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ABSTRACT
Detecting local graph clusters is an important problem in big graph

analysis. Given seed nodes in a graph, local clustering aims at find-

ing subgraphs around the seed nodes, which consist of nodes highly

relevant to the seed nodes. However, existing local clustering meth-

ods either allow only a single seed node, or assume all seed nodes

are from the same cluster, which is not true in many real applica-

tions. Moreover, the assumption that all seed nodes are in a single

cluster fails to use the crucial information of relations between seed

nodes. In this paper, we propose a method to take advantage of such

relationship. With prior knowledge of the community membership

of the seed nodes, the method labels seed nodes in the same (differ-

ent) community by the same (different) color. To further use this

information, we introduce a color-based random walk mechanism,

where colors are propagated from the seed nodes to each node in

the graph. By the interaction of identical and distinct colors, we can

enclose the supervision of seed nodes into the randomwalk process.

We also propose a heuristic strategy to speed up the algorithm by

more than 2 orders of magnitude. Experimental evaluations reveal

that our clustering method outperforms state-of-the-art approaches

by a large margin.

CCS CONCEPTS
• Mathematics of computing → Graph algorithms; • Infor-
mation systems → Clustering; • Theory of computation →

Random walks and Markov chains.
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Figure 1: Example of an academic social network. All nodes
are data science researchers and form two subgroups by
their collaborations. Query from each side returns a single
subgroup (in dotted boxes). The joint query returns two sub-
groups together (in the solid box).

1 INTRODUCTION
The graph/network is a natural representation of real-world rela-

tions. Graph clustering (or community detection) is a fundamental

problem and is the base of many applications, such as online rec-

ommendation, medical diagnosis, social network and biological

network analysis [11, 14, 15, 18]. The clustering of a graph aims to

find groups of nodes that are closely related to each other. Unlike

global graph clustering which retrieves all clusters/communities

from a graph, local graph clustering focuses on the subgraph within

the neighborhood of the seed/query nodes and is applicable to very

large data [17]. With the increasing size of networks, recently local

clustering has attracted lots of research interest [6, 8, 9, 22].

The seed nodes of local graph clustering can be single or multiple.

Existing local graph clustering methods do not accept multiple seed

nodes (e.g., Random Walk with Restart [19]), or simply assume

that all these seeds are from the same cluster (e.g., Personalized

PageRank [1]). We argue that knowing the relations of seed nodes

(in the same community or not) are important, as the network data

may be noisy or lossy to be clustered accurately. Furthermore, it is

a relatively easy task to label the seed nodes by users or domain

experts, since the number of seed nodes is small.

Knowing seeds nodes are in the same community can help to

merge divided subgroups to a whole community. Fig. 1 is part of a

collaboration network used by a conference program committee

(PC) member recommendation system. Given that Dr. Ke Wang

and Dr. Kitagawa are prospectively favorable PC members, we

want the system to recommend more researchers as candidates.

However, local clustering from either Dr. Wang or Dr. Kitagawa
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Figure 2: Example of a stomach disease similarity network.
Vertices are diseases and edges are similarities between dis-
eases. Red nodes are malignant diseases and blue nodes are
benign ones. The dotted red circle contains diseases detected
by a single querying seed 1. The solid blue circle encloses
clustering result by knowing seed 1 and seed 2 are from dif-
ferent communities.

returns their own collaboration subgroup, which is not appropriate

due to diversity concerns. On the other hand, assuming Dr. Wang

and Dr. Kitagawa are in the same research community and querying

jointly from both of them may return a larger community with

diverse researchers relevant to them. The final recommendation

can be decided by proximity score of each researcher with respect

to the two query seeds.

More importantly, knowing that seed nodes are different can sep-

arate a dense subgraph into semantically meaningful communities.

Fig. 2 is a network of stomach diseases where red nodes are malig-

nant tumors and blue nodes denote benign stomach diseases such as

gastritis and ulcer. By conventional local clustering method, either

query from seed 1 or from both seed 1 and 2 will enclose polyps

into group of malignant diseases, which is not correct. On the con-

trary, with domain knowledge that seed 2 is benign and different

with seed 1, stomach polyps can be well divided from malignant

tumors by our proposed method. This helps the automatic medical

diagnosis system to correctly identify a specific disease [13].

Generally, existing local graph clustering methods cannot take

advantage of seed node labels, and preferwell-structured networks [8].

For networks without clear community structures, the performance

of such methods is limited. In this paper, we introduce a method

to leverage supervision of labeled seed node. If a clustering task

has multiple seed nodes, we assume that the relationships of seed

nodes are already known: we know that which seeds should be in

the same community, and which should not. We name this local

graph clustering problem with labeled seed nodes as constrained

local graph clustering.

