
1

Learning Phenotype Structure Using Sequence Model
Yuhai Zhao #1, Guoren Wang #2, Xiang Zhang †3, Jeffrey Xu Yu ‡4, Zhanghui Wang #1

#Information Science and Engineering, Northeastern University, China
†Electrical Engineering and Computer Science, Case Western Reserve University, USA

‡Systems Engineering and Engineering Management, Chinese University of Hong Kong, Hong Kong
1zhaoyuhai@ise.neu.edu.cn 2wanggr@mail.neu.edu.cn 3xiang.zhang@case.edu 4yu@se.cuhk.edu.hk

Abstract—Advanced microarray technologies have enabled to simultaneously monitor the expression levels of all genes. An important
problem in microarray data analysis is to discover phenotype structures. The goal is to (1) find groups of samples corresponding to
different phenotypes (such as disease or normal), and (2) for each group of samples, find the representative expression pattern or
signature that distinguishes this group from others. Some methods have been proposed for this issue, however, a common drawback
is that the identified signatures often include a large number of genes but with low discriminative power.
In this paper, we propose a g∗-sequence model to address this limitation, where the ordered expression values among genes are
profitably utilized. Compared with the existing methods, the proposed sequence model is more robust to noise and allows to discover
the signatures with more discriminative power using fewer genes. This is important for the subsequent analysis by the biologists. We
prove that the problem of phenotype structure discovery is NP-complete. An efficient algorithm, FINDER, is developed, which includes
three steps: (1) trivial g∗-sequences identifying, (2) phenotype structure discovery, and (3) refinement. Effective pruning strategies are
developed to further improve the efficiency. We evaluate the performance of FINDER and the existing methods using both synthetic and
real gene expression datasets. Extensive experimental results show that FINDER dramatically improves the accuracy of the phenotype
structures discovered (in terms of both statistical and biological significance) and detects signatures with high discriminative power.
Moreover, it is orders of magnitude faster than other alternatives.

Index Terms—Data mining, bioinformatics, Microarray data.

F

1 INTRODUCTION

Advanced microarray technologies have made large amounts
of gene expression profiles available. Analyzing microarray
data is essential for understanding the gene functions, gene
regulation, cellular process, and subtypes of cells [1]–[3].

An important task in microarray data analysis is phenotype
structure discovery [4]. Given a microarray dataset of m
samples and n genes, a phenotype structure refers to a group of
“blocks” (or submatrices), each of which consists of a subset
of samples and a subset of genes such that: (1) the samples
from all the blocks make up a partition of m samples, and
the samples in a block correspond to a phenotype (such as a
disease subtype); and (2) the gene expression pattern within
a block can be used as the signature to distinguish this group
of samples from others [5]. The genes in a signature may
suggest the potential biomarkers related to the disease. In
particular, phenotype structure discovery is an unsupervised
learning problem. It is more challenging than the problem of
biomaker selection with known class labels [4], [6].

A simplistic example could be used to help understand what
we mentioned above. As in Fig. 1, suppose “©”, “

a
” and “(”

denote three different phenotype styles hidden in the original
expression matrix. After rearranging the rows and columns,
three submatrices are clearly outlined in the rearranged matrix.
The samples from the three submatrices make up a partition
of all given samples and each group of samples match a real
phenotype. Moreover, if the genes in a group exhibit a specific
pattern distinguishing this group of samples from others, they

rearrange

row
&

column

Genes

S
a
m
p
les

s1

s3

s2

s5

s4

s6

g4g1 g3 g2 g7g6g5

original matrix

Genes

S
a
m
p
les

s1

s2

s3

s4

s5

s6

g4g1 g2 g3 g7g6g5

rearranged matrix

Fig. 1. A simplistic example of the phenotype structure

may suggest the potential biomarkers related to the phenotype.
The existing methods for phenotype structure discovery can

be classified into two categories: singleton discriminability-
based approach and combination discriminability-based ap-
proach [4], [6]. The singleton approach evaluates individual
genes by their discriminative power for the current sample
partition and selects top-ranked genes. This approach assumes
that the genes are mutually independent. It does not utilize
any relationship among genes, although genes usually act
and coordinate with each other to achieve certain biological
function [7]. The combination approach focuses on finding
a subset of genes that have strong discriminant power when
considered together. However, it does not yet explicitly model
the relationship among genes except the co-occurrence of the
selected genes. This often leads to a large number of selected
genes. The large number of genes poses crucial challenge for
the domain experts to interpret and validate the results.

In this paper, we model the discriminative genes from a new

2

Fig. 2. (a) discriminative gene sets from the Prostate
cancer dataset (b) lack of discriminative power of the
OPSM model in the Glioblastoma cancer dataset

perspective by exploiting their ordered gene expression values.
Our model considers the interrelationship in the expression
patterns and is more robust to noise compared with the existing
models. Fig. 2(a) shows an example of discriminative gene sets
using the Prostate cancer gene expression dataset [8].

Example 1: Fig. 2(a) consists of two subfigures. In the top
subfigure, 4 genes are expressed over 25 samples. Samples
1∼16 are cancerous (labeled as ‘C’) and samples 17∼25 are
normal (labeled as ‘N ’). In the bottom subfigure, another
set of 3 genes are expressed over the same set of samples.
The existing singleton or combination discriminability-based
methods cannot distinguish the two phenotypes. Since most
genes are of similar average expression values in the two phe-
notypes, they will not be selected by the singleton approach.
Moreover, all genes are expressed in both phenotypes. Thus,
the combination approach based on the co-occurrence of genes
will not select them either. Both of the methods ignore the
hidden interrelation among genes. In the top subfigure, the
gene order over the samples of cancerous phenotype ‘C’ is
always gene4≺gene3≺gene2≺gene1. Such order is disturbed
in normal phenotype ‘N ’. In the bottom subfigure, the gene or-
der in normal phenotype ‘N ’ is gene5≺gene6≺gene7, while
in cancerous phenotype ‘C’ such order does not exist. Based
on the ordered expression values, a perfect phenotype structure
(consisting of the two shadowed “blocks”) is identified.

In biology community, discriminative sequential patterns
involving the ordered gene expression values have been shown
effective in distinguishing phenotypes [7], [9]. Such patterns
have an intuitive biological interpretation. Complex diseases
often involve the cooperation of multiples genes. These genes
work together as a system to keep the cell in a specific state,
e.g., disease or normal. In such a state, some special interrela-
tionship among genes will exhibit. Once such relationship is
disrupted, the state may change, e.g., from normal to disease.

Another advantage of the sequence model is that only a
small number of genes are needed to achieve high phenotype
discriminability. Intuitively, this is because it exploits more
information ignored by other models, i.e., the interrelation
among the genes beyond the co-occurrence. Finding fewer but
more powerful discriminative genes is crucial for interpretation
and validation in the subsequent wet-lab experiments [10].

Biclustering algorithms have been studied to analyze gene

expression data [11]–[13]. Among the existing biclustering
algorithms, the order-preserving submatrix (OPSM) model
also incorporates the order information of the gene expression
values [11], [14], [15]. An OPSM consists of a subset of
genes and a subset of experimental conditions such that the
expression profiles of the genes show the same tendency, e.g.,
strictly ascending or descending. Its goal is to capture the
pattern coherence of genes, not the homogeneity of conditions.
However, our goal is to partition the samples into groups
corresponding to the real phenotypes and discover the dis-
criminative genes. The two are not necessarily associated, and
the OPSM method cannot be directly applied to the problem
of phenotype structure discovery. An example is given below.

Example 2: (1) A phenotype structure may not be modeled
by an OPSM: In Figure 2(a), the two shadowed blocks
constitute a perfect phenotype structure. However, in the top
block, although gene208413 shows a strictly ascending profile
over samples 1∼16, the other genes do not follow. The similar
case also occurs in the bottom block, where the three genes
also show different profiles over samples 17∼25. Thus, no
OPSM will be discovered even though the phenotype structure
does exist. (2) An OPSM may not correspond to a phenotype
structure: In Figure 2(b), genes 201437 s at and 201669 s at
show the similar rising and falling tendency over 17 samples in
the Glioblastoma dataset [16]. The OPSM method will report a
pattern involving these two genes. However, this pattern cannot
be used for phenotype structure discovery, since among the
17 sample, the first 9 samples are tumor cells and the last 8
samples are pseudopalisading cells. The two coexpressed order
preserving genes cannot help to distinguish these two classes.

In this paper, we develop a sequence model incorporating
the ordering information of gene expression values into phe-
notype structure discovery. Our contributions are summarized
as follows.

(1) We propose a g∗-sequence model to characterize the
phenotype structure. It introduces the concept of significant
chain to ensure that there is a significant difference between
the expression values of any pair of genes. This property helps
to improve the robustness of the proposed model, and enables
to identify highly discriminative signatures with only a small
number of genes.

(2) To measure the quality of a candidate phenotype struc-
ture, we propose a novel sequence dissimilarity metric, namely
projection divergence. Based on this metric, the difference
between a pair of blocks (submatrices) can be quantified based
on the discriminative power of the signatures within the blocks.

(3) We show that the problem of phenotype structure
discovery is NP-complete. Given n genes, the total number
of subsequences (candidate signatures) is

∑m
i=1(C

i
m·i!). We

prove that the prohibitively large search space can be reduced
to a much smaller scale.

(4) An efficient algorithm, FINDER, is developed to find
the optimal phenotype structure. By incorporating the cross
projection into a progressive exploring framework, candidate
phenotype structures are searched in a quality-guaranteed way.

(5) We conduct extensive experiments on both real and
synthetic datasets. The results show that FINDER dramatically
improves the efficiency of the mining process. With very few

3

genes, the discovered signatures are able to unravel phenotype
structures that are both statistically and biologically significant.

The rest of this paper is organized as follows. In Section
2, we introduce some preliminaries and give the problem de-
scription. Section 3 details our solution. Experimental analysis
is given in Section 4. Section 5 reviews some related work.
Finally, Section 6 concludes this paper.

2 THE PROBLEM
2.1 g∗-sequence
A microarray dataset D is an m×n matrix, with m samples
S={s1, s2, · · · , sm} and n genes G={g1, g2, · · · , gn}. A
real value dij in D represents the expression value of gene
gj on sample si. An example microarray dataset with 9 genes
and 4 samples is shown in Table 1. Microarray data are often
noisy. We introduce the concept of equivalent dimension group
which represents a set of genes with similar expression values.

