) ◦M − P̃| |2F (7)

Considering that the integer programming in problem (7) is NP-hard, we relax it by using the ℓ1
penalty on e with parameter τ to control the number of non-zero entries in e [27]. �en we reach
the following objective function.

min
e≥0
| |(Bee⊤B⊤) ◦M − P̃| |2F + τ | |e| |1 (8)

3.2 Learning Algorithm

In this section, we present an iterative multiplicative updating algorithm to optimize the objective
function in (8). �e objective function is invariant under these updates if and only if e are at a
stationary point [20]. �e solution is presented in the following theorem, which is derived from
the Karush-Kuhn-Tucker (KKT) complementarity condition [3]. Detailed theoretical analysis of
the optimization procedure will be presented in the next section.

Theorem 1. Updating e according to Eq. (9) will monotonically decrease the objective function in

Eq. (8) until convergence.

e← e ◦
{

4B⊤ (P̃ ◦M)⊤Be

4B⊤ [M ◦ (Bee⊤B⊤)]Be + τ1n

} 1
4

, (9)

where ◦, [·]
[·] and (·) 1

4 are element-wise operators.

Based on�eorem 1, we develop the iterative multiplicative updating algorithm for optimization
and summarize it in Alg. 1. We refer to this ranking algorithm as RCA.

3.3 Theoretical Analysis

3.3.1 Derivation. We derive the solution to problem (9) following the constrained optimization
theory [3]. Since the objective function is not jointly convex, we adopt an e�ective multiplicative
updating algorithm to �nd a local optimal solution. We prove �eorem 1 in the following.
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ALGORITHM 1: Ranking Causal Anomalies (RCA)

Input: Network Gl denoting the invariant network with n nodes, and is represented by an adjacency

matrix A, c is the network propagation parameter, τ is the parameter to control the sparsity of e, P̃ is

the normalized adjacency matrix of the broken network,M is the logical matrix of Gl (1 with edge, 0

without edge)

Output: Ranking vector e

1 begin

2 for i ← 1to n do

3 Dii ←
∑n
j=1 Ai j ;

4 end

5 D← diaд(D11, ...,Dii );

6 Ã← D−1/2AD−1/2;
7 Initialize e with random values between (0,1];

8 B← (1 − c )(In − cÃ)−1;
9 repeat

10 Update e by Eq. (9);

11 until convergence;

12 end

We formulate the Lagrange function for optimization L = | |(Bee⊤B⊤) ◦M − P̃| |2F + τ1⊤n e. Obvi-
ously, B,M and P̃ are symmetric matrix. Let F = (Bee⊤B⊤) ◦M, then

∂

∂em
(F − P̃)2i j = 2(Fi j − P̃i j )

∂Fi j

em

= 4(Fi j − P̃i j )Mi j (B
⊤
miBj :e) (by symmetry)

= 4B⊤mi (Fi j − P̃i j )Mi j (Be)j :

(10)

It follows that
∂ | |F − P̃| |2

F

∂em
= 4B⊤m:[(F − P̃) ◦M](Be), (11)

and thereby
∂ | |F − P̃| |2F
∂e

= 4B⊤[(F − P̃) ◦M](Be). (12)

�us, the partial derivative of Lagrange function with respect to e is:

∇eL = 4B⊤
[
(Bee⊤B⊤ − P̃) ◦M

]
Be + τ1n, (13)

where 1n is the n × 1 vector of all ones. Using the Karush-Kuhn-Tucker (KKT) complementarity
condition [3] for the non-negative constraint on e, we have

∇eL ◦ e = 0 (14)

�e above formula leads to the updating rule for e that is shown in Eq. (9).

3.3.2 Convergence. We use the auxiliary function approach [20] to prove the convergence of
Eq. (9) in �eorem 1. We �rst introduce the de�nition of auxiliary function as follows.

Definition 3.1. Z (h, ĥ) is an auxiliary function for L(h) if the conditions

Z (h, ĥ) ≥ L(h) and Z (h,h) = L(h), (15)

are satis�ed for any given h, ĥ [20].
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Lemma 3.1. If Z is an auxiliary function for L, then L is non-increasing under the update [20].

h (t+1)
= argmin

h

Z (h,h (t ) ) (16)

Theorem 2. Let L(e) denote the sum of all terms in L containing e. �e following function

Z (e, ê) = −2
∑

i j

[
B⊤ (P̃ ◦M)⊤B

]
i j
êi êj

(

1 + log
eiej

êi êj

)

+

∑

i

{
B⊤

[
M ◦ (Bêê⊤B⊤)

]
Bê

}
i

e4i

ê3i
+

τ

4

∑

i

e4i + 3ê
4
i

ê3i

(17)

is an auxiliary function for L(e). Furthermore, it is a convex function in e and has a global minimum.

Proof. According to De�nition 3.1, in this proof, we need to verify (1) Z (e, ê) ≥ L(e), (2)
Z (e, e) = L(e) and (3) Z (e, ê) is a convex function in e, which are respectively proved as following.

First, omi�ing some constants, we write L(e) as

L(e) = −2tr
(

B⊤ (P̃ ◦M)⊤Bee⊤
)

+ tr
([
M ◦ (Bee⊤B⊤)

]⊤
(Bee⊤B⊤)

)

+ τ
∑

i

ei (18)

In order to prove (1) Z (e, ê) ≥ L(e), we deduce the upper bound for each term in Eq. (18).
Using the inequality z ≥ 1 + logz, which holds for any z > 0, we have

eiej

êi êj
≥ 1 + log

eiej

êi êj

�en we can write an upper bound for the �rst term

− 2tr
(

B⊤ (P̃ ◦M)⊤Bee⊤
)

= −2
∑

i j

[
B⊤ (P̃ ◦M)⊤B

]
i j
eiej

≤ −2
∑

i j

[
B⊤ (P̃ ◦M)⊤B

]
i j
êi êj

(

1 + log
eiej

êi êj

) (19)

For the second term, we can rewrite it by

tr
([
M ◦ (Bee⊤B⊤)

]⊤
(Bee⊤B⊤)

)

=

∑

xyi jpq

MxyBxieiejByjBxpepeqByq

Let ei = êisi , ej = êjsj , ep = êpsp and eq = êqsq for some non-negative values si , sj , sp and sq ,
we can further rewrite it by

∑

xyi jpq

MxyBxi êi êjByjBxp êp êqByqsisjspsq

≤
∑

xyi jpq

MxyBxi êi êjByjBxp êp êqByq
s4i + s

4
j + s

4
p + s

4
q

4

=

1

4
*.,
∑

i

Qi

e4i

ê3i
+

∑

j

Qj

e4j

ê3j
+

∑

p

Qp

e4p

ê3p
+

∑

q

Qq

e4q

ê3q

+/- =
∑

i

Qi

e4i

ê3i

(20)

where Q = B⊤
[

M ◦ (Bêê⊤B⊤)] Bê. Here, the last equation is obtained by switching indexes.
For the third term, using the fact that 2ab ≤ a2 + b2, we have