To solve the constrained local graph clustering problem, we pro-

pose a colored random walk (CRW) algorithm, which is motivated

by random walk based local graph clustering [1]. In addition to us-

ing random walkers to explore a network, we label seed nodes and

random walkers by colors, where seed nodes believed to be in the

same community are marked with identical color. The algorithm

launches colored random walkers for each color starting from the

seed nodes with the corresponding color.

Unlike previous random walk methods [3, 20] where walkers

change nothing to the graph, the colored random walker will leave

colors to every node it visited. The colors on each nodewill affect the

transition probability of subsequent walkers. In general, a walker

is more likely to visit nodes with the same color. In other words,

walkers are attracted by nodes with the same color and repulsed

by nodes with different colors. The strengths of attraction and

repulsion are determined by the amount of colors accumulated on

each node. By this means, communities with different color of seed

nodes are divided, even in unclear network structures.

For local graph clustering with single seed node, the proposed

colored randommethod still outperforms the traditional approaches.

This is due to the attraction of walkers by the community members

which are assigned with the same color, especially by the central

influential nodes with large degrees in each community. These

nodes accumulate a higher amount of color by being visited more

(Fig. 9), and the cumulative color, in turn, prevents the random

walkers from fleeing their community. Due to the same reason,

our method is robust to the position of the seed nodes. No matter

where is the seed node, the influential nodes remain the same, and

so do the corresponding communities. This is different with the

previous approaches, in which the performance degrades if seed

nodes are close to cluster boundaries. Please refer to Section 5 for

more details.

We formulate the colored random walk algorithm by power

iterations, and introduce a heuristic speedup strategy to reduce

the running time. By the nature of local graph clustering, nodes

far away from seeds are not important. The strategy can speed up

the searching process by more than 100 times while increasing the

local clustering accuracy at the same time. Experiments show that

the proposed algorithm outperforms the state-of-the-art baseline

methods on both accuracy and running time.

The rest of the paper is organized as follows. Related works are

listed in Section 2. Section 3 explains the detail of our method. In

Section 4, extensive experimental results are presented and dis-

cussed. Section 5 provides two case studies for deeper insight of

the proposed method and Section 6 draws the conclusion.

2 RELATEDWORK
The current local graph clustering methods have no constraint

on seed nodes. Random Walk with Restart [20] uses Markovian

random walkers to explore the networks. With certain probability,

the walkers jump back to seed nodes. The local cluster can be cut

from nodes frequently visited by walkers. Heat Kernel Diffusion [8]

instead adopts values diffused from seed nodes to evaluate how

close the nodes are to the seeds. Query-biased densest connect

subgraph method [22] weights nodes by random walk. Then the

local community is selected to minimize a predefined goodness

function. All these methods assume seed nodes are from a single

cluster.

Semi-supervised learning, including semi-supervised cluster-

ing with constrains, gained success as they do not require a large



amount of human annotations [4]. In semi-supervised learning, the

labels are propagated from labeled seed instances by random-walk-

like mechanisms through the similarity graph, and then a classifier

is trained to categorize all other instances [24, 25]. However, tradi-

tional semi-supervised learning focuses more on classification than

clustering, and is a heavy framework since it considers both local

and global consistency during the learning process.

The colored randomwalk is also relevant to the Vertex-reinforced

Random Walk (VRW), which views graph nodes as urns [16]. Each

time the random walker visits a node, it puts a ball with its color

into the corresponding urn. The further visiting probability of the

random walker is reinforced by the numbers and colors of balls in

each node. Though it is proved that single-color VRW is guaranteed

to converge to a distribution [2], the converged distribution is not

unique due to the randomness of the walker, which diminishes

the performance of VRW in local graph clustering. Moreover, the

theories of multi-color VRW are still underdeveloped.

3 OUR PROPOSAL
Local graph clustering requires proximity measurement to decide

which nodes should be in a local cluster. Random-walk-based ap-

proaches such as Random Walk with Restart (a.k.a. Personalized

PageRank) are commonly used to evaluate the node proximity in

graphs [20]. Compared with other methods, random walk takes

advantage of local network structure and reports better perfor-

mance [9]. In this work, we extend the random walk method to a

colored random walk to solve the problem of local graph clustering

with constrains.

3.1 Preliminaries
The local graph clustering targets a graph G = (V ,E), where V is

the node set and E is the edge set. The adjacency matrix of graph

G is denoted by A, whose element Ai j is the edge weight of node

Vi and node Vj . P is the transposed column-stochastic transition

matrix with entries Pji = Ai j/
∑
j Ai j . The main symbols and their

definitions can be found in Table 1.

The core function of local graph clustering is to measure the

proximity of each node with the seed node(s). In Random Walk

with Restart (RWR), a random walker starts from the seed node q,
and randomly walks to a neighbor node according to edge weights.

At each time point (t + 1), the walker continues walking with

probability α or returns to the query node q with probability (1−α).
The proximity score of node p with respect to node q is defined as

the converged probability that the walker visits node p:

c(t+1) = α · P · c(t ) + (1 − α) · s (1)

where s is the column vector of the initial distribution with qth

entry as 1 and all other entries 0, and c is the current distribution
vector whose pth entry is the visiting probability of node p.