TABLE 1
An Example Microarray Dataset

Sample g1 g2 g3 g4 g5 g6 g7 g8 g9

s1 103 68 76 48 71 101 55 50 83
s2 35.5 20.1 28.7 17.2 13.2 23.8 13.5 15.8 30
s3 5.7 6.7 9 5 10.3 10 15.2 5.2 8.7
s4 32 53 79 43 35 72 105 38 68

Definition 1: For a sample si∈S, a subset of genes G′ ⊆ G
is an equivalent dimension group, or an EDG, if G′ satisfies
the following two criteria:

max
gj ,gj′∈G′

|dij − dij′ | < δ × min
gj∈G′

dij , (1)

∀gj ∈ G′, min
gj′∈G′

|dij′ − dij | < min
gj′′∈(G−G′)

|dij − dij′′ |. (2)

Criterion (1) limits the maximum difference between any
pair of expression values in an EDG. Criterion (2) guarantees
that a gene is always grouped with its closest neighbor. If a
gene satisfies criterion (1) but is excluded from an EDG by
criterion (2), we call this gene a breakpoint.

Due to the highly noisy, considering close values as ordered
is impractical in the context of microarray data analysis. An
EDG encloses a group of genes with the similar expression
values together. The sequences of genes in which any pair of
genes are not contained by the same EDG is robust to noise
w.r.t the group threshold δ. Moreover, only considering such
genes makes the maximum size of the sequences is far less
than that of the original ones. Thus, the time taken by sequence
mining is greatly reduced while keeping the significant results.

For a sample si, a sliding window approach can be applied
to find all EDGs. First, all genes are sorted by their expression
values in ascending order. Second, we slide a window from
left to right. The size of every window is initially determined
by criterion (1), and then refined by criterion (2). If there is a
breakpoint, the next window starts from the first breakpoint.
Otherwise, the next window starts from the position immedi-
ately right to the current left-end of the window.

Suppose that δ=0.5. Applying the sliding window method
on every sample in Table 1, we can obtain the corresponding

sequences of EDGs, as shown in Fig. 3. Note that different
brackets are used to distinguish different EDGs in the same se-
quence. Within an EDG, no order is considered. For example,
(g4g8g2) and (g8g4g2) are identical. We use EDGi to denote
the i-th EDG in a sample.

s1: g4 g8 g7 g2 g5 g3 g9 g6 g1()[] { }
48 50 55 68 71 76 83 101 103

s2: g5 g7 g8 g4 g2 g6 g3 g9 g1()[]{ }|| ||
13.2 13.5 15.8 17.2 20.1 23.8 28.7 30 35.5

32 35 38 43 53 68 72 79 105
s4: g1 g5 g8 g4 g2 g9 g6 g3 g7()[] { }

5 5.2 5.7 6.7 8.7 9 10 10.3 15.2
s3: g4 g8 g1 g2 g9 g3 g6 g5 g7()[] { }

the sorted

expression values

the corresponding

gene orders

Fig. 3. g∗-sequences for the samples in Table 1, δ=0.5

In Fig. 3, each sample can be treated as a sequence of EDGs.
Note that the EDGs may overlap with each other. For example,
in s1, g5 belongs to EDG1, EDG2 and EDG3. The overlapping
EDGs can be treated as allowing negative gap in a sequence
pattern. This is different from the traditional sequence pattern
definitions which only allow zero and/or positive gaps, i.e.,
non-overlaping events. In this sense, we refer to a sequence
of EDGs as a g∗-sequence, where g∗ means any gaps. For
sample si, its g∗-sequence is denoted as Si.

Given a g∗-sequence Si, R(x, y) is a binary relation for a
pair of genes x and y. R(x, y) is TRUE if there exists an EDG
in Si containing both x and y. Otherwise, R(x, y) is FALSE.

Definition 2: Given two g∗-sequences, Si and Sj , if ∀x, y∈
Si, R(x, y) always holds the same value for both Si and Sj , we
say Si is a subsequence of Sj , denoted as SivSj . In particular,
if ∀x, y∈Si, R(x, y) is always FALSE in Si and Sj , we say
Si is a significant chain of Sj . Further, Si is closed if there
is no S

′
i s.t. ∀Sj , SivS

′
ivSj .

Consider S1 in Figure 3, and two other g∗-sequences,
Si=(g8〈g2g5)g3〉g6 and Sj=(g8g2〈g5)g3〉g6. We have that
SivS1, since ∀x,y∈Si, R(x, y) always holds the same value
for both Si and S1. However, Sj 6vS1 since R(g2, g3) is FALSE
in Sj , but TRUE in S1. Moreover, g8g3g6 is a significant chain
of S1. A significant chain ensures that there is a significant
difference between the expression values of any pair of genes
within it. In particular, g8g3g6 is a closed significant chain,
since no other significant chain S

′
i s.t. g8g3g6vS

′
ivS1.

2.2 Phenotype Structure

Next we quantify the quality of a phenotype structure based
on the g∗-sequence model. Note that a sample si can be
represented by its g∗-sequence Si.

Definition 3: Suppose that m g∗-sequences Si (i∈[1,m])
are partitioned into k disjoint subsets S1,S2, · · · ,Sk. A subse-
quence S is a signature of subset Sl (l∈[1, k]), iff: (1) ∀Sx∈Sl,
SvSx; and (2) ∀Sy 6∈Sl, S 6vSy . In particular, if ∀Sx∈Sl, S is
a significant chain of Sx, we call S a p-signature of Sl.

Consider the example in Fig. 3. Suppose that the four g∗-
sequences are grouped into two disjoint subsets, S1={S1, S2}
and S2={S3, S4}. According to Definition 3, S=g7(g6g1) is
a signature of S1. Moreover, two p-signatures can be derived

4

from it, i.e. g7g6 and g7g1. A p-signature is used as the
fingerprint of Sl.

Given a p-signature pi and a sample s, the projection of pi

on s, denoted as pi|s, refers to the sequence of all genes in
pi permuted according to their relative orders in S. If a pair
of genes in pi has a reverse relative order in pi|s, we call it
a reverse pair. Given pi and pi|s, for a gene x, if it is at the
k-th locus in pi and at the j-th locus in pi|s, we call |k−j| the
distortion of x between pi and pi|s, denoted as distx(pi,s).

For example, suppose that pi is g3g4g6 and the sample s
is s1 in Table 1. Then, we have that pi|s=g4g3g6. Specially,
(g3, g4) is a reverse pair since it has the reverse relative order
in pi and pi|s. The locus of g3 in pi is 1, and in pi|s is
2. Therefore, distg3(pi, s)=2−1=1. Likewise, we have that
distg4(pi, s)=1.

Definition 4: Given a p-signature pi and a sample s, the
projection divergence of pi and pi|s, denoted as PD(pi, pi|s),
is

PD(pi, pi|s) =
∑

x,y∈pi
x6=y

ψ(x, y)[distx(pi, s) + disty(pi, s)],

(3)

where ψ(x, y) =

{
1 if (x, y) is a reverse pair,
0 otherwise.

(4)

Different from some commonly used sequence distance
metrics, such as edit distance ED [17], which only accu-
mulates the difference on individual items, PD takes the
interrelationship among genes (items) into consideration when
computing the difference. Continuing previous example where
pi is g3g4g6 and the sample s is s1 in Table 1, since there
is only one reverse pair in pi, i.e., (g3, g4), we have that
PD(pi, pi|s)= 1×[1+1]=2.

Based on PD, a quality measure for a candidate phenotype
structure can be defined as follows.

Definition 5: For a microarray dataset D, let S={S1, S2,
. . ., Sk} be a partition of the m samples and G={p1, p2, . . .,
pk} be a set of p-signatures, where pi is a p-signature of Si

(1≤i≤k). A phenotype structure refers to the collection of
all submatrices {(Si, pi)}. Its quality function is defined as

Q(S,G) =
1

C2
k

k∑

i=1

k∑

j=i+1

B(i, j), (5)

where B(i, j) =

∑
∀s∈Sj

PD(pi, pi|s) +
∑

∀s∈Si

PD(pj , pj |s)

|Si|+ |Sj | ,

(6)
|Si| (or |Sj |) denotes the number of samples in Si (or Sj).

Let Di={dx,y|sx∈Si, gy∈pi} be the submatrix of Si pro-
jected on pi. B(i, j) evaluates the mutual difference between
two submatrixes Di and Dj by crossly projecting pi on Sj

and pj on Si. Larger B(i, j) indicates larger mutual difference
between Di and Dj . The intuition behind cross-projection is
that there should be significant difference between any pair
of submatrices within a real phenotype structure. Q(S,G)
measures the average pairwise difference between submatrices.

Consider the example in Table 1. Suppose that the sam-
ples are partitioned into S1={s1, s2} and S2={s3, s4} with

p-signatures p1=g7g1 and p2=g1g6, respectively. The cor-
responding Q(S,G) can be calculated as follows. First,
the projection of p1 (resp. p2) on every sample in
S2 (resp. S1) are derived, i.e., p1|s3=p1|s4=g1g7, and
p2|s1=p2|s2=g6g1. Then, according to Definition 4, we have
that

∑
∀s∈S2

PD(p1, p1|s)=2+2=4, and
∑

∀s∈S1

PD(p2, p2|s)=
0+0=0. Next, since |S1|=|S2|=2, we have that B(1, 2)
= 4+0

2+2=1. Finally, we have that Q(S,G)=B(1, 2)=1, where
k=2. Note that

∑
∀s∈S1

PD(p2, p2|s)=0, since {g6g1} is an

EDG, in which order should not be considered.

2.3 The Computational Problem
Given an expression matrix D of m samples and n genes,
and a grouping threshold δ, our goal is to find the phenotype
structure with the largest quality score Q(S,G). To filter out
the blocks with too few or too many samples, we introduce
Mins and Maxs to limit the minimum and the maximum
number of samples in a block.

Theorem 1: The problem stated above is NP-complete.
Proof: The hardness proof is by reduction from EXACT

COVER problem, where the instance is a collection U of
subsets of a set X , and the question is whether there exists
a subcollection U∗ of U, such that each element xi∈X is
contained by one and only one subset in U∗. EXACT COVER
is known to be one of Karp’s 21 NP-complete problems [18].

First, we prove the problem is in NP . This is provable
because the validation of whether a given (S,G) is a solution
can be decided in polynomial time according to Def. 5.