τ
∑

i

ei ≤
τ

2

∑

i

e2i + ê
2
i

êi
≤ τ

4

∑

i

e4i + 3ê
4
i

ê3i
(21)
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�erefore, by collecting Eq. (19), Eq. (20) and Eq. (21), we have veri�ed (1) Z (e, ê) ≥ L(e). More-
over, by substituting ê with e in Z (e, ê), we can directly verify (2) Z (e, e) = L(e).
To prove (3) Z (e, ê) is a convex function in e, we need to show the Hessian matrix ∇2eZ (e, ê) is

positive-de�nite. First, we derive

∂Z (e, ê)

∂ei
= −4

[
B⊤ (P̃ ◦M)⊤Bê

]
i

êi

ei
+ 4

{
B⊤

[
M ◦ (Bêê⊤B⊤)

]
Bê

}
i

e3i

ê3i
+ τ

e3i

ê3i

�en the second order derivative is

∂2Z (e, ê)

∂ei∂ej
= δi j

(

4
[
B⊤ (P̃ ◦M)⊤Bê

]
i

êi

e2i
+ 12

{
B⊤

[
M ◦ (Bêê⊤B⊤)

]
Bê

}
i

e2i

ê3i
+ 3τ

e2i

ê3i

)

where δi j is the Kronecker delta. δi j = 1 if i = j; δi j = 0 otherwise.
�erefore, the Hessian matrix ∇2eZ (e, ê) is a diagonal matrix with positive diagonal entries.

Hence, we verify (3) ∇2eZ (e, ê) is positive-de�nite and Z (e, ê) is a convex function in e. �is com-
pletes the proof. �

Based on �eorem 2, we can minimize Z (e, ê) with respect to e with ê �xed. We set ∇eZ (e, ê) = 0,

and get the following updating formula

e← ê ◦
{

4B⊤ (P̃ ◦M)⊤Bê

4B⊤ [M ◦ (Bêê⊤B⊤)]Bê + τ1n

} 1
4

, (22)

which is consistent with the updating formula derived from the KKT condition aforementioned.
From Lemma 3.1 and �eorem 2, for each subsequent iteration of updating e, we have L(e0) =

Z (e0, e0 ) ≥ Z (e1, e0 ) ≥ Z (e1, e1 ) = L(e1) ≥ ... ≥ L(eI ter ). �us L(e)monotonically decreases. Since the
objective function Eq. (8) is lower bounded by 0, the correctness of �eorem 1 is proven.

3.3.3 Complexity Analysis. In Alg. 1, we need to calculate the inverse of an n×n matrix, which
takesO (n3) time. In each iteration, the multiplication between two n×nmatrices is inevitable, thus
the overall time complexity of Alg. 1 is O (Iter ·n3), where Iter is the number of iterations needed
for convergence. In the following section, we will propose an e�cient algorithm that reduces the
time complexity to O (Iter · n2).

4 COMPUTATIONAL SPEED UP

In this section, we will propose an e�cient algorithm that avoids the matrix inverse calculations
as well as the multiplication between two n × n matrices. �e time complexity can be reduced to
O (Iter · n2).
We achieve the computational speed up by relaxing the objective function in (8) to jointly opti-

mize r and e. �e objective function is shown in the following.

min
e≥0,r≥0

cr⊤ (In − Ã)r + (1 − c ) | |r − e| |2F
︸                                   ︷︷                                   ︸

Fault propagation

+ λ | |(rr⊤) ◦M − P̃| |2F + τ | |e| |1
︸                              ︷︷                              ︸
Vanishing correlation reconstruction

(23)

To optimize this objective function, we can use an alternating scheme. �at is, we optimize the
objective with respect to r while �xing e, and vise versa. �is procedure continues until conver-
gence. �e objective function is invariant under these updates if and only if r, e are at a stationary
point [20]. Speci�cally, the solution to the optimization problem in Eq. (23) is based on the follow-
ing theorem, which is derived from the Karush-Kuhn-Tucker (KKT) complementarity condition
[3]. �e derivation of it and the proof of �eorem 3 is similar to that of �eorem 1.
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Theorem 3. Alternatively updating e and r according to Eq. (24) and Eq. (25) will monotonically

decrease the objective function in Eq. (23) until convergence.

r← r ◦
{

Ãr + 2λ(P̃ ◦M)r + (1 − c )e
r + 2λ [(rr⊤) ◦M] r

} 1
4

(24)

e← e ◦
[

2(1 − c )r
τ1n + 2(1 − c )e

] 1
2

(25)

Based on �eorem 3, we can develop the iterative multiplicative updating algorithm for opti-
mization similar to Algorithm 1. Due to page limit we skip the details. We refer to this ranking
algorithm as R-RCA. From Eq. (24) and Eq. (25), we observe that the calculation of the inverse of
the n × n matrix and the multiplication between two n × n matrices in Algorithm 1 are not neces-
sary. As we will see in Section 8.5, the relaxed versions of our algorithm can greatly improve the
computational e�ciency.

5 SOFTMAX NORMALIZATION

In Section 3, we use the product ri ·rj as the strength of evidence that the correlation between node
i and j is vanishing (broken). However, it su�ers from the extreme values in the ranking values r.
To reduce the in�uence of the extreme values or outliers, we employ the so�max normalization
on the ranking values r. �e ranking values are nonlinearly transformed using the sigmoidal
function before the multiplication is performed. �us, the reconstruction error is expressed by
| |(σ (r)σ⊤(r)) ◦M − P̃| |2

F
, where σ (·) is the so�max function with:

σ (r)i =
eri

∑n
k=1 e

rk
, (i = 1, ...,n). (26)

�e corresponding objective function in Alg. 1 is modi�ed to the following

min
e≥0
| |(σ (Be)σ⊤ (Be)) ◦M − P̃| |2F + τ | |e| |1. (27)

Similarly, the objective function for Eq. (23) is modi�ed to the following

min
e≥0,r≥0

cr⊤ (In − Ã)r + (1 − c ) | |r − e| |2F + λ | |(σ (r)σ⊤(r)) ◦M − P̃| |2F + τ | |e| |1. (28)

�e optimization of these two objective functions are based on the following two theorems.

Theorem 4. Updating e according to Eq. (29) will monotonically decrease the objective function

in Eq. (27) until convergence.

e← e ◦
{

4B⊤Ψ(P̃ ◦M)σ (Be)

4 [B⊤ (Ψσ (Be)σ⊤ (Be)) ◦M]σ (Be) + τ1n

} 1
4

, (29)

where Ψ =
{

diag [σ (Be)] − σ (Be)σ⊤(Be)}.

