
Deep Co-Clustering

Dongkuan Xu∗‡ Wei Cheng†‡ Bo Zong† Jingchao Ni† Dongjin Song†

Wenchao Yu§ Yuncong Chen† Haifeng Chen† Xiang Zhang∗

Abstract

Co-clustering partitions instances and features simulta-
neously by leveraging the duality between them and it
often yields impressive performance improvement over
traditional clustering algorithms. The recent develop-
ment in learning deep representations has demonstrated
the advantage in extracting effective features. How-
ever, the research on leveraging deep learning frame-
works for co-clustering is limited for two reasons: 1) cur-
rent deep clustering approaches usually decouple feature
learning and cluster assignment as two separate steps,
which cannot yield the task-specific feature represen-
tation; 2) existing deep clustering approaches cannot
learn representations for instances and features simul-
taneously. In this paper, we propose a deep learning
model for co-clustering called DeepCC. DeepCC uti-
lizes the deep autoencoder for dimension reduction, and
employs a variant of Gaussian Mixture Model (GMM)
to infer the cluster assignments. A mutual informa-
tion loss is proposed to bridge the training of instances
and features. DeepCC jointly optimizes the parame-
ters of the deep autoencoder and the mixture model in
an end-to-end fashion on both the instance and the fea-
ture spaces, which can help the deep autoencoder escape
from local optima and the mixture model circumvent
the Expectation-Maximization (EM) algorithm. To the
best of our knowledge, DeepCC is the first deep learning
model for co-clustering. Experimental results on various
datasets demonstrate the effectiveness of DeepCC.

1 Introduction

Given a data matrix in which one dimension repre-
sents instances and the other represents features, co-
clustering aims to cluster both instances and features
simultaneously so that the instances and features can be
organized into homogeneous blocks. Many co-clustering
algorithms have been proposed. Some of them are based
on information theory [1, 2]. For instance, Dhillon et

∗The Pennsylvania State University. {dux19, xzz89}@psu.edu
†NEC Laboratories America, Inc. {weicheng, bzong, jni,

dsong, yuncong, haifeng}@nec-labs.com
‡These authors contributed equally to this work
§University of California Los Angeles. {yuwenchao}@ucla.edu

Deep
Autoencoder Inference Network

x

w v γ

y

z h

Cluster
Assignment

Figure 1: DeepCC is in an end-to-end learning fashion.
x and y are the instances and features of the input data,
z and w produced by deep autoencoder are the low-
dimensional representations, h and v are the outputs of
inference network and utilized by a variant of GMM to
produce the co-cluster assignment, γγγ.

al. [1] proposed a co-clustering approach by increas-
ing the preserved mutual information between instances
and features. Another line of research leverages the
matrix decomposition theory [3–7]. Co-clustering has
shown advantages over the traditional one-sided cluster-
ing algorithms when the datasets exhibit clear duality
between instances and features [1, 3], and been applied
in various applications, such as bioinformatics [5,8] and
graph mining [9, 10].

The recent development in learning deep represen-
tations has shown its advantage in extracting effective
features. Some researchers thus proposed deep learn-
ing models for clustering [11–16] and showed promising
results, especially when the data was sampled from a
nonlinear low dimensional manifold. For example, Xie
et al. [11] proposed an unsupervised deep embedding
for clustering analysis that first conducted dimension
reduction and then fed the low-dimensional representa-
tions to k -means for clustering. These approaches typ-
ically utilize the deep autoencoder to map data into a
low-dimensional space first, which can not only conduct
dimension reduction, but also help the model avoid triv-
ial solutions [12]. The new data representations were
then fed into different learning algorithms according to
different clustering objective functions, such as minimiz-
ing KL divergence between cluster assignments and an
auxiliary distribution in [11].

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited

Although the deep clustering research has shown
the promising results, the research on leveraging deep
representation learning for co-clustering is limited. Cur-
rent deep clustering methods usually decoupled feature
learning and cluster assignment as two separate steps
with inconsistent optimization goals. It is difficult to
directly employ them to learn the embedding represen-
tations for instance/feature and the cluster assignment
jointly. This is because the joint feature extraction re-
quires an end-to-end learning. Moreover, existing deep
clustering methods do not have an effective loss func-
tion suitable for deep learning framework to bridge the
representation learning for instances and features.

In this paper, we propose, DeepCC, a deep learn-
ing model for co-clustering. Its framework is shown
in Fig. 1. DeepCC utilizes the deep autoencoder to
generate low-dimensional representations for instances
and features, and employs a novel variant of GMM for
inferring the cluster assignments. It utilizes a fully-
connected neural network called inference network to
generate the initial cluster assignment probability dis-
tribution for the variant of GMM, to facilitate the pa-
rameter learning of the mixture model. Instead of max-
imizing the log-likelihood of GMM directly, DeepCC
maximizes its variational lower bound to achieve a more
effective training. A mutual information loss is devel-
oped to bridge the training of instances and features.
Specifically, DeepCC jointly minimizes the reconstruc-
tion error of deep autoencoder and maximizes the vari-
ational lower bound of the log-likelihood in GMM. This
end-to-end optimization balances the autoencoding re-
construction, the cluster assignment and the regulariza-
tion. This helps the deep autoencoder escape from less
attractive local optima and DeepCC effectively circum-
vent the standard EM algorithm in traditional GMM.
The main contributions are summarized as follows:

• We propose a novel deep co-clustering model,
deepCC. To the best of our knowledge, this is the
first deep learning model for co-clustering.

