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Abstract

In many biomolecular database applications involvingreifsequence data, it is common to have sim-
ilarity search in the form of near neighbor queries or neanesighbor queries. The similarity between
strings/sequences are typically measured in terms of t& kostly set of allowed edit operations that
transform one string/sequence to another. In this surveybriefly describe some of the recent develop-
ments in biomolecular sequence indexing methods that aiffigient similarity search. Our focus here is
on global similarity measures that compare sequences linsiuth measures are important for compar-
ing protein sequences and smaller biomolecules. Examptdsde character and block edit distances
and their weighted variants. Two major approaches are suriz@a here: distance based indexing and
embeddings of general sequence similarity measures to Magistance, for which efficient indexing
methods are available.

1 Introduction

The advent of efficient DNA sequencing technigues have leaxponential growth in biomolecular sequence
data. With data growth levels surpassing Moore’s law, it besome essential to develop highly efficient data
structures and indexing tools for string/sequence siitjlaearch [NCBI].

Efficient similarity search is key to handling/processingssive biomolecular sequence data as sequence
similarity often implies functional and evolutionary reétmship. Similarity between sequences are usually
defined in terms of the distance function in use. In this suwe focus orglobal similarity measures between
sequences/strings. The best studied global distance nesaarecharacter edit distancé¢lev66] andblock
edit distancgCPSV00, MS00] (also known as the transformation distan@@H99]), as well as their weighted
variants.

Given a distance function, one can search for sequencelistmia query sequence in the form of two
commonly used query types: (k-nearest neighbor queries ask for the¢most” similar sequences (i.ek
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sequences with the smallest distance) to a query sequanagnfe queries ask for all sequences that have
“sufficient” similarity (i.e. the ones which have distandevast some user defingdito the query sequence.

In this survey we cover two recently developed indexingtegi@s that enable efficient sequence similarity
search.

The first strategy is the use distance based indexingethods [STMOOQ3]. Most general indexing methods
perform similarity search by iteratively pruning subsedtpatential answers via (i) partitioning the data set (into
overlapping or non-overlapping) subsets in the prepracgsgage, and (ii) checking out to which partition(s)
the query belongs during the pruning stage. A distance biadeging method performs partitioning and pruning
based (only) on distances between the data items. No otfeemiation about the data items are used.

Distance based indexing methods were originally desigoedrbitrary metric distances. We describe how
these methods could be used for string/sequence distaramines, provided that they form a metric osdmost
metric (Many sequence distances including the character ed#raies and the block edit distance form metrics
whereas others such as tt@mpression distancand many weighted versions of the character edit distarece ar
almost metrics.)

In this survey we focus on the Vantage Point (VP) tree fostiatinh how distance based indexing methods
can be used for our purposes. In order to analyze the perfmenaf VP trees we describe a data model based on
distribution of distances between sequence pairs. Witthéte of this model we describe how to modify/tune
VP trees to obtain the best performance guarantees on sagsieimg data of interest, while providing tradeoffs
between search time and space.

Although distance based indexing methods perform well fanyndata sets of practical importance, they
suffer from the “curse of dimensionality”; i.e. in the worsise, they either have query time proportional to
the data set size or preprocessing time exponential witddlee set size. In fact the only known data structures
that providedesirableworst case performance (preprocessing time polynomidl thi data set size, query time
polynomial with the query size) work only fddlamming distancKOR98, IM98] (or some of its weighted
variants such as the, distance). Although these data structures do not guaramtest answers to queries, they
provide good approximate answers; e.g. in nearest neigtdsoch, they guarantee to return a data item whose
distance to the query item is within+ ¢ factor of the distance between the query and its neareshineig

A new approach to sequence similarity search under sevexabumnes of interest such as the block edit
distance is to embed the distance into the Hamming distafibese embeddings are distance preserving; i.e.
they map each sequence to a binary vector such that the Handaistance between any two such binary vectors
approximate the block edit distance between the origingliseces. After the embedding is performed one can
use any one of the efficient indexing techniques for the Hargrdistance. The second half of our survey is thus
dedicated to embedding distances of interest to Hammirtgrdie. We summarize positive results as well as
some lower bounds that imply certain limitations of this g&h approach, especially in the context of character
edit distances.

Notation. Throughout the papey, ¢, r, t denote strings, i.e. contiguous character sequences fncgmba
trary alphabet (denoting nucleotides in a DNA/RNA moleami@mino acids in a protein)[i] denotes the'”
character of string ands[i : 5] the substring between thi¢ and ;" characters of. The length of the string
is denoted bys|.