RWR can be extended to accommodate multiple seed nodes. Forn
seed nodes, the initial vector s consists of entries with value 1/n for

each seed node. However, if seed nodes are from multiple clusters,

RWR cannot use such information. One may run RWR multiple

times, each for a single seed node, yet this approach fails to take full

advantage the prior knowledge of cluster membership of the seed

nodes. For example, if two seed nodes are known from different

Table 1: Main symbols

Symbol Definition
G = (V ,E) graph G with node set V and edge set E

A, P adjacency matrix and transition matrix

c, s current and initial color distributions

α ,θ forward probability and color threshold

ψ (t) decaying factor at time t

λ1, λ2 attraction and repulsion strength

clusters, walkers of each seed node should avoid walking into the

other seed’s cluster. We give the formal definition of constrained

local graph clustering as follows.

Definition 3.1 (Constrained local graph clustering). Given graph

G = (V ,E) and seed node set withK different colors, the constrained

local graph clustering aims to find K local communities containing

seed nodes of each color.

3.2 The Colored RandomWalk
To solve the constrained local graph clustering problem, we propose

a Colored RandomWalk (CRW) method in this section, which takes

advantage of seed node labels. Seed nodes of the same cluster are

assigned with identical color, and seed nodes from different clusters

have different colors. For each color, the algorithm sends out a

colored walker from the corresponding seed nodes to explore the

network. During the exploration, thewalker leaves a certain amount

of colored values to the visited nodes, similar to the RWR method

in Eq. 1.

Themain difference between CRW and conventional RWR is that

the movement of walkers is affected by existing colors of nodes.

Generally, a walker is more likely to visit nodes with identical

colors, and is less likely to visit nodes with distinct colors. Since

color values are changed at each time point t , the transition matrix

P should be updated accordingly.

For a constrained local graph clustering task with K colors, the

CRW algorithm maintains K transition matrix P(k,t ) for color k at

time t . Then the Eq. 1 expands to a new power iteration formula

c(k,t+1) = α · P(k,t ) · c(k,t ) + (1 − α) · s(k ) (2)

where c(k,t ) is the distribution of color k at time t , and s(k ) is the
initial vector of color k , respectively.

3.3 Transition Matrix Reinforcement
The transition matrix P(k,t ) in Eq. 2 is based on the original transi-

tion matrix P, and is reinforced by all current color distributions

c(ℓ,t ), 1 ≤ ℓ ≤ K . The reinforcement is done by

P(k,t ) = P ◦ (1 + R(k,t )) (3)

where operator ◦ is the Hadamard (entry-wise) product of two

matrices with the same size [7]. By Hadamard product, we avoid

adding new edges to graph G, and the reinforcement is done by

weight adjustment of existing edges. In the equation, ‘1’ is used

to keep the original transition matrix P as part of the reinforced



transition matrix P(k,t ). R is a coefficient matrix defined by its entry

R(k,t )i j =
∑
ℓ

c(ℓ,t )i · λkℓ , λkℓ =

{
λ1 k = ℓ

−λ2 k , ℓ
(4)

In Eq. 4, if the factor λkℓ is defined as positive when color k
equals color ℓ, and negative otherwise. This definition increases the

likelihood of a walker going to the node with identical color and

decreases the likelihood of walking to the node with different colors.

The mechanism can be understood as that, a walker is attracted by

nodes with the same color, and repulsed by nodes with different

colors. Here we denote by λ1 the attraction strength and by λ2 the
repulsion strength.

By Eq. 3 and 4, the entries of P(k,t ) are possibly negative. Tomake

P(k,t ) as a transitionmatrix meaningful, it is normalized before used

in Eq. 2. The normalization includes two parts. First, the negative

entries of P(k,t ) are set to be zero: P(k,t )i j ← 0 if P(k,t )i j < 0, and

then each entry of the matrix is divided by the sum of its column

to make the matrix column stochastic: P(k,t )i j ← P(k,t )i j /
∑
i P(k,t )i j .

3.4 Convergence
Unlike the traditional random walk methods which have stationary

transition matrix P, the transition matrix P(k,t ) of colored random

walk varies at each time t . To guarantee the convergence of Eq. 2, we

introduce a decaying mechanism changing P(k,t ) to P(k,t ) (Eq. 5),
where the value of functionψ (t) approaches to 0 when t increases.
Then the colored random walk is adapted to Eq. 6.

P(k,t ) =

{
P t = 0

ψ (t) · P(k,t ) + (1 −ψ (t)) · P(k,t−1) t ≥ 1

(5)

c(k,t+1) = α · P(k,t ) · c(k,t ) + (1 − α) · s(k ) (6)

Here the definition of P remains the same with Eq. 3 and Eq. 4.

