
Novel Approaches to Biomolecular Sequence Indexing∗

Emre Karakoc
Simon Fraser University

ekarakoc@cs.sfu.ca

Z. Meral Ozsoyoglu
Case Western Reserve University

ozsoy@eecs.cwru.edu

S. Cenk Sahinalp
Simon Fraser University

cenk@cs.sfu.ca

Murat Tasan
Case Western Reserve University

tasan@eecs.cwru.edu

Xiang Zhang
Simon Fraser University

xzhangi@cs.sfu.ca

Abstract

In many biomolecular database applications involving string/sequence data, it is common to have sim-
ilarity search in the form of near neighbor queries or nearest neighbor queries. The similarity between
strings/sequences are typically measured in terms of the least costly set of allowed edit operations that
transform one string/sequence to another. In this survey, we briefly describe some of the recent develop-
ments in biomolecular sequence indexing methods that allowefficient similarity search. Our focus here is
on global similarity measures that compare sequences in full; such measures are important for compar-
ing protein sequences and smaller biomolecules. Examples include character and block edit distances
and their weighted variants. Two major approaches are summarized here: distance based indexing and
embeddings of general sequence similarity measures to Hamming distance, for which efficient indexing
methods are available.

1 Introduction

The advent of efficient DNA sequencing techniques have lead to exponential growth in biomolecular sequence
data. With data growth levels surpassing Moore’s law, it hasbecome essential to develop highly efficient data
structures and indexing tools for string/sequence similarity search [NCBI].

Efficient similarity search is key to handling/processing massive biomolecular sequence data as sequence
similarity often implies functional and evolutionary relationship. Similarity between sequences are usually
defined in terms of the distance function in use. In this survey we focus onglobal similarity measures between
sequences/strings. The best studied global distance measures arecharacter edit distance[Lev66] andblock
edit distance[CPSV00, MS00] (also known as the transformation distance [VDR99]), as well as their weighted
variants.

Given a distance function, one can search for sequences similar to a query sequence in the form of two
commonly used query types: (i)k-nearest neighbor queries ask for thek “most” similar sequences (i.e.k

Copyright 2004 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

∗Names of the authors are listed alphabetically

1

sequences with the smallest distance) to a query sequence; (ii) range queries ask for all sequences that have
“sufficient” similarity (i.e. the ones which have distance at most some user definedℓ) to the query sequence.

In this survey we cover two recently developed indexing strategies that enable efficient sequence similarity
search.

The first strategy is the use ofdistance based indexingmethods [STMO03]. Most general indexing methods
perform similarity search by iteratively pruning subsets of potential answers via (i) partitioning the data set (into
overlapping or non-overlapping) subsets in the preprocessing stage, and (ii) checking out to which partition(s)
the query belongs during the pruning stage. A distance basedindexing method performs partitioning and pruning
based (only) on distances between the data items. No other information about the data items are used.

Distance based indexing methods were originally designed for arbitrary metric distances. We describe how
these methods could be used for string/sequence distance measures, provided that they form a metric or analmost
metric. (Many sequence distances including the character edit distance and the block edit distance form metrics
whereas others such as thecompression distanceand many weighted versions of the character edit distance are
almost metrics.)

In this survey we focus on the Vantage Point (VP) tree for illustratinh how distance based indexing methods
can be used for our purposes. In order to analyze the performance of VP trees we describe a data model based on
distribution of distances between sequence pairs. With thehelp of this model we describe how to modify/tune
VP trees to obtain the best performance guarantees on sequence/string data of interest, while providing tradeoffs
between search time and space.

Although distance based indexing methods perform well for many data sets of practical importance, they
suffer from the “curse of dimensionality”; i.e. in the worstcase, they either have query time proportional to
the data set size or preprocessing time exponential with thedata set size. In fact the only known data structures
that providedesirableworst case performance (preprocessing time polynomial with the data set size, query time
polynomial with the query size) work only forHamming distance[KOR98, IM98] (or some of its weighted
variants such as theL1 distance). Although these data structures do not guaranteeexact answers to queries, they
provide good approximate answers; e.g. in nearest neighborsearch, they guarantee to return a data item whose
distance to the query item is within1 + ǫ factor of the distance between the query and its nearest neighbor.