2 Commonly Used Similarity Measures between Sequences/Bigs

Similarity between a pair strings andr are typically measured via edit operations ttransformone string
into the other. Possible edit operations that involve siraflaracters areharacter insertiorcharacter deletion
andcharacter replacementOne may also consider block (i.e. substring) edit opematsuch adlock copying
block deletion and block relocation Each of these edit operations may have a specific cost; tivas @
transformation fromr to s, adistanced(r — s) from r to s can be defined as the minimum total cost of edit



operations to transformto s. Such a distance is not necessarily symmetric, i.e., thengle stringss andr
for whichd(r — s) # d(s — r).

Possibly the simplest distance measure between two (egpugthl) stringss andr is the Hamming distance
H(s,r) which is defined as is the number locatiansuch thats[i] # r[i]. A more common string similarity
measure is the character edit distance, which is also eefeas the Levenshtein edit distance or simply the
edit distance [Lev66]. It can be defined as the minimum nunabsingle character insertions, deletions and
replacements needed to transform one string into anotheightéd versions of the character edit distance assign
costs to specific operations to specific characters and thessures try to find the minimum cost operations
for transforming one string to the other one (as in the cas®a\M and BLOSSUM substitution tables [DSO78,
HH92]).

More recently block edit operations and distances basedesetoperations have received considerable
attention especially in the context of evolutionary aniglgs world languages and mitochondrial DNA sequences
of various species (see, for example, the review in NatuadlQR]). Given two strings, theiblock edit distance
[MSO00] (a.k.a.transformation distanc§/DR99]) is defined to be the minimum number of block reloocas
copies and deletions as well as single character insertitahations and replacements to transform one string to
another.

Because of its generality, the block edit distance provalksver bound to any distance based on character
and block edits; however it is NP-hard to compute. A moretiehidistance based on block edits is the compres-
sion distance (which received recent attention [LBXKKZBTL02, LCLMVO03]) that can be defined in terms
of the total number of phrases returned by the Lempel-Zidata compression method when compressing each
one of the strings while using the other as a static dictipndirwas shown recently that the compression dis-
tance tightly approximates the block edit distance [EMSJI3VIO03]. By the use of suffix trees the compression
distance as defined here can be computed in time linear vattothl lengths of the strings [RPE81].

3 Sequence Similarity Search via Distance Based Indexing

The general sequence similarity search problem can be dedisdollows. Given a set of sequenc&s =
{z1,...,z,}, adistance functiod, a search radiug, and a query sequenge(1) retrieve all sequences that are
within distanceR to the query sequence - this is called near neighbor sear¢B) cetrieve the sequence that
has the smallest distance to the query sequence - this éslgaarest neighbor search. One can also ask for the
k-nearest neighbors aqffor k& > 1.

A recent approach to the sequence similarity search proldéhtough the use of distance based indexing
methods. In distance based indexing, pairwise distaneessad to iteratively partition the space into smaller
subspaces; search is performed through pruning potem$avexs by limiting search into subspaces that pro-
gressively get smaller [Uhlmann91, Yianilos93, BO97, CPZDistance based indexing methods have been
described for arbitrary metric distancési.e. those distances that are symmetidcr(y) = d(y, x)), reflexive
(d(z,y) > 0andd(z,y) = 0iff x = y) and satisfy the triangle inequalitil(z, y) + d(y, z) > d(z, 2)).

In this survey we illustrate the use of distance based imgetkirough one specific method, the Vantage Point
(VP) trees [Uhimann91]. In its standard form, a vantage tpioée is a binary tree that recursively partitions a
data set into two subsets. Each internal node is of the farmM, Rptr, Lptr) wherez, is the (possibly
randomly selected) vantage poiit/ is the median distance among the distances of all the pims(z,)
indexed below that node, amtpir and Lptr are pointers to the right and left branches. Left branch ehibde
indexes the points whose distances frograre at most M, and right branch of the node indexes the pointse/
distances from:,, are at leasf\/. Leaf nodes simply consist single data points.

Given a non-empty setf = {1, ..., z,, } and a metric distanc#(z;, =), a binary VP tree can be constructed
as follows. Letz, be an arbitrary element fronX. Also let M be the median ofd(x;,z,)|Vx; € X}; let
X; = {xld(zi,xy) < M,z € X,2; # X} and X, = {x;|d(x;,z,) > M,z; € X}. Recursively create VP



tree onX; and onX, as the left and right branches of the root. This construatem be done by performing
O(nlogn) pairwise distance computations.