Theorem 5. Updating r according to Eq. (30) will monotonically decrease the objective function in

Eq. (28) until convergence.

r← r ◦


Ãr + 2λ
[(
(σ (r)1⊤n ) ◦ P̃ + ρΛ

)

◦M
]
σ (r) + (1 − c )e

r + 2λ
[(
(σ (r) ◦ σ (r))σ⊤(r) + σ (r) (σ⊤(r)P̃)

)

◦M
]
σ (r)


1
4

, (30)

where Λ = σ (r)σ⊤(r) and ρ = σ⊤ (r)σ (r).
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�eorem 4 and �eorem 5 can be proven with a similar strategy to that of �eorem 1. We refer
to the ranking algorithms with so�max normalization (Eq. (27) and Eq. (28)) as RCA-SOFT and
R-RCA-SOFT respectively.

6 TEMPORAL SMOOTHING ON MULTIPLE BROKEN NETWORKS

As discussed in Section 1, although the number of anomaly nodes could increase due to fault
propagation in the network, the root cause anomalies will be stable within a short time period
T [17]. Based on this intuition, we further develop a smoothing strategy by jointly considering the
temporal broken networks. Speci�cally, we add a smoothing term | |e(t ) − e(t−1) | |22 to the objective
functions. Here, e(t−1) and e(t ) are causal anomaly ranking vectors for two successive time points.
For example, the objective function of algorithm RCA with temporal broken networks smoothing
is shown in Eq. (31).

min
e(t )≥0,1≤t ≤T

T∑

t=1

[
| |(Be(t ) (e(t ) )⊤B⊤) ◦M − P̃(t ) | |2F + τ | |e(t ) | |1

]
+ α | |e(t ) − e(t−1) | |22

︸               ︷︷               ︸
Temporal smoothing

(31)

Here, P̃(t ) is the degree-normalized adjacency matrix of broken network at time point t . Similar to
the discussion in Section 3.3, we can derive the updating formula of Eq. (31) in the following.

e(t ) ← e(t ) ◦


4B⊤ (P̃(t ) ◦M)⊤Be(t ) + 2αe(t−1)

4B⊤
[
M ◦ (Be(t ) (e(t ) )⊤B⊤)

]
Be(t ) + τ1n + 2αe(t )


1
4

(32)

�e updating formula for R-RCA, RCA-SOFT, and R-RCA-SOFTwith temporal broken networks
smoothing is similar. Due to space limit, we skip the details. We refer to the ranking algorithms
with temporal networks smoothing as T-RCA, T-R-RCA, T-RCA-SOFT and T-R-RCA-SOFT respec-
tively.

7 LEVERAGING PRIOR KNOWLEDGE

In real-life applications, wemay have prior knowledges that re�ect to what extent a node is harmed
by the causal anomalies at a certain time point. In this section, we extend our RCAmodel to a semi-
supervised se�ing to incorporate such prior knowledge so that the performance of causal anomaly
inference can be further enhanced.

7.1 Leveraging Node A�ributes

One common type of prior knowledge can be represented by a numeric a�ribute for each node
that measures the degree that node is anomalous at the observation time point. For example, the
a�ribute value can be the absolute bias of the monitoring data of a node that deviates from its
predicted normal value at a time point [6].
Let vi ≥ 0 represent the anomalous degree of node i , our goal is to leverage these a�ributes in a

principledmanner to improve the causal anomaly inference capability of ourmodel. It is important
to note that, usually the a�ributes only partially covers the nodes in the invariant network due
to the short of prior knowledges. �at is, let V be the set of all nodes in the invariant network,
then vi is only available for node i ∈ Vp , where Vp ⊆ V . To account for this sparsity of prior
knowledge, we de�ne an indicator ui ∈ {0, 1} for each node i s.t. ui = 1 if node i has a valid vi ;
ui = 0 otherwise.
Because vi measures the degree that node i is impacted by causal anomalies, we can use ri in

Eq. (6) to approximate vi . Speci�cally, we want to minimize the inconsistency of ui (ri − vi )
2. Let
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v ∈ Rn×1
+

with the i th entry as vi (note vi = 0 if i < Vp ), and Du ∈ {0, 1}n×n be a diagonal matrix
with (Du )ii as ui , then we can obtain a matrix form of the inconsistencies as (r− v)⊤Du (r− v). By
integrating this loss function with our RCA model in Eq. (6), and replacing r by Be, we obtain an
objective function that enables node a�ributes as following.

min
e≥0
| |(Bee⊤B⊤) ◦M − P̃| |2F + τ | |e| |1 + β (Be − v)⊤Du (Be − v)

︸                        ︷︷                        ︸
Leveraging prior knowledge

(33)

where β is a parameter that measures the importance of prior knowledge. Intuitively, the more
reliable the prior knowledge, the larger the value of β .
�e objective function in Eq. (33) can be optimized by an updating formula as summarized by

the following theorem. �e derivation of this formula follows a similar strategy as those discussed
in Sec. 3.3

Theorem 6. Updating e according to Eq. (34) will monotonically decrease the objective function in

Eq. (33) until convergence.

e← e ◦
{

4B⊤ (P̃ ◦M)⊤Be + 2βB⊤ (u ◦ v)
4B⊤ [M ◦ (Bee⊤B⊤)]Be + 2βB⊤ [u ◦ (Be)] + τ1n

} 1
4

(34)

�e formal algorithm that considers node a�ributes can be similarly formulated as Alg. 1. In
the following, we refer to the semi-supervised ranking algorithm using Eq. (34) as RCA-SEMI.

7.2 Learning the Reliability of Prior Knowledge

In real practice, because of noises, not all node a�ributes are reliable. It is likely that a considerable
part of {vi } is inconsistent with the current broken status of the invariant network and canmislead
causal anomaly inference if we trust them without di�erentiation. To avoid the problem caused by
noisy node a�ributes, next, we develop a strategy to automatically select reliable node a�ributes
from unreliable ones to improve the robustness of our model.
In Eq. (33), all valid node a�ributes vi are treated equally by assigning the same weights ui = 1.

A more practical design is to allow ui to vary based on the reliability of vi . Ideally, ui is small
if vi is inconsistent with the anomalous status of node i as inferred from fault propagation. �is
inconsistency can be measured by (ri − vi )

2. �erefore, we can modify the optimization problem
in Eq. (33) as following to allow automatic learning of u.

min
e,u≥0

| |(Bee⊤B⊤) ◦M − P̃| |2F + τ | |e| |1 + β
∑

i ∈VP
ui (Be − v)2i + γ

∑

i ∈Vp
u2i

s.t.
∑

i ∈Vp
ui = |Vp |

(35)

In the above equation, we enforce the equality constraint to allow di�erent ui to be correlated
and comparable for selection purpose. �e ℓ2 norm on u is enforced to avoid trivial solutions.
Without it, all entries in u will be zeros except for ui corresponding to the least inconsistency
(Be − v)2i . Here, γ is a parameter controlling the complexity of u. Typically, larger γ results in
more non-zero entries in u.
Because the problem in Eq. (35) is not jointly convex in e and u, we take an alternating mini-

mization approach. �e solution to the subproblem w.r.t. e is the same as Eq. (34). Next, we discuss
the solution to u.
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First, we denote û = u(Vp ) to be the projection of u on node setVp , and n̂ = |Vp |. Letw ∈ Rn̂×1+
with wi = (Be − v)2i for i ∈ Vp . �en we can write the subproblem w.r.t. û as

min
û≥0

βû⊤w + γ û⊤û

s.t. û⊤1n̂ = n̂
(36)

where 1n̂ is a length-n̂ vector with all entries as 1.
Eq. (36) is a quadratic optimization problem with respect to u, whose Lagrangian function can

be formulated as following.