Intuitively, when ψ (t) → 0, Pk,t → Pk,t−1, meaning that Pk,t

converges. With a converged Pk,t , the proximity score vector c(k,t )

converges, similar to the conventional random walk. The formal

proof of convergence of c(k,t ) is given by Theorem 3.2.

Theorem 3.2 (Convergence of colored random walk). Both
P(k,t ) and c(k,t ) in Eq. 5 and Eq. 6 converge ifψ (t) = Ω(α t ).

Proof. To ease the description, we combine distributions, rein-

forced transition matrices, and initial vectors of all color at time t
by

c(t ) =


c(1,t )

c(2,t )
...

c(K,t )


, P(t ) =


P(1,t ) 0

P(2,t )

. . .

0 P(K,t )


, s =


s(1)

s(2)
...

s(K )


Evidently Eq. 7 equals to Eq. 6 for all color 1 ≤ k ≤ K . Similarly we

define P(t ) as diagonal combination of all P(t,k ).

c(t+1) = α · P(t ) · c(t ) + (1 − α) · s (7)

For convergence of decayed transition matrix P(t ), it is easy to

know that for t ≥ 1

∥P(t ) − P(t−1)∥1 = ψ (t)∥P(t ) − P(t−1)∥1 ≤ 2ψ (t)

Algorithm 1: The Colored Random Walk

Input :P, S, α , λ1, λ2, T ,ψ (t)
Output :c

1 K ← |S|;

2 for k ← 1 to K do
3 s(k ) ← 0;

4 for each x ∈ S[k] do s(k )x ← 1/|S[k]| ;

5 s← [s(1); s(2); . . . ; s(K )];
6 c← s;
7 P(0) ← IK ⊗ P;
8 P← P(0);
9 Λ← IN · λ1;

10 Set all non-diagonal entries of Λ as −λ2;

11 Λ← Λ ⊗ IK ;
12 for t ← 0 to T do
13 c← α · P · c + (1 − α)s;
14 r← Λ · c;
15 R← r ⊗ 1T

N ·K ;

16 P̂← P(0) ◦ (1 + R);
17 for each i and j do P̂i j ← 0 for P̂i j < 0;

18 for each i and j do P̂i j ← P̂i j/
∑
x P̂x j ;

19 P← ψ (t) · P̂ + (1 −ψ (t)) · P;

For convergence of the color distribution c(t ), we define ∆(t ) =
∥c(t ) − c(t−1)∥1. Then

∆(t+1) = ∥c(t+1) − c(t )∥1 = ∥αP(t+1)c(t ) − αP(t )c(t−1)∥1

= α ∥P(t+1)c(t ) − P(t )c(t−1)∥1

= α ∥P(t+1)c(t ) − P(t+1)c(t−1) + P(t+1)c(t−1) − P(t )c(t−1)∥1

= α ∥P(t+1)(c(t ) − c(t−1)) + (Pt+1 − Pt )ct−1∥1

≤ α ∥P(t+1)(c(t ) − c(t−1))∥1 + α ∥(P(t+1) − P(t ))ct−1∥1

≤ α ∥P(t+1)∥1∥c(t ) − c(t−1)∥1 + α ∥P(t+1) − P(t )∥1∥ct−1∥1

≤ α ∥c(t ) − c(t−1)∥1 + α ∥P(t+1) − P(t )∥1

≤ α∆(t ) + 2αψ (t + 1) ≤ α2∆(t−1) + 2α2ψ (t) + 2αψ (t + 1)

≤ α t∆(1) + 2
t∑
τ=1

ατψ (t − τ + 2)

Tomake ∆(t+1) converge to 0, a sufficient condition is thatψ (t) =
Ω(α t ), which means 0 ≤ cψ (t) ≤ α t for any t > t0 and c > 0. Given

ψ (t) ≤ 2α t−1 for t > t0,

∆(t+1) ≤ 2α t + 2
t∑

τ=t+2−t0

ατ + 2

t+1−t0∑
τ=1

α t+1

< 2α t + 2(t0 − 1)α
t−t0+2 + 2(t − t0 + 1)α

t+1

< 2t0α
t−t0+2 + 2(t − t0 + 1)α

t+1 → 0

□



3.5 The Algorithm
By Eq. 7, we can formulate the colored random walk as shown in

Algorithm 1. The input of the algorithm includes original transition

matrix P, seed node sets S of all colors, penalty factor α , attraction
strength λ1 and repulsion strength λ2, together with the number

of iterations T and the decaying faction ψ (t). The output of the

algorithm is the color distribution vector c for all colors. The details
of the algorithms are as follows.