For a given query iterg, the set of data items that are within distatdtef ¢ are found using the following
search routine. If, is the single data point itX andd(q,z,) < R, thenz, is in the answer set. Else, if
d(q,z,) + R > M, then recursively search the right branchd(§, x,) — R < M, then recursively search the
left branch. If both conditions apply, both branches musséarched. The correctness of this routine follows
from the triangle inequality satisfied lay

Although both character edit distance and block edit distaare metric distances, their weighted variants
and the compression distance are not. Fortunately, theasures have been shown to ddenost metricqor
near metrics) [STMOO3]. A distance functighis an almost metric for spacgif it is symmetric, reflexive and
satisfies the triangular inequality within a constant fadkg i.e. for alls,r,q € S, f(s,7) < K - [f(s,q) +
fla,r)].

It is possible to use VP trees for almost metrics via the ¥aithg update on the search strategy [STMOO03].
Let d be an almost metric distance which satisfies the triangakguality within a factor of{. Now letg be
the query itemR be the query range;, be the vantage point accessed during the search)abd the median
distance value far,,. If d(z,, q)+ R < M /K then we can prune the right branch. Alsal(f,,q)/K—R > M
then we can prune the left branch. If neither of the conditiare satisfied, both branches must be searched.

3.1 Modifying VP-Trees for Specific Data Distributions

It is easy to verify that the worst case performance of VP semrch could be comparable to the brute force
search. In fact, it has been demonstrated for high dimeakgpaces that when the data points are distributed
uniformly over search space, the performanceany indexing method becomes comparable to brute force
search [BK98]. For many data sets of practical importancsydver, VP trees seem to work quite well. In
an attempt to understand the conditions under which VP wees efficiently, we focus on specific distributions
of pairwise distances which are common to genomic and preeguences. We then describe several modifica-
tions to the VP trees which have provably good expected paeoce under such distributions [STMOO3].

In the analysis below the following is assumed: (1) the istion of the distances between a “typical” data
point to other points in the data set is similar to the ovegraltwise distance distribution, (2) the distribution of
the query points in the input space is similar to that of tha gaints. Under these assumptions we will consider
two types of distributions, (igxponentialand (ii) power-law and analyze the performance of the modified VP
trees for nearest neighbor queries.

Nearest neighbor search in exponentially distributed data Let a data setD containm strings. Given
a typical query poinyg, we say thatf,(R), the number of points observed at distanceR is exponentially
distributed if f,(R) ~ k - ¢ for somec andk.

Denote bynny,(q) the h-nearest neighbor of the query pajnBy definition, f,(d(¢, nn1(q))) ~ 1 and thus
d(g,nn1(q)) ~ log.1/k. Thus, when one is searching for the nearest neighbor ofrg goit ¢, one is looking
for retrieving all the data points whose distance ted(q, nn1(q)) ~ log.1/k - this is by assumption (1) above.

Let p be the topmost vantage point in the VP tree builtfarlt is possible to compute the distance between
p and itsm/I'th nearest neighbor for some constantf, (d(p, nn,,,(p))) ~ m/l and thusd(p, nn,;(p)) ~
logem/kl. The number of points that are within distanti@, nn., ;(p)) + d(p, nn1(p)) fromp are thus
Fold(psnn i (p)) + d(p, nny (p))) ~ k - o9tk dogem/M o [ -1,

The VP tree is constructed so that each time a vantage pdorta subset is determined, it partitions the
data set into two: (1) inner partition include the nearegt! points top and (2) outer partition includes the
remaining points. In the standard VP tree, the cardinafithe inner and the outer partitions are equal (they are
separated by the median point) which impligg! = 1/2.



Search for the nearest neighbor of a query itemill be performed as follows. For each vantage pgint
encountered one of the following cases will apply.

() If d(p,q) < d(p,nny,/(p)) ~ logem/kl then the outer partition will be eliminated and the search e
iteratively performed on the inner partition. Accordingassumption (2) above, the probability of this case is
1/1.

(i) If d(p, q) > log.m /K31 then the inner partition will be eliminated and the seardhlvei performed iteratively
on the outer partition. The probability of this casd is 1/1k>.

(iif) Otherwise both the inner and outer partitions will keasched.