• DeepCC jointly minimizes the reconstruction error
of deep autoencoder and maximizes the variational
lower bound of the log-likelihood in GMM, which
helps deep autoencoder escape from local optima.

• A mutual information loss is proposed to bridge the
training of instances and features.

• Experimental results on various datasets demon-
strate the effectiveness of DeepCC.

In the rest of the paper, the problem is defined in
Section 2, DeepCC is described detailedly in Section 3,
experimental evaluations are followed in Section 4, and
the related work is reviewed in Section 5.

2 Problem Formulation

Given instances and features represented by {xi}ni=1 =
{x1, · · · ,xn} and {yj}dj=1 = {y1, · · · ,yd} respectively,
co-clustering aims to group instances into g clusters and
features into m clusters, i.e., to find maps Cr and Cc:

Cr : {x1, · · · ,xn} → {x̂1, · · · , x̂g}
Cc : {y1, · · · ,yd} → {ŷ1, · · · , ŷm}

where subscripts r and c indicate instances and features.
We can reorder the instances/features such that the in-
stances/features grouped into the same cluster are ar-
ranged to be adjacent. The resulting new data struc-
ture consists of blocks called co-clusters. Suppose that
X and Y are two discrete variables taking values from
the sets {xi}ni=1 and {yj}dj=1 respectively. The joint
probability distribution between X and Y is denoted by
p(X,Y). Similarly, X̂ and Ŷ are two discrete variables
from the sets {x̂s}gs=1 = {x̂1, · · · , x̂g} and {ŷt}mt=1 =
{ŷ1, · · · , ŷm} respectively. The joint probability distri-
bution between X̂ and Ŷ is denoted by p(X̂, Ŷ). Here,
X̂ and Ŷ indicate the partitions induced by X and Y ,
i.e., X̂ = Cr(X) and Ŷ = Cc(Y).

3 Deep Co-Clustering

3.1 Dimension Reduction DeepCC realizes di-
mension reduction with deep autoencoder [17]. Dimen-
sion reduction based on deep autoencoder is meaning-
ful and necessary for clustering tasks. Deep autoen-
coder can generate semantically meaningful and well-
separated representation with much lower dimensional-
ity, which can both decrease computation cost for fur-
ther calculation and remove noise. In addition, the
reconstruction part in deep autoencoder can work as
an regularization to prevent from getting trivial solu-
tions [12].

DeepCC utilizes deep autoencoder to reduce both
the dimensionality of instances and features. Given the
i-th instance and the j-th feature denoted by xi and yj
respectively, then the low-dimensional representations
of them are denoted by:

zi = fr(xi; θr)(3.1)

wj = fc(yj ; θc)(3.2)

where fr, fc denote the encoding functions for instances
and features, and θr, θc are the parameters. The encod-
ing functions can be linear or nonlinear depending on
the domain data. The reconstruction errors of xi and yj
can be denoted by l(xi, gr(zi; θr)) and l(yj , gc(wj ; θc))
respectively, where gr and gc are the decoding functions.

3.2 Cluster Assignment Inference Given the low-
dimensional representations produced by deep autoen-
coder, DeepCC utilizes a modified GMM framework

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited

with variational inference approach [18] to produce clus-
ter assignment probability. DeepCC adopts an inference
network for density estimation under the framework of
GMM to avoid the EM in traditional GMM.

The outputs of the inference network are the new
representations of instance xi and feature yj denoted by

hi = (hi1, · · · , hig)T and vj = (vj1, · · · , vjm)T respec-
tively, where g and m are the cluster numbers. Because
of the softmax function deployed on the last layer of
the inference network, hi and vj can also be considered
as the cluster assignment probability. The cluster as-
signment distributions of instances and features based
on the inference network are denoted by Qηr (k|hi) and
Qηc(k|vj), where ηr and ηc denote the parameters of
inference networks. We denote the posterior cluster as-
signment probability distributions of hi and vj based
on GMM by Pφr (k|hi) and Pφc(k|vj), where φr and φc
are the parameters of GMMs.

Instead of applying the standard EM strategy for
GMM, DeepCC jointly trains the inference neural net-
work and GMM in an end-to-end fashion. We take the
training for instances as an example and similar training
can be applied for features. Given the output of deep
autoencoder zi, the new representation hi is:

(3.3) hi = Softmax(MLN(zi; ηr)),

where MLN indicates the multi-layer neural network.
Then the mixture probability, mean, covariance of the
k-th component in GMM, i.e., φr = {πkr , µkr , Σkr}, can
be estimated as:

(3.4) πk
r = Nk

r /Nr, µk
r =

1

Nk
r

Nkr∑
i=1

hikhi

(3.5) Σk
r =

1

Nk
r

Nr∑
i=1

hik(hi − µk
r)(hi − µk

r)T

where Nr=n is the number of instances, Nk
r =∑Nr

i=1 hik, and hik is the value on the k-th dimension-
ality of hi. Then, the cluster assignment probability of
i-th instance belonging to the k-th cluster is:

(3.6) γk
r(i) =

πk
rN (hi|µk

r ,Σ
k
r)∑g

k′=1 π
k′
r N (hi|µk′

r ,Σk′
r)

where N (·) is the normal distribution probability
density function. Then the log-likelihood is:
(3.7)

log{
Nr∏
i=1

Pφr (hi)} =

Nr∑
i=1

logPφr (hi) =

Nr∑
i=1

log{
K∑
k=1

π
k
rN (hi|µkr ,Σ

k
r)}

Instead of maximizing the log-likelihood directly,
DeepCC tries to maximize its variational lower bound.
The benefits are two-fold: 1) it makes the distribu-
tion Qηr a better approximation to the distribution Pφr
via minimizing the KL divergence between them, which

makes the parameter estimation of GMM more accu-
rate; 2) it tightens the bound of log-likelihood func-
tion, which makes the training process more effective.
The merits will be demonstrated by experiments in Sec-
tion 4.3. Specifically, the variational lower bound on
log-likelihood, Lr, is derived as follows:

Nr∑
i=1

logP (hi) =

Nr∑
i=1

log

∫
k

P (k,hi)(3.8)

=

Nr∑
i=1

log

∫
k

P (k,hi)

Q(k|hi)
Q(k|hi)(3.9)

=

Nr∑
i=1

log(EQ[
P (k,hi)

Q(k|hi)
])(3.10)

≥
Nr∑
i=1

EQ[log
P (k,hi)

Q(k|hi)
](3.11)

=

Nr∑
i=1

{EQ[logP (k,hi)] +H(k|hi)}(3.12)

= Lr(3.13)

where H(k|hi) = −EQ(logQ(k|hi)) is the Shannon en-
tropy, and Pφr , Qηr are denoted by P , Q for brevity.
Equation 3.11 applies the Jensen’s inequality. Further-
more, Lr can be derived to be the subtraction between
the log-likelihood and the KL divergence between Q and
P , shown as follows:

Lr =

Nr∑
i=1

{EQ[logP (k,hi)]− EQ(logQ(k|hi))}(3.14)

=

Nr∑
i=1

{
∫
k

Q(k|hi) log
P (k,hi)

Q(k|hi)
−(3.15) ∫

k

Q(k|hi) logP (hi) + logP (hi)}(3.16)

=

Nr∑
i=1

{
∫
k

Q(k|hi) log
P (k,hi)

Q(k|hi)P (hi)
+ logP (hi)}(3.17)

=

Nr∑
i=1

{
∫
k

Q(k|hi) log
P (k|hi)

Q(k|hi)
+ logP (hi)}(3.18)

=

Nr∑
i=1

{−KL(Q(k|hi)||P (k|hi)) + logP (hi)}(3.19)

Similarly, the cluster assignment probability of the
j-th feature belonging to the k-th cluster is:

(3.20) γkc(j) =
πkcN (vj |µkc ,Σkc)∑m

k′=1 π
k′
c N (vj |µk′c ,Σk

′
c)

where πkc , µkc , Σkc are the mixture probability, mean,
covariance of the k-th component in the GMM for the
features, and m is the number of feature clusters. The
variational lower bound on log-likelihood for features is:

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited

(3.21) Lc =

Nc∑
j=1

{EQ[logP (k,vj)]− EQ(logQ(k|vj))}

where Nc=d is the number of features, and Pφc , Qηc
are denoted by P , Q for brevity. Finally, DeepCC
takes −Lr and −Lc as the loss for cluster assignment of
instances and features.

3.3 Instance-Feature Cross Loss DeepCC utilizes
an instance-feature cross loss term based on mutual
information to make the trainings of instances and
features intertwined. Based on the cluster assignments
of instances and features, DeepCC constructs the joint
probability distribution between instances and features
as p(X,Y), and the one between instance clusters
and feature clusters as p(X̂, Ŷ). DeepCC penalizes
on the mutual information loss between the two joint
probability distributions.

Given the cluster assignment probability of the i-
th instance as γr(i) = (γ1

r(i), · · · , γ
g
r(i))

T and the one

of the j-th feature as γc(j) = (γ1
c(j), · · · , γ

m
c(j))

T , the
joint probability between the i-th instance and the j-th
feature is denoted by p(xi,yj) = J (γr(i),γc(j)), where
J (·) is a function to calculate the joint probability. The
joint probability between the s-th instance cluster, x̂s,
and the t-th feature cluster, ŷt, is calculated as:

(3.22) p(x̂s, ŷt) =
∑
{p(xi,yj)|xi ∈ x̂s,yj ∈ ŷt}

We simply take the dot product operation as J (·)
in DeepCC. This is because: 1) almost all existing
co-clustering algorithms set the cluster numbers of
instances and features as equal, i.e., g = m, which makes
the dot product operation practicable; 2) there exists
corresponding relationship between instance clusters
and feature clusters, i.e., similar instances share similar
features [1]. Note that in DeepCC the design of J (·) is
flexible to use other metrics.