A new approach to sequence similarity search under several measures of interest such as the block edit
distance is to embed the distance into the Hamming distance.These embeddings are distance preserving; i.e.
they map each sequence to a binary vector such that the Hamming distance between any two such binary vectors
approximate the block edit distance between the original sequences. After the embedding is performed one can
use any one of the efficient indexing techniques for the Hamming distance. The second half of our survey is thus
dedicated to embedding distances of interest to Hamming distance. We summarize positive results as well as
some lower bounds that imply certain limitations of this general approach, especially in the context of character
edit distances.

Notation. Throughout the papers, q, r, t denote strings, i.e. contiguous character sequences from an arbi-
trary alphabet (denoting nucleotides in a DNA/RNA moleculeor amino acids in a protein);s[i] denotes theith

character of strings ands[i : j] the substring between theith andjth characters ofs. The length of the strings
is denoted by|s|.

2 Commonly Used Similarity Measures between Sequences/Strings

Similarity between a pair stringss andr are typically measured via edit operations thattransformone string
into the other. Possible edit operations that involve single characters arecharacter insertion,character deletion
andcharacter replacement. One may also consider block (i.e. substring) edit operations such asblock copying,
block deletion, and block relocation. Each of these edit operations may have a specific cost; thus given a
transformation fromr to s, a distanced(r → s) from r to s can be defined as the minimum total cost of edit

2

operations to transformr to s. Such a distance is not necessarily symmetric, i.e., there may be stringss andr
for whichd(r → s) 6= d(s → r).

Possibly the simplest distance measure between two (equal length) stringss andr is the Hamming distance
H(s, r) which is defined as is the number locationsi such thats[i] 6= r[i]. A more common string similarity
measure is the character edit distance, which is also referred as the Levenshtein edit distance or simply the
edit distance [Lev66]. It can be defined as the minimum numberof single character insertions, deletions and
replacements needed to transform one string into another. Weighted versions of the character edit distance assign
costs to specific operations to specific characters and thesemeasures try to find the minimum cost operations
for transforming one string to the other one (as in the case ofPAM and BLOSSUM substitution tables [DSO78,
HH92]).

More recently block edit operations and distances based on these operations have received considerable
attention especially in the context of evolutionary analysis of world languages and mitochondrial DNA sequences
of various species (see, for example, the review in Nature [Ball02]). Given two strings, theirblock edit distance
[MS00] (a.k.a. transformation distance[VDR99]) is defined to be the minimum number of block relocations
copies and deletions as well as single character insertions, deletions and replacements to transform one string to
another.

Because of its generality, the block edit distance providesa lower bound to any distance based on character
and block edits; however it is NP-hard to compute. A more limited distance based on block edits is the compres-
sion distance (which received recent attention [LBXKKZ01,BCL02, LCLMV03]) that can be defined in terms
of the total number of phrases returned by the Lempel-Ziv-77data compression method when compressing each
one of the strings while using the other as a static dictionary. It was shown recently that the compression dis-
tance tightly approximates the block edit distance [EMS03,STMO03]. By the use of suffix trees the compression
distance as defined here can be computed in time linear with the total lengths of the strings [RPE81].

3 Sequence Similarity Search via Distance Based Indexing

The general sequence similarity search problem can be defined as follows. Given a set of sequencesX =
{x1, ..., xn}, a distance functiond, a search radiusR, and a query sequenceq, (1) retrieve all sequences that are
within distanceR to the query sequence - this is called near neighbor search, or (2) retrieve the sequence that
has the smallest distance to the query sequence - this is called nearest neighbor search. One can also ask for the
k-nearest neighbors ofq for k > 1.