Lines 1 – 11 initialize the algorithm. Specifically, in line 1 we

get the number of colors K by the number of seed node sets in

S. Lines 3 and 4 prepare for the initial color vectors s(k ) for each
color k . From line 5 to line 8 we combine initial distributions and

transition matrix of all colors together by s and P(0), as explained
in Section 3.4, and initialize the color distribution vector c and the

modified transition matrix P.
To calculate the color reinforcement for each node, we create a

N ×N factor matrix Λ (lines 9 to 11), which originally has the value

of λ1 on all diagonal entries and−λ2 on all non-diagonal entries. The
size of matrix Λ is then amplified (line 11) by Kronecker Product [7]

with an identity matrix IK , to multiply with vector c (line 14), which
is a matrix-form equivalence to the operation in Eq. 4.

The for loop from line 12 to 19 is the power iteration process.

We first generate the color distribution for next iteration (line 13),

and then generate the reinforcement vector r (line 14). Vector r is
repeated to form a matrix R (line 15), which means that the rein-

forcement is fair to every node. After generating new reinforced

matrix P̂ (line 16), we remove negative entries (line 17) and nor-

malize it to column stochastic (line 18), and update the decayed

transition matrix for the next iteration (line 19).

The power iteration part of the algorithm is critical in analyzing

the time complexity, where all operations including calculations

of color distribution (line 13), reinforcement (line 14) and decayed

transition matrix (line 19) takeO(K |E |), if we base the operations on
sparse matrices. Therefore, the overall time complexity isO(TK |E |).
As empirically reported in [9], T = 10 is sufficient for the conver-

gence of distribution c.
With the distribution c for each color, we rank nodes by their

colors and cut local communities by sweeping from the top-rank

node and find a cluster with minimum conductance [1].

3.6 Speedup Strategy
Time complexity of the proposed colored random walk algorithm is

proportional to the number of edges |E |, implying that the algorithm

searches the entire graph for local clusters. This is undesirable as

the task of local clustering focuses only on the nodes close to the

seeds.

In this section, we propose a localized variant of Algorithm 1,

with the basic idea that random walkers only search the influential

nodes around the seed nodes. Unlike Algorithm 1where the walkers

go as far as T -hops from the seeds, we only consider nodes with

colors above a given tolerance threshold θ .
As the random process in Eq. 2 can be viewed as the diffusion of

colors from each node to its neighbors, the key point of Algorithm 2

is that only colors with values above a threshold θ will diffuse to

next iteration. The intuition behind this is that small color amount

will not affect colors of next iteration very much. When a walker

Algorithm 2: The Localized Colored Random Walk

Input :P, S, α , λ1, λ2, T , θ
Output :c

1 for each color k do
2 c(k ) ← 0;

3 for each node i ∈ S[k] do c(k )i ← 1/|S[k]| ;

4 for t ← 1 to T do
5 ĉ(k ) ← 0;
6 for each color k do
7 for each c(k )i > θ do
8 p← 0;
9 for each neighbor j of node i do

10 pj ← P(k,t )i j ;

11 for each color ℓ do
12 if ℓ = k then pj ← pj + λ1 · c

(ℓ)
j ;

13 else pj ← pj − λ2 · c
(k)
j ;

14 if pj < 0 then pj ← 0 ;

15 for each pj > 0 do ĉ(k )j ← ĉ(k )j + α · c
(k )
i · pj/

∑
p ;

16 for each seed node i ∈ S[k] do
17 ĉ(k )i ← ĉ(k )i + (1 − α)/|S[k]|;

18 for each color k do c(k ) ← ĉ(k ) ;

reaches a node with color value less than θ , it stops there and does

not go to the node’s neighbors, which prevents the process from

searching too many further nodes. We also neglect the decaying

functionψ (t) and reinforce the node on demand (with color value

greater than θ ) to accelerate the algorithm.

In Algorithm 2, lines 1 – 3 initialize the color distribution accord-

ing to seed nodes, and lines 4 – 18 simulate the power iteration in

a heuristic way. In this heuristic algorithm, we remove the process

of decaying, as it is shown that the result of experiments without

decaying is similar. Specifically, at each iteration (line 4) the current

color scores are in c(k ) for color k , and the new scores for next

iteration are calculated and stored in ĉ(k ). Note that, c(k ) is changed
to ĉ(k) after the scores of all colors are updated (line 18). Note that

the color scores are updated simultaneously.

By this strategy, though color values diminish at each iteration,

the summation of colors remains its majority value. The difference

turns out to be less than 1%.

4 EXPERIMENTAL VALIDATION
Extensive experiments are conducted on both synthetic and real-

world data to evaluate the effectiveness and efficiency of the pro-

posed algorithms. All experiments are performed on a server with

Redhat OS, Xeon 2.6GHz CPU, and 64Gmemory. The core functions

are implemented by C++.

Each experimental result is gathered on average of 10,000 trials.

The querying seeds are randomly selected. The accuracy is mea-

sured by F1-score, which is defined as 2pr/(p + r ), where p and r



are precision and recall, respectively.

4.1 Non-overlapping Clusters
We use the following networks with non-overlapping ground truth

clusters to test the effectiveness of our proposed method. The clus-

ters are large enough to test the searching ability of the colored

random algorithm algorithm.