Second, we prove the problem isNP-complete by reduction
from EXACT COVER problem in the two following steps.

step 1 step 2

-1 -1 -1 -1 -1

-1 -1 -1 -1 -1

-1 -1 -1 -1 -1

-1 -1 -1 -1 -1

-1 -1 -1 -1 -1

r1

r2

r3

r4

r5

c4c1 c2 c3 c5

transform

-1 2 3 4 5

1 -1 3 4 5

1 2 -1 4 5

1 -1 3 -1 5

-1 2 -1 4 -1

r1

r2

r3

r4

r5

c4c1 c2 c3 c5 T :
3,4,5

2,4,5

1,4,5

2,4

1,3,5

U = {{1,2}, {1,3}, {2,3}, {1,3,5}, {2,4}}

Fig. 4. An illustration of the proof

Step 1. Given any instance of EXACT COVER problem,
(X,U), w.l.o.g. X={x1, x2, x3, x4, x5} and U={{x1, x2},
{x1, x3}, {x2, x3}, {x1, x3, x5}, {x2, x4}}. We construct a
matrix M of n rows and n columns, and initially set all entries
in M to ‘−1’ (as shown at the left hand of Fig.4).

Step 2. For each element in U, say Ul={xi, xj , . . . , xk}, we
do a polynomial time operation. That is, for each xr in Ul,
hold the values of row r on columns i, j, . . ., k, turn the values
of row r on the rest columns to the corresponding column ids
and record the set of ids in T . The transformed result of the
given instance is shown at the right hand of Fig.4.

From the above steps, we can see that: (1) every entry in M
will never turn from a positive column id to ‘−1’, and (2) all
entries of row i on column i always fix their values as ‘−1’.
Thus, in U, any pair of elements will not have the same set

5

of column ids. As such, there is a one-to-one correspondence
between the elements in U and the submatrices, each of an
element in U and the corresponding set of column ids. That
is, there is an exact cover of X iff we can find a solution of
M satisfying the mentioned problem. Hence the proof.

3 THE FINDER ALGORITHM

FINDER consists of three major steps: (1) trivial g∗-sequences
identifying, where the genes of less interests are filtered out;
(2) phenotype structure discovery. The p-signatures and the
corresponding samples are first derived to form the candidate
phenotype blocks. A progressive block combination test are
then used to find the phenotype structure with maximum
average pairwise block difference; and (3) refinement, which
further refines the quality of the results.

3.1 Trivial g∗-sequence identifying

A subsequence S is trivial if it is common to all m samples.
Clearly, a trivial sequence cannot be selected as a p-signature
to distinguish a specific phenotype from the others, and the
genes involved in the trivial subsequences can be ignored.
However, it is intractable to exhaustively enumerate all trivial
subsequences. The following theorem states that the search
space of trivial subsequences can be dramatically reduced.

Theorem 2: The genes covered by all trivial g∗-sequences
are just as that covered by all closed trivial significant chains.

Proof: Let S be a trivial g∗-sequence and x∈S be a
gene not covered by any significant chain of S. According
to the sliding window approach discussed in Section 2, there
must be another gene y∈S such that either xy or yx form a
significant chain, which contradicts the assumption. Moveover,
Definition 2 indicates any significant chain must be contained
in a closed significant chain. This completes the proof.

Theorem 2 indicates that, instead of testing all trivial g∗-
sequences, we only need to consider the closed trivial signif-
icant chains, the lengths of which are usually much shorter
than that of the original g∗-sequences. As a result, the search
space is greatly reduced.

In the next, we show that a Head-Tail matrix and a template-
driven pattern growth method can be used to further improve
the efficiency.

3.1.1 Head-Tail Matrix
The Head-Tail matrix M is a data structure that can be utilized
to determine if a sequence is a significant chain. Given a g∗-
sequence Si, and a gene x∈Si, we refer to the index of the first
and the last EDG containing x as the head position, denoted
as Hi(x), and the tail position, denoted as Ti(x), of x w.r.t.
Si, respectively.

Table 2 shows the Head-Tail matrix M corresponding to the
example in Fig. 3. Every entry M(i,j) records a vector (x, y),
where x is the head position of gj , Hi(gj), in Si, and y is the
tail position of gj , Ti(gj), in Si.

For a pair of genes gj and gk, we can efficiently decide
whether gjgk is a significant chain of Si using M : If Hi(gk) >
Ti(gj), gjgk must be a significant chain. Otherwise, it is not.

TABLE 2
The Head-Tail Matrix Corresponding to Fig. 3

Sample g1 g2 g3 g4 g5 g6 g7 g8 g9

s1 4, 4 1, 3 2, 3 1, 1 1, 3 4, 4 1, 2 1, 1 3, 3
s2 5, 5 2, 4 4, 5 1, 3 1, 1 3, 5 1, 2 1, 2 4, 5
s3 1, 1 1, 2 2, 2 1, 1 3, 4 3, 3 4, 4 1, 1 2, 2
s4 1, 1 2, 3 3, 4 1, 2 1, 1 3, 4 4, 4 1, 2 3, 3

For example, consider g4g9 and s2 in Fig. 3. We have that
g4g9 is a significant chain, since H2(g9)=4>T2(g4)=3. The
process can be generalized to a sequence of any length as
shown in the following theorem.

Theorem 3: Let SvSi be a g∗-sequence. It is a significant
chain of Si iff ∀x, y∈S s.t. x≺y, Ti(x)<Hi(y) is TRUE. It is
closed if there is no other gene z such that: (1) ∀x, y∈S s.t.
x≺y, T (x)<H(z) and H(y)>T (z) are both TRUE in every
Si containing S, or (2) if x and y are the first and the last
gene in S, either T (z)<H(x) or H(z)>T (y) holds for every
Si containing S, where ‘x≺y’ means x appears before y.

Proof: According to Def. 2, the theorem can be directly
proved by showing Ti(x)<Hi(y)⇔R(x, y)=false. Suppose
Ti(x)<Hi(y) but R(x, y)=TRUE in Si. Then, there must be
an EDG containing both x and y in Si. Thus, Hi(y)≤Ti(x).
This contradicts the supposition. In turn, if R(x, y)=FALSE in
Si, we have Ti(x)<Hi(y) since x≺y. Hence the proof.

3.1.2 Template-driven Pattern Growth
A sequence that is not a significant chain of Si can be still
a significant chain of Sj (i6=j). To further reduce the search
space, we introduce a template-driven pattern growth method
specifically designed for microarray data, where the number
of samples is usually much less than the number of genes.

The template-driven enumeration method examines every
sample si in turn. That is, every sample is considered as a
template exactly once. When sample si is used as the template,
we only consider the subsequences S such that SvSi. The
sequences that are not contained in any sample will not be
enumerated. Moreover, different from the traditional sequence
mining methods, such as PrefixSpan [19] and BIDE [20],
during the growth of sequence S, we do not pre-compute
all possible one-item extensions to S, and thus no projected
database needs to be generated and maintained. Instead, when
Si is taken as the template, we only consider the genes y
in Si s.t. H(y)>T (x), where x represents the last gene in S.
After all samples are considered, all possible significant chains
will be identified. During the enumeration, once a significant
chain is identified not to be closed, the following search can
be pruned. The correctness of this method is ensured by
Theorems 2 and 3.

3.2 Phenotype structure discovery
A block (or submatrix) is the basic element of a phenotype
structure, which consists of a subset of samples and the cor-
responding p-signature. Thus, phenotype structure discovery
can be naturally divided into the following three components:
candidate p-signatures generation, block derivation from can-
didate p-signatures, and quality test of block combinations.

6

3.2.1 Candidate p-signature generation
According to Definition 3, a p-signature must be a significant
chain. Thus, a naive candidate p-signature generating method
is to check all significant chains, which, however, is infeasible
in practice. The following theorem states that the candidate p-
signatures can only result from the closed significant chains.

Theorem 4: Suppose that (S,G) and (S′,G′) are two
candidate phenotype structures, where S={S1, S2, . . ., Sk},
S′={S′1, S′2, . . ., S′k}, G={p1, p2, . . ., pk}, and G′={p′1,
p′2, . . ., p′k}. If ∀i, 1≤i≤k, pivp′i and p′i is closed, then
Q(S′,G′)≥Q(S,G).

xx y

xy

r(l) q(t)

q'(t') r'(l')
x

y

y

Si

Sj

pi

x

x

y

y

Si

Sj

pi'

Fig. 5. PD(p′i, p
′
i|s)≥PD(pi, pi|s)

Proof: We use Fig.5 as an illustration example, where
the shadowed blocks are the projections of pi and p′i on all
samples in Sj . For a sample s in Sj , the two dashed lines
denote pi and pi|s (or p′i and p′i|s), where (x, y) is a reverse
pair. The position of x in pi (resp. pi|s) is indicated by r (resp.
r′), and that of y in pi (resp. pi|s) is indicated by q (resp. q′).
Similarly, the position of x in p′i (resp. p′i|s) is indicated by
l (resp. l′), and that of y in p′i (resp. p′i|s) is indicated by t
(resp. t′). Then, [distx(p′i, s) + disty(p′i, s)]−[distx(pi, s) +
disty(pi, s)]=(l′−l+t−t′)−(r′−r+q−q′)= [(l′−t′)−(r′−
q′)]+[(t − l) − (q − r)]. Since pivp′i, [(t − l) − (q − r)]≥0.
Likewise, since pi|svp′i|s, [(l′ − t′) − (r′ − q′)]≥0. There-
fore, the preceding formula is no less than 0. Extending
the conclusion to any reverse pair in pi, we conclude that
PD(p′i, p

′
i|s)≥PD(pi, pi|s). Moreover, since s is any sam-

ple in Sj , we have that
∑

∀s∈Sj

PD(p′i, p
′
i|s)≥

∑
∀s∈Sj

PD(pi, pi|s).
Similarly, we have that

∑
∀s∈Si

PD(p′j , p
′
j |s)≥

∑
∀s∈Si

PD(pj , pj |s).
Thus, Q(S′,G′)≥Q(S,G). Hence the proof.

Theorem 4 implies that the template-driven pattern growth
method discussed in Section 3.1 for closed significant chains
can be also applied for candidate p-signature generation.

3.2.2 Block derivation from candidate p-signatures
For every candidate p-signature, we find the set of samples
containing it as a candidate phenotype block. Then the com-
binations of candidate blocks will be tested for their quality.
Next, we show that a vertical bitmap representation of g∗-
sequences can be utilized for efficient block derivation and
closure checking/pruning.