The probability of case (ii) is non-zero only/f > 1/2 which is very atypical (see the experimental results
in the next section). Thus we will ignore case (ii)and obtaecursion for query time focusing on cases (i) and
(i) only; i.e. we will assume that outer partition is oftétin” and will offer little additional pruning at the
lower levels of the search tree. LE{m) be the nearest neighbor search timeg@amongm data points.
ThenT(m) <1+ 2k-T(m/2)+ (1 —2k)-2-T(m/2).

This recursion has a solution &{m) < m!°92-+/2,

Although the above analysis reveals that the worse casentb@sprove brute force search, it is possible to
improve the performance by the followimgodificationto the standard VP tree construction. In this updated VP
tree, rather than having a single vantage point at a givea,ned have multiple vantage points. When one visits
a node during search, if the first vantage point fails to §atiase (i) another vantage point may be considered.
If the number of vantage points at each node is sgt-tb(where; is a constant) the running time of a query
T(m) will be T(m) = O(2/k - m!°9**+1/¢"), This will be much faster than the brute force searchig chosen
to be sufficiently large.

The increase in the number of vantage points per node clieaeryases the space complexity of the resulting
data structure. Fgr = 1, there will be2/k vantage points in level 1; in levethere will be(2/k)? vantage points.
Because the number of levelslig; m, the overall space complexity becom@§(2/k)'°¢™) = O(m!~1o8k);
this is a small polynomial ofn for data sets encountered in relevant applications.

Nearest neighbor search under power-law distance distribtion. Given a query item; we say that the
number of data items observed at distarceé? have power-law distribution if,(R) ~ k - R°. By definition,
fo(d(q,nn1(q))) ~ 1 and thusd(q, nn1(q)) ~ (1/k)'/¢. Similarly given a vantage point, it is possible to
compute the distance betwegand itsm /I'th nearest neighbor for some constany, (d(p, nn, i (p))) ~ m/l
and thusi(p, nn,, ;i (p)) ~ (m/1k)e,

It is easy to verify that the number of points that are withistahced(p, nn,,(p)) + d(p,nn1(p)) from p

is approximatelym/I. In the standard VP tree, the cardinality of the inner aneopartitions are equal and
thus! = 2. We can write the recurrence relation for the nearest neigsbarch timel’(m) as7'(m) =
1+ 3/2 - T(m/2) which has a solution &'(m) = O(m°%8).

Although the above analysis reveals that the worst casermgtime for the nearest neighbor search is better
than the brute force search, it is possible to improve théopaance by a modification similar to that applied
to the exponential distribution: i.e. there will be as maaptage points at each node as allowed by the space
complexity.

Let the number of vantage points at each nodg;iee reader can verify that the running time of a query
T(m) willbe T'(m) = O(2-m!°9(1+1/2))_There arg vantage points for each node and the number of the levels
in the VP tree igD(log m); thus the space complexity of the modified VP tree will®gj'°¢™) = O(m'°87).

This modification will have much better search performarigeis chosen to be sufficiently large. For example
for j = 4 one can achieve a search time@fm'/'"), which will be a very small figure for all practical data
sets; the space complexity will be orty(m?).



characted edit computations for a random sample set of characted edit computations for a random sample set of
human proteome sequences with increasing query range yeast proteome orf coding sequences with increasing query range
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Figure 1: Human (left) and a yeast (right) proteomes indaxsidg a standard binary VP-Tree. Each line
indicates the query results (in number of comparisons) fquery sequence (picked from the data set itself)
with increasing query radius (as a percentage of the quagthdtself). Note that the search radii will typically
be within25% of the query length.

3.2 Some Experimental Results

We report on two set of experimental results on protein secgge The first data set involves all active and
potential proteins derived from the complete human gen@yaence. The second data set involves all proteins
from the yeast (S.Cerevisiae) genome. Both data sets amnenpally distributed under the character edit
distance (typical values are < 1/4 andc ~ 2/400) [STMOO03]. The pruning results of standard VP tree
searches with varying search radii (together with the ‘iforce” search) are demonstrated in Figure 1. For
most query sequences, as the radius for near neighbor dearehses, the number of distance computations
(and thus the running time) increases linearly.

4 Sequence Similarity Search via Embeddings

As demonstrated above, distance based indexing methodfiyusave good performance for practical string
data sets; however, in the worst case they have suffer frenasurse of dimensionality. In fact for no distance
measure that allows non-trivial edit operations is knowtetd to an efficient data structure that provides a
desirable worst case performance guarantee; i.e. for sthmie measures, all known data structures require
either preprocessing time exponential with the number td dams or a query time comparable to brute force
search.