Given the joint probability distributions p(X,Y)

and p(X̂, Ŷ), the mutual information between X and Y

and the one between X̂ and Ŷ are calculated as follows:

I(X;Y) =
∑
xi

∑
yj

p(xi,yj) log
p(xi,yj)

p(xi)p(yj)
(3.23)

I(X̂; Ŷ) =
∑
x̂s

∑
ŷt

p(x̂s, ŷt) log
p(x̂s, ŷt)

p(x̂s), p(ŷt)
(3.24)

where p(xi)=
∑

yj
p(xi,yj), p(yj)=

∑
xi
p(xi,yj), p(x̂s)

=
∑

ŷt
p(x̂s, ŷt) and p(ŷt)=

∑
x̂s
p(x̂s, ŷt). Then the

difference between I(X;Y) and I(X̂; Ŷ) is:

(3.25) I(X;Y)− I(X̂; Ŷ)

=
∑
x̂s

∑
ŷt

∑
xi∈x̂s

∑
yj∈ŷt

p(xi,xj) log
p(xi,xj)

p(xi)p(xj)
(3.26)

−
∑
x̂s

∑
ŷt

(
∑

xi∈x̂s

∑
yj∈ŷt

p(xi,yj)) log
p(x̂s, ŷt)

p(x̂s)p(ŷt)
(3.27)

=
∑
x̂s

∑
ŷt

∑
xi∈x̂s

∑
yj∈ŷt

p(xi,yj) log
p(xi,yj)

q(xi,yj)
(3.28)

= KL(p(X,Y)||q(X,Y))(3.29)

≥ 0(3.30)

where q(xi,yj)=p(x̂s, ŷt)
p(xi)
p(x̂s)

p(yj)

p(ŷt)
. So I(X;Y) -

I(X̂; Ŷ) ≥ 0, and also I(X;Y) ≥ 0, I(X̂; Ŷ) ≥ 0, which
motivates our instance-feature cross loss as:

(3.31) 1− I(X̂; Ŷ)

I(X;Y)

The intuition of the cross loss term is that the difference
between I(X;Y) and I(X̂; Ŷ) should not be significant
for an optimal co-clustering [1, 2]. The value of the
proposed cross loss is normalized in the range [0, 1]
by its definition, facilitating quick and effective hyper-
parameter tuning for different datasets.

3.4 Joint Objective Function Given instances and
features denoted by {xi}ni=1 and {yj}dj=1 respectively,
the objective function of DeepCC is as follows:

(3.32) min
θr,θc,ηr,ηc

J = J1 + J2 + J3

J1 =
λ1

n

n∑
i=1

l(xi, gr(zi)) + λ2Pae(θr) + λ3(−Lr) + Pinf (Σr)

J2 =
λ1

d

d∑
j=1

l(yj , gc(wj)) + λ2Pae(θc) + λ3(−Lc) +Pinf (Σc)

J3 = λ4(1− I(X̂; Ŷ)

I(X;X)
)

where J1, J2 are the loss for the trainings of instances
and features, J3 is the instance-feature cross loss, θr, θc
are the parameters of deep autoencoder for instances
and features respectively, ηr, ηc are the parameters of
inference neural network for instances and features,
l(xi, gr(zi)) and l(yj , gc(wj)) are the reconstruction
errors, Pae(θr) and Pae(θc) are the penalties for the
parameters of deep autoencoder to avoid overfitting,
and −Lr and −Lc are the negative of variational
lower bounds of log-likehood in GMM. Pinf (Σr) =∑g
k=1

∑dr
i=1

1∑k
rii

and Pinf (Σc) =
∑m
k=1

∑dc
j=1

1∑k
cjj

are

the sum of inverse of the diagonal entries in covariance
matrices, where dr and dc are the dimensionality of the
outputs of deep autoencoder. Pinf (Σ) is used to avoid
trivial solutions where diagonal entries in covariance
matrices degenerate to zero.

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited

(a) k -means. (b) SCC. (c) CCInfo. (d) DeepCC.

Figure 2: Comparison of clustering results on the Citeseer dataset.

Table 1: Description of the datasets.
Dataset #instances #features #classes

Coil20 1440 1024 20
Yale 165 1024 15

Fashion-MNIST-test 10000 784 10
Sign-MNIST-test 7172 784 25

Citeseer 3312 3703 6
WebKB4 4199 1000 4

WebKB cornell 195 1703 5
WebKB texas 187 1703 5

WebKB washington 230 1703 5
WebKB wisconsin 265 1703 5

IMDb movies keywords 617 1878 17
IMDb movies actors 617 1398 17

4 Experiments

4.1 Datasets, Baseline Methods, and Evalu-
ation Metric We utilize some popular benchmark
datasets including images, texts and user ratings. The
dataset description is shown in Table 1. Coil20, Yale,
Fashion-MNIST 1 and Sign-MNIST 2 are image re-
lated datasets. Coil20 contains 32 × 32 gray scale im-
ages collected from 20 3D objects. Yale contains 165
face images from 15 individuals. Fashion-MNIST is
about Zalando’s article images. Sigh-MNIST is about
hand gesture images. We use the test sets of the
two datasets. Some text related datasets are utilized.
Citeseer contains 3312 documents and each document
is described by 3703 words. WebKB4 is about web
page information. WebKB cornell, WebKB texas, We-
bKB washington and WebKB wisconsin3 contain differ-
ent kinds of documents. IMDb movies keywords and
IMDb movies actors are movie rating datasets. They
are about the same 617 movies described by keywords
and actors respectively.

The baselines include: k -means, spectral co-
clustering(SCC) [19], spectral biclustering(SBC) [20],
CCInfo [1], DRCC [3], CCMod [21] and SCMK [22].
Moreover, we compare several variants of DeepCC to
demonstrate the importance of individual components
in DeepCC. In DCC-INF, we remove the deep autoen-

1https://github.com/zalandoresearch/fashion-mnist
2https://www.kaggle.com/datamunge/sign-language-mnist
3http://membres-lig.imag.fr/grimal/data.html

coder part in the objective function. In DCC-DAE, we
remove the loss based on variational lower bound and
use the output of inference network as the clustering
assignment. In DCC-LOG, we replace the loss based
on variational lower bound with the loss based on log-
likelihood. In DCC-SEP, we train autoencoder and in-
ference neural network with GMM separately.