Lu (û,η, θ ) = βû⊤w + γ û⊤û − û⊤η − θ (û⊤1n̂ − n̂) (37)

where η = [η1,η2, ...,ηn̂]
⊤ ≥ 0 and θ ≥ 0 are the Lagrangian multipliers. �e optimal û∗ should

satisfy the following Karush-Kuhn-Tucker (KKT) conditions [3]:

(1) Stationary condition. ∇û∗Lu (û,η, θ ) = βw + 2γ û∗ − η − θ1n̂ = 0n̂
(2) Feasibility condition. û∗ ≥ 0n̂ , (û

∗)⊤1n̂ − 1 = 0
(3) Complementary slackness. ηi û

∗
i = 0, 1 ≤ i ≤ n̂

(4) Nonnegativity condition. η ≥ 0n̂

From the stationary condition, we can obtain ûi as

ûi =
ηi + θ −wi

2γ

where we can observe that ûi depends on the speci�cation of ηi and θ . Similar to [30], we divide
the problem into three cases:

(1) When θ − wi > 0, since ηi ≥ 0, we have hatui > 0. From the complementary slackness,

ηi ûi = 0, we have ηi = 0, therefore, ûi =
θ−wi

2γ .

(2) When θ −wi < 0, since ûi ≥ 0, we have ηi > 0. Because ηi ûi = 0, we have ûi = 0.
(3) When θ −wi = 0, we have ûi =

ηi
2γ . Since ηi ûi = 0, we have ûi = 0 and ηi = 0.

�erefore, if we sort w1 ≤ w2 ≤ ... ≤ wn̂ , there exists θ̃ > 0 s.t. θ̃ − wt > 0 and θ̃ − wt ≤ 0.
�en ûi can be solved as following.

ûi =

θ−wi

2γ , if i ≤ t

0, otherwise
(38)

where θ can be solved by using
∑t

i=1 ûi = n̂, i.e.,

θ =
2γn̂ +

∑t
i=1wi

t
(39)

Eq. (38) implies the intuition of the assignment of ui . �at is, whenwi is large, ui is small. Recall
wi represents the inconsistency between propagation score ri and node a�ribute vi , which may
come from the noises in the prior knowledge. �erefore, Eq. (38) assigns small weights to large
inconsistencies to reduce the negative impacts of noisy node a�ributes and get a consensus result,
hence improve the robustness of our model.
In Eq. (39), γ relates to the selectivity of the model. When γ is very large, ûi becomes large,

and all node a�ributes will be selected with nearly equal weights. When γ is very small, at least
one node a�ribute (with the smallest wi ) will be selected. �erefore, we can use γ to control how
many node a�ributes will be integrated for causal anomaly ranking.
From Eq. (38) and Eq. (39), we can search the value of t from n̂ to 1 decreasingly [30]. Once

θ − wt > 0, then we �nd the value of t . �en we can calculate û1, …, ûn̂ according to Eq. (38).
�e algorithm for solving u is involved in Alg. 2. In Alg. 2, e and u are optimized alternately.
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ALGORITHM 2: W-RCA-SEMI

Input: Network Gl denoting the invariant network with n nodes, and is represented by an adjacency

matrix A, c is the network propagation parameter, τ is the parameter to control the sparsity of e, P̃ is

the normalized adjacency matrix of the broken network,M is the logical matrix of Gl (1 with edge, 0

without edge), v is the vector of node a�ributes,Vp is the set of nodes having valid node a�ributes,

β is a parameter to control semi-supervision, γ is a parameter to control the complexity of the

learned weights

Output: Ranking vector e, weight vector u

1 begin

2 Initialize ûi = 1, ∀i ∈ Vp ;
3 repeat

4 Set ui = ûi ∀i ∈ Vp ; ui = 0 ∀i < Vp ;
5 Inferring e by Eq. (34);

6 Compute wi = ((Be)i − vi )2, ∀i ∈ Vp ;
7 Sort {wi }1≤i≤n̂ in increasing order;

8 t ← n̂ + 1;

9 do

10 t ← t − 1;

11 θ ← 2γ n̂+
∑t
i=1 wi

t ;

12 while θ −wt ≤ 0 and t > 1;

13 for i ← 1 to t do

14 ûi ← θ−wi
2γ ;

15 end

16 for i ← t + 1 to n̂ do

17 ûi ← 0;

18 end

19 until convergence;

20 end

Since both optimization procedures decrease the value of the objective function in Eq. (35) and the
objective function value is lower bounded by 0, Alg. 2 is guaranteed to converge to a local minima
of the optimization problem in Eq. (35). In the following, we refer to the semi-supervised ranking
algorithm with weight learning as W-RCA-SEMI.

8 EMPIRICAL STUDY

In this section, we perform extensive experiments to evaluate the performance of the proposed
methods (summarized in Table 1). We use both simulated data and real-world monitoring datasets.
For comparison, we select several state-of-the-art methods, including mRank and gRank in [7, 16],
and LBP [26]. For all themethods, the tuning parameters were tuned using cross validation. We use
several evaluation metrics including precision, recall, and nDCG [15] to measure the performance.
�e precision and recall are computed on the top-K ranking result, where K is typically chosen as
twice the actual number of ground-truth causal anomalies [15, 26]. �e nDCG of the top-p ranking

result is de�ned as nDCGp =
DCGp

IDCGp
, where DCGp =

∑p
i=1

2r eli−1

log2 (1+i )
, IDCGp is the DCGp value on

the ground-truth, and p is smaller than or equal to the actual number of ground-truth anomalies.
�e reli represents the anomaly score of the ith item in the ranking list of the ground-truth.
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8.1 Simulation Study

We �rst evaluate the performance of the proposed methods using simulations. We have followed
[7, 26] in generating the simulation data.