For the case of Hamming distance, however, there are a nuofiloita structures that provide desirable
worst case performance guarantees for nearest neighbamhg&®R98, IM98]. (The guarantees are valid
only if a small (I + €) factor of approximation can be tolerated in the answersiged; i.e. the answer to a
nearest neighbor query will not be exact but will be witliin+ ¢) factor of the distance between the query
and its true nearest neighbor.) Such data structures wodirbgnsionality reduction, space partitioning and
bucketing. Unfortunately none of these methods seems t& with distance functions involving non-trivial
edit operations. However it may still be possible to utiléreefficient data structure that work under Hamming
Distance for other distance functions, provided such dgsta could be “embedded” into the Hamming distance
with small distortion. In this section, we will show that suembeddings exist, in particular from the block edit
distance [CPSV00, MS00].



The embedding of the block edit distance into the Hammingdce involves hierarchically parsing a given
string into 'core’ substrings [CPSV00, MS00]. Given an alpht, the complete list of core substrings of varying
size is known. To embed a string into a binary vector, one sikegdrepare a bit vector whose length is the total
number of possible cores of relevant size. THebit of this vector is set td only if the lexicographicallyi*”
largest core (for the specific alphabet) is present in thiegstr

The computation of core substrings is performed througtusieeofLocally Consistent Parsing.CP), first
described for optimal parallel construction of a suffix tf&&94]. A symmetric variant of LCP that allows
block rotations was later described in [MS00]. LCP usesalallcomposition of a string for partitioning it into
(possibly overlapping) core substrings of roughly equed sEach core substring can be replaced by a fingerprint
to have a shorter representation of the string. On this sbprésentation, LCP can be applied iteratively until it
is shrunk to a constant size. Because the core substringst@aeted independent of their location in the string,
the core substring composition of a long block does not chawgn if it is moved within the string.

Suppose that the embedding of two strisgendr are the binary vector$'(s) andT'(r) respectively. Be-
cause the core substring composition of a string is mostgewved after a block operatiof(s) and 7'(r)
guarantee that their Hamming distance ©@og [ log* [) approximation of the block edit distance between
andr (I = |s| + |r|). Although the size of a vectdF() will be O(2!), there will be at most nonzero entries.
Such a vector can be represented by ughity) bits.

The nature of SNN problem depends on the distance functied ims determining the similarity between
two strings. Although block edit distance can be embeddedtie Hamming Distance quite efficiently, no such
embedding is known for the character edit distance or anysofdriants. In fact, a recent result [ADGIRO03]
demonstrates that an embedding from character edit destartdamming distance can not be achieved with an
approximation factor better thay'2. Other limitations of the embedding approach is descrind&U04].

5 Conclusions

The recent increase in the amount of sequence data in biomlatedatabases bring many challenges to the
sequence similarity search problem. Here we survey two Irweroaches for performing global sequence
similarity search: (i) distance based indexing and (ii)ikinty search via embeddings. The first approach is
quite a general one applicable to all distance measurefottmata metric or an almost metric. The performance
is, however, dependent on the specific pairwise distributibserved in the data set. In fact, the worst case
performance of this approach could be comparable to the lioute search.

For Hamming distance and a number of its variants that do ot aany non-trivial edit operations, a
number of data structures with polynomial worst case parémrce guarantees have been recently developed.
The second approach surveyed here aims to embed an arldistagyice measure to Hamming distance via the
use of a distance preserving transformation. One such afirigetbr Block Edit distance with relatively small
distortion is summarized in this survey. A major open proble whether such embeddings could be obtained
for character edit distances.

References

[ADGIRO03] A. Andoni, M. Deza, A. Gupta, P. Indyk, S. Raskhddwva. Lower Bounds for Embedding Edit Distance into Normed
Spaces. IIBymposium on Discrete Algorithnmages 523-526, 2003.

[Ballo2] Philip Ball. Algorithm makes tongue tredlature Science update, Jan 22, 2002.
[BCLO2] D. Benedetto, E. Caglioti, V. Lorento. Language 8send ZippingPhysical Review Letter88(4), Jan 2002.

[BK98] S. Berchtold, D.A. Keim. High-dimensional Index Stture. InProc. ACM SIGMODpage 501, 1998.



[BO97] T. Bozkaya and M. Ozsoyoglu. Distance-Based Indgfor High-Dimensional Metric Space®roc. SIGMOD pages
357-368, 1997.