A recent approach to the sequence similarity search problemis through the use of distance based indexing
methods. In distance based indexing, pairwise distances are used to iteratively partition the space into smaller
subspaces; search is performed through pruning potential answers by limiting search into subspaces that pro-
gressively get smaller [Uhlmann91, Yianilos93, BO97, CPZ97]. Distance based indexing methods have been
described for arbitrary metric distancesd; i.e. those distances that are symmetric (d(x, y) = d(y, x)), reflexive
(d(x, y) ≥ 0 andd(x, y) = 0 iff x = y) and satisfy the triangle inequality (d(x, y) + d(y, z) ≥ d(x, z)).

In this survey we illustrate the use of distance based indexing through one specific method, the Vantage Point
(VP) trees [Uhlmann91]. In its standard form, a vantage point tree is a binary tree that recursively partitions a
data set into two subsets. Each internal node is of the form(xv ,M,Rptr, Lptr) wherexv is the (possibly
randomly selected) vantage point,M is the median distance among the distances of all the points(from xv)
indexed below that node, andRptr andLptr are pointers to the right and left branches. Left branch of the node
indexes the points whose distances fromxv are at most M, and right branch of the node indexes the points whose
distances fromxv are at leastM . Leaf nodes simply consist single data points.

Given a non-empty setX = {x1, ..., xn} and a metric distanced(xi, xj), a binary VP tree can be constructed
as follows. Letxv be an arbitrary element fromX. Also let M be the median of{d(xi, xv)|∀xi ∈ X}; let
Xl = {xi|d(xi, xv) ≤ M,xi ∈ X,xi 6= Xv} andXr = {xi|d(xi, xv) ≥ M,xi ∈ X}. Recursively create VP

3

tree onXl and onXr as the left and right branches of the root. This constructioncan be done by performing
O(nlogn) pairwise distance computations.

For a given query itemq, the set of data items that are within distanceR of q are found using the following
search routine. Ifxv is the single data point inX andd(q, xv) ≤ R, thenxv is in the answer set. Else, if
d(q, xv) + R ≥ M , then recursively search the right branch. Ifd(q, xv) − R ≤ M , then recursively search the
left branch. If both conditions apply, both branches must besearched. The correctness of this routine follows
from the triangle inequality satisfied byd.

Although both character edit distance and block edit distance are metric distances, their weighted variants
and the compression distance are not. Fortunately, these measures have been shown to bealmost metrics(or
near metrics) [STMO03]. A distance functionf is an almost metric for spaceS if it is symmetric, reflexive and
satisfies the triangular inequality within a constant factor K; i.e. for all s, r, q ∈ S, f(s, r) ≤ K · [f(s, q) +
f(q, r)].

It is possible to use VP trees for almost metrics via the following update on the search strategy [STMO03].
Let d be an almost metric distance which satisfies the triangular inequality within a factor ofK. Now let q be
the query item,R be the query range,xv be the vantage point accessed during the search, andM be the median
distance value forxv. If d(xv, q)+R < M/K then we can prune the right branch. Also, ifd(xv, q)/K−R > M
then we can prune the left branch. If neither of the conditions are satisfied, both branches must be searched.

3.1 Modifying VP-Trees for Specific Data Distributions

It is easy to verify that the worst case performance of VP treesearch could be comparable to the brute force
search. In fact, it has been demonstrated for high dimensional spaces that when the data points are distributed
uniformly over search space, the performance ofany indexing method becomes comparable to brute force
search [BK98]. For many data sets of practical importance, however, VP trees seem to work quite well. In
an attempt to understand the conditions under which VP treeswork efficiently, we focus on specific distributions
of pairwise distances which are common to genomic and protein sequences. We then describe several modifica-
tions to the VP trees which have provably good expected performance under such distributions [STMO03].