First, we create a bitmap for each gene after the step of
trivial g∗-sequence identifying. The bitmap consists of m
sections each corresponding to a sample. If a gene x appears
in EDGj of Si, the j-th bit of section i in the bitmap for gene
x is set to 1; otherwise, it is set to 0.

Second, for a candidate p-signature p′k=pkx, we find all
samples characterized by p′k via several bit operations. Sup-
pose that the bitmap B(pk) for pk is given. If bit j of section i

is 1, sample Si must contain pk and the last item of pk appears
in EDGj . According to Theorem 3, Si will contain p′k if only
the index of the fist bit of value ‘1’ in section i of B(x), say
l, is larger than that of the last bit of value ‘1’ in section i of
B(pk), say t.

g1
0

1

0

1

1

0

0

1

0

g5
1

0

1

0

0

1

1

1

0

g6
0

1

0

1

0

1

0

0

1

g7
1

0

1

0

0

0

1

0

1

g5 g7 g6 g1|| ||S2:()

g7 g5 g6 g1S1:(){ }

g1 g6 g5 g7{ }S3: < >

{ }S4: g1 g5 g6 g7()

Fig. 6. Bitmaps

B(g1) →
t ransformation

B'(g1)

&

→t ransformation
B*(g5)

B(g5)

→

0

0

0

0

0

1

0

0

0

1

0

1

0

0

1

1

1

0

→
result

0

0

0

0

0

1

1

0

0

OR

B(g5)

0

0

0

0

1

1

1

0

0

&

'

0 1 0 1 1 0 0 1 0

1 0 1 0 0 1 1 1 0

0 0 0 0 0 1 1 0 1

1 0 1 0 0 1 0 1 0

mask B(g1g5)

Fig. 7. Deriving bitmap for g1g5

Finally, we transform B(pk) such that, in every section, all
bits after t are set to 1, and the rest bits are set to 0. We
also transform B(x) such that, for every section, only bit l
is set to 1 and the rest bits are all set to 0. We denote the
two transformed bitmaps as B′(pk) and B∗(x), respectively.
If section i in B(T), i.e., the result of B′(pk) AND B∗(x), is
not 0, sample Si must contain p′k; otherwise, not. Moreover,
to update B(p′k), B(T) is ORed with B(x), and the result is
ANDed with a mask, which is derived by setting all bits in
the sections of value ‘0’ in B(T) to 0, and setting the bits in
the other sections to 1. As such, we obtain B(p′k), the exact
bitmap for p′k.

For example, Fig. 6 is the bitmap representation of the data
in Fig. 3 after trivial g∗-sequence identifying. (g4g8〈g2)g3g9〉
is a closed trivial pattern. Fig. 7 is an illustration of the above
process on g1g5. For g1 and g5, the transformed bitmaps are
B′(g1) and B∗(g5), respectively. The final bitmap for g1g5

is B(g1g5), which indicates g1g5 is only contained by S3.
Further, since H3(g5)=2 and T3(g5)=3, we know that g1g5

ends at EDG2 and EDG3 of S3. And, since T3(g1)=1,
we can immediately conclude that g1g5 is closed according
to Theorem 3. Note that the process can be also used to
perform closure checking/pruning. That is, once a candidate
p-signature is found not closed, any p-signature containing it
can be removed according to Theorem 4. Based on the bitmap
representation, closure checking/pruning can be performed ef-
ficiently without recording any previously discovered patterns.

3.2.3 Quality test of block combinations
A phenotype structure is a combination of blocks. Given the
valid block derivation as mentioned above, the next step is
to develop an efficient block-combination test strategy to find
the one with maximal quality score as in Eq.(5). Clearly, it
is intractable to enumerate all block combinations. Thus, we
adopt a heuristic framework to tackle the problem.

Our method can be treated as a box-filling process: Given
m label-unknown samples together with some initially empty
boxes, we want to fill the boxes with the samples, so that
every sample is put into a box and the samples in a box are
homogenous in the sense that they could be characterized by
a common p-signature. Since the class label of every sample
is unknown, we adopt a progressive exploring methodology.
Specifically, we first try whether s1, s1s2, . . ., s1s2 · · · sm

7

should be put into the first box in order. Then, in a similar
manner, recursively fill the other boxes using the remaining
samples. During the process, the projection divergence PD
based cross-projection can be used to evaluate the quality of
the current box-filling state. Thus, if we try all possible box-
filling states without any pruning, the process can be treated
as searching through a sample enumeration tree as shown in
Fig. 8, which corresponds to the reduced dataset in Fig. 6.

In the enumeration tree, each node corresponds to a unique
sample combination, under which the corresponding closed p-
signatures are listed. Any possible box-filling state could find
a counterpart in the tree, that is, a combination of some nodes
together with one of the listed closed p-signatures. Theorem
5 ensures that all closed p-signatures can be discovered from
the enumeration tree.

{}

{s1}

{s1,s2} {s1,s2,s3} {s1,s2,s3,s4}

{s1,s2,s4}

{s1,s3} {s1,s3,s4}

{s1,s4}

{s2}
{s2,s3}

{s2,s4}

{s2,s3,s4}

{s3} {s3,s4}

{s4}

g5g6

g5g6

g7g6
g7g1
g5g6
g5g1

g7g6
g7g1
g5g6
g5g1

g5g6
g5g1
g7g6
g7g1

g5g6

g1g6g7
g1g5

g1g6
g1g7

Pruning rule 1

Pruning rule 2

Fig. 8. The enumeration tree for the dataset in Table 1

Theorem 5: Let S be the set of all samples, and Si be a
subset of S. For a p-signature, pi, of Si, if it is closed in Si,
it must also be closed in S.

Proof: Suppose pi is closed in Si but not closed in S.
Then, there must exist a pattern p′i=pi such that any sample
containing pi in S also contains p′i. However, this contradicts
the assumption. Hence the proof.

Two greedy combination strategies, aggressive greed and
progressive greed, can be integrated into the searching process.
In what follows, we first introduce the basic ideas of the two
strategies. Pruning strategies that can be used to further reduce
the search space will also be discussed.

Aggressive Greed: This approach is based on the intuition
that the best individual blocks constitute the best combination.
The PD based cross-projection is used to guide the block
selection. The general idea is to make the block selected in
each step as distinctive as possible. Specifically, the first block
is selected based on the value of

∑
∀s∈S−Si

PD(pi,pi|s)

|S−Si| . That
is, the block whose p-signature has the maximum average PD
to its projections on the remaining samples is selected; The
remaining blocks are selected based on the value of

∑
B(i, j)

(Eq. (6)), where j is the index of the block to be selected and i
is the index of any block having been selected. The block with
the maximum average difference on B(i, j) will be selected.

In this approach, each block will be examined only once.
That is, once block i is determined in step i, it will remain

Algorithm 1: Discover The Phenotype Structure

Input: a preprocessed expression matrix of n samples,
SDB

Output: the phenotype structure, Result =(S,G)

Qbest=0;1

for i=1 to n do2

X={si}; candiX={si+1, si+2, . . . , sn};3

Recursive_Search (X , candiX , Qbest);4

Output (Result);5

Function: Recursive_Search(X , candiX , Qbest)
cResult=∅;1

compute p-signatures contained by X;2

derive the blocks at X;3

if (pruning rule 2 or 3 is activated) then return;4

prune candiX by rule 1;5

while (|S|>Mins) do6

select a representative block (S, p) as described in7

section 3.2.3;
cResult=cResult+(S, p);8

S=S−S;9

if (Qc>Qbest) then10

Qbest=Qc;11

handle outliers;12

Result =cResult;13

if (candiX 6=∅) then14

candiX=candiX−{sk} s.t. k=min{j|j∈candiX};15

Recursive_Search (X∪{sk}, candiX , Qbest);16

unchanged. This strategy heavily depends on the quality of the
first selected block. If a bad block is selected in the first, the
remaining selections will be based on this block.

Progressive Greed: To address the limitation of the previous
approach, the progressive greed approach allows to update a
previously selected block by a new block if such an update
can improve the quality of the block combination.

During the tree traversal, for the current node X , we derive
the most distinctive block (Si, pi) from it. Then, we remove
Si from the complete sample set S and search the remaining
sample set S−Si to seek the next block (Sj , pj) such that
B(i, j) is maximum while Si∩Sj is minimum. This ensures
to select the block with the maximum average difference and
the minimum overlap with the selected blocks. The process
proceeds recursively until every sample is assigned to a block.
When such a block combination is obtained, it is considered
as a candidate. Instead of immediately returning this candidate
as the result, we track back to node X and continue searching
the remaining tree branches to generate new candidates in a
similar way. During the traversal, we always keep track of the
current best result and its quality score Qbest. Once a new
candidate is generated, we compare its quality score, Qc, with
Qbest, and update Qbest to Qc if Qc>Qbest. Experimental
results show that this method greatly improves the quality of
the results due to the quality-guaranteed block updating way.
Algorithm 1 formalizes the progressive heuristic.

8

Next, we introduce several effective pruning techniques to
further reduce the search space.

Pruning Rule 1: Let X be a node in the enumeration tree,
where a set of blocks, {(S1, p1), (S2, p2), . . ., (Sk, pk)} are
derived. Let Y ={si|sl≺ORDsi and si∈

⋂k
i=1 Si}, where sl is

the sample of the lowest order in X and sl≺ORDsi means the
order of si is lower than that of sl in enumerating. The subtree
rooted at node X∪si can be completely pruned if si∈Y .

Proof: Let X ′=X∪Z be any descendant node of X , and
Y ′=Y ∩Z be a non-empty sample subset. Then, if we select
a block at node X ′, it must be a duplication of the choice
made on node X ′−Y ′, which is also a descendant node of X .
This is because Y ′⊆Y and any sample in Y is common to all
blocks derived at X . Thus, we can remove the samples in Y
from consideration. Hence the proof.

For example, let X be node {s1} in Fig. 8. According to
pruning rule 1, Y ={s2}. Thus, the subtree rooted at node
{s1s2} can be completely pruned. This is because any block
derived along this branch can be found in some later branch.

After applying the above rule, si∈Y will be removed to a
set P (X), which is useful in some other pruning rule.

Pruning Rule 2: Let X be a node in the enumeration tree,
where a set of blocks, {(S1, p1), (S2, p2), . . ., (Sk, pk)} are
derived, and let Y =

⋂k
i=1 Si. We can prune the entire subtree

rooted at node X if there exists a sample si that satisfies: (1)
si∈Y ; and (2) si /∈X; and (3) si≺ORDsl, where sl is a sample
of the lowest order in X; and (4) si /∈P (X ′), where X ′ is any
ancestor of X;

Proof: The existence of si, which satisfies (1), indicates
that the set of blocks derived at X is the same as that derived
at another node X∪si. Further, condition (2) and (3) implies
node X∪si occurs before X . Condition (4) ensures that the
same result has ever been explored. Hence the proof.