8.1.1 Data Generation. We �rst generate 5000 synthetic time series data to simulate the moni-
toring records2. Each time series contains 1,050 time points. Based on the invariant model intro-
duced in Sec. 2.1, we build the invariant network by using the �rst 1,000 time points in the time
series. �is generates an invariant network containing 1,551 nodes and 157,371 edges. To generate
invariant network of di�erent sizes, we randomly sample 200, 500, and 1000 nodes from the whole
invariant network and evaluate the algorithms on these sub-networks.
To generate the root cause anomaly, we randomly select 10 nodes from the network, and assign

each of them an anomaly score between 1 and 10. �e ranking of these scores is used as the ground-
truth. To simulate the anomaly prorogation, we further use these scores as the vector e in Eq. (6)
and calculate r (c = 0.9). �e values of the top-30 time series with largest values in r are then
modi�ed by changing their amplitude value with the ratio 1 + ri . �at is, if the observed values
of one time series is y1, a�er changing it from y1 to y2, the manually-injected degree of anomaly
|y2−y1 |
|y1 | is equal to 1 + ri . We denote this anomaly generation scheme as amplitude-based anomaly

generation.

8.1.2 Performance Evaluation. Using the simulated data, we compare the performance of dif-
ferent algorithms. In this example, we only consider the training time series as one snapshot;
multiple snapshot cases involving temporal smoothing will be examined in the real datasets. Due
to the page limit, we report the precision, recall and nDCG for only the top-10 items considering
that the ground-truth contains 10 anomalies. Similar results can be observed with other se�ings
of K and p. For each algorithm, reported result is averaged over 100 randomly selected subsets of
the training data.
From Fig. 3, we have several key observations. First, the proposed algorithms signi�cantly

outperform other competing methods, which demonstrates the advantage of taking into account
fault prorogation in ranking casual anomalies. We also notice that performance of all ranking
algorithms will decline on larger invariant networks with more nodes, indicating that anomaly
ranking becomes more challenging on networks with more complex behaviour. However, the
ranking result with so�max is less sensitive to the size of the invariant network, suggesting that
the so�max normalization can e�ectively improve the robustness of the algorithm. �is is quite
bene�cial in real-life applications, especially when data are noisy. Finally, we observe that RCA
and RCA-SOFT outperform R-RCA and R-RCA-SOFT, respectively. �is implies that the relaxed
versions of the algorithms are less accurate. Nevertheless, their accuracies are still very comparable
to those of the RCA and RCA-SOFT methods. In addition, the e�ciency of the relaxed algorithms
is greatly improved, as discussed in Sec. 4 and Sec. 8.5.

8.1.3 Robustness Evaluation. Practical invariant network and broken edges can be quite noisy.
In this section, we further examine the performance of the proposed algorithms w.r.t. di�erent
noise levels. To do this, we randomly perturb a portion of non-broken edges in the invariant
network. Results are shown in Fig. 4. We observe that, even when the noise ratio approaches
50%, the precision, recall and nDCG of the proposed approaches still a�ain 0.5. �is indicates the
robustness of the proposed algorithms. We also observe that, when the noise ratio is very large,
RCA-SOFT and R-RCA-SOFT work be�er than RCA and R-RCA, respectively. �is is similar to

2http://cs.unc.edu/%7Eweicheng/synthetics5000.csv
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Fig. 3. Comparison on synthetic data(K ,p = 10).
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Fig. 4. Performance with di�erent noise ratio(K ,p = 10).

Table 2. Examples of categories and monitors.

Categories Samples of Measurements

CPU utilization, user usage time, IO wait time

DISK # of write operations, write time, weighted IO time

MEM run queue, collision rate, UsageRate

NET error rate, packet rate

SYS UTIL, MODE UTIL

Table 3. Data set description.

Data Set #Monitors #invariant links #broken edges at given time point

BIS 1273 39116 18052

Coal Plant 1625 9451 56

those observations made in Sec. 8.1.2. As has been discussed in Sec. 5, the so�max normalization
can greatly suppress the impact of extreme values and outliers in r, thus improves the robustness.

8.2 Ranking Causal Anomalies on Bank Information System Data

In this section, we apply the proposed methods to detect causal abnormal components on a Bank
Information System (BIS) data set [7, 26]. �emonitoring data are collected from a real-world bank
information system logs, which contain 11 categories. Each category has a varying number of time
series, and Table 2 gives �ve categories as examples. �e data set contains the �ow intensities
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Fig. 6. Comparison on BIS data.

collected every 6 seconds. In total, we have 1,273 �ow intensity time series. �e training data
is collected at normal system states, where each time series has 168 time points. �e invariant
network is then generated on the training data as described in Sec. 2.1. �e testing data of the
1,273 �ow intensity time series are collected during abnormal system states, where each time series
contain 169 time points. We track the changes of the invariant network with the testing data using
the method described in Sec. 2.1. Once we obtain the broken networks at di�erent time points,
we will then perform causal anomaly ranking in these temporal slots jointly. Properties of the
networks constructed are summarized in Table 3.
Based on the knowledge from system experts, the root cause anomaly at t = 120 in the testing

data is related to “DB16”. An illustration of two “DB16” related monitoring data are shown in Fig.
5. We highlight t = 120 with red square. Obviously, their behaviour looks anomalous from that
time point on. Due to the complex dependency among di�erent monitoring time series (measure-
ments), it is impractical to obtain a full ranking of abnormal measurement. Fortunately, we have
a unique semantic label associated with each measurement. For example, some semantic labels
read “DB16:DISK hdx Request” and “WEB26 PAGEOUT RATE”. �us, we can extract all measure-
ments whose titles have the pre�x “DB16” as the ground-truth anomalies. �e ranking score is
determined by the number of broken edges associated with each measurement. Here our goal is to
demonstrate how the top-ranked measurements selected by our method are related to the “DB16”
root cause. Altogether, there are 80 measurements related to “DB16”, so we report the precision,
recall with K ranging from 1 to 160 and the nDCG with p ranging from 1 to 80.
�e results are shown in Fig. 6. �e relative performance of di�erent approaches is consistent

with the observations in the simulation study. Again, the proposed algorithms outperform baseline
methods by a large margin. To examine the top-ranked items more clearly, we list the top-12
results of di�erent approaches in Table 4 and report the number of “DB16”-related monitors in
Table 5. From Table 4, we observe that the three baseline methods only report one “DB16” related
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Table 4. Top 12 anomalies detected by di�erent methods on BIS data(t :120).

mRank gRank LBP RCA RCA-SOFT R-RCA R-RCA-SOFT

WEB16:NET eth1 BYNETIF HUB18:MEM UsageRate WEB22:SYS MODE UTIL HUB17:DISK hda Request DB17:DISK hdm Block HUB17:DISK hda Request DB17:DISK hdm Block

HUB17:DISK hda Request HUB17:DISK hda Request DB15:DISK hdaz Block DB17:DISK hday Block DB17:DISK hdba Block DB15:PACKET Output DB17:DISK hdba Block

AP12:DISK hd45 Block AP12:DISK hd45 Block WEB12:NET eth1 BYNETIF HUB17:DISK hda Busy DB16:DISK hdm Block HUB17:DISK hda Busy DB16:DISK hdm Block