In the analysis below the following is assumed: (1) the distribution of the distances between a “typical” data
point to other points in the data set is similar to the overallpairwise distance distribution, (2) the distribution of
the query points in the input space is similar to that of the data points. Under these assumptions we will consider
two types of distributions, (i)exponentialand (ii) power-law, and analyze the performance of the modified VP
trees for nearest neighbor queries.

Nearest neighbor search in exponentially distributed data. Let a data setD containm strings. Given
a typical query pointq, we say thatfq(R), the number of points observed at distance≤ R is exponentially
distributed iffq(R) ∼ k · cR for somec andk.

Denote bynnh(q) the h-nearest neighbor of the query pointq. By definition,fq(d(q, nn1(q))) ∼ 1 and thus
d(q, nn1(q)) ∼ logc1/k. Thus, when one is searching for the nearest neighbor of a query point q, one is looking
for retrieving all the data points whose distance toq is d(q, nn1(q)) ∼ logc1/k - this is by assumption (1) above.

Let p be the topmost vantage point in the VP tree built forD. It is possible to compute the distance between
p and itsm/l’th nearest neighbor for some constantl: fp(d(p, nnm/l(p))) ∼ m/l and thusd(p, nnm/l(p)) ∼
logcm/kl. The number of points that are within distanced(p, nnm/l(p)) + d(p, nn1(p)) from p are thus

fp(d(p, nnm/l(p)) + d(p, nn1(p))) ∼ k · clogc1/k · clogcm/kl ∼ m/k · l.
The VP tree is constructed so that each time a vantage pointp for a subset is determined, it partitions the

data set into two: (1) inner partition include the nearestm/kl points top and (2) outer partition includes the
remaining points. In the standard VP tree, the cardinality of the inner and the outer partitions are equal (they are
separated by the median point) which implies1/kl = 1/2.

4

Search for the nearest neighbor of a query itemq will be performed as follows. For each vantage pointp
encountered one of the following cases will apply.
(i) If d(p, q) ≤ d(p, nnm/l(p)) ∼ logcm/kl then the outer partition will be eliminated and the search will be
iteratively performed on the inner partition. According toassumption (2) above, the probability of this case is
1/l.
(ii) If d(p, q) > logcm/k3l then the inner partition will be eliminated and the search will be performed iteratively
on the outer partition. The probability of this case is1 − 1/lk2.
(iii) Otherwise both the inner and outer partitions will be searched.

The probability of case (ii) is non-zero only ifk > 1/2 which is very atypical (see the experimental results
in the next section). Thus we will ignore case (ii)and obtaina recursion for query time focusing on cases (i) and
(iii) only; i.e. we will assume that outer partition is often”thin” and will offer little additional pruning at the
lower levels of the search tree. LetT (m) be the nearest neighbor search time forq amongm data points.
ThenT (m) ≤ 1 + 2k · T (m/2) + (1 − 2k) · 2 · T (m/2).
This recursion has a solution atT (m) ≤ mlog2−k/2.

Although the above analysis reveals that the worse case doesnot improve brute force search, it is possible to
improve the performance by the followingmodificationto the standard VP tree construction. In this updated VP
tree, rather than having a single vantage point at a given node, we have multiple vantage points. When one visits
a node during search, if the first vantage point fails to satisfy case (i) another vantage point may be considered.
If the number of vantage points at each node is set toj · l (wherej is a constant) the running time of a query
T (m) will be T (m) = O(2/k · mlog1+1/ej

). This will be much faster than the brute force search ifj is chosen
to be sufficiently large.

The increase in the number of vantage points per node clearlyincreases the space complexity of the resulting
data structure. Forj = 1, there will be2/k vantage points in level 1; in leveli there will be(2/k)i vantage points.
Because the number of levels islog m, the overall space complexity becomesO((2/k)log m) = O(m1−log k);
this is a small polynomial ofm for data sets encountered in relevant applications.