For example, let X be node {s2} in Fig. 8. According to
pruning rule 2, s1 is the sample satisfying all four conditions.
Therefore, the subtree rooted at node {s2} can be completely
pruned. This is because any block derived along this branch
must have ever been discovered in some previous branch.

Pruning Rule 3: Let S be the set of all samples. Suppose a
block (S1, p1) is currently selected as the first block candidate
and Qbest is the quality of the best candidate result obtained so
far. Then, any combination taking (S1, p1) as the first block
can be pruned if max(PD1, PD2)≤Qbest, where PD1 and
PD2 are expressed as Eq.(7) and Eq.(8), respectively.

PD1 = max
∀s∈S−S1

PD(p1, p1|s), (7)

PD2 = max
∀i,Si∩S1=∅
∀s∈S−Si

PD(pi, pi|s). (8)

Proof: Given (S1, p1), the first block selected by a block
combination test. Let (Si, pi) be any other block, which may
occur in the same combination together with (S1, p1) and
mi be the number of samples in Si. Then, according to
Eq.(6), we can derive the upper bound, Qu1 , of B(1, i). That
is, Qu1≤m2ṖD1+m1ṖD2

m1+m2
≤max(PD1, PD2). Similarly, ∀i6=j

(i, j 6=1), the upper bound, Qu2 , of B(i, j) is also max(PD1,
PD2). The conclusion can be drawn from Definition 5.

If the first block is not distinctive, the quality of a phenotype
structure may not be high . Thus, once the first block, (S1, p1),
is selected, we can prune all combinations that contain (S1, p1)
with the low upper bound of quality (≤Qbest).

Fig. 8 illustrates the search which can be pruned by the
corresponding rules.

3.3 Refinement

To avoid explicitly setting the number of blocks, FINDER uses
Mins as a terminal condition to stop the block combination
test. A small number of samples may not be assigned to any
block. Also, due to the heuristic block selection strategy, some
samples may be assigned to multiple blocks.

Such cases can be dealt with by reassigning those samples to
the current result according to certain criterion. In our solution,
we break every current p-signature into the smaller fragments.
Then, a sample is reassigned by combining the decisions from
all fragments. The process is treated as a voting based on
PD and the cross-projection. That is, for a sample s to be
reassigned, we project the fragments of every block onto it and
compute the average projection distance PDavg . s is assigned
to the block with minimum PDavg .

Since the originally discovered p-signatures are closed se-
quences, the generated fragments should be sequence gener-
ators [21]. The intuition behind our solution is the Occam’s
razor principle [22] and the fact that a sequence generator and
a closed sequence containing it characterize the same sample
set [21]. Next, a top-down recursive process is given to break a
p-signature into the smaller fragments (sequence generators).

Suppose that pi is a closed p-signature. We first generate
all its immediate sub-patterns, pi1 , pi2 , . . . , pin , by removing
a single item from pi, respectively. We then compare the
supports of pi and pix

for all x∈[1, n]. If the support of
pix

, i.e., the number of samples containing pix
, is larger than

that of pi, i.e., supp(pix)>supp(px), we remove pix and all
its immediate sub-patterns from considering. Otherwise, we
recursively continue the process for pix

. The patterns that can
not be further reduced are left as the final fragments.

g8g3g6

g8g3 g8g6 g3g6

g8 g3

x

x x

g8g3g6

g8g3 g8g6 g3g6

g8 g3

x

x x g6x

g8g3g6

g8g3 g8g6 g3g6

g8 g3

x

x x g6x

Fig. 9. Refine g8g3g6

Example 3: Suppose that g8g3g6 is a given original p-
signature. The process discussed above can be illustrated by
Fig. 9. The dataset in Fig. 3 is used as the sample dataset.
First, g8g3, g8g6 and g3g6 are generated by removing g6,
g3 and g8, respectively. Then, g8g3 together with its two
immediate sub-patterns, i.e., g8 and g3, is removed since
supp(g8g3)=4>supp(g8g3g6)=3. For g8g6, since g8 has been
removed, we only need to compare the supports of g6 and
g8g6, and thus g6 is removed. Finally, for g3g6, since both g3

and g6 have been removed and there is no further way to break
the sequences, g8g3g6 is broken into g8g6 and g3g6. During

9

the support comparison process, the bitmap based method (see
Fig. 7) can be also used to improve the efficiency.

4 PERFORMANCE EVALUATION

We study the performance of FINDER by evaluating its
efficiency and effectiveness. The algorithms are coded in C++.
All experiments are conducted on a 2.0-GHz HP PC with 1G
memory running Window XP. Both real and synthetic datasets
are used in the experiments.

TABLE 3
The information of three real microarray datasets

dataset # sample # gene class1: # class1 class2: # class2 class3: # class3

Colon 62 2000 negative:40 positive:22 N/A
Leukemia 38 5000 B-ALL:19 T-ALL:8 AML:11

HBC 22 3326 BRCA1:7 BRAC2:8 Sporadic:7

Real datasets: We use the clinical data on colon tumor [9],
ALL-AML leukemia [7] and Hereditary Breast Cancer (HBC)
[23]. Table 3 shows the statistics of these three datasets: the
number of samples (# sample), the number of genes (# gene),
the label of class i (classi) and the number of samples in class
i (# classi).

Synthetic datasets: The synthetic data generator takes the
following parameters: (1) k, the number of ”blocks” in a
phenotype structure; (2) MAXs and MINs, the maximum
and minimum numbers of samples in a “block”; (3) MAXg

and MINg , the maximum and minimum numbers of genes
in a “block”; and (4) Ns and Ng , the number of samples
and genes. The synthetic datasets are first initialized with
random values. A number of submatrices are then embed-
ded by setting MINs=5, MAXs=0.6×Ns, MINg=10, and
MAXg=0.02×Ng , where Ns varies from 25 to 45, and Ng

varies from 1000 to 3000.
Unless otherwise specified, the default parameters setting

for FINDER are δ=0.3, Mins=0.3, Maxs=0.5.

4.1 Efficiency
We evaluate the efficiency of FINDER by studying how
response time varies with respect to #sample and #gene,
and how response time varies with respect to Mins, Maxs

and δ. Since no previous work can be directly applied to
the problem setting in this paper, we implemented a naive
two-step method as the baseline method. First, all candidate
p-signatures are mined using BIDE [20], one of the state-
of-the-art closed sequence mining algorithm; Second, do an
exhaustive combination test over all derived blocks. Two
greedy strategies proposed in this paper are also implemented,
which are called A-FINDER (aggressive approach) and P-
FINDER (progressive approach), respectively.

4.1.1 Scalability
Before the phenotype structure discovery step, all trivial g∗-
sequences will be identified and genes with no discriminative
power will be removed. We first evaluate the efficiency of the
trivial pattern pruning (TPP in short) step. From Figures 10(a)
and 10(b), we see that TPP’s running time increases as #gene

increases and decreases as #sample increases. This is because
increasing #gene may result more and longer p-signatures.
As #sample increases, less and shorter p-signatures will
be generated. In Figure 10(c), TPP’s running time decreases
as δ increases. This is intuitive since increasing δ often
produces the larger EDGs. Thus less and shorter p-signatures
are generated and tested in TPP.

10-1

100

101

102

103

104

105

 1000 1500 2000 2500 3000

Ru
nt

im
e(

se
c.)

Varying #gene

δ=0.3, mins=0.3, maxs=0.5

A-FINDER
P-FINDER

Naive

10-1

100

101

102

103

 25 30 35 40 45

Ru
nt

im
e(

se
c.)

Varying #sample

δ=0.3, mins=0.3, maxs=0.5

A-FINDER
P-FINDER

Naive

Fig. 14. Scalability of PSD

Next, we evaluate the scalability of phenotype structure
discovery (PSD in short) step using the synthetic datasets. In
Figure 14, PSD’s running time becomes longer as #sample
and #gene increases. This is because larger #sample may
lead to more sample combinations to be tested and the
increasing of #gene makes the number of EDGs in every
g∗-sequence larger. Note that FINDER is two or three orders
of magnitude faster than the naive method. The reason is two-
fold. First, due to the template-driven pattern growth method,
we do not need to create and scan any projected database.
Closure checking can also be efficiently done based on the
head-tail matrix and the bitmap based block derivation. Sec-
ond, during block combination test, effective pruning strategies
are applied.

4.1.2 Effects of the parameters
In Fig. 11, the response time decreases as Mins increases.
This is intuitive since smaller “blocks” are removed with
larger Mins. In Fig. 12, the response time is hardly affected
by increasing Maxs from 0.5. This indicates that “blocks”
with too many samples rarely occur in the real datasets. The
result also indicates that the phenotype structure defined by
the sequence model does exist in the real data and their sizes
are relatively stable. In Fig. 13, the response time increases
as δ increases. This is because larger δ leads to more genes
left after TPP, thus more EDGs remain. Note that FINDER is
always 2∼3 orders of magnitude faster than the naive method.

In Fig. 11∼13, we also observe that A-FINDER and P-
FINDER have similar efficiency performance. Later we will
show that P-FINDER is more accurate than A-FINDER.

4.2 Effectiveness
The effectiveness of FINDER is evaluated from both theo-
retical and practical aspects. From the theoretical aspect, we
compare FINDER with two representative unsupervised phe-
notype structure discovery methods, i.e., ESPD [4] and HARP
[6]. Moreover, we conducted a specific set of experiments to
show the superiority of PD w.r.t other simple dissimilarity
measures (e.g edit distance). From the practical aspect, we

10

0

6

12

18

24

30

36

 25 30 35 40 45

R
es

p
o
n
se

 t
im

e(
se

c.
 ×

1
0
)

(a) Varying #sample

δ=0.3, mins=0.3, maxs=0.5, #gene=1000

Synthetic Datasets

0

3

6

9

12

15

 1000 1500 2000 2500 3000

R
es

p
o
n
se

 T
im

e(
se

c.
 ×

 1
0

3
)

(b) Varying #gene

δ=0.3, mins=0.3, maxs=0.5, #sample=30

Synthetic Datasets

0

1

2

3

4

5

6

7

8

 0.3 0.35 0.4 0.45 0.5

R
es

p
o
n
se

 T
im

e(
se

c.
 ×

 1
0

3
)

(c) Varying δ

mins=0.3, maxs=0.5

AML
COLON

HBC

Fig. 10. Scalability of TPP

1

10

102

103

104

105

 0.1 0.15 0.2 0.25 0.3

R
u
n
ti

m
e(

se
c.