AP12:DISK hd1 Block AP12:DISK hd1 Block WEB17:DISK BYDSK DB18:DISK hdba Block DB18:DISK hdm Block DB17:DISK hdm Block DB16:DISK hdj Request

WEB19:DISK BYDSK AP11:DISK hd45 Block DB18:DISK hdt Busy DB18:DISK hdm Block DB16:DISK hdj Request DB17:DISK hdba Block DB16:DISK hdax Request

AP11:DISK hd45 Block AP11:DISK hd1 Block DB15:DISK hdl Request DB16:DISK hdm Block DB18:DISK hdba Block DB18:DISK hdm Block DB18:DISK hdag Request

AP11:DISK hd1 Block DB17:DISK hday Block WEB21:DISK BYDSK DB17:DISK hdba Block DB16:DISK hdax Request DB16:DISK hdm Block DB18:DISK hdm Block

DB16:DISK hdm Block DB15:PACKET Input WEB27:FREEUTIL DB17:DISK hdm Block DB18:DISK hdag Request DB18:DISK hdba Block DB18:DISK hdbu Request

DB17:DISK hdm Block DB17:DISK hdm Block WEB19:NET eth0 DB16:DISK hdba Block DB18:DISK hdbu Request DB17:DISK hday Block DB18:DISK hdx Request

DB18:DISK hdm Block DB16:DISK hdm Block WEB25:PAGEOUT RATE DB16:DISK hdj Request DB16:DISK hdba Block DB16:DISK hdba Block DB18:DISK hdax Request

DB17:DISK hdba Block DB17:DISK hdba Block DB16:DISK hdy Block DB18:DISK hdag Request DB18:DISK hdx Request DB16:DISK hdj Request DB18:DISK hdba Block

DB18:DISK hdba Block DB18:DISK hdm Block AP13:DISK hd30 Block DB16:DISK hdax Request DB18:DISK hdax Request DB18:DISK hdag Request DB16:DISK hdx Request

Table 5. Number of “DB16” related monitors in top 32 results on BIS data(t :120).

mRank gRank LBP RCA RCA-SOFT R-RCA R-RCA-SOFT

10 7 4 14 16 13 17

Table 6. Top 12 anomalies on BIS data(t :122).

mRank gRank RCA-SOFT R-RCA-SOFT
WEB21:NET eth1 BYNETIF WEB21:NET eth0 BYNETIF DB17:DISK hdm Block DB17:DISK hdm Block
WEB21:NET eth0 BYNETIF WEB21:NET eth1 BYNETIF DB17:DISK hdba Block DB17:DISK hdba Block

WEB21:FREE UTIL HUB18:MEM UsageRate DB16:DISK hdm Block DB16:DISK hdm Block
AP12:DISK hd45 Block WEB21:FREE UTIL DB18:DISK hdm Block DB16:DISK hdj Request
AP12:DISK hd1 Block WEB26:PAGEOUT RATE DB16:DISK hdj Request DB16:DISK hdax Request
DB18:DISK hday Block AP12:DISK hd45 Block DB18:DISK hdba Block DB18:DISK hdm Block
DB18:DISK hdk Block AP12:DISK hd1 Block DB16:DISK hdax Request DB18:DISK hdx Request

DB18:DISK hday Request DB18:DISK hday Block DB16:DISK hdba Block DB18:DISK hdba Block
DB18:DISK hdk Request DB18:DISK hdk Block DB18:DISK hdx Request DB16:DISK hdba Block
WEB26:PAGEOUT RATE DB18:DISK hday Request DB18:DISK hdbl Request DB18:DISK hdax Request
DB17:DISK hdm Block DB18:DISK hdk Request DB16:DISK hdx Busy DB16:PACKET Inputx
DB16:DISK hdm Block AP11:DISK hd45 Block DB16:DISK hdx Request DB18:DISK hdbl Request

measurement in the top-12 results, and the actual rank of the “DB16”-related measurement appear
lower (worse) than that of the proposed methods. We also notice that the ranking algorithms
with so�max normalization outperform others. From Tables 4 and 5, we can see that top ranked
items reported by RCA-SOFT and R-RCA-SOFT are more relevant than those reported by RCA
and R-RCA, respectively. �is clearly illustrates the e�ectiveness of the so�max normalization in
reducing the in�uence of extreme values or outliers in the data.
As discussed in Sec. 1, the root anomalies could further propagate from one component to

related ones over time, which may or may not necessarily relate to “DB16”. Such anomaly prop-
agation makes anomaly detection even harder. To study how the performance varies at di�erent
time points, we compare the performance at t = 120 and t = 122, respectively in Fig. 7 (p,K=80).
Clearly, the performance declines for all methods. However, the proposed methods are less sen-
sitive to anomaly propagation than others, suggesting that our approaches can be�er handle the
fault propagation problem. We believe this is a�ributed to the network di�usion model that explic-
itly captures the fault propagation processes. We also list the top-12 abnormal at t = 122 in Table
6. Due to page limit, we only show the results of mRank, gRank, RCA-SOFT and R-RCA-SOFT. By
comparing the results in Tables 4 and 6, we can observe that RCA-SOFT and R-RCA-SOFT signif-
icantly outperform mRank and gRank, the la�er two methods based on the percentage of broken
edges are more sensitive to the anomaly prorogation.
We further validate the e�ectiveness of proposed methods with temporal smoothing. We report

the top-12 results of di�erent methods with smoothing at two successive time points t = 120 and
t = 121 in Table 7. �e number of “DB16”-related monitors in the top-12 results is summarized in
Table 8. From Tables 7 and 8, we observe a signi�cant performance improvement of our methods
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Fig. 7. Performance at t :120 v.s. t :122 on BIS data(p,K=80).

Table 7. Top 12 anomalies reported by methods with temporal smoothing on BIS data(t :120-121).

T-RCA T-RCA-SOFT T-R-RCA T-R-RCA-SOFT

WEB14:NET eth0 BYNETIF DB17:DISK hdm Block WEB14:NET eth0 BYNETIF DB17:DISK hdm Block
WEB16:DISK BYDSK DB17:DISK hdba Block WEB21:NET eth0 BYNETIF DB17:DISK hdba Block
DB18:DISK hdba Block DB16:DISK hdm Block WEB16:DISK BYDSK PHYS DB16:DISK hdm Block
DB18:DISK hdm Block DB18:DISK hdm Block WEB21:FREE UTIL DB18:DISK hdm Block
DB17:DISK hdba Block DB16:DISK hdj Request DB15:PACKET Output DB16:DISK hdj Request
DB16:DISK hdm Block DB18:DISK hdba Block DB16:DISK hdj Request DB18:DISK hdba Block
DB17:DISK hdm Block DB16:DISK hdax Request DB17:DISK hdm Block DB16:DISK hdax Request
DB16:DISK hdba Block DB16:DISK hdba Block DB16:DISK hdba Block DB18:DISK hdx Request
DB16:DISK hdj Request DB18:DISK hdx Request DB17:DISK hday Block DB16:DISK hdba Block
DB16:DISK hdax Request DB18:DISK hdbl Request DB16:DISK hdm Block DB18:DISK hdbl Request
DB16:DISK hdx Busy DB16:DISK hdx Busy DB16:DISK hdax Request DB16:DISK hdx Request
DB16:DISK hdbl Busy DB16:DISK hdx Request DB18:DISK hdba Block DB16:DISK hdx Busy

Table 8. Comparison on the number of “DB16” related anomalies in top-12 results on BIS data.