Nearest neighbor search under power-law distance distribution. Given a query itemq we say that the
number of data items observed at distance≤ R have power-law distribution iffq(R) ∼ k · Rc. By definition,
fq(d(q, nn1(q))) ∼ 1 and thusd(q, nn1(q)) ∼ (1/k)1/c. Similarly given a vantage pointp, it is possible to
compute the distance betweenp and itsm/l’th nearest neighbor for some constantl: fp(d(p, nnm/l(p))) ∼ m/l

and thusd(p, nnm/l(p)) ∼ (m/lk)1/c.
It is easy to verify that the number of points that are within distanced(p, nnm/l(p)) + d(p, nn1(p)) from p
is approximatelym/l. In the standard VP tree, the cardinality of the inner and outer partitions are equal and
thus l = 2. We can write the recurrence relation for the nearest neighbor search timeT (m) as T (m) =
1 + 3/2 · T (m/2) which has a solution atT (m) = O(m0.58).

Although the above analysis reveals that the worst case running time for the nearest neighbor search is better
than the brute force search, it is possible to improve the performance by a modification similar to that applied
to the exponential distribution: i.e. there will be as many vantage points at each node as allowed by the space
complexity.

Let the number of vantage points at each node bej; the reader can verify that the running time of a query
T (m) will be T (m) = O(2·mlog(1+1/2j)). There arej vantage points for each node and the number of the levels
in the VP tree isO(log m); thus the space complexity of the modified VP tree will beO(jlog m) = O(mlog j).
This modification will have much better search performance if j is chosen to be sufficiently large. For example
for j = 4 one can achieve a search time ofO(m1/11), which will be a very small figure for all practical data
sets; the space complexity will be onlyO(m2).

5

Figure 1: Human (left) and a yeast (right) proteomes indexedusing a standard binary VP-Tree. Each line
indicates the query results (in number of comparisons) for aquery sequence (picked from the data set itself)
with increasing query radius (as a percentage of the query length itself). Note that the search radii will typically
be within25% of the query length.

3.2 Some Experimental Results

We report on two set of experimental results on protein sequences. The first data set involves all active and
potential proteins derived from the complete human genome sequence. The second data set involves all proteins
from the yeast (S.Cerevisiae) genome. Both data sets are exponentially distributed under the character edit
distance (typical values arek < 1/4 andc ∼ 21/400) [STMO03]. The pruning results of standard VP tree
searches with varying search radii (together with the “brute-force” search) are demonstrated in Figure 1. For
most query sequences, as the radius for near neighbor searchincreases, the number of distance computations
(and thus the running time) increases linearly.

4 Sequence Similarity Search via Embeddings

As demonstrated above, distance based indexing methods usually have good performance for practical string
data sets; however, in the worst case they have suffer from the curse of dimensionality. In fact for no distance
measure that allows non-trivial edit operations is known tolead to an efficient data structure that provides a
desirable worst case performance guarantee; i.e. for all distance measures, all known data structures require
either preprocessing time exponential with the number of data items or a query time comparable to brute force
search.

For the case of Hamming distance, however, there are a numberof data structures that provide desirable
worst case performance guarantees for nearest neighbor search [KOR98, IM98]. (The guarantees are valid
only if a small (1 + ǫ) factor of approximation can be tolerated in the answers provided; i.e. the answer to a
nearest neighbor query will not be exact but will be within(1 + ǫ) factor of the distance between the query
and its true nearest neighbor.) Such data structures work bydimensionality reduction, space partitioning and
bucketing. Unfortunately none of these methods seems to work with distance functions involving non-trivial
edit operations. However it may still be possible to utilizean efficient data structure that work under Hamming
Distance for other distance functions, provided such distances could be “embedded” into the Hamming distance
with small distortion. In this section, we will show that such embeddings exist, in particular from the block edit
distance [CPSV00, MS00].