)

(a) Leukemia

δ=0.5, maxs=0.5

A-FINDER
P-FINDER

Naive

1

10

102

103

104

105

 0.1 0.15 0.2 0.25 0.3

R
u
n
ti

m
e(

se
c.

)

(b) Colon

δ=0.5, maxs=0.5

A-FINDER
P-FINDER

Naive

1

10

102

103

104

105

 0.1 0.15 0.2 0.25 0.3

R
u
n
ti

m
e(

se
c.

)

(c) HBC

δ=0.5, maxs=0.5

A-FINDER
P-FINDER

Naive

Fig. 11. Varying Mins

100

101

102

103

104

105

 0.5 0.55 0.6 0.65 0.7

R
u
n
ti

m
e(

se
c.

)

(a) Leukemia

δ=0.5, mins=0.3

A-FINDER
P-FINDER

Naive

100

101

102

103

104

105

 0.5 0.55 0.6 0.65 0.7

R
u
n
ti

m
e(

se
c.

)

(b) Colon

δ=0.5, mins=0.3

A-FINDER
P-FINDER

Naive

100

101

102

103

104

 0.5 0.55 0.6 0.65 0.7

R
u
n
ti

m
e(

se
c.

)

(c) HBC

δ=0.5, mins=0.3

A-FINDER
P-FINDER

Naive

Fig. 12. Varying Maxs

100

101

102

103

104

105

 0.3 0.35 0.4 0.45 0.5

R
u
n
ti

m
e(

se
c.

)

(a) Leukemia

mins=0.3, maxs=0.5

A-FINDER
P-FINDER

Naive

10-1

100

101

102

103

104

 0.3 0.35 0.4 0.45 0.5

R
u
n
ti

m
e(

se
c.

)

(b) Colon

mins=0.3, maxs=0.5

A-FINDER
P-FINDER

Naive

10-2

10-1

100

101

102

103

104

 0.3 0.35 0.4 0.45 0.5

R
u
n
ti

m
e(

se
c.

)

(c) HBC

mins=0.3,maxs=0.5

A-FINDER
P-FINDER

Naive

Fig. 13. Varying δ

show that the genes selected by FINDER are indeed relevant
to the considered phenotypes. Note that microarray are highly
noisy. The identified pattern may be caused by random noises.
Therefore, we further check the statistical significance (p-
values) of the discovered phenotype structures.

4.2.1 Accuracy and Statistical Significance Evaluation
Phenotype structure discovery involves two key elements,
i.e., the partition of samples and the selection of genes.
Correspondingly, we conducted two sets of experiments to
compare FINDER with ESPD and HARP. In the first set of
experiments, precision, recall and accuracy are used to evaluate
the correctness of the partition of samples, the computations
of which follow a common evaluation framework proposed in
[24]. In the second set of experiments, we use gene selection
rate (GSR, the ratio between the number of the selected genes
and the total number of genes) to evaluate the succinctness
of the selected genes. Moreover, we calculate the p-value
(determined by hypergeometric test) for each block within a
discovered phenotype structure given the selected genes. The
results are shown in Tables 4∼6.

Let H={H1,H2, . . . , Hk} be the “true” clusters of a given
data set, and C={C1, C2, . . . , Cl} be the found clusters by a
specific algorithm on the same data set. For each Hi, i∈[1, k],
we determine Cj , j∈[1, l], with which Hi shares the largest
number of samples. The precision and recall of Cj is defined
as the number of samples common to Cj and Hi divided by
the total number of samples in Cj and Hi, respectively.

As for accuracy, [24] indicates that the accuracy of classi-
fication specified by correctlypredictedobjects

allobjects can be used to

judge the clustering quality. Concretely, each sample s is
denoted as a bitvector of length l if l clusters C1, C2, . . ., Cl is
found. The j-th bit in the bitvector equals 1 if s contains pj , the
p-signature of Cj ; otherwise 0. Then, we use SVM to induce
models on the binary feature representation, and estimate the
classification accuracy via ten-fold cross-validation.

As can be seen from the tables, FINDER significantly
improves the precision, recall and accuracy with much smaller
GSR. For example, in Colon dataset, P-FINDER improves the
accuracy from 54.8% (HARP) and 53.2% (ESPD) to 88.7%,
while reducing GSR from 91.9% (HARP) and 15h (ESPD)
to 1h. Note that ESPD and HARP are both combination
discriminability-based methods. The result confirms the intu-
ition that permutation provides more information than combi-
nation, since the former disclose not only the co-occurrence of
the genes but also the ordering relationship among them. The
decrease of GSR can help to reduce the cost of subsequent
biological validation of selected genes [17].

Given GSR, we use the hypergeometric distribution to
calculate the p-value for each block of a phenotype structure.
A p-value indicates the probability that a phenotype structure
is formed by chance. Specifically, it is computed as follows:

p = 1−
k−1∑

i=0

(
M
i

)(
m−M

t−i

)
(
m
t

) (9)

In the above equation, m is the total number of samples in
a given dataset, and M is the number of samples annotated
to a particular phenotype. Eq.(9) calculates the probability
that seeing at least k samples annotated to that particular

11

TABLE 4
The correctness of the partition of samples

Dataset ESPD HARP A-FINDER P-FINDER
precision recall accuracy precision recall accuracy precision recall accuracy precision recall accuracy

Colon positive 37.9% 50%
53.2%

37.5% 40.9%
54.8%

76% 86.4%
85.5%

80% 90.9%
88.7%negative 66.7% 55% 65.8% 62.5% 91.2% 85% 94.6% 87.5%

Leukemia
B-ALL 69.2% 47.4%

60.5%
69.2% 47.4%

55.3%
100% 63.2%

76.3%
100% 94.7%

97.4%T-ALL 30.8% 50% 66.7% 25% 87.5% 87.5% 88.9% 100%
AML 83.3% 90.9% 45.5% 90.9% 55.6% 90.9% 100% 100%

HBC
BRAC1 57.1% 57.1%

50%
40% 28.6%

40.9%
71.4% 71.4%

68.2%
85.7% 85.7%

81.8%BRAC2 57.1% 50% 42.6% 37.5% 62.5% 62.5% 75% 75%
Sporadic 37.5% 42.9% 40% 57.1% 71.4% 71.4% 85.7% 85.7%

average 55% 55.4% 54.6% 50.9% 48.7% 50.3% 77% 77.3% 76.7% 88.7% 89.9% 89.3%

TABLE 5
GSR and p-value comparison

Dataset ESPD HARP A-FINDER P-FINDER
GSR p-value GSR p-value GSR p-value GSR p-value

Colon positive 15%
15%

0.455 78.6%
91.9%

0.501 1.5h
2.5h 4.115e-08 1h

1h 1.045e-09
negative 15% 0.455 22.5% 0.501 1.5h 4.115e-08 1h 1.045e-09

Leukemia
B-ALL 6h

6h
0.085 46.8%

86.7%
0.085 0.6h

1.8h
1.861e-05 0.6h

1.8h
5.658e-10

T-ALL 6h 0.257 45.2% 0.106 0.8h 4.928e-06 0.8h 1.84e-07
AML 6h 1.436e-06 35.4% 9.184e-03 0.6h 7.537e-04 0.8h 8.31e-10

HBC
BRAC1 15.5h

15.5h
0.107 44.6%

89.4%

0.523 0.9h
2.5h

1.355e-02 0.9h
2.2h

6.215e-04
BRAC2 15.5h 0.182 50.1% 0.523 0.9h 7.207e-02 0.9h 8.321e-03
Sporadic 15.5h 0.51 38.9% 0.51 0.9h 1.355e-02 0.9h 6.215e-04

average 11.8h 12.2h 0.2564 45.3% 89.3% 0.384 0.9h 2.3h 1.25e-02 0.9h 1.7h 1.200e-03

TABLE 6
The performance of edit distance

Dataset A-FINDER with ED P-FINDER with ED
precision recall p-value GSR accuracy precision recall p-value GSR accuracy

Colon positive 68% 77.3% 1.471e-05 4.5h
5.5h 71.0%

73.1% 86.4% 1.412e-07 1.5h
2.5h 79.0%

negative 73% 67.5% 7.779e-02 3.5h 83.3% 75% 3.387e-04 2h

Leukemia
B-ALL 78.6% 57.9% 8.520e-03 1.2h

3h 63.2%
86.4% 57.9% 2.569e-03 1h

2.4h 68.4%T-ALL 80% 50% 4.295e-03 1.6h 83.3% 62.5% 6.187e-04 1.4h
AML 47.4% 81.8% 1.465e-02 1.4h 52.6% 90.9% 1.521e-03 1.2h

HBC
BRAC1 50% 57.1% 0.182 2.1h

3.9h 54.5%
57.1% 57.1% 0.107 1.8h

3.3h 59.1%BRAC2 66.7% 50% 9.626e-02 1.8h 71.4% 62.5% 3.223e-02 1.5h
Sporadic 50% 57.1% 0.182 2.1h 80% 57.1% 2.073e-02 1.8h

average 64.2% 62.3% 7.069e-02 2.3h 4.1h 62.9% 73.4% 68.7% 2.063e-02 1.5h 2.7h 68.8%

TABLE 7
The genes discovered from Leukemia dataset

Gene Rank
t-test Information gain Sum of variances Twoing rule Gini index Sum minority Max minority 1D SVM

MB-1∗ 4 18 26 26 26 41 34 21
CST3∗ 49 4 3 3 3 2 2 4

MacMarcks∗ 19 38 29 29 29 21 13 27
TCL1∗ 42 30 61 61 61 >100 >100 >100
IGHM∗ 69 >100 >100 >100 >100 >100 83 >100
TCRB >100 >100 >100 >100 >100 >100 >100 >100
GUK1 >100 >100 >100 >100 >100 >100 >100 >100
GLUL >100 >100 >100 >100 >100 >100 >100 >100
ER-60 >100 >100 >100 >100 >100 >100 >100 >100

phenotype in randomly chosen t samples. This approach is
widely used to evaluate the statistical significance of the result
in many existing tools, such as Gene Ontology1 and GO
TermFinder2. A smaller p-value indicates a stronger statistical
significance. If most of the blocks of a phenotype structure
are of small p-values, the phenotype structure is unlikely
formed by chance. As can be seen from Table 5, the phenotype
structures discovered by FINDER are of very small p-values.