[Brin95] S. Brin. Near Neighbor Serach in Large Metric SpdesProc. VLDB pages 574-584, 1995.

[BK73] W. A. Burkhard, and R. M. Keller. Some Approaches tesBMatch File SearchingCommunications of the ACM6(4),
pages 230-236, April 1973.

[CPZ97] P. Ciaccia, M. Patella, and P. Zezula. M-Trees: Aacént access method for similarity sesarch in metricepbdProc.
VLDB, pages 426-435, 1997.

[CPSV00] Graham Cormode, Mike Paterson, Suleyman Cenkn8ghiUzi Vishkin. Communication complexity of document
exchange. IrBymposium on Discrete Algorithnmages 197-206, 2000.

[DSO78] M. Dayhoff, R. Schwartz, B. Orcutt. A model of evabnary change in proteins. IAtlas of Protein Sequence and
Structure Volume 5, pages 345-352, 1978.

[EMSO03] Funda Ergun, S. Muthukrishnan, Suleyman Cenk S#fninComparing Sequences with Segment Rearrangements. In
Foundations of Software Technology and Theoretical Coargbtiencepages 183-194, 2003.

[HH92] S. Henikoff, J.G. Henikoff. Amino acid substitutionatrices from protein blocks. Rroceedings of the National Academy
of Sciencesvolume 89, pages 10915-10919, 1992.

[IM98] P.Indyk, R.Motwani. Approximate Nearest Neighbof®wards Removing the Curse of Dimensionality.Aroc. ACM
-SIAM Symposium on Theory of Computipgges 604—613, 1998.

[KOR98] E. Kushilevitz, R. Ostrovsky, Y.Rabani. Efficiergarch for approximate nearest neighbor in high dimensispates. In
Proc. ACM -SIAM Symposium on Theory of Compytpages 614623, 1998.

[Lev66] V. I. Levenshtein. Binary codes capable of cormgtileletins, insertions and reversalybernetics and Control Theary
10(8): pages 707-710, 1966.

[LBXKKZ01] M.Li, J. H. Badger, C. Xin, S. Kwong, P. Kearney,.Zhang. An information based sequence distance and itcapph
to whole mitochondrial genome phyloger®ioinformatics 17, 2001.

[LCLMVO03] M. Li, X. Chen, X. Li, B. Ma, P. Vitanyi. The similaity Metric. Proc. ACM-SIAM SODABaltimore MD, 2003.

[MSO00] S. Muthukrishnan and S. C. Sahinalp. Approximater@éstaneighbors and sequence comparison with block opesatio
Proc. ACM Symposium on Theory of Computid@00.

[NCBI] NCBI Genbank Statistics. http://www.ncbi.nih.g@enbank/genbankstats.html.

[RPE81] M. Rodeh, V. R. Pratt, S. Even. Linear Algorithm faxtB Compression via String MatchingACM, 28(1): pages 16-24,
1981.

[STMOO03] S.Cenk Sahinalp, Murat Tasan, Jai Macker, Z.M@zdoyoglu. Distance-Based Indexing for String Proximiga&h.
In IEEE Data Engineering Conferenc2003.

[SU04] Suleyman Cenk Sahinalp, Andrey Utis. Hardness ah&Bimilarity Search and Other Indexing Problems Iriterna-
tional Colloquium on Automata, Languages and Programmpages 1080-1098, 2004.

[SV96] S.Cenk Sahinalp, U. Vishkin. Approximate and Dynaiiatching of Patterns Using A Labeling Paradigm Piroceed-
ings of IEEE Symposium on Foundations of Computer Scjgrages 320—328, 1996.

[SV94] S.Cenk Sahinalp, U. Vishkin. Symmetry breaking foffi tree construction. IACM Symposium on Theory of Comput-
ing, pages 300-309, 1994.

[Uhimann91] J. K. Uhimann. Satisfying general proximitgigarity queries with metric treedPL, (4): pages 175-179, 1991.

[VDR99] J. S. Varre, J. P. Delahaye, and E. Rivals. The Tamshtion Distance: A Dissimilarity Measure BVased on Moegis
of Segments. IBioinformatics 15:3, pages 194—-202, 1999.

[Yianilos93] P. N. Yianilos. Data Structures and Algorithifor Nearest Neighbor Search in General Metric Space®rdn. ACM-
SIAM Symposium on Discrete Algorithrpages 311-321, 1993.