Disease networks. The networks contain a disease similarity net-

work [13] with 9,721 diseases. For this network, there are two sets

of clustering ground truth for the disease network, with 17 classes

and 47 classes, respectively. We use both sets of ground truth, and

denote the experiments by Disease 1 and Disease 2, accordingly.

Disease 3 is a phenotype similarity network with 5,080 diseases in

20 categories [21].

Gene network. The gene network represents the functional rela-

tionship between 8,503 genes [21] with 200 pathway labels.

Author network. This network comprises 20,111 authors from

4 research areas: Data Mining, Data Base, Information Retrieval

and Machine Learning. The edge of this network is the number of

papers co-published by the authors.

Conference network. This is a full graph comprises 20 main con-

ferences from the same 4 areas with the author network. The edges

are cosine similarity of keywords from the publication of the con-

ferences. We use research areas as the ground truth for both author

network and conference network.

Since no previous method is designed for the constrained local

graph clustering problem, we compare the proposed colored ran-

dom walk (CRW) method with the following five state-of-the-art

local clustering methods, which support multiple seed node query-

ing: Random Walk with Restart (RWR) [20] uses Eq. 1 to calculate

the proximity score of each node; Heat Kernel Diffusion (HKD) [8]

measures node proximity by heat kernel network diffusion; Query-

biased Densest Connect subgraph (QDC) [22] assigns weights to

nodes using RWR scores and finds the query biased densest sub-

graph; Vertex-reinforced Random Walk (VRW) [12] reinforces the

next-hop visiting probability by previous visiting counts. For our

method CRW, we use the localized colored random walk (Algo-

rithm 2) with α = 0.9, λ1 = 1000, λ2 = 10, θ = 10
−5
.

Effectiveness evaluations are conducted on the selected networks.

Since the accuracy difference between our two algorithms is small,

we present the results of Algorithm 2 only. Table 2 shows the result

of single seed node querying. By column “CRW” we only use one

seed node with a single color, so there is no repulsion of different

colors, which serves as a baseline of our method. From the results

in Table 2, it can be seen that even the basic CRW can outperform

the state-of-the-art methods in terms of clustering accuracy.

In Table 2 we add an extra column of CRW
1

1
, which randomly

picks up two seed nodes of different colors to examine the impact

of color repulsion. Comparison of CRW and CRW
1

1
shows that

resistance of distinct colors helps to improve the clustering accuracy

significantly. On all datasets CRW
1

1
achieves the best performance.

Table 3 shows the result of 2-seed-node query on the same 6

datasets. For each method except CWR
2

2
we use two seed nodes

from the same cluster. CWR
2

2
is similar to CWR

1

1
by choosing 2

colors, each having two seeds. Though initially VRW is not designed

Table 2: 1-query accuracy for non-overlapping clusters

F1-score RWR HKD QDC VRW CRW CRW1

1

Disease 1 0.33 0.27 0.11 0.08 0.34 0.37
Disease 2 0.42 0.48 0.32 0.25 0.49 0.53
Disease 3 0.24 0.30 0.14 0.13 0.30 0.38
Gene 0.05 0.06 0.09 0.15 0.16 0.22
Author 0.27 0.03 0.01 0.01 0.30 0.40

Conference 0.42 0.38 0.40 0.57 0.66 0.71

Table 3: 2-query accuracy for non-overlapping clusters

F1-score RWR HKD QDC VRW CRW CRW2

2

Disease 1 0.40 0.30 0.11 0.10 0.41 0.44
Disease 2 0.43 0.54 0.38 0.29 0.57 0.61
Disease 3 0.26 0.33 0.19 0.10 0.38 0.39
Gene 0.05 0.07 0.08 0.17 0.21 0.35
Author 0.32 0.02 0.01 0.01 0.35 0.41

Conference 0.43 0.45 0.40 0.57 0.89 0.91

for multiple seed nodes, we make it work by adding extra random

walkers that are reinforced by rules of the original VRW. Comparing

Table 3 with Table 2, the conclusion is that almost all methods

improve clustering accuracy by having more seeds. Furthermore,

CWR gains more improvement on average. Again CRW
1

1
and CRW

2

2

have the best performance among all chosen methods.

4.2 Overlapping Clusters
Intuitively colored random walk works with non-overlapping clus-

ters. However, due to its color-agglomerating nature, it also works

for detecting overlapping clusters. Table 4 lists the statistics 4 of

networks with overlapping ground truth communities (Amazon,

DBLP, YouTube, LiveJournal). These datasets are publicly available

at http://snap.stanford.edu. For the quality of clusters, we select

clusters with size larger than 10, and within ±3σ range of the av-

erage cluster size. The last column of Table 4 shows the mean and

standard deviation (σ ) of the chosen clusters.