1. http://www.geneontology.org
2. http://search.cpan.org/dist/GO-TermFinder/

To show the power of the ordered gene expression val-
ues in the phenotype structure discovery more clearly, we
visualize the phenotype structures discovered from the three
real datasets in Fig. 15(a)∼15(c), where the strength of gene
expression is mapped into the darkness of color. The stronger
the gene expresses, the darker the color is. The gene orders
(p-signatures) and the sample labels are given at the top and
the left of every block, respectively. ‘∗’ marks the samples
not properly grouped. Clearly, in each block of a phenotype
structure, the mapped expression values are always from
lightness to darkness. The order among genes can be used

12

1
 5
 7
 9
11
13
15
17
18*
19
21
25
26
27
28
29
30
31
32
33
34
35
36
37
38
40
44
46
47
49
51*
52
53
58
59
61
41

TAR1 S - 100P

p - value :

1.045e - 09

T umor

2
3*
4
6
8
10
12
14
16
20
22
23*
24
39
42
43
45*
48
50
54
55
56*
57*
62
60

S - 100 P CRP

p - value :

1.045e - 09

N ormal

10*
20
21
22
23
24
25
26
27

MB - 1 GUK1 GLUL

p - value :

1.84e - 07

T - ALL

1
2
3
4
5
6
7
8
9
11
12
13
14
15
16
17
18
19

CST3 GUK1 MB - 1 ER - 60

p - value :

5.658e - 10

B - ALL

28
29
30
31
32
33
34
35
36
37
38

TCL1 IGHM Mac TCRB

p - value :

8.31e - 10

AML

1
2
3
4
5
18
22*

HV17G6 HV48F 7 HV25C8

p - value :

6.215e - 04

B RAC1

6
7
8
9
1 0
11 *
19
2 1

HV25C 8 LO1H7 LO6D1

p - value :

8.321e - 03

B RAC 2

12
13
14
15
1 6
17
20 *

HV25C 8 HV50D3 HV29D11

p - value :

6.215e - 04

Sporadic

(a) Colon data

(b) Leukemia data

(c) HBC data

Fig. 15. The result visualization

to discover the phenotype structures of statistical significance.
As ever mentioned, PD is more suitable than ED in our

task. In Table 6, a set of experiments is conducted to show this.
For simplicity, we call A-FINDER (resp. P-FINDER) with edit
distance as A-FINDER∗ (resp. P-FINDER∗). By comparing
the results with that in Table 4 and 5, it is not difficult to see
that the performances of A-FINDER∗ and P-FINDER∗ are
better than that of ESPD and HARP but worse than that of
A-FINDER and P-FINDER. The former could be intuitively
explained in such a way that the sequence model discloses
not only the co-occurrence of the genes but also the ordering
information among them. Thus, more information could be
exploited by this model. As for the latter, it could be explained
by three differences between edit distance and projection diver-
gence. First, ED and PD have different application scenarios.
In ED, the three basic operations, i.e. insertion, deletion and
substitution, correspond to three possible mutational events
during evolution. That is, they have specific biological sig-
nificance. Thus, ED is more suitable for the biological data
such as DNA or Protein sequences. In our case, since no
any evolutional mutation is involved, ED is not suitable;
Second, ED measures the dissimilarity between sequences
by only combining the difference on individual items while
PD concerns the problem from the interrelation among items.
Thus, PD may uncover difference even when ED fails; Third,
unless user specifying, ED assigns each operation with equal
differentiability weight, which is unrealistic. However, PD
can naturally utilize [distx(pi, s)+disty(pi, s)] as an intuitive
coefficient to weight the differentiability of x and y.

4.2.2 Biological Significance of the Discovered Patterns
Different from the existing methods, FINDER characterizes
the phenotype structure from a sequence point of view. It
incorporates the interrelationship among genes. Some genes
ignored by the previous methods may play an important role in
the disease phenotype. In this part, we present some interesting
results discovered by FINDER from the Leukemia dataset [7]
and show that FINDER is able to find not only the genes

identified by the existing methods, but also some important
genes ignored by the existing methods.

Table 7 lists all genes involved in the phenotype structure
discovered from the Leukemia dataset. The results from eight
statistics based gene ranking methods [25] are used as the
benchmark. If a gene is ranked within top-100 by two or more
traditional methods, it is marked with ‘∗’. For the traditional
methods, the higher ranked genes are often considered more
interesting. As shown in Table 7, genes MB-1, CST3 and
MacMarcks are top-ranked genes by all eight methods. They
are also discovered by FINDER. MB-1 gene encodes the
Ig-alpha protein of the B-cell antigen component. It is a
sensitive and specific reagent for B-lineage blasts that will
aid in the classification of B-cell precursor ALL and in the
identification of biphenotypic leukemia presenting as AML
[26]; Indicated by GENE3, a searchable database of genes in
NCBI, providing various detailed information for the studied
genes, CST3 encodes the most abundant extracellular inhibitor
of cysteine proteases, which is found in high concentrations
in biological fluids and is expressed in virtually all organs of
the body. A mutation in this gene is associated with amyloid
angiopathy (e.g. AML); MacMarcks gene is proven to be
immune-related [27]. Tumor is often immune-related, thus it
is biologically plausible to find MacMarcks in the phenotype
structure of Leukemia. Genes IGHM and TCL1 are identified
by two and five methods in Table 7, respectively. As GENE
states, IGHM is the antigen recognition molecule of B cells,
which is involved in immune responses and Ag binding, so
it is not surprising to relate IGHM to Leukemia; TCL1 is
activated in T-cell leukemias by translocations and inversions
that juxtapose it to regulatory elements of T-cell receptor
genes, and activation of TCL1 in mature T-cells causes T-cell
leukemia in humans [28].

For the genes without ‘∗’, although they are not top-
ranked by the eight traditional methods, extensive biologi-
cal evidences indicate that these genes are also related to
leukemia. For example, TCRB is ranked outside top-100 in
Table 7. However, TCRA is reported by five methods in
Table 7 [25]. From the gene description in the Leukemia
dataset [7], we know that the two are both T-cell receptors.
They have very similar function. Moreover, GENE confirms
that chromosomal abnormalities involving TCRB are closely
associated with T-cell lymphomas. Also, we find two other
interesting cases involved with the order among genes GUK1,
GLUL and ER-60. That is, the gene sequence <MB-1 GUK1
GLUL> identifies T-ALL phenotype with precision=88.9%
and recall=100%, and the gene sequence <CST3 GUK1 MB-
1 ER-60> identifies B-ALL phenotype with precision=100%
and recall=94.7%. From Table 5, we can see that the cor-
responding GSRs in the two cases are 0.8h and 0.6h,
respectively, while the p-values are 1.84e-07 and 5.658e-
10, respectively. That is, although we select only a small
set of genes, the number of which is far less than that
selected by ESPD (6h and 6h) and HARP (45.2% and
46.8%), the result discovered by FINDER is of much higher
statistical significance than that discovered by ESPD (0.257

3. http://www.ncbi.nlm.nih.gov/gene

13

and 0.085) and HARP (0.106 and 0.085). The similar cases
are also discovered in the other two real datasets, as shown
in Table 5. It is the order among genes, which is ignored
by singleton or combination discriminability based methods,
that enables FINDER to discover the statistical significant
phenotype structures with higher accuracy and fewer genes.
Moreover, such order may provide a possible explanation to
some diseases from a new point of view. For example, due
to the small p-value, it is statistically reasonable to infer
that the cause of T-ALL may be that gene GLUL expresses
more than gene GUK1 and gene GUK1 expresses more than
gene MB-1 in an individual. The similar case can be also
found in the other results, as shown in Figure 15. Thus, the
relationship between the ordered expressions among genes and
the phenotype structure is worthy of further study.

5 RELATED WORK

In addition to the biclustering algorithms [11]–[14] discussed
in Section 1, our work is also related to some previous work
on sequential pattern mining and contrast data mining.

Sequential pattern was first introduced in [29]. Since then,
many efficient algorithms to extract the full set of sequential
patterns have been proposed, such as SPADE [30] , PrefixSpan
[19] and SPAM [31], etc. Subsequently, to reduce the gener-
ation of an explosive number of subsequences, some methods
mining only concise representations are proposed [20], [21],
[32]. Moreover, to incorporate some user-specific interests, a
number of constraint-based sequential pattern mining algo-
rithms were also presented [33], [34]. However, the extremely
high dimensionality of microarray data often makes it difficult
to directly apply these methods on microarray data analysis.

Contrast data mining aims to mine patterns and models
distinguishing different classes/conditions [35]. Emerging pat-
tern [36] and interesting rule groups [37] are two interesting
contrast patterns applicable to microarray data analysis, where
data are modeled as the set of co-occurrent items. However,
the ordering information among items may be utilized to
find patterns with more discriminant power. Correspondingly,
sequential classification rules were introduced [34], which ex-
ploit the order among items for contrast analysis. In [38], Petra
et al. unified the common contrast patterns into a framework
named supervised descriptive rule discovery. However, this
framework is available only when the class labels are given
and often returns too much results.

As one of our recent work, we proposed a novel concept,
non-redundant contrast sequence rule (NR-rule for short), and
a related mining algorithm, NRMINER, in [39]. However, the
work in [39] is quite different from that in this paper. This is
because: (1) NR-rule makes sense only when the class labels
are available, and thus NRMINER is an supervised learning
algorithm. However, in this paper, we are interested in the
phenotype structure discovery problem from an unsupervised
perspective, where the class labels are assumed previously
unknown. As mentioned in Section 1, the problem addressed
in this paper is more challenging than that addressed in the
previous work with known class labels; (2) the work in [39]
only focuses on a set of sequence rules, where each rule has

higher discriminative power than any of its subrules. However,
in this paper, we aims to find a partition of samples such that
each group of samples is characterized by a representative
sequence pattern distinguishing this group from others. Since
the cases considered in the two tasks are quite different, they
are naturally different in spirits and details.