RCA RCA-SOFT R-RCA R-RCA-SOFT

Without temporal smoothing 4 4 3 4

With temporal smoothing 6 6 4 6

with temporal broken networks smoothing comparedwith those without smoothing. As discussed
in Sec. 6, since causal anomalies of a system usually do not change within a short period of time,
utilizing such smoothness can e�ectively suppress noise and thus give be�er ranking accuracy.

8.3 Fault Diagnosis on Coal Plant Data

In this section, we test the proposed methods in the application of fault diagnosis on a coal plant
cyber-physical system data. �e data set contains time series collected through 1625 electric sen-
sors installed on di�erent components of the coal plant system. Using the invariant model de-
scribed in Sec. 2.1, we generate the invariant network that contains 9451 invariant links. For
privacy reasons, we remove sensitive descriptions of the data.
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Table 9. Top anomalies on coal plant data.

mRank gRank LBP RCA RCA-SOFT R-RCA R-RCA-SOFT

Y0039 Y0256 Y0256 X0146 X0146 X0146 X0146
X0128 Y0045 X0146 Y0045 Y0256 X0128 X0166
Y0256 Y0028 F0454 X0128 F0454 F0454 X0144
H0021 X0146 X0128 Y0030 J0079 Y0256 X0165
X0146 X0057 Y0039 X0057 Y0308 Y0039 X0142
X0149 X0061 X0166 X0158 X0166 Y0246 J0079
H0022 X0068 X0144 X0068 X0144 Y0045 X0164
F0454 X0143 X0149 X0061 X0128 Y0028 X0145
H0020 X0158 J0085 X0139 X0165 X0056 X0143
X0184 X0164 X0061 X0143 X0142 J0079 X0163
X0166 J0164 Y0030 H0021 H0022 X0149 J0164
J0164 H0021 J0079 F0454 X0143 X0145 X0149

(a) Egonet of node “X0146” (b) Egonet of node “Y0256”

Fig. 8. Egonet of node “X0146” and “Y0256” in invariant network and vanishing correlations(red edges) on
coal plant data.

Based on knowledge from domain experts, in the abnormal stage the root cause is associated
with component “X0146”. We report the top-12 results of di�erent ranking algorithms in Table
9. We observe that the proposed algorithms all rank component “X0146” the highest, while the
baselinemethods could give higher ranks to other components. In Fig. 8(a), we visualize the egonet
of the node “X0146” in the invariant network, which is de�ned as the 1-step neighborhood around
node “X0146”, including the node itself, direct neighbors, and all connections among these nodes in
the invariant network. Here, green lines denote the invariant link, and red lines denote vanishing
correlations (broken links). Since the node “Y0256” is top-ranked by the baseline methods, we
also visualize its egonet in Fig. 8(b) for a comparison. �ere are 80 links related to “X0146” in the
invariant network, and 14 of them are broken. Namely the percentage of broken edges is only
17.5% for a truly anomalous component. In contrast, the percentage of broken edges for the node
“Y0256” is 100%, namely a false-positive node can have a very high percentage of broken edges
in practice. �is explains why baseline approaches using the percentage of broken edges could
fail, because the percentage of broken edges does not serve as a reliable evidence of the degree
of causal anomalies. In comparison, our approach takes into account the global structures of the
invariant network via network propagation, thus the resultant ranking is more meaningful.

8.4 Evaluation of Leveraging Prior Knowledge

In this section, we evaluate the e�ectiveness of the semi-supervised algorithms proposed in Sec. 7,
using the BIS dataset. We simulate node a�ributes by the following strategy. First, we set “DB16”
related components as seeds (recall these components are ground truth anomalies), and run label
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Fig. 9. Comparison on BIS data using prior knowledge. RCA-SEMI:Vp1, RCA-SEMI:Vp2 and RCA-SEMI:Vp3
refer to running RCA-SEMI withVp1,Vp2 andVp3, respectively.
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Fig. 10. Comparison on BIS data with noisy prior knowledge

propagation algorithm to obtain a score for each node. �en, we set the scores of “DB16” related
nodes to zero and treat the remaining non-zeros scores as the a�ributes of other nodes. Finally,
we randomly divide the remaining a�ributed nodesVp into three equal partsV1,V2 andV3, and
then formVp1 = V1, Vp2 = {V1,V2} and Vp3 = {V1,V2,V3}. Algorithm RCA-SEMI is run with
Vp1, Vp2 and Vp3 respectively to evaluate its capability to uncover “DB16” related components
with the guidance of these di�erent partial prior knowledges.

Fig. 9 shows the results of RCA-SEMI. For clarity, we only show RCA as a baseline. We also
consider another degraded version of RCA-SEMI, which is shown as “PriorOnly”. �is method
solves e by minimizing (Be − v)⊤Du (Be − v) + τ ‖e‖1, which only uses node a�ributes without
considering label propagation. From Fig. 9, we observe RCA-SEMI can e�ectively incorporate
node a�ributes to improve causal anomaly inference accuracy. More prior knowledge typically
results in be�er accuracy. �e poor performance of “PriorOnly” also indicates that using partial
prior knowledge alone is not e�ective. �is demonstrates the importance to take into account the
fault propagation when incorporating partial node a�ributes.
Next, we evaluate the robustness of Alg. 2, W-RCA-SEMI. To this purpose, we manually inject

noises in node a�ributes. Speci�cally, we randomly pick certain number of nodes with non-zero
a�ributes, and change their a�ributes to a large value (e.g., 3). By varying the number of noisy
nodes, we can evaluate the impacts of noises on RCA-SEMI and W-RCA-SEMI. Fig. 10(a) shows
the area under the precision-recall curve (PRAUC) w.r.t. varying number of noisy nodes. Higher
PRAUC indicates be�er accuracy. From Fig. 10(a), we observe the performance RCA-SEMI is
largely impacted by the injected noisy a�ributes, while W-RCA-SEMI performs stably. By inves-
tigating the learned weights in u, we get the insights of W-RCA-SEMI. Fig. 10(b) presents the
learned weights ui vs. the inconsistency of (ei − vi )2 for nodes having valid vi ’s, where the nodes
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Fig. 12. Running time on real data sets.

are ordered by descending order of ui . As can be seen, W-RCA-SEMI e�ectively assigns small
weights to large inconsistencies. �us it can reduce the negative impacts of noisy a�ributes and
obtain robust performance as shown in Fig. 10(a).