Co-clustering results are evaluated by accuracy
(Acc) and NMI as shown in Equations 4.33 and 4.34:

(4.33) Acc =

∑N
i=1 δ(si,map(ri))

N

where N is the number of instances, si is the true
class label, ri is the predicted cluster label, δ(a, b) is the
function that equals to one if a = b and zero otherwise,
and map(·) is the permutation function that maps the
predicted cluster label ri to the equivalent class label.

(4.34) NMI =

∑c
i=1

∑c
j=1 ni,j log

ni,j
nin̂j√

(
∑c

i=1 nilog
ni
n

)(
∑c

j=1 n̂j log
n̂j
n

)

where ni and n̂j are the numbers of data contained in
the i-th cluster and the j-th class respectively, and ni,j
is the number of data contained in the i-th cluster and
the j-th class simultaneously. c is the number of classes.
A larger NMI indicates a better clustering result.

4.2 Experimental Settings The neural network
structures of DeepCC for different datasets are included
in the supplementary file. All layers are fully connected
ones. l2 loss is adopted for the reconstruction error of
deep autoencoder. For all the datasets, the number of
instance clusters is set as the same as the number of fea-
ture clusters. For the baselines, we use their reported
parameter settings if clarified in their original papers;
otherwise we try different parameter settings and choose
the best one. For the hyperparameters of DeepCC, i.e.,
λ1, λ2, λ3 and λ4, we utilize the grid-search to deter-
mine the optimal setting. The detail of the optimal
hyperparameter searching is included in the supplemen-
tary file. We run all the algorithms 10 times and report
the average results. DeepCC is implemented in Tensor-
flow [23] and trained by Adam [24]. The learning rate is

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited

Table 2: Clustering accuracy (%) comparison. The best performance on each dataset is in bold.
Dataset k -means SCC SBC CCMod DRCC CCInfo SCMK DeepCC
Coil20 58.6±2.3 51.7±0.5 66.8±1.1 21.0±2.0 53.2±2.4 60.6±3.4 65.9±0.8 73.3±1.9
Yale 41.8±0.7 33.7±0.3 40.0±1.3 21.4±1.4 13.6±0.4 41.8±2.0 46.6±0.5 53.3±1.4

Fashion-MNIST-test 54.6±0.4 44.5±0.5 45.8±0.0 28.8±0.0 44.1±1.8 51.8±2.4 - 62.7±1.6
Sign-MNIST-test 30.6±0.6 31.8±0.7 18.0±0.0 12.6±0.3 21.3±2.5 33.2±1.4 - 37.0±1.3

Citeseer 37.4±0.0 37.4±0.0 40.8±0.1 44.7±5.2 29.5±1.8 43.0±5.3 50.2±0.7 59.3±2.1
WebKB4 60.6±0.1 60.6±0.1 47.5±0.1 68.8±3.1 43.6±0.4 68.8±2.5 52.1±0.2 71.8±2.8

WebKB cornell 55.1±2.1 58.9±0.2 54.4±0.6 55.5±2.6 42.6±0.0 56.6±2.7 49.6±0.2 68.7±1.4
WebKB texas 63.9±2.6 59.4±0.2 59.0±0.3 64.5±3.0 55.1±0.0 64.1±3.6 62.0±0.6 73.8±1.2

WebKB washington 65.6±2.7 60.8±0.0 51.7±1.0 68.0±2.7 46.5±0.0 67.7±2.9 65.4±0.4 75.7±1.9
WebKB wisconsin 71.7±3.1 70.2±0.5 72.8±1.4 72.1±3.9 46.1±0.0 72.9±3.1 73.2±0.9 77.4±1.4

IMDb movies keywords 19.3±0.8 25.2±0.4 24.0±0.2 24.7±2.1 12.6±1.7 23.0±2.0 23.3±1.1 30.8±1.7
IMDb movies actors 15.4±0.7 20.5±0.4 20.0±0.4 20.0±1.2 14.1±2.8 15.6±0.7 15.8±1.3 23.8±0.4

Table 3: NMI (%) comparison. The best performance on each dataset is in bold.
Dataset k -means SCC SBC CCMod DRCC CCInfo SCMK DeepCC
Coil20 75.9±2.3 64.9±0.5 73.9±1.1 51.8±1.9 65.6±2.7 72.7±1.5 72.5±0.9 78.3±2.7
Yale 48.7±0.7 41.6±0.3 49.8±1.3 24.6±2.3 14.2±1.2 48.5±2.0 49.2±1.2 55.7±1.1

Fashion-MNIST-test 52.4±0.4 41.9±0.5 41.3±0.0 45.8±1.4 42.2±1.6 50.6±2.3 - 60.4±0.7
Sign-MNIST-test 29.1±0.6 40.1±0.7 17.2±0.0 14.0±1.8 28.2±1.2 43.1±1.0 - 46.7±0.6

Citeseer 2.7±0.0 15.2±0.0 17.3±0.1 16.9±1.6 10.5±2.2 17.7±2.2 21.1±1.5 29.8±1.3
WebKB4 26.1±0.1 31.1±0.1 13.0±0.1 40.1±1.0 31.9±1.7 39.7±3.6 10.0±2.3 40.5±0.6