6 CONCLUSIONS

We model the phenotype structure discovery problem from
a sequence perspective. Different from the existing methods,
the proposed g∗-sequences model uses the ordered gene ex-
pression values as the discriminative signatures. It enables
to find highly accurate phenotype structure with a small
number of genes. We show the problem of phenotype structure
discovery is NP-complete and develop a progressive exploring
strategy to tackle the computational challenge. In the FINDER
algorithm, a novel sequence dissimilarity measurement and a
cross projection approach enable to try exploring candidate
phenotype structures in a quality-guaranteed way. Various
effective techniques are developed to further improve the
efficiency. Extensive experimental results on real and synthetic
datasets show that our method dramatically improves the
accuracy of the discovered phenotype structure (in terms of
statistical and biological significance) while using much less
genes compared to the existing methods. Moreover, FINDER
is 2∼3 orders of magnitude faster than the alternative methods.

ACKNOWLEDGMENTS

Supported by 863 program (2012AA011004), National Sci-
ence Fund for Distinguished Young Scholars (61025007),
National Science Fund of China Key Program (60933001),
National Natural Science Foundation of China (61272182,
61100028, 61173029, 61173030), New Century Excellent Tal-
ents (NCET-11-0085), China Postdoctoral Science Founda-
tion (2012T50263, 2011M500568) and Fundamental Research
Funds for the Central Universities (N110404005).

REFERENCES

[1] S. Tavazoie, J. Hughes, M. Campbell, R. Cho, and G. Church, “Sys-
tematic determination of genetic network architecture,” Nat. Genetics,
vol. 22, pp. 281–85, 1999.

[2] M. Eisen, P. Spellman, P. Brown, and D. Botstein, “Cluster analysis
and display of genome-wide expression patterns,” Proc. Natl. Acad. Sci.
USA, vol. 95, pp. 14 863–68, 1998.

[3] A. Alizadeh, “Distinct types of diffuse large b-cell lymphoma identified
by gene expression profiling,” Nature, vol. 403, pp. 503–11, 2000.

[4] C. Tang, A. Zhang, and M. Ramanathan, “Espd: a pattern detection
model underlying gene expression profiles,” Bioinformatics, vol. 20,
no. 6, pp. 829–838, 2004.

[5] J. R. Nevins and A. Potti, “Mining gene expression profiles: expression
signatures as cancer phenotypes,” Nature Reviews Genetics, vol. 8, no. 8,
pp. 601–609, 2007.

[6] K. Y. Yip, D. W. Cheung, and M. K. Ng, “Harp: A practical projected
clustering algorithm,” TKDE, vol. 16, no. 11, pp. 1387–1397, 2004.

[7] T. R. Golub, D. K. Slonim, P. Tamayo, and et al., “Molecular classifica-
tion of cancer: class discovery and class prediction by gene expression
monitoring,” Science, vol. 286, pp. 531–537, 1999.

[8] J. Luo, D. J. Duggan, Y. Chen, and et al, “Human prostate cancer and
benign prostatic hyperplasia: molecular dissection by gene expression
profiling.” Cancer Res, vol. 61, no. 12, pp. 4683–8, 2001.

14

[9] U. Alon, N. Barkai, D. A. Notterman, and et al., “Broad patterns of
gene expression revealed by clustering analysis of tumor and normal
colon tissues probed by oligonucleotide arrays,” PNAS, vol. 96, no. 12,
pp. 6745–6750, 1999.

[10] M. Xiong, X. Fang, and J. Zhao, “Biomarker identification by feature
wrappers,” Genome Research, vol. 11, no. 11, pp. 1878–1887, 2001.

[11] J. Liu and W. Wang, “Op-cluster: Clustering by tendency in high
dimensional space,” in ICDM, 2003, pp. 187–194.

[12] Y. Cheng and G. M. Church, “Biclustering of expression data,” in ISMB,
2000, pp. 93–103.

[13] X. Xu, Y. Lu, and A. Tung, “Mining shifting-and-scaling co-regulation
patterns on gene expression profiles,” in ICDE, 2006, pp. 89–100.

[14] A. Ben-Dor, B. Chor, R. M. Karp, and Z. Yakhini, “Discovering
local structure in gene expression data: the order-preserving submatrix
problem,” in RECOMB, 2002, pp. 49–57.

[15] Q. Fang, W. Ng, and J. Feng, “Discovering significant relaxed order-
preserving submatrices,” in KDD, 2010, pp. 433–442.

[16] S. Dong, C. L. Nutt, R. A. Betensky, and et. al., “Histology-based expres-
sion profiling yields novel prognostic markers in human glioblastoma,”
J Neuropathol Exp Neurol., vol. 64, no. 11, pp. 948–955, 2005.

[17] H. Liu and H. Motoda, Computational Methods of Feature Selection.
Danvers, MA: Chapman & Hall/CRC, 2007.

[18] D. Zuckerman, “On unapproximable versions of np-complete problems,”
SIAM Journal on Computing, vol. 25, no. 6, pp. 1293–1304, 1996.

[19] J. Pei, J. Han, and et al., “Prefixspan: Mining sequential patterns by
prefix-projected growth,” in ICDE, 2001, pp. 215–224.

[20] J. Wang and J. Han, “Bide: Efficient mining of frequent closed se-
quences,” in ICDE, 2004, pp. 79–90.

[21] D. Lo, S.-C. Khoo, and J. Li, “Mining and ranking generators of
sequential patterns,” in SDM, 2008, pp. 553–564.

[22] P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining.
New Jersey, USA: Addison Wesley, 2005.

[23] I. Hedenfalk, D. Duggan, Y. Chen, and et al., “Gene-expression profiles
in hereditary breast cancer,” New England Journal of Medicine, vol. 344,
no. 8, pp. 539–548, 2001.

[24] E. Müller, S. Günnemann, I. Assent, and T. Seidl, “Evaluating clustering
in subspace projections of high dimensional data,” PVLDB, vol. 2, no. 1,
pp. 1270–1281, 2009.

[25] Y. Su, T. M. Murali, V. Pavlovic, M. Schaffer, and S. Kasif, “Rankgene:
identification of diagnostic genes based on expression data,” Bioinfor-
matics, vol. 19, no. 12, pp. 1578–1579, 2003.

[26] V. Buccheri and B. Mihaljevic, “mb-1: a new marker for b-lineage
lymphoblastic leukemia,” Blood, vol. 82, no. 3, pp. 853–857, 1993.

[27] S. Chang, K. Stacey, J. Chen, and et al, “Mechanisms of regulation of
the macmarcks gene in macrophages by bacterial lipopolysaccharide,” J
Leukoc Biol., vol. 66, no. 3, pp. 528–534, 1999.

[28] Y. Pekarsky, C. Hallas, and C. M. Croce, “The role of tcl1 in human
t-cell leukemia,” Oncogene, vol. 20, no. 40, pp. 5638–5643, 2001.

[29] R. Agrawal and R. Srikant, “Mining sequential patterns,” in ICDE, 1995,
pp. 3–14.

[30] M. J. Zaki, “Spade: An efficient algorithm for mining frequent se-
quences,” Machine Learning, vol. 42, no. 1/2, pp. 31–60, 2001.

[31] J. Ayres, J. Flannick, and et al., “Sequential pattern mining using a
bitmap representation,” in KDD, 2002, pp. 429–435.

[32] X. Yan, J. Han, and R. Afshar, “Clospan: Mining closed sequential
patterns in large databases,” in SDM, 2003.

[33] B. Ding, D. Lo, J. Han, and S.-C. Khoo, “Efficient mining of closed
repetitive gapped subsequences from a sequence database,” in ICDE,
2009, pp. 1024–1035.

[34] M. J. Zaki, “Sequence mining in categorical domains: Incorporating
constraints,” in CIKM, 2000, pp. 422–429.

[35] J. Bailey and G. Dong, Contrast Data Mining: Concepts, Algorithms,
and Applications. Danvers, MA: Chapman & Hall/CRC, 2012.

[36] G. Dong and J. Li, “Efficient mining of emerging patterns: Discovering
trends and differences.” in KDD, 1999, pp. 43–52.

[37] G. Cong, A. K. H. Tung, X. Xu, and et al., “Farmer: Finding interesting
rule groups in microarray datasets,” in SIGMOD, 2004, pp. 143–154.

[38] P. K. Novak, N. Lavrac, and G. I. Webb, “Supervised descriptive rule
discovery: A unifying survey of contrast set, emerging pattern and
subgroup mining,” Journal of Machine Learning Research, vol. 10, pp.
377–403, 2009.

[39] Y. Zhao, G. Wang, Y. Li, and Z. Wang, “Finding novel diagnostic gene
patterns based on interesting non-redundant contrast sequence rules,” in
ICDM, 2011, pp. 972–981.

Yuhai Zhao received his B.E., M.E. and Ph.D. in
computer science, from Northeastern University,
China, in 1999, 2004 and 2007, respectively.
Currently he is an associate professor in the
School of Information Science and Engineering,
Northeastern University, China. He is a member
of IEEE ACM, and a member of CCF. His major
research interests include data mining and bioin-
formatics.

Guoren Wang received his BSc, MSc and PhD
degrees, in computer science, from Northeast-
ern University, China, in 1988, 1991 and 1996,
respectively. Currently he is a professor in the
School of Information Science and Engineer-
ing, Northeastern University, China. His ma-
jor research interests are XML data manage-
ment, query processing and optimization, high-
dimensional indexing, parallel database sys-
tems, P2P data management and uncertain data
management.

Xiang Zhang received his Ph.D. from the De-
partment of Computer Science at the University
of North Carolina at Chapel Hill in 2011. Cur-
rently he is an assistant professor in the Electric
Engineering and Computer Science Department
at Case Western Reserve University. His major
research interests include graph mining, network
analysis, high-dimensional data analysis, bioin-
formatics and database.

Jeffrey Yu Xu Jeffrey Xu Yu received his B.E.,
M.E. and Ph.D. in computer science, from the
University of Tsukuba, Japan, in 1985, 1987 and
1990, respectively. He was a research fellow
(Apr. 1990 – Mar. 1991) and a faculty member
(Apr. 1991 – July 1992) in the Institute of In-
formation Sciences and Electronics, University
of Tsukuba, a Lecturer in the Department of
Computer Science, Australian National Univer-
sity (July 1992 – June 2000). Currently he is a
Professor in the Department of Systems Engi-

neering and Engineering Management, the Chinese University of Hong
Kong. His major research interests include data mining, data stream,
XML query processing and optimization and graph database.

Zhanghui Wang Zhanghui Wang received his
B.E.in computer science from Shengyang In-
stitute of Aeronautical Engineering, China, in
2007, and received his M.E. in computer science
from Northeastern University, China, in 2010.
Currently he is a PH.D candidate in computer
science, Northeastern University, China. His ma-
jor research interests include data mining and
bioinformatics.