8.5 Time Performance Evaluation

In this section, we study the e�ciency of proposed methods using the following metrics: 1) the
number of iterations for convergence; 2) the running time (in seconds) ; and 3) the scalability of the
proposed algorithms. Fig. 11(a) shows the value of the objective function with respect to the num-
ber of iterations on di�erent data sets. We can observe that, the objective value decreases steadily
with the number of iterations. Typically less than 100 iterations are needed for convergence. We
also observe that our method with so�max normalization takes fewer iterations to converge. �is
is because the normalization is able to reduce the in�uence of extreme values [25]. We also re-
port the running time of each algorithm on the two real data sets in Fig. 12. We can see that the
proposed methods can detect causal anomalies very e�ciently, even with the temporal smoothing
module.
To evaluate the computational scalability, we randomly generate invariant networks with dif-

ferent number of nodes (with network density=10) and examine the computational cost. Here 10%
edges are randomly selected as broken links. Using simulated data, we compare the running time
of RCA, R-RCA, RCA-SOFT, and R-RCA-SOFT. Fig. 11(b) plots the running time of di�erent algo-
rithms w.r.t. the number of nodes in the invariant network. We can see that the relaxed versions
of our algorithm are computationally more e�cient than the original RCA and RCA-SOFT. �ese
results are consistent with the complexity analysis in Sec. 4.
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Fig. 13. Parameter study results. The shown nDCG values are obtained by varying one parameter while
fixing others.

8.6 Parameter Study

�ere are three major parameters c , τ and λ in the proposed RCA family algorithms. c is the trade-
o� parameter controlling the propagation strength (see Sec. 3.1). τ is a parameter controlling
the sparsity of the learned vector e in Eq.(8). λ is used for balancing the propagation and broken
network reconstruction in the relaxed RCAmodel in Eq. (23). Next, we use the BIS dataset to study
the impact of each parameter on the causal anomaly ranking accuracy.
Fig. 13 shows the anomaly inference accuracy by varying each parameter in turn while �xing

others. �e accuracy is measured using nDCGp with p equal to the number of ground truth anom-
alies. Using other metrics will give similar trends thus are omi�ed for brevity. From the �gure,
we observe RCA and R-RCA perform stably in a relatively wide range of each parameter, which
demonstrates the robustness of the proposed models. Speci�cally, the best c lies around 0.6, indi-
cating the importance to consider su�cient fault propagations. Note when c = 0 or c = 1, there
will be no propagation or no learning of e respectively (see Eq. (6)). For τ , its best value is around
1 and 10, which suggests a sparse vector e because usually there is only a small number of causal
anomalies. Finally, the sharp accuracy increase by changing λ from 0 to non-zero values indicates
the e�ectiveness of the relaxed RCA model in Eq. (23). �e best λ lies between 0.5 and 2, suggest-
ing the relatively equal importances of fault propagation and broken network reconstruction in
Eq. (23).

9 RELATED WORK

In this section, we review related work on anomaly detection and system diagnosis, in particular
along the following two categories: 1) fault detection in distributed systems; and 2) graph-based
methods.
For the �rst category, Yemini et al. [29] proposed to model event correlation and locate system

faults using known dependency relationships between faults and symptoms. In real applications,
however, it is usually hard to obtain such relationships precisely. To alleviate this limitation, Jiang
et al. [16] developed several model-based approaches to detect the faults in complex distributed
systems. �ey further proposed several Jaccard Coe�cient based approaches to locate the faulty
components [17, 18]. �ese approaches generally focus on locating the faulty components, they
are not capable of spo�ing or ranking the causal anomalies.
Recently, graph-based methods have drawn a lot of interest in system anomaly detections [2, 5],

either in static graphs or dynamic graphs [2]. In static graphs, the main task is to spot anomalous
network entities (e.g., nodes, edges, subgraphs) given the graph structure [4, 10]. For example,
Akoglu et al. [1] proposed the OddBall algorithm to detect anomalous nodes in weighted graphs.
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Liu et al. [22] proposed to use frequent subgraph mining to detect non-crashing bugs in so�ware
�ow graphs. However, these approaches only focus on a single graph; in comparison, we take into
account both the invariant graph and the broken correlations, which provides a more dynamic and
complete picture for anomaly ranking. On dynamic graphs, anomaly detection aims at detecting
abnormal events [23]. Most approaches along this direction are designed to detect anomaly time-
stamps in which suspicious events take place, but not to perform ranking on a large number of
system components. Sun et al. proposed to use temporal graphs for anomaly detection [24]. In
their approach, a set of initial suspects need to be provided; then internal relationship among these
initial suspects is characterized for be�er understanding of the root cause of these anomalies.
In using the invariant graph and the broken invariance graph for anomaly detection, Jiang et

al. [17] used the ratio of broken edges in the invariant network as the anomaly score for rank-
ing; Ge et al. [7] proposed mRank and gRank to rank causal anomalies; Tao et al. [26] used the
loopy belief propagation method to rank anomalies. As has been discussed, these algorithms rely
heavily on the percentage of broken edges in egonet of a node. Such local approaches do not take
into account the global network structures, neither the global fault propagation spreading on the
network. �erefore the resultant rankings can be sub-optimal.
�ere is a number of correlation network based system anomaly localization methods [9, 13, 14],

which treat the correlation changes between system components as the basic evidences of fault
occurrences. Similar to the invariant graph based methods, these methods use the correlation
changes in the egonet of each node at di�erent time points to locate anomalous nodes. Basically,
if there are more correlation changes happen in the egonet of a node, it is more suspicious to be an
anomaly. However, none of these approaches consider fault propagations. �erefore, they cannot
exploit the whole structure of a network and are inferior in locating causal anomalies. Some other
methods can track the eigenvectors of temporal correlation networks to detect the anomalous
changes of a whole system [11, 12], but they do not rank nodes for locating causal anomalies and
are di�erent from our work in problem se�ings.

10 CONCLUSIONS

Detecting causal anomalies on monitoring data of distributed systems is an important problem in
data mining research. Robust and scalable approaches that can model the potential fault propaga-
tion are highly desirable. We develop a network di�usion based framework, which simultaneously
takes into account fault propagation on the network as well as reconstructing anomaly signatures
using propagated anomalies. Our approach can locate causal anomalies more accurately than ex-
isting approaches; in the meantime, it is robust to noise and computationally e�cient. Moreover,
when prior knowledges on anomalous status of nodes are available, our approach can e�ectively
incorporate them to further enhance anomaly detection accuracy. When the prior knowledges
are noisy, our approach can also automatically identify reliable information and reduce negative
impacts of noises. Using both synthetic and real-life data sets, we show that the proposed methods
outperform other competitors by a large margin.
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