WebKB cornell 18.1±2.1 28.8±0.2 21.0±0.6 18.9±3.8 11.6±0.0 20.6±3.1 25.7±0.5 35.4±0.9
WebKB texas 7.0±2.6 12.6±0.2 9.0±0.3 16.9±2.3 10.2±0.0 18.2±4.4 24.0±0.8 42.9±1.2

WebKB washington 33.3±2.7 25.3±0.0 9.5±1.0 28.7±1.4 15.7±0.0 30.7±3.4 30.3±0.2 45.9±1.3
WebKB wisconsin 37.5±3.1 35.4±0.5 38.2±1.4 35.1±2.8 20.4±0.0 39.3±2.7 42.9±0.4 46.7±1.7

IMDb movies keywords 13.9±0.8 25.5±0.4 20.6±0.2 21.6±1.1 6.9±0.3 18.7±2.3 18.4±0.8 26.8±1.6
IMDb movies actors 10.5±0.7 19.3±0.4 17.6±0.4 14.5±0.9 9.3±2.5 9.7±1.0 10.6±1.7 20.6±2.3

Table 4: Clustering accuracy (%) comparison on Coil20,
WebKB4, Citeseer and WebKB cornell.

Dataset DCC-INF DCC-DAE DCC-LOG DCC-SEP DeepCC

Coil20 68.2±3.1 58.5±1.2 68.5±1.7 62.4±2.2 73.3±1.9
WebKB4 60.7±2.3 55.8±0.9 69.9±2.7 67.4±1.7 71.8±2.8
Citeseer 47.4±1.6 39.0±2.1 53.4±2.8 24.5±2.8 59.3±2.1
cornell 59.5±2.5 58.2±1.4 62.5±1.8 49.7±2.2 68.7±1.4

set as 10−3 initially and decreases during the training.
Pre-training [25] is adopted for the deep autoencoder
to make the performance more stable. All the variables
are initialized by the Xavier method [26]. The code of
DeepCC is available 4.

4.3 Clustering Performance Comparison The
comparison of clustering performance is shown in Ta-
ble 2 and 3, according to which DeepCC outperforms all
the baselines. DeepCC is the only method that shows
high performance on all different kinds of datasets,
which indicated its overall advantage when dealing with
different datasets. This advantage attributes to its deep
neural structure, which provides DeepCC with a better
adaptability. SCMK runs more than five days on two
MNIST datasets, so we stop the program and leave its
results blank shown as ‘-’. The performance of DRCC
on four WebKB datasets is very low. Some common co-
clustering methods illustrate lower performance on some
datasets, such as Fashion-MNIST. This is probably be-
cause these datasets do not have significant co-cluster
structure. However, DeepCC still shows high perfor-
mance on these datasets, which indicates that DeepCC

4https://tinyurl.com/y7ywwjp7

performs well even when the co-cluster duality is not sig-
nificant. We also visualize the clustering results on Cite-
seer (Fig. 2). We first construct the adjacency matrix
of instances. Then based on the clustering result, we
rearrange the matrix to make the instances that belong
to the same cluster be adjacent. The detected clusters
correspond to the blocks that are along the diagonal.
The clustering performance is higher if the blocks are
more significant. According to Fig. 2, the cluster struc-
ture is more significant in Fig. 2(d), which verifies the
ability of DeepCC to detect the instance clusters.

4.4 Evaluation and Visualization of Co-
Clustering The co-clustering ability of DeepCC is
verified on both the synthetic and real-world data. The
synthetic data with 400 instances, 500 features and 5
co-clusters (Fig. 3(a)). Gaussian noise is added. The
data is shuffled (Fig. 3(b)) and then fed into DeepCC.
After co-clustered, the instances and features are
rearranged to show co-clusters (Fig. 3(c)), according to
which DeepCC detects the co-clusters precisely. The
detected co-clusters in Fig. 3(c) is not in the same
sequence of Fig. 3(a). This is because the cluster ID
for the same instance/feature cluster might change,
though the instances/features contained are the same.

We also visualize the co-clustering results on Coil20.
We rearrange the original data matrix according to the
instance and feature cluster assignments to show the
co-clustering result. The co-clustering result is better
if the co-clusters are more significant. We observe that
the co-clusters (blocks) in Fig. 4(d) is more significant
compared to the ones in Fig. 4(b) and 4(c), which

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited

0 100 200 300 400 500

Features (5 clusters)

0

50

100

150

200

250

300

350

400

In
st

a
n
ce

s
(5

 c
lu

st
e
rs

)

(a) Synthetic data.

0 100 200 300 400 500

Features (5 clusters)

0

50

100

150

200

250

300

350

400

In
st

a
n
ce

s
(5

 c
lu

st
e
rs

)

(b) Data are shuffled.

0 100 200 300 400 500

Features (5 clusters detected)

0

50

100

150

200

250

300

350

400

In
st

a
n
ce

s
(5

 c
lu

st
e
rs

 d
e
te

ct
e
d
)

(c) Co-clustering result.

Figure 3: The co-clustering result of DeepCC on the synthetic data.

(a) The Coil20 dataset. (b) CCMod. (c) SCC. (d) DeepCC.

Figure 4: Visualization of the co-clustering results on the Coil20 dataset.

indicates DeepCC outperforms CCMod and SCC. It is
noted that there is no significant co-cluster structure
along the diagonal in these figures. This is probably
because the co-clusters are overlapped in Coil20.