6

The embedding of the block edit distance into the Hamming distance involves hierarchically parsing a given
string into ’core’ substrings [CPSV00, MS00]. Given an alphabet, the complete list of core substrings of varying
size is known. To embed a string into a binary vector, one needs to prepare a bit vector whose length is the total
number of possible cores of relevant size. Theith bit of this vector is set to1 only if the lexicographicallyith

largest core (for the specific alphabet) is present in the string.
The computation of core substrings is performed through theuse ofLocally Consistent Parsing(LCP), first

described for optimal parallel construction of a suffix tree[SV94]. A symmetric variant of LCP that allows
block rotations was later described in [MS00]. LCP uses the local composition of a string for partitioning it into
(possibly overlapping) core substrings of roughly equal size. Each core substring can be replaced by a fingerprint
to have a shorter representation of the string. On this shortrepresentation, LCP can be applied iteratively until it
is shrunk to a constant size. Because the core substrings areextracted independent of their location in the string,
the core substring composition of a long block does not change even if it is moved within the string.

Suppose that the embedding of two stringss andr are the binary vectorsT (s) andT (r) respectively. Be-
cause the core substring composition of a string is mostly preserved after a block operation,T (s) andT (r)
guarantee that their Hamming distance is aO(log l log∗ l) approximation of the block edit distance betweens
andr (l = |s| + |r|). Although the size of a vectorT () will be O(2l), there will be at mostl nonzero entries.
Such a vector can be represented by usingO(l2) bits.

The nature of SNN problem depends on the distance function used for determining the similarity between
two strings. Although block edit distance can be embedded into the Hamming Distance quite efficiently, no such
embedding is known for the character edit distance or any of its variants. In fact, a recent result [ADGIR03]
demonstrates that an embedding from character edit distance to Hamming distance can not be achieved with an
approximation factor better than3/2. Other limitations of the embedding approach is described in [SU04].

5 Conclusions

The recent increase in the amount of sequence data in biomolecular databases bring many challenges to the
sequence similarity search problem. Here we survey two novel approaches for performing global sequence
similarity search: (i) distance based indexing and (ii) similarity search via embeddings. The first approach is
quite a general one applicable to all distance measures thatform a metric or an almost metric. The performance
is, however, dependent on the specific pairwise distribution observed in the data set. In fact, the worst case
performance of this approach could be comparable to the brute force search.

For Hamming distance and a number of its variants that do not allow any non-trivial edit operations, a
number of data structures with polynomial worst case performance guarantees have been recently developed.
The second approach surveyed here aims to embed an arbitrarydistance measure to Hamming distance via the
use of a distance preserving transformation. One such embedding for Block Edit distance with relatively small
distortion is summarized in this survey. A major open problem is whether such embeddings could be obtained
for character edit distances.

References

[ADGIR03] A. Andoni, M. Deza, A. Gupta, P. Indyk, S. Raskhodnikova. Lower Bounds for Embedding Edit Distance into Normed
Spaces. InSymposium on Discrete Algorithms, pages 523-526, 2003.

[Ball02] Philip Ball. Algorithm makes tongue tree.Nature, Science update, Jan 22, 2002.

[BCL02] D. Benedetto, E. Caglioti, V. Lorento. Language Trees and Zipping.Physical Review Letters, 88(4), Jan 2002.

[BK98] S. Berchtold, D.A. Keim. High-dimensional Index Structure. InProc. ACM SIGMOD, page 501, 1998.

7

[BO97] T. Bozkaya and M. Ozsoyoglu. Distance-Based Indexing for High-Dimensional Metric Spaces.Proc. SIGMOD, pages
357–368, 1997.

[Brin95] S. Brin. Near Neighbor Serach in Large Metric Spces. In Proc. VLDB, pages 574–584, 1995.

[BK73] W. A. Burkhard, and R. M. Keller. Some Approaches to Best-Match File Searching.Communications of the ACM, 16(4),
pages 230-236, April 1973.

[CPZ97] P. Ciaccia, M. Patella, and P. Zezula. M-Trees: An effecient access method for similarity sesarch in metric space. InProc.
VLDB, pages 426–435, 1997.