Table 4: Networks with overlapping communities

Name |V | |E | # clusters avg (σ )
Amazon 334,863 925,872 75,149 13.23 (11.24)

DBLP 317,080 1,049,866 13,477 10.87 (20.41)

YouTube 1,134,890 2,987,624 8,385 10.22 (18.81)

LiveJournal 3,997,962 34,681,189 287,512 23.67 (24.75)

Table 5: 1-query accuracy on overlapping communities

F1-score RWR HKD QDC VRW CRW CRW1

1

Amazon 0.92 0.93 0.90 0.70 0.92 0.93
DBLP 0.41 0.59 0.65 0.57 0.72 0.76

YouTube 0.05 0.06 0.19 0.13 0.27 0.30
LiveJournal 0.69 0.74 0.74 0.42 0.81 0.84

http://snap.stanford.edu


Table 6: 2-query accuracy on overlapping communities

F1-score RWR HKD QDC VRW CRW CRW2

2

Amazon 0.93 0.94 0.91 0.79 0.95 0.96
DBLP 0.42 0.61 0.73 0.68 0.78 0.81

YouTube 0.05 0.06 0.21 0.16 0.38 0.42
LiveJournal 0.69 0.75 0.79 0.45 0.84 0.86

The clustering results are listed in both Table 5 and Table 6. It

shows that 2-seed quires are generally better than single seed node.

Among all methods HKD is relatively good since it is refined for

the small overlapping communities. However, more seed nodes do

not improve its performance very much (only 1% on average). The

probability-reinforced methods VRW and CRW gain the biggest

improvement by adding an extra seed. Once again our proposed

method leads the accuracy measurements. For seed nodes more

than 2, Fig. 3 shows that most methods perform better with more

seeds. However, CRW, VRW and QDC take better advantage of

more seed nodes, as they all have mechanisms of reinforcement on

node weights.

Fig. 3 gives the results where seed nodes are from a single commu-

nity. However, when seed nodes are from distinct communities, the

other methods cannot use this relationship, so their performances

are very low (Fig. 4). On the contrary, our method takes advantage

of this cannot-link information, resulting in the increased accuracy

with more communities (colors).

We also evaluate the efficiency of the selectedmethods on datasets

provided in Table 4, since networks are relatively large. To be fair,

the running time is measured on single color and single node on

every method. Fig. 5 shows that CRW is one of the fastest methods

of all, comparable to the HKD method, and is generally 100 times

faster than the other approaches. Generally, CRW takes no more

than 200 milliseconds in finding a target local cluster. For the scala-

bility of colors and seed nodes, the running time of CRW does not

increase with number of seed nodes, and is proportional with the

number of colors.

4.3 Impact of Color Attraction and Repulsion
To analyze the sensitivity of the main parameters of our method

(λ1, λ2, θ ), we generate synthetic networks by the standard LFR

benchmark [10].

We first test the impact of attraction and repulsion of Algorithm 1,

by varying factor λ1 and λ2 on the synthetic graph of Fig. 6. The

results are presented in Fig. 7, in terms of accuracy vs. attraction

λ1 and repulsion λ2. We setψ (t) = 0.9t is this experiment.

First we try our algorithm on the traditional problem of local

graph clustering, where there is only one target community and

accordingly only one color (Fig. 7a). We randomly choose 1 seed

node (1×1) or 2 seed nodes (2×1) from a community, or 4 seed

nodes from 2 different communities (2×2). Since there is no different

color, we use attraction strength λ1 only and set λ2 = 0. In Fig. 7a

the x-axis is the logarithmic value of λ1 and y-axis is the F1-score.

When λ1 is close 0, our algorithm degenerates into the conventional

random-walk-based local clustering. By this means we can compare

our methods with the basic random walk, as well as measuring the

sensitivity of parameters λ1 and λ2.
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Figure 3: Impact of adding more seed nodes
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Figure 4: Impact of adding more colors

From curve of 1×1 we can see that the clustering accuracy in-

creases obviously with the parameter λ1. This indicates that even
on traditional graph clustering problem, our algorithm still outper-

forms the basic random walk method. For curve 2×1, initially its

accuracy is higher than 1×1 because of the information introduced

by more seed nodes. However, the accuracy drops slightly after

λ1 > 10
3
, because too strong attraction around the two individual

seed nodes separates the target community. The attraction even

works when seeds nodes are not from the same community, but

labeled as the same color (curve 2×2).
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Figure 6: A 100-node graph generated by the LFR bench-
mark. The red, blue, green nodes are from 3 distinct ground-
truth communities.

Similar results are observed by using repulsion force only and set

λ1 = 0. In experiments shown in Fig. 7b, we select 1 or 2 nodes from

two adjacent communities and label them with different colors. The

figures illustrate that the repulsion enhances clustering accuracy, as

walkers from the two different communities are divided by distinct

colors. However, overdose of repulsion (λ2 > 10) drives walkers

from the border of communities and decreases the accuracy.