4.5 Advantage of End-to-End Training The re-
construction error of deep autoencoder v.s. the corre-
sponding clustering accuracy is shown in Fig. 5. We
observe that it is not necessary that a good clustering
is always associated with a small reconstruction error.
According to Fig. 5(a) and 5(b), the reconstruction er-
ror increases together with the clustering accuracy on
Coil20. According to Fig. 5(c) and 5(d), the reconstruc-
tion error would not always decrease. This indicates
that optimal clustering might not correspond to the
least reconstruction error and the end-to-end training
helps the deep autoencoder escape from less attractive
local optima. In addition, according to Table 4, DeepCC
outperforms DCC-SEP. This indicates the end-to-end
training well balances the autoencoding reconstruction,
the cluster assignment and the regularization.

4.6 Effectiveness of Different Parts of DeepCC
The performance comparison between DeepCC and its
variants is shown in Table 4. DeepCC outperforms
DCC-INF, which verifies the effectiveness of the deep
autoencoder. DeepCC outperforming DCC-DAE indi-
cates the effectiveness of GMM for guiding the cluster
assignment. DeepCC outperforms DCC-LOG, which
indicates maximizing variational lower bound benefits

clustering more compared to maximizing log-likelihood.
The effectiveness of the instance-feature cross loss is
demonstrated in Fig. 6, according to which the clus-
tering accuracy increases while the cross loss decreases.
The cross loss finally converges. We also apply k -means
to the output of the deep autoencoder and compare the
clustering result with that of DeepCC (on the original
input data). According to Fig. 7, DeepCC outperforms
k -means, which demonstrates the validity of the infer-
ence network and GMM parts. Additionally, based on
the clustering results of k -means (on the original input
data) in Table 2, applying k -means on the output of
the deep autoencoder obtains better performance. This
verifies the effectiveness of the deep autoencoder part.

4.7 Parameter Sensitivity Analysis We take
Coil20 as an example dataset. Similar observations can
be made on other datasets. We take the setting of λ1

= 2×10−2, λ2 = 2×10−2, λ3 = 1×10−1, λ4 = 1×105 as
the basic setting, which obtains good performance on
Coil20. We change the value of one while fixing oth-
ers. The results are shown in Fig. 8. We observe that
the clustering performance does not change sharply for
different values of λ1, λ2, λ3, indicating DeepCC is not
sensitive to these parameters. However, according to
Fig. 8(d), the clustering performance is lower when λ4

is much smaller or greater than 105, indicating that the
performance of DeepCC is sensitive to λ4. This also in-
directly verifies the effectiveness of the instance-feature

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited

(a) On the instances of Coil20. (b) On the features of Coil20. (c) On the instances of Citeseer. (d) On the features of Citeseer.

Figure 5: Reconstruction error of the deep autoencoder v.s. clustering accuracy on Coil20 and Citeseer.

(a) The Citeseer dataset. (b) The Coil20 dataset. (c) The WebKB texas dataset. (d) The WebKB4 dataset.

Figure 6: Instance-feature cross loss v.s. clustering accuracy on Citeseer, Coil20, WebKB texas and WebKB4.

(a) The Citeseer dataset. (b) The Coil20 dataset. (c) The WebKB texas dataset. (d) The WebKB4 dataset.

Figure 7: Clustering performance comparison between DeepCC (on the original input data) and k -means (on the
output of the deep autoencoder) on Citeseer, Coil20, WebKB texas and WebKB4.

(a) λ1. (b) λ2. (c) λ3. (d) λ4.

Figure 8: Parameter sensitiveness analysis based on Coil20.

cross loss.

5 Related Work

One line of co-clustering research focuses on the infor-
mation theory. Dhillon et al. in [1] proposed a co-
clustering algorithm to intertwine instance and feature
clustering based on mutual information. Cheng et al.
in [2] constructed a hierarchical structure for instances
and features with a minimum number of leaf clusters
to realize co-clustering. Another line is based on ma-
trix decomposition theory. Two regularization terms
were constructed in [3] to utilize the geometric struc-
ture information of instance graph and feature graph
separately when realizing semi-nonnegative matrix t-
factorization. By regarding the instance-feature data

as a dynamical system, Shao et al. in [5] developed a
co-clustering method from the perspective of dynami-
cal synchronization. In [7], Nie et al. proposed a co-
clustering method to learn a bipartite graph with ex-
plicit connected components by imposing the rank con-
straint on the Laplacian matrix of the bipartite graph.
Recently, the research on clustering with deep learn-
ing technique attracts more attention. In [11], Xie et
al. utilized the deep autoencoder to map data into a
low-dimensional space, and then minimized the KL di-
vergence between cluster assignments and an auxiliary
distribution. An end-to-end clustering model based on
autoencoder was proposed in [14], in which the objective
function consisted of the KL divergence between cluster
assignments and an auxiliary distribution, and a cluster

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited

assignment regularization term. All of these efforts on
clustering with deep learning techniques, however, are
different from ours that focuses on the joint learning in
instance space and feature space.

6 Conclusion

In this paper, we propose a deep co-clustering model,
DeepCC. DeepCC utilizes the deep autoencoder to
generate low-dimensional representations for instances
and features, which are further fed into the inference
neural network in the framework of GMM for cluster
assignment prediction. An instance-feature cross loss
is employed to bridge the training of instances and
features. DeepCC is the first co-clustering model based
on deep neural networks, and enjoys the end-to-end
fashion. Extensive experimental results demonstrate
the effectiveness of DeepCC.