[CPSV00] Graham Cormode, Mike Paterson, Suleyman Cenk Sahinalp, Uzi Vishkin. Communication complexity of document
exchange. InSymposium on Discrete Algorithms, pages 197-206, 2000.

[DSO78] M. Dayhoff, R. Schwartz, B. Orcutt. A model of evolutionary change in proteins. InAtlas of Protein Sequence and
Structure, Volume 5, pages 345–352, 1978.

[EMS03] Funda Ergun, S. Muthukrishnan, Suleyman Cenk Sahinalp. Comparing Sequences with Segment Rearrangements. In
Foundations of Software Technology and Theoretical Computer Science, pages 183-194, 2003.

[HH92] S. Henikoff, J.G. Henikoff. Amino acid substitutionmatrices from protein blocks. InProceedings of the National Academy
of Sciences, Volume 89, pages 10915–10919, 1992.

[IM98] P.Indyk, R.Motwani. Approximate Nearest Neighbors: Towards Removing the Curse of Dimensionality. InProc. ACM
-SIAM Symposium on Theory of Computing, pages 604–613, 1998.

[KOR98] E. Kushilevitz, R. Ostrovsky, Y.Rabani. Efficient search for approximate nearest neighbor in high dimensionalspaces. In
Proc. ACM -SIAM Symposium on Theory of Computing, pages 614–623, 1998.

[Lev66] V. I. Levenshtein. Binary codes capable of correcting deletins, insertions and reversals.Cybernetics and Control Theory,
10(8): pages 707–710, 1966.

[LBXKKZ01] M.Li, J. H. Badger, C. Xin, S. Kwong, P. Kearney, H. Zhang. An information based sequence distance and its application
to whole mitochondrial genome phylogeny.Bioinformatics, 17, 2001.

[LCLMV03] M. Li, X. Chen, X. Li, B. Ma, P. Vitanyi. The similarity Metric. Proc. ACM-SIAM SODA, Baltimore MD, 2003.

[MS00] S. Muthukrishnan and S. C. Sahinalp. Approximate nearest neighbors and sequence comparison with block operations.
Proc. ACM Symposium on Theory of Computing, 2000.

[NCBI] NCBI Genbank Statistics. http://www.ncbi.nih.gov/Genbank/genbankstats.html.

[RPE81] M. Rodeh, V. R. Pratt, S. Even. Linear Algorithm for Data Compression via String Matching.JACM, 28(1): pages 16–24,
1981.

[STMO03] S.Cenk Sahinalp, Murat Tasan, Jai Macker, Z.MeralOzsoyoglu. Distance-Based Indexing for String Proximity Search.
In IEEE Data Engineering Conference, 2003.

[SU04] Suleyman Cenk Sahinalp, Andrey Utis. Hardness of String Similarity Search and Other Indexing Problems. InInterna-
tional Colloquium on Automata, Languages and Programming, pages 1080-1098, 2004.

[SV96] S.Cenk Sahinalp, U. Vishkin. Approximate and Dynamic Matching of Patterns Using A Labeling Paradigm. InProceed-
ings of IEEE Symposium on Foundations of Computer Science, pages 320–328, 1996.

[SV94] S.Cenk Sahinalp, U. Vishkin. Symmetry breaking for suffix tree construction. InACM Symposium on Theory of Comput-
ing, pages 300-309, 1994.

[Uhlmann91] J. K. Uhlmann. Satisfying general proximity/similarity queries with metric trees.IPL, (4): pages 175–179, 1991.

[VDR99] J. S. Varre, J. P. Delahaye, and E. Rivals. The Transformation Distance: A Dissimilarity Measure BVased on Movements
of Segments. InBioinformatics, 15:3, pages 194–202, 1999.

[Yianilos93] P. N. Yianilos. Data Structures and Algorithms for Nearest Neighbor Search in General Metric Spaces. InProc. ACM-
SIAM Symposium on Discrete Algorithms, pages 311–321, 1993.

8