Finally, we combine both attraction and repulsion forces together

(shown in Fig. 7c and 7d). The best accuracy results come with

λ1 = 10
4
and λ2 = 10

2
, and the performance are maintained when

these two parameters keep on increasing. The favorable λ1 and λ2
are large because of the stabilizer “1” in color reinforcement (Eq. 3),

which requires large λ1 and λ2 to change the behavior of random

walkers.

4.4 Evaluation of Speedup Strategy
We generate a network with 1 million nodes and 15 million edges

by LFR benchmark to test the impact of threshold θ on Algorithm 2.

The results are presented in Fig. 8. When the threshold θ rises from

10
−15

to 10
−5
, the average running time drops dramatically (Fig. 8a).

Note that when θ → 0, Algorithm 2 reduces to a non-decaying

version of Algorithm 1. The total speedup is more than 2 orders of

magnitudes, when threshold increases to above 10
−5
.
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Figure 7: Impact of color attraction and repulsion. λ1 is the
attraction strength and λ2 is the repulsion strength.
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Figure 8: Impact of threshold θ on Algorithm 2

In the meantime, the clustering accuracy remains intact and

even increases from θ = 10
−5
. Looking closely, the recall of clus-

tering remains stable while the precision rises after θ > 10
−5
. This

is because the nodes of the target local clustering (true positive)

are not faraway from seed nodes. Larger threshold θ makes the

search more local: thus irrelevant nodes will not be enclosed, which

reduces the false positive.

We also examine the difference between the output vectors from

Algorithm 1 and Algorithm 2. From Fig. 8d, the summation of

absolute difference value is only 1.03% at θ = 10
−5

(Fig. 8c). Does



this difference substantially change the orders of nodes, which is

crucial to clustering result? Spearman’s rank correlation reveals

that it is not the case (Fig. 8d). In calculating correlation, we only

compare non-zero entries from both vectors. Though the correlation

drops a little between 10
−10

and 10
−5

due to the noise introduced by

the speedup strategy, it returns to above 0.98 after θ > 0.5, where

the correlation is limited to local clusters only. This indicates that

the heuristic of Algorithm 2 has very little deflection on the order

of nodes in the target local cluster.

In summary, the introduction of threshold θ largely reduces the

running time of the proposed algorithm, and the clustering accuracy

is enhanced. We adopt θ = 10
−5

as a trade-off between running

time and accuracy in our other experiments.

5 CASE STUDY
In this section we present two case studies to examine nature of

the proposed colored random walk algorithm, explain why CRW

works with even a single color, and provide more examples on how

CRW divides dense subgraph into meaningful partitions.

5.1 Karate Club Social Network
In this section we look into the colored randomwalk (CRW)method

by the karate club network [23], to see how CRW improves the

clustering accuracy even by a single seed node.

The karate club network contains 34 members (nodes) (Fig. 9).

Edges are interactions among members. A conflict between the

club instructor (node 1) and the president (node 34) divides the club

into two separate groups (labeled by blue and red, respectively),

which serves as clustering ground truth. It is obvious that node 1

and node 34 are influential nodes with large degrees in the two

groups, connecting to many other members.

We choose node 20 as the seed node for both CRW and random

walk with restart (RWR). It is a hard task as node 20 is on the border

of these two clusters, though it is categorized to the blue cluster.

The proximity scores are represented by size of nodes in Fig. 9.

From Fig. 9a, we can see that the proximity score distribution is

relatively even on all nodes. This is not desirable since it is not easy

to distinguish the node membership by the flat proximity scores.

In contrast, proximity scores concentrate on the blue community,

especially the central influential nodes 1 (Fig. 9b). These nodes

accumulate more colors (proximity scores) and havemore attraction

to the colored walkers, and essentially helps to divide the two

clusters.

5.2 Brain Activity Network
Fig. 10a depicts another example where prior knowledge about

the difference of seed nodes is critical. It is part of a brain activity

network where each node is a cortical area and edges are functional

associations [5]. The nodes in this network are from Broadman area

6 (BA6) and Broadman area 13 (BA13). Since these two areas are

closely connected with each other, conventional methods cannot

divide these areas. Once knowing the difference of seed nodes (e.g.,

node 7 and 14), it becomes easier to separate the two Broadman

areas. The clustering result can be viewed by 3D coordinates
1
in

Fig. 10b.

1
http://www.talairach.org/
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Figure 9: Comparison of proximity scores of RWR and CRW
on the karate club network

6 CONCLUSION
In this paper we advance a colored randomwalkmethod to solve the

constrained local graph clustering problem, where the communi-

ties membership of seed nodes are known as prior knowledge. The

proposed method dynamically adjusts node weights for each color

during the randomwalk process, and the updated nodeweights help

to trap the colored random walkers into the corresponding commu-

nities. Experiments show that the performance of our method is

above the state-of-the-art approaches, even for conventional single-

color and single-seed scenario. With more seed nodes and colors

available, the performance of the proposed method is significantly

better.
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