Acknowledgement

This work was partially supported by the National
Science Foundation grant IIS-1707548.

References

[1] I. S. Dhillon, S. Mallela, and D. S. Modha,
“Information-theoretic co-clustering,” in Proceedings of
ACM SIGKDD, 2003, pp. 89–98.

[2] W. Cheng, X. Zhang, F. Pan, and W. Wang, “Hicc:
an entropy splitting-based framework for hierarchical
co-clustering,” Knowledge and Information Systems,
vol. 46, no. 2, pp. 343–367, 2016.

[3] Q. Gu and J. Zhou, “Co-clustering on manifolds,” in
Proceedings of ACM SIGKDD, 2009, pp. 359–368.

[4] J. Han, K. Xiong, and F. Nie, “Orthogonal and nonneg-
ative graph reconstruction for large scale clustering,”
in Proceedings of IJCAI, 2017, pp. 1809–1815.

[5] J. Shao, C. Gao, W. Zeng, J. Song, and Q. Yang,
“Synchronization-inspired co-clustering and its appli-
cation to gene expression data,” in Proceedings of
ICDM, 2017, pp. 1075–1080.

[6] J. Han, K. Song, F. Nie, and X. Li, “Bilateral k-
means algorithm for fast co-clustering.” in Proceedings
of AAAI, 2017, pp. 1969–1975.

[7] F. Nie, X. Wang, C. Deng, and H. Huang, “Learning a
structured optimal bipartite graph for co-clustering,”
in Proceedings of NIPS, 2017, pp. 4132–4141.

[8] J. J. Whang and I. S. Dhillon, “Non-exhaustive, over-
lapping co-clustering,” in Proceedings of CIKM, 2017,
pp. 2367–2370.

[9] K. Rohe, T. Qin, and B. Yu, “Co-clustering directed
graphs to discover asymmetries and directional com-
munities,” Proceedings of the National Academy of Sci-
ences, vol. 113, no. 45, pp. 12 679–12 684, 2016.

[10] D. Hatano, T. Fukunaga, T. Maehara, and K.-i.
Kawarabayashi, “Scalable algorithm for higher-order

co-clustering via random sampling.” in Proceedings of
AAAI, 2017, pp. 1992–1999.

[11] J. Xie, R. Girshick, and A. Farhadi, “Unsupervised
deep embedding for clustering analysis,” in Proceedings
of ICML, 2016, pp. 478–487.

[12] B. Yang, X. Fu, N. D. Sidiropoulos, and M. Hong,
“Towards k-means-friendly spaces: Simultaneous deep
learning and clustering,” in Proceedings of ICML, 2017.

[13] J. Yang, D. Parikh, and D. Batra, “Joint unsupervised
learning of deep representations and image clusters,”
in Proceedings of CVPR, 2016, pp. 5147–5156.

[14] K. G. Dizaji, A. Herandi, C. Deng, W. Cai, and
H. Huang, “Deep clustering via joint convolutional au-
toencoder embedding and relative entropy minimiza-
tion,” in Proceedings of IEEE ICCV, 2017, pp. 5747–
5756.

[15] J. Chang, L. Wang, G. Meng, S. Xiang, and C. Pan,
“Deep adaptive image clustering,” in Proceedings of
ICCV, 2017, pp. 5879–5887.

[16] B. Zong, Q. Song, M. R. Min, W. Cheng, C. Lumezanu,
D. Cho, and H. Chen, “Deep autoencoding gaussian
mixture model for unsupervised anomaly detection,”
in Proceedings of ICLR, 2018.

[17] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-
A. Manzagol, “Stacked denoising autoencoders: Learn-
ing useful representations in a deep network with a lo-
cal denoising criterion,” Journal of Machine Learning
Research, vol. 11, no. Dec, pp. 3371–3408, 2010.

[18] M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and
L. K. Saul, “An introduction to variational methods
for graphical models,” Machine Learning, vol. 37, no. 2,
pp. 183–233, 1999.

[19] I. S. Dhillon, “Co-clustering documents and words us-
ing bipartite spectral graph partitioning,” in Proceed-
ings of ACM SIGKDD, 2001, pp. 269–274.

[20] Y. Kluger, R. Basri, J. T. Chang, and M. Gerstein,
“Spectral biclustering of microarray data: coclustering
genes and conditions,” Genome Research, vol. 13, no. 4,
pp. 703–716, 2003.

[21] M. Ailem, F. Role, and M. Nadif, “Co-clustering
document-term matrices by direct maximization of
graph modularity,” in Proceedings of CIKM, 2015, pp.
1807–1810.

[22] Z. Kang, C. Peng, and Q. Cheng, “Twin learning for
similarity and clustering: A unified kernel approach.”
in AAAI, 2017, pp. 2080–2086.

[23] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis,
J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard
et al., “Tensorflow: A system for large-scale machine
learning,” in OSDI, vol. 16, 2016, pp. 265–283.

[24] D. P. Kingma and J. Ba, “Adam: A method for
stochastic optimization,” in Proceedings of ICLR, 2015.

[25] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio,
Deep learning. MIT press Cambridge, 2016, vol. 1.

[26] X. Glorot and Y. Bengio, “Understanding the difficulty
of training deep feedforward neural networks,” in Pro-
ceedings of AISTATS, 2010, pp. 249–256.

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited

