
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 1, JANUARY 2013 1

Searching Dimension Incomplete Databases
Wei Cheng, Xiaoming Jin, Jian-Tao Sun, Xuemin Lin, Xiang Zhang, and Wei Wang

Abstract—Similarity query is a fundamental problem in database, data mining and information retrieval research. Recently, querying
incomplete data has attracted extensive attention as it poses new challenges to traditional querying techniques. The existing work on
querying incomplete data addresses the problem where the data values on certain dimensions are unknown. However, in many real-
life applications, such as data collected by a sensor network in a noisy environment, not only the data values but also the dimension
information may be missing. In this work, we propose to investigate the problem of similarity search on dimension incomplete data. A
probabilistic framework is developed to model this problem so that the users can find objects in the database that are similar to the
query with probability guarantee. Missing dimension information poses great computational challenge, since all possible combinations
of missing dimensions need to be examined when evaluating the similarity between the query and the data objects. We develop the
lower and upper bounds of the probability that a data object is similar to the query. These bounds enable efficient filtering of irrelevant
data objects without explicitly examining all missing dimension combinations. A probability triangle inequality is also employed to further
prune the search space and speed up the query process. The proposed probabilistic framework and techniques can be applied to both
whole and subsequence queries. Extensive experimental results on real-life data sets demonstrate the effectiveness and efficiency of
our approach.

Index Terms—Dimension Incomplete Database, Similarity Search, Whole Sequence Query
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1 Introduction
Similarity query in multidimensional database is a funda-
mental research problem with numerous applications in the
areas of database, data mining, and information retrieval.
Given a query object, the goal is to find similar objects in
the database [1–4]. Recently, querying incomplete data has
attracted extensive research efforts [5–7]. In this problem,
the data values may be missing due to various practical
issues. For example, in sensor networks, the received data
may become incomplete when sensors do not work properly
or when errors occur during the data transfer process. The
data incompleteness problem studied in the existing work
usually refers to the missing value problem, i.e., the data
values on some dimensions are unknown or uncertain. The
common assumption of the existing work is that, for each
dimension, whether its data value is missing or not is
known. However, in real-life applications, we may not know
which dimensions or positions have data loss [8, 9]. In
these cases, we only have the arrival order of data values
without knowing which dimensions the values belong to.
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When the dimensionality of the collected data is lower than
its actual dimensionality, the correspondence relationship
between dimensions and their associated values is lost.
We refer to such a problem as the dimension incomplete
problem.

Application 1: Data missing when dimension information
is not explicitly maintained. Consider the sensor networks.
The database usually contains time series data objects,
each of which is represented by a sequence of values
(x1, x2, . . . , xm). The dimension information (e.g., time s-
tamp) associated with data values can be implicitly inferred
from the data arrival order. This schema of data collection
and storage is very common in resource-constrained appli-
cations since explicitly maintaining dimension information
will cause additional costs. In this problem setting, missing
a single data element will destroy the dimension informa-
tion of the entire data object.

For example, in Fig. 1, the original data object is (3,
1, 2, 5). When data element 1 is missing, the dimension
information for the rest of data elements becomes uncertain.
For example, 3 can be the first or the second element,
and 2 can be the second or the third element. When data
element 1 and 5 are missing, then both element 3 and 2
may locate on three different dimensions. In applications
where dimension information is explicitly maintained, the
dimension indicator itself may be lost. This will also cause
the dimension incomplete problem.

Application 2: Time series data with temporal uncer-
tainty due to imprecise timestamps. The imprecise times-
tamps due to granularity mismatch, or data collection from
distributed system that is lack of clock synchronization
may also cause dimension incompleteness in time series
data [9]. For example, when time series data are collected
from distributed environment, due to the lack of clock
synchronization, each collected data value is assigned an
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Fig. 1. Dimension incomplete data due to dimension
information not being explicitly maintained
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Fig. 2. Dimension incomplete data due to imprecise
timestamps

uncertainty interval on the time line. Fig. 2 shows a time
series stream of four values {3, 1, 2, 5}, and their uncertainty
intervals on the time line. We may approximately infer
the arrival order of the values as (3, 1, 2, 5). But the
precise occurrence time of each element is uncertain. In real
world applications, we may want to automatically identify
patterns(or say subsequences) satisfying given query condi-
tion on certain dimension incomplete time series data. This
poses the subsequence matching problem on dimension
incomplete data.

The dimension incomplete problem brings new chal-
lenges to the similarity query task, since the dimension
information is essential for the existing uncertain data
querying methods [10, 11]. The traditional similarity mea-
surements (or distance functions), which are the bases
of any similarity query task, may not be applied when
the dimension information is missing. For example, given
a query object Q = (q1, q2, . . . , qm) and a data object
X = (x1, x2, . . . , xm), the ℓp-norms distance, ℓp(Q, X) =
(
∑m

i=1 |qi − xi|p)1/p, is a widely used distance function in
similarity search. However, it can not be calculated if the
dimensions of the two objects do not match. Other simi-
larity computation methods, such as dynamic time warping
(DTW) [12] and longest common subsequence (LCS) [13],
can not be directly applied to dimension incomplete data.
They are developed to find the common structures of two
sequences, and the exact dimension information is not
critical for these methods.

Suppose that the original data dimensionality is m. Given
a query object Q = (q1, q2, . . . , qm) and a dimension
incomplete data object X = (x1, x2, . . . , xn) (n < m), a naive
solution to calculate the distance between these two objects
is as follows. We examine all possible missing dimension
combinations for the data object X. For each combination,
we impute the values at the positions with missing data, and
then calculate the similarity between Q and the imputed X
based on certain distance function such as the ℓp-norms
distance. However this approach is intractable in practice,
since there are

(
m
n

)
possible dimension combinations need

to be examined. Efficient algorithms are highly desirable.

In this paper, we formulate the problem of similarity
query on dimension incomplete data within a probabilistic
framework. Using the framework, a user can specify two
thresholds: a threshold of the distance between the query
object and the data object, and a threshold of the probability
that the retrieved data objects are similar to the query
object. An efficient method is developed to compute the
lower and upper bounds of the probability that a data object
is similar to the query. These bounds can be utilized to
effectively prune the search space. Moreover, we develop
a probability triangle inequality that can further speed up
the query process. Our contributions are summarized as
follows.

1) To the best of our knowledge, this is the first
work to address the dimension incomplete similarity
query problem. This problem has a wide range of
applications and poses new technical challenges to
traditional query methods. We propose a probabilistic
framework to model and manipulate the uncertainty
of the data. We also provide theoretical analysis of
its computational properties.

2) We develop efficient algorithms to address the chal-
lenges in querying dimension incomplete data. The
complexity of a naive approach to compute the prob-
ability that a data object is similar to the query object
is O(m ·

(
m
n

)
), which is intractable in practice. An

efficient method with time complexity O(n · (m− n)2)
is proposed to compute the lower bound and upper
bound of the probability. These bounds can be uti-
lized to prune the search space. We further develop a
probability triangle inequality, which can be evaluated
in O(m) time and used as a filtering tool to further
speed up the query process.

3) Our method can be applied to both whole sequence
matching and subsequence matching problems on
dimension incomplete data. Moreover, the data of
interest can be either static data or dynamical data
streams.

4) We provide theoretical analysis of the relationship
between the probability threshold and the quality of
query results. This provides guidance for the users
to effectively determine the probability threshold ac-
cording to their search quality preference.

5) We conduct extensive experiments on real-life data
sets. The results demonstrate the effectiveness and
efficiency of our method.

The rest of the paper is organized as follows. The related
work is reviewed in Section 2. The problem formalization
is presented in Section 3. The techniques developed for
whole sequence matching are discussed in Section 4. The
techniques developed for subsequence matching are dis-
cussed in Section 5. The experiment results are reported in
Section 7. Section 8 concludes the paper.

2 Related work
Analyzing data with missing values has attracted extensive
research interest recently [7, 14–16]. The existing work



TABLE 1
Summary of symbols and their meanings

Symbols Description
D Database
X The underlying complete multidimensional data object
Xo The observed part of X
Xl The missing part of X
Xrv The recovery version of Xo
Q The query
c The probability threshold
r The distance threshold

Pr[τ] The probability of τ to occur
δ The distance function
φ The imputation strategy

Xo[i] The i-th element of Xo
Xo[i : j] The subsequence of Xo, including elements in positions i through j

assumes that the dimensions on which the data values are
missing are known. However, in many applications, the
dimension information may also be missing.

Analyzing uncertain data is an area that is also related to
our work [17, 18]. The goal of these methods is to estimate
a probability density function to model the uncertainty in
the data. They do not address the problem of dimension
incompleteness.

In [8], the authors address the problem where there are
missing elements in symbolic sequences. Our problem is
more general in the sense that we consider real value
data and address the probabilistic query task. In [9], a
temporal model is proposed to discover patterns in streams
with imprecise timestamps. This work deals with pattern
evaluations in event streams where event ids should be
exactly matched. Moreover, the data arrival time intervals
are needed to construct the temporal uncertainty model. In
our work, such information is not available and only the
data arrival order is known.

To find common structure of two sequences, dynamic
time warping (DTW) [12, 19] and longest common subse-
quence (LCS) [13, 20] algorithms are proposed. In these
problems, the exact dimension information is not critical.
These methods can not be directly applied to the similarity
query problem on dimension incomplete data.

3 Problem definition
In this section, we formally define the similarity query
problem on dimension incomplete data. The main symbols
used in the paper are listed in Table 1.

Let D be the database. A data object X ∈ D is a real-
valued vector (x1, x2, . . . , xm), where xi (1 ≤ i ≤ m) is the
data value for the i-th dimension of X. |X| = m denotes the
dimensionality of X.

A data object X is dimension incomplete, if it satisfies
(a) at least one of its data elements is missing; (b) the
dimension of the missing data element is unknown. For
example, given a complete data object X, if its k data
elements are missing, the resulting dimension incomplete
data object is of the form Xo = (xo1 , xo2 , . . . , xon ) where
o j < o j+1, n = |X| − k.

The traditional range query on a multidimensional
database is defined as follows. Given a database D con-
taining N data objects of m dimensions, an m-dimensional

query Q, a distance function δ, and a distance threshold r,
traditional range queries retrieve all the data objects in D
whose distances from Q are less than r. More formally,

RangeQueryδ(D,Q, r) = {X ∈ D|δ(Q, X) < r} (1)

The above problem formulation cannot be directly ap-
plied to dimension incomplete data since the distance
between the query object and the dimension incomplete
data object is not well defined. Intuitively, the distance
between the query and the data objects depends on both
the dimension alignment and the values estimated for
the missing dimensions. In the following, we develop a
probabilistic framework to formulate the query problem on
dimension incomplete data. The goal is to find all data
objects that have high probability to be similar to the query.

For the observed dimension incomplete data Xo, whose
underlying complete version is X, there are

( |X|
|Xo |

)
possible

combinations of missing dimensions. For a given combina-
tion, the missing dimensions can be modeled as indepen-
dent random variables following normal distribution. Each
random variable can be imputed with certain mean and
variance to form a recovery version of Xo, denoted by Xrv.
Given a distance function δ, e.g., the ℓp-norms distance,
δ(Q, Xrv) is also a random variable. We can calculate
Pr[δ(Q, X) < r] by enumerating all

( |X|
|Xo |

)
combinations. The

problem of querying dimension incomplete data can be
formulated as follows.

Definition 3.1 (Probabilistic Similarity Query on Dimen-
sion Incomplete Data (PSQ-DID)). Given a database D
containing dimension incomplete data objects Xo whose
underlying complete version is denoted by X, a complete
query object Q, an imputation method φ indicating the
distribution of missing data values, a distance function δ, a
probability threshold c, and a distance threshold r, retrieve
all data objects whose distances from Q are less than r with
probability greater than c. More formally,

PSQ−DIDδ,φ(D,Q, r, c) = {Xo ∈ D|Pr[δ(Q, X) < r] > c}
(2)

Pr[δ(Q, X) < r] indicates the probability that the underly-
ing complete data object X satisfies the query requirement.
It depends on both the imputation strategy φ and the
distance function δ.

For a dimension incomplete data object Xo, we can
construct a complete recovery version of Xo as follows.

1) Assign a missing dimension combination
{n1, . . . , n|X|−|Xo |}, indicating the missing dimensions
in X;

2) Impute (determine the mean and variance) for each
missing dimension according to φ.

We use Xrv and Xl to represent the complete recovery
version and the imputed part of Xo respectively. Note that
the total number of Xrv (and Xl) is

( |X|
|Xo |

)
.

Example 1: Assume that the observed dimension in-
complete data object Xo = (12, 9, 40). Its original full
dimensionality is |X| = 5. There are

(
5
3

)
possible missing

dimension combinations. For a combination indicating that
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Fig. 3. The overall query process of the proposed ap-
proach

the missing dimensions in X are {2, 4}, we know that 12,
9, 40 correspond to the first, third, and fifth dimension of
X respectively. Then we have that Xrv = (12, xi1 , 9, xi2 , 40)
and Xl = (xi1 , xi2 ), where xi1 and xi2 are independent
random variables following given distributions. The mean
and variance of each random variable can be determined
by the imputation strategy adopted by the user.

For each missing dimension combination, we can con-
struct a recovery version Xrv. There are in total

( |X|
|Xo |

)
recovery versions. Assuming the probability of getting each
recovery version is equal, we have that

Pr[δ(Q, X) < r] =
∑

Xrv
Pr[δ(Q, Xrv) < r]

#Xrv
. (3)

Next, we discuss the imputation strategy φ and the
distance function δ in further detail.

Depending on specific applications, various imputation
strategies can be applied within our framework. For sim-
plicity, in this paper, we adopt the following strategy to
determine the mean and variance of a random variable. For
an underlying complete data object X = (x1, x2, . . . , xm),
if xi is missing, we impute its mean as (xi−1 + xi+1)/2 (if
xi−1 or xi+1 does not exist, the value of the nearest existing
data element is used instead). For example, suppose that
the dimensionality of X is 6 and the observed dimension
incomplete data object is Xo = (1, 3, 5). For dimension com-
bination whose missing dimensions in X are {1, 3, 4}, we
can construct a recovery version Xrv = ( 1⃝, 1, 2⃝, 2⃝, 3, 5),
where the circled values denote the specified mean values
of the random variables. For many applications, this impu-
tation strategy is reasonable since the value of missing data
element tends to be related to its neighbor elements [21].
The variance of Xo, denoted as σ2, is used as the variance
of the random variables in Xrv. Other imputation strategies
can also be applied within our framework. For example,
we can use the mean value of Xo as the mean value of
the random variables. Our framework is independent of the
imputation strategy applied.

We adopt the widely used Euclidean distance as our
distance function δ. Note that the proposed approach can
be easily extended to handle other distance functions.

4 Whole Sequence Query on Dimension Incom-
plete Data
To determine if a dimension incomplete data object Xo

is similar to the query Q with high probability, a naive

approach is to enumerate all recovery versions of Xo. For
each recovery version Xrv, we evaluate the probability
Pr[δ(Q, Xrv) < r]. Then Pr[δ(Q, X) < r] can be computed
according to Eq. 3. This approach is not efficient since the
total number of recovery versions is

( |X|
|Xo |

)
.

In this section, we present an efficient approach for the
PSQ-DID problem introduced in Section 3. The key idea
is to evaluate Pr[δ(Q, X) < r] without enumerating all
possible recovery versions. We propose to utilize a gradual
refinement search strategy. Specifically, we develop two
strategies to effectively prune the search space: (1) lower
and upper bounds of probability Pr[δ(Q, X) < r], and (2)
a probability triangle inequality. Both the bounds and the
inequality can be evaluated very efficiently.

The overall query process is shown in Fig. 3. The
probability triangle inequality is first applied to evaluate the
data objects. In this step, some data objects are judged as
true results and some are filtered out. The lower and upper
bounds of the probability are then applied to evaluate the
remaining data objects, from which some are determined
as true results and some as dismissals. Only those data
objects that can not be determined in the former two steps
are evaluated by the naive method.

In the following, we will firstly discuss the bounds of
the probability and then present the probability triangle
inequality.

4.1 Bounds of the Probability

In this section, we develop the lower and upper bounds
of the probability Pr[δ(Q, X) < r], the proof of their
correctness, and an efficient algorithm for calculating them.

Given a query Q and a recovery version Xrv of dimension
incomplete data Xo, we have that

δ2(Q, Xrv) = δ2(Qo, Xo) + δ2(Ql, Xl), (4)

where Qo and Ql represent the data values of Q on the
same dimensions as those of Xo and Xl respectively. The
total number of Qo’s (and Ql’s) is the same as the number
of Xrv’s, since each Xrv corresponds to a Qo and a Ql. Note
that r ≥ 0, thus we have that

Pr[δ(Q, Xrv) < r] = Pr[δ2(Ql, Xl) < r2 − δ2(Qo, Xo)]. (5)

Given Xrv, δ2(Qo, Xo) is a real value and δ2(Ql, Xl) is a
random variable. We can determine the lower and upper
bounds on the distance between Xo and Q as follows.

δLBo (Q, Xo) = min
|Qo |=|Xo |

δ(Qo, Xo), (6)

δUBo (Q, Xo) = max
|Qo |=|Xo |

δ(Qo, Xo). (7)

where the right hand side of Equation 6 (Equation 7)
represents the minimum (maximum) distance among all
possible combinations of missing dimensions.

Similarly, we can determine the lower bound and upper
bound on distance between Xl and Ql as follows.

δLBl (Q, Xl)
= δ(argmin

Ql

{δ(Ql, E(Xl))| |Ql| = |Xl|}, Xl), (8)



δUBl (Q, Xl)
= δ(argmax

Ql

{δ(Ql, E(Xl))| |Ql| = |Xl|}, Xl), (9)

where E(Xl) = (µ1, µ2, . . . , µ|X|−|Xo |), and µk is the mean
value assigned by the imputation method on the k-th
dimension of Xl. Note that both δLBl (Q, Xl) and δUBl (Q, Xl)
are random variables rather than specific values.

Example 2: Consider a dimension incomplete data Xo =

(2, 8, 7) and a query Q=(1, 4, 5, 6, 7). The lower bound for
the observed data δ2LBo

(Q, Xo) = (2 − 1)2 + (8 − 6)2 + (7 −
7)2 = 5, corresponding to the recovery version (2,?,?,8,7),
where “?” denotes the imputed random variable. The upper
bound δ2UBo

(Q, Xo) = (2 − 1)2 + (8 − 4)2 + (7 − 5)2 = 21,
corresponding to the recovery version (2, 8, 7, ?, ?). For the
imputed random variables Xl={x1, x2}, according to our
imputation policy, E(x1) and E(x2) rely on the dimensions
to be imputed. We have that δ2LBl

(Q, Xl)=(4-x1)2+(5-x2)2

(E(x1) = E(x2) = 5) corresponding to Xrv=(2, 5⃝, 5⃝, 8, 7),
and δ2UBl

(Q, Xl) = (5− x1)2+ (6− x2)2 (E(x1) = E(x2) = 7.5)
corresponding to Xrv = (2, 8, 7.5⃝, 7.5⃝, 7).

Based on the distance bounds discussed above, we can
determine the lower and upper bounds of Pr[δ(Q, X) < r]
according to the following theorem.

Theorem 4.1. Given a query Q, threshold r and c, for an
incomplete multidimensional data Xo whose complete form
is denoted by X, we have
(a) Pr[δ(Q, X) < r]≤Pr[δ2LBl

(Q, Xl) + δ2LBo
(Q, Xo) < r2];

(b) Pr[δ(Q, X) < r]≥Pr[δ2UBl
(Q, Xl) + δ2UBo

(Q, Xo) < r2].

Proof: (a)For any recovery version Xrv of Xo, accord-
ing to Eq. 5, we have

Pr[δ2(Q, Xrv) < r2]
= Pr[δ2(Ql, Xl) < r2 − δ2(Qo, Xo)] (10)

According to Eq. 6 we know

δ2(Qo, Xo) ≥ δ2LBo
(Q, Xo) (11)

Thus
Pr[δ2(Ql, Xl) < r2 − δ2LBo

(Q, Xo)]
≥ Pr[δ2(Ql, Xl) < r2 − δ2(Qo, Xo)]

(12)

Here, random variable δ2(Ql, Xl)/σ2 obeys a noncen-
tral chi-square distribution with noncentrality parameter
λXrv=δ

2(Ql, E(Xl))/σ2 and random variable δ2LBl
(Q, Xl)/σ2

also obeys a noncentral chi-square distribution with non-
centrality parameter denoted by λLBl . According to Eq.
8, we know λLBl ≤ λXrv . In addition, these two random
variables have the same degree of freedom |Xl|. According
to the property of noncentral chi-square distribution [22],
we know

Pr[δ2LBl
(Q, Xl) < r2 − δ2LBo

(Q, Xo)]
≥ Pr[δ2(Ql, Xl) < r2 − δ2LBo

(Q, Xo)] (13)

Also considering Eq. 12, we have that

Pr[δ2LBl
(Q, Xl) + δ2LBo

(Q, Xo) < r2]
≥ Pr[δ2(Q, Xrv) < r2]

(14)

Since for any recovery version Xrv of X, the Eq. 14 holds,
from Eq. 3, we conclude that

Pr[δ2LBl
(Q, Xl) + δ2LBo

(Q, Xo) < r2]
≥ Pr[δ(Q, X) < r]

(15)

(b)The proof is similar to that of (a).
For notational simplicity, we denote

δLB(Q, X) = [δ2LBl
(Q, Xl) + δ2LBo

(Q, Xo)]1/2 (16)

δUB(Q, X) = [δ2UBl
(Q, Xl) + δ2UBo

(Q, Xo)]1/2 (17)

4.2 Efficient Bound Evaluation

According to Theorem 4.1, Pr[δLB(Q, X) < r] and
Pr[δUB(Q, X) < r] are the upper bound and lower
bound of Pr[δ(Q, X)<r] respectively. These two proba-
bility bounds can be used for filtering purpose in the
query process. Specifically, we can select data objects
with Pr[δUB(Q, X)<r] > c as true results and filter out
data objects with Pr[δLB(Q, X)<r] ≤ c as true dismissals.
The correctness of this pruning process is guaranteed by
Theorem 4.1.

To utilize this pruning strategy, we need efficient algo-
rithms for (1) calculating the probability Pr[δLB(Q, X)<r]
and Pr[δUB(Q, X)<r], and (2) calculating the distance
bounds shown in Equations 6 to 9.

The first sub-problem can be solved easily. Since δ2LBl
(Q,

Xl)/σ2 and δ2UBl
(Q, Xl)/σ2 obey noncentral chi-square dis-

tribution, these two probabilities can be calculated using the
cumulative distribution function of noncentral chi-square
distribution or by a table lookup approach.

Consider the second sub-problem. The naive method to
compute any one of the four bounds is extremely time
consuming since we have to enumerate all the

( |X|
|Xo |

)
recovery

versions.
Next we introduce a dynamic programming algorithm to

compute these four bounds in O(|Xo| · (|X| − |Xo|)2) time.
Algorithm 1 is for calculating δLBo (Q, Xo) and δLBl (Q, Xl).
After the algorithm is executed, the minimum element in
the 2n-th column of matrix T is δLBo (Q, Xo), and δLBl (Q, Xl)
can be inferred from the assistant array S . In order to calcu-
late δUBo (Q, Xo) and δUBl (Q, Xl), only a small modification
is needed: replace function min in line 17, 21 by max and
replace argmin in line 11 by argmax. The algorithm does
not require building the entire table T . Its computational
complexity is O(|Xo| · (|X| − |Xo|)2), which is a significant
improvement over the naive method which has to enumerate
all
( |X|
|Xo |

)
missing dimension combinations.

Example 3: For Algorithm 1, consider a query Q =
(3, 7, 1, 6, 5), and a data object Xo = (2, 4, 8). We have
that X′ = ( 2⃝, 2, 3⃝, 4, 6⃝, 8, 8⃝) , where the circled elements
are determined by the imputation strategy. The initialized
T is shown in Fig. 4(a). The algorithm starts the calcu-
lation from the bottom of the first column to top right.
In step.1, T [1][1]=1 remains unchanged. T [1][2] = 25
is replaced with T [1][1]+T [2][1]= 25 + 1 = 26. In
the second column, we do nothing. In Step.2, we deal
with the third column of T . T [3][3]=4 is replaced with



Algorithm 1 Calculate δLBo (Q, Xo) and δLBl (Q, Xl)
INPUT: Query Q, |Q|=m and dimension incomplete data object Xo, |Xo |=n
(0 < n < m).
OUTPUT: δLBo (Q, Xo) and δLBl (Q, Xl) (inferred from assistant array S ).
Initialization Step: Extend Xo to X′, (|X′ |=2n + 1), where

X′i =


Xo[1] i = 1,
Xo[n] i = 2n + 1,
Xo[i/2] i mod 2 = 0,
Xo[(i−1)/2]+Xo[(i+1)/2]

2 i mod 2 = 1, 1 < i < 2n + 1

Construct two m× (2n+1) matrices T and S , where the (i-th, j-th) element
of T is initialized to (Qi − X′j)

2, S is an assistant array initialized with
(0, 0) for each element.
1: for j=1 to 2n + 1 do
2: if j=1 then
3: for i=1 to m − n do
4: S [i][ j]←(i-1,1)
5: if i > 1 then
6: T [i][ j]←T [i][ j]+T [i − 1][ j]
7: end if
8: end for
9: else if j>2 and j mod 2=1 then

10: for i= ( j+1)
2 +1 to ( j+1)

2 +m-n-1 do
11: p← argmin

1≤k≤ ( j+1)
2

T [i − k][ j − 2(k − 1)]

12: T [i][ j]←T [i][ j]+T [i − p][ j − 2(p − 1)]
13: S [i][ j]←(i − p, j − 2(p − 1))
14: end for
15: else if j>2 and j mod 2=0 then
16: for i= j

2 to j
2+m-n do

17: T [i][ j]←T [i][ j]+min ( j−2)
2 ≤k≤i−1 T [k][ j − 2]

18: end for
19: end if
20: end for
21: return (minn≤k≤m T [k][2n])

1
2
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6 4 0 4 4
1 1 4 9 25 49
7 25 25 16 9
3 1 1

2⃝ 2 3⃝4 6⃝ 8 8⃝
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(h) Assistant Array S

Fig. 4. Example of getting δLBo (Q, Xo) and δLBl (Q, Xl)

T [3][3]+min{T [2][3],T [1][1]}=4+min{16, 1} = 5. The re-
maining steps are shown in Fig. 4. Finally, from the sixth
column in Fig. 4(g), we find δ2LBo

(Q, Xo) is 14, which
is the minimal element in the column. In order to find
δ2LBl

(Q, Xl), we first find the minimal value among those in
the top of column 1,3,5,7 of T . That is min{26,5,1,10}. We
find T [4][5]=1 is the minimal. Thus the imputed variable
with mean value 6 will be matched to 6 in Q. Then
S [4][5]=< 1, 1 > indicates the previous match is in the
first row and first column of T , where the corresponding
imputation is with mean value 2 and is matched to 3 in

Q. Thus, δ2LBl
(Q, Xl)=(3 − x1)2+(6 − x2)2, where x1 and x2

are imputed random variables with mean value 2 and 6
respectively.

4.3 Probability Triangle Inequality

In this section, we present a probability triangle inequality
which can also be used to effectively prune the search space.

Theorem 4.2. Given a query object Q, a dimension com-
plete data object R (i.e., |R| = |Q|), and a dimension incom-
plete data object Xo whose underlying complete version is
X, we have that

(a)Pr[δ(Q, X) < r] ≤ Pr[δLB(R, X) − δ(Q,R) < r];
(b)Pr[δ(Q, X) < r] ≥ Pr[δUB(R, X) + δ(Q,R) < r].

Proof: (a) From Theorem 4.1, we have

Pr[δLB(R, X)−δ(Q,R) < r] ≥ Pr[δ(R, X) < δ(Q,R)+r] (18)

Thus, for any recovery version Xrv of X, we have

Pr[δ(R, Xrv) − δ(Q,R) < r] ≤ Pr[δLB(R, X) − δ(Q,R) < r]
(19)

In a metric space, the triangle inequality holds, thus

δ(R, Xrv) − δ(Q,R) ≤ δ(Q, Xrv) (20)

Thus we have

Pr[δ(Q, Xrv) < r] ≤ Pr[δ(R, Xrv) − δ(Q,R) < r] (21)

Here, since Xrv is any recovery version of X, recall Eq. 3,
thus we have

Pr[δ(Q, X) < r] ≤ Pr[δ(R, Xrv) − δ(Q,R) < r] (22)

Therefore,

Pr[δLB(R, X) − δ(Q,R) < r] ≥ Pr[δ(Q, X) < r] (23)

(b) The proof is similar to that of (a).
Based on the theorem above, with the help of assistant

data object R, some data objects in database can be deter-
mined to be true results (when Pr[δUB(R, X)+δ(Q,R) < r] ≥
c) or true dismissals (when Pr[δLB(R, X)−δ(Q,R) < r] ≤ c).
Since the required dynamic programming computation can
be finished in advance without knowing the query, this
evaluating process can be done in O(|Q|) time.

In order to get Pr[δLB(R, X)−δ(Q,R)<r] and Pr[δUB(R, X)
+ δ(Q,R) < r] efficiently, two sets of values need to
be stored for each (R, Xo) pair. One is δLBo (R, Xo) and
δUBo (R, Xo). The other is the noncentrality parameters of
random variables δ2LBl

(R, Xl)/σ2 and δ2UBl
(R, Xl)/σ2. In real

applications, the assistant data objects can be obtained by
sampling the user’s query log. The two sets of values can
be calculated and pooled in a batch mode for online query
processing. The number of assistant data objects controls
the tradeoff between the query processing time and the
storage. Its effectiveness will be studied in the experiments.



Algorithm 2 Probabilistic Similarity Query
INPUT: the dimension incomplete database D, query Q, distance threshold
r, probability threshold c, the set of assistant data objects S R.
OUTPUT: the results set S result .
1: for all X in D do
2: for all R in S R do
3: if Pr[δLB(R, X) − δ(Q,R) < r] ≤ c then
4: X < S result
5: goto 1 to evaluate next X in D
6: else if Pr[δUB(R, X) + δ(Q,R) < r] > c then
7: X ∈ S result
8: goto 1 to evaluate next X in D
9: end if

10: end for
11: if Pr[δLB(Q, X) < r] ≤ c then
12: X < S result
13: else if Pr[δUB(Q, X) < r] > c then
14: X ∈ S result
15: else if Pr[δ(Q, X) < r] > c then
16: X ∈ S result
17: else
18: X < S result
19: end if
20: end for

4.4 The Overall PSQ-DID Algorithm

The overall PSQ-DID (Probabilistic Similarity Query on
Dimension Incomplete Data) algorithm is shown in Al-
gorithm 2. The algorithm utilizes a gradual refinement
searching strategy with aforementioned pruning strategies
to speed up the query process. Specifically, we first use
assistant objects in S R to examine data objects based on
probability triangle inequality in Theorem 4.2. Then lower
and upper bounds on the probability shown in Theorem
4.1 are used to further evaluate the remaining candidates.
The remaining objects that cannot be determined by the
previous pruning strategies will be evaluated by the naive
verification algorithm.

The triangle inequality and the bounds of probability
can be evaluated efficiently and used to effectively prune
the search space. Only a small portion of the data objects
need to be evaluated by the naive verification algorithm.
To further increase the efficiency, we can avoid the naive
verification step and simply treat the remaining candidates
as query results (or dismissals, depending on the require-
ments of query precision and recall). This is reasonable
for applications where the two probability bounds are
effective for selecting candidates. This simplified strategy
will dramatically increase the efficiency of the algorithm
without causing significant change of the quality of the
results. The experimental results shown in Section 7.2.3
demonstrate the effectiveness of the simplified algorithm.

4.5 Improving the Efficiency of Naive Probability E-
valuation

Recall that from Eq. 3 in Section 3, a straightforward
way for probability evaluation is to examine all possible
recovery versions of the incomplete data. In this section,
we provide an optimized enumeration process that prunes
some recovery versions safely. From Eq. 4, we know that
if δ(Qo, Xo) ≥ r, Pr[δ2(Ql, Xl) < r2 − δ2(Qo, Xo)] will be 0.
Intuitively, if δLBo (Q, Xo) ≥ r and thus δ(Qo, Xo) ≥ r, there

is no need to examine Xo. Furthermore, according to Eq.
6, we have the following theorem:

Theorem 4.3. Given a query Q and a dimension incom-
plete data object Xo (|Xo| < |Q|), if there is a Q′ derived
from Q (by eliminating some data values of Q) (|Q′| ≥ |Xo|)
that satisfies δLBo (Q′, Xo) ≥ r, then for all Q′′ derived from
Q′ (|Q′′|≥|Xo|) we have δLBo (Q′′, Xo) ≥ r.

Proof: Since δLBo (Q′, Xo) ≥ r, we assume there exists
a Q′′ derived from Q′ (|Q′′| ≥ |Xo|), and δLBo (Q′′, Xo) < r.
According to Eq. 6, there will exist a Q′′′ derived from
Q′′ with length |Xo| and δ(Q′′′, Xo) < r. Since Q′′′ is also
derived from Q′, we have δLBo (Q′, Xo) < r which leads to
a contradiction. Thus the theorem is proved.

This theorem enables us to evaluate only part of the( |X|
|Xo |

)
recovery versions that yield probability larger than 0.

Based on the theorem, we can recursively enumerate the
recovery versions. For Q′ derived from Q (|Q′| ≥ |Xo|), if
δLBo (Q′, Xo) ≥ r, all Q′′ derived from Q′ do not need to be
evaluated. Due to space limitation, we will not discuss the
details of this recursive procedure.

5 Subsequence Matching on Dimension Incomplete
Data
In this section, we discuss the problem of subsequence
matching on dimension incomplete data. The probabilistic
definition and framework introduced in Sections 3 and 4
for whole sequence query can be extended to handle this
problem.

5.1 Problem Description

Definition 5.1 (Probabilistic Subsequence Matching on Di-
mension Incomplete Data (PSM-DID)). Given a database D
containing dimension incomplete sequences of real number-
s Xo whose underlying complete version is of the length that
is potentially different and unknown, a query sequence Q
of length |Q|, a distance threshold r, a probability threshold
c, an imputation method φ indicating the distribution of
missing data values, and a distance function δ,

PSM−DIDδ,φ(D,Q, r, c)
= {Xo[i : j]|Pr{δ(Q, Xrv[k : k + |Q| − 1]) < r} ≥ c,

Xo ∈ D, j ≥ i − 1}
(24)

Here, Xo[i : j] = (Xo[i], ..., Xo[ j]) stands for the subse-
quence of Xo, including elements in positions i through j,
and Xrv[k : k+ |Q|−1] is the recovery version for Xo[i : j] of
length |Q|. There is a special case, when j = i−1, it indicates
that the missing data elements are between Xo[i − 1] and
Xo[i].

5.2 Algorithm for Subsequence Matching on Dimen-
sion Incomplete Data

In this subsection, we will show that our framework on
whole sequence queries can be extended to handle subse-
quence queries. Without taking into account the influence
of boundary elements in determining the expected values



Algorithm 3 Subsequence matching on dimension incom-
plete data
INPUT: the dimension incomplete sequence database D, query Q, distance
threshold r, probability threshold c.
OUTPUT: the result set S result .
1: for all X in D do
2: for k=1 to |X| do
3: for length = 0 to min{|X| − k + 1, |Q|} do
4: Xsub ← X[k : k + length − 1]
5: if Pr[δ(Q, Xsub) < r] > c then
6: Xsub ∈ S result
7: else
8: Xsub < S result
9: end if

10: end for
11: end for
12: end for

of random variables, we can divide the process of the
subsequence query problem as follows.

Step 1:Tackle the case that matches the subsequence
from the first element of the target dimension
incomplete sequence;

Step 2:Remove the first element of target dimension
incomplete sequence and repeat Step 1; Terminate
until there is no element left in target sequence.

One straightforward method for Step 1 is to divide
the problem into several cases and examine each case
separately. For example, given query Q = (4, 1, 3) and
dimension incomplete sequence Xo = (3, 1, 2, . . . , 5), we
can divide Step 1 into four cases as illustrated in Fig. 5.
The first case assumes that all elements to be matched
with the query are missing, and there are three random
variables need to be imputed. Next, we consider the case
where only one element is chosen to match the query, and
the remaining two elements are assumed to be missing.
The third and fourth cases are similar to the second case.
Obviously, the first and fourth cases can be evaluated easily,
and the second and the third cases can be processed with
the algorithms discussed in Section 4. The time complexity
of this approach is O(|Xo|·{

∑|Q|−1
i=1 i·(|Q|−i)2}) = O(|Xo|·|Q|4).

Note that in many real-life applications, we have |Xo| ≫ |Q|.
The detailed algorithm is presented in Algorithm 3. Note

that when length = 0, Xsub is an empty sequence and all
imputed random variables are with mean value X[k]. In the
fifth line of the algorithm, in order to determine whether
Pr[δ(Q, Xsub) < r] > c, the aforementioned probability
triangle inequality and probability upper and lower bounds
can be applied. In practice, we can set constraint on the
minimal length of the subsequence used to match the query.
This constraint reveals the prior knowledge for the missing
ratio of dimension incomplete sequences. For example, a
smaller value for the minimal length is better for larger
missing ratio.

To improve the efficiency of Step 1, we develop an
algorithm which only needs to calculate table T once rather
than |Q| times. Only three lines of Algorithm 1 need to be
changed:

(1) change m − n in line 3 to m;
(2) change ( j+1)

2 +m-n-1 in line 10 to m;

Fig. 5. Subsequence matching on dimension incomplete
data

(3) change j
2+m-n in line 16 to m.

In other words, all elements in the upper triangle of T
and S will be calculated. The calculation of corresponding
probability upper and lower bounds can be fulfilled with the
help of T and S . In order to do Step 2, we only need to treat
the third column of T as the first column and recalculate T
and S . Since we only need to calculate the array values once
for Step 1, the efficiency can be improved. Without applying
the probabilistic triangle inequality, the time complexity is
O(|Xo| · |Q|3). If the inequality is applied, during the query
processing, as shown in Fig 5, Step 1 requires execute
triangle inequality filtering |Q| − 1 times, each of them is
with time complexity O(|Q|). For the whole sequence Xo,
there are totally |Xo| times of execution of Step 1. Thus the
overall complexity becomes O(|Q|2 · |Xo|).

In addition, in our algorithm for subsequence matching
on dimension incomplete data, the data of interest can be
either static data or dynamical data streams. A special case
of this problem would be monitoring the data streams,
where the sequence in database is appended over time, and
once the sequence is updated, we examine if the newest
part of the sequence is similar to a user specified query.
It can be found that our method for subsequence matching
can also tackle this problem, with only a little modification
required. Specifically, when the sequence is updated, we
only have to do the two steps on the new added part of
the sequence. If we find the matching patterns that meet
the query requirements, the system will output the matched
subsequences.

6 Relationship between Probability Threshold
and Quality of Query Results
Probability threshold c is an important user-specified pa-
rameter for our approach. In this section, we study the
relationship between the probability threshold c and the
quality of query results (precision and recall).

For conciseness and clearness of analysis, without loss
of generality, we first shift the data space so that the query
Q is transformed to Q′ = (0, 0, ..., 0). In the transformed
space, we want to find data objects X′ that satisfies

Pr(||X′||2 < r) > c
⇔ Pr(||X′l ||22 < r2 − ||X′o||22) > c. (25)

Here, X′l and X′o are the missing part and the observed
part of X′, respectively. There are totally

(|Q′ |
|X′o |

)
possible re-

covery versions for dimension incomplete data X′o. Consider
the i-th recovery version X′rvi

, the region that contains all
the data objects that will be retrieved, denoted by Ri. The



(a) n=2 (b) n=1

Fig. 6. 3-dimensional data objects with n dimensions
observed

union of all
(|Q′ |
|X′o |

)
regions is the region containing all query

results outputted by our approach. On the other hand, the
region that contains all the true results is a hyper-sphere
Rsphere with the center in the origin, and radius r. For
simplicity, we make the assumption that the data objects are
uniformly distributed in the multidimensional space with
data element of each dimension ranging from −b to b. So
given a region R in the space, the number of data objects
within it is proportional to its volume, denoted by V(R).
The volume of this region R can be determined by |Q′|,
|X′l |, c and b. Based on the above notions, the expected
precision and recall (denoted by E(precision) and E(recall)
respectively) are as :E(precision) = V(∪Ri∩Rsphere)/V(∪Ri)
and E(recall) = V(∪Ri ∩ Rsphere)/V(Rsphere).

Taking three dimensional data objects for instance, for
simplicity, we assume the mean and variance are given
values, then the shape for the retrieved results region and
the real results region are shown in Fig. 6. The red sphere is
the real results region, and its volume is V(Rsphere). Fig. 6(a)
presents the case of 3-dimensional data with one dimension
missing. The three cylinders are the retrieved results region
whose volume is V(∪Ri) and ∪Ri∩Rsphere will be the region
of three cylinders within the sphere. Fig. 6(b) shows the
case of 3-dimensional data with two dimensions missing.
The three cubes are the region of retrieved results. In Fig.
6, the volume of the retrieved results region is controlled
by r′ which is determined by probability threshold c, the
lager the value of c is, the smaller r′ will become.

Given |Q′|, |X′l |, r and b, with the increase of c , both
V(∪Ri) and V(∪Ri ∩ Rsphere) decrease. Thus, E(recall)
decreases with the increase of c. When r ≤ b, with the
increase of c, the decreasing rate of V(∪Ri∩Rsphere) will be
smaller than that of V(∪Ri). Thus, E(precision) increases
with the increase of c. This indicates that c can be chosen
to trade off between precision and recall based on the
understanding of application domain.

7 Experimental Results

In this section, we present extensive experimental results
on evaluating the performance of our approach. We (a)
evaluate the robustness of the proposed probabilistic frame-
work and the effectiveness of its algorithmic components;
(b) study the influence of the parameters; (c) compare
the performance of our approach with other alternative
methods.

7.1 Data Sets

Two real data sets are used in the experiments. The first
one is the Standard and Poor 500 index historical stock
data1. This data set contains stock prices of 541 companies
collected over one year (from 2008-03-07 to 2009-03-06).
The opening stock prices are used as data objects. To
increase the sample size, each price vector is truncated
into 8 segments each with 30 dimensions. The resulting
data set contains 4,328 data objects with 30 dimensions
(denoted by S&P500). The second data set is the color
histograms of Corel image features (denoted by IMAGE)2.
It contains 32-dimensional image features extracted from
68,040 images of the Corel image collection. For both data
sets, the original data objects are complete. Similarity query
results on the complete data are used as the “ground truth”
to evaluate the precision and recall of our approach.

We construct the dimension incomplete data sets by
randomly removing some dimensions of each complete
data object. The number of missing data elements are
controlled by missing ratio which is the percentage of the
missing dimensions. For whole sequence query problem,
100 randomly sampled complete data objects are used as
queries. For subsequence matching problem, the first 5
dimensions of these 100 data objects are used as the query
objects.

7.2 Results and Analysis

7.2.1 Effectiveness of the Probabilistic Framework

Because we use query results on the complete data as
the “ground truth”, when the probability threshold used is
between 0 to 1, both false positive and false negative might
occur. In order to evaluate how well the proposed proba-
bilistic framework can model the uncertainty caused by the
dimension incompleteness, we use two standard measures,
precision and recall: precision = |tp|

|S result | , recall = |tp|
|S true | ,

where tp stands for true positives, i.e., the retrieved data
objects whose complete forms are in the “ground truth”,
S true stands for the “ground truth” results, S result is the
retrieved dimension incomplete data objects.

Figures 7, 8, 9 and 10 show the quality of query results. It
can be observed that our method (PSQ) achieves high preci-
sion and recall on both data sets. These results demonstrate
the effectiveness of the proposed probabilistic framework.
We also compare our approach with a simple method
(simpleL2), which randomly removes elements of the query
to construct a new query with the same dimensionality as
the dimension incomplete objects in the database. If the
distance between the data object and the constructed query
object is less than r, simpleL2 will report it. From the
results, we can see that our method models the underlying
problem better hence achieves better query quality.

Our method performs better on the S&P500 data set
than on the IMAGE data set. This is due to the intrinsic
characteristics of these two data sets. S&P500 data set is

1. http://kumo.swcp.com/stocks/
2. http://kdd.ics.uci.edu/databases/CorelFeatures/CorelFeatures.data.html
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Fig. 7. Query precision on S&P500 data set
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Fig. 8. Query recall on S&P500 data set

a typical time series data set. An example data object is
“55.21 52.87 52 53 50.44 ...”. The adopted imputation
method (imputing normally distributed random variable
with expectation equal to the mean of nearest existing data
elements) suits this application well. On the other hand,
the image histogram data is not a time series data set.
The adopted imputation method cannot accurately assign
expected values for the random variables. This indicates the
importance of the imputation method. Note that our method
is independent of the imputation method applied. The user
can decide what imputation method to use depending on
the application.

7.2.2 Effect of the Probability Threshold
It can be observed from Figures 7, 8, 9 and 10 that recall
value decreases and precision value increases with the
increase of the probability threshold. Fig. 11 shows the
relationship between the probability threshold c and preci-
sion/recall (missing ratio=0.1, r=60 for S&P500 and r=0.7
for IMAGE). It can be seen that our method is very robust
with respect to the probability threshold. This indicates
that c can be chosen to trade off between precision and
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Fig. 9. Query precision on IMAGE data set
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Fig. 10. Query recall on IMAGE data set
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Fig. 11. Probability threshold vs precision/recall

recall based on the understanding of application domain.
In the Appendix, we provide theoretical analysis of the
relationship between probability threshold and quality of
query results formally.

7.2.3 Effectiveness of Different Pruners

In this section, we study the effectiveness of the pruners
proposed in this paper by examining their pruning power.
Their effectiveness is measured by Npruned

N where N is the
number of the data objects in the database, and Npruned

is the number of data objects in the database judged as
dismissals or search results by the pruner.

Fig. 12 shows the overall pruning power of probability
triangle inequality with various number of assistant data
objects (c = 0.2). For S&P500 data, when only 10 assistant
data objects were used, the pruning power is more than
60%. For IMAGE data, in most cases, the pruning power
of the probability triangle inequality is more than 20% with
20 assistant data objects.

The results show that the probability triangle inequality
has good pruning power by involving only a few assistant
data objects. Moreover, the performance will improve when
more assistant data objects are available. After the pruning
power reaches a certain level, the increase of assistant data
objects has no significant further impact on the pruning
power.

For a more detailed study, we examine the pruning power
of the following four pruners: probability triangle inequality
(a) in Theorem 4.2 (pruner1), probability triangle inequal-
ity (b) in Theorem 4.2 (pruner2), probability lower bound
in Theorem 4.1 (pruner3), and probability upper bound in
Theorem 4.1 (pruner4). Fig. 13 shows the pruning power
of each pruner with various r (missing ratio=10%, c=0.1,
20 assistant objects). From the figure, we can see the
effectiveness of each pruner. We find that for S&P500 data
set, about 90% data objects are pruned and only a very
small portion of the data objects need to be evaluated by
the naive verification process. For IMAGE data set, even
in the worst case, there are about 50% data objects can be
pruned.

The pruning power of these four pruners is influenced by
the threshold r. When specifying a smaller r (i.e., the user
wants to get a relatively small amount of query results),
more data are pruned by pruner1 and pruner3. In contrast,
a larger distance threshold produces a larger pruning power
for pruner2 and pruner4.

Note that the naive verification step is time consuming.
Next, we study whether this step is necessary. We try
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Fig. 12. Pruning power of probability triangle inequality
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Fig. 13. Pruning power of four pruners

two simplified verification strategies. For data objects that
the former four pruners cannot judge, strategy Pos simply
outputs them as query results. Strategy Neg, by contrast,
judges them as dismissals. Clearly, Pos may result in more
false positives, and Neg may result in more false negatives.
The query quality of these two strategies and the naive
verification step (denoted by DoN) are shown in Table
2 (c=0.1). From the table, we can see that for S&P500
data set, without naive verification, the precision and recall
are very close to those with naive verification. The query
quality depends more on the naive verification step for the
IMAGE data. We can observe that for the data sets with
time series characteristics, such as the S&P500 data set, a
good query quality can be achieved even without the naive
verification process.

7.2.4 Comparison of Different Imputation Strategies
In this section, we study the effect of different imputation
strategies. In our algorithm, the expected value of a random
variable imputed is the mean value of its nearest two
observed neighbors. We refer to this imputation strategy
as imputeNeighbourMean. This strategy utilizes the local

TABLE 2
Comparison of query quality

missing ratio 5% 10% 15%
precision recall precision recall precision recall

S&P500
(r=40)

Neg 0.999 0.948 0.999 0.888 1 0.857
Pos 0.946 1 0.884 1 0.861 1

DoN 0.984 0.999 0.964 0.989 0.947 0.979

IMAGE
(r=0.4)

Neg 1 0.244 0.947 0.053 0.955 0.032
Pos 0.408 1 0.254 0.998 0.239 1

DoN 0.787 0.976 0.642 0.923 0.551 0.866
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Fig. 14. Search quality comparison with different imputa-
tion policies(missing ratio=0.1,c=0.1)
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Fig. 15. Subsequence matching evaluation example

properties of the multidimensional data. For comparison
purpose, we apply another imputation strategy that uses
the mean value of all observed data values as the expected
value of the random variables. We refer to this imputation
strategy as imputeOverallMean. This strategy utilizes the
characteristic of the entire data object. Moreover, we also
study the case when the expected value of imputed random
variable is the mean of more observed neighbors. Fig. 14
shows the comparison of these imputation strategies. In the
figure, we evaluate the precision and recall when varying
the number of neighbors used for imputation. The strate-
gy imputeNeighbourMean corresponds to the case when
“number of neighbors” is 2. Strategy imputeOverallMean
corresponds to the case “All”. Clearly, the more neighbors
are used, the more global properties are incorporated. From
the figure, we can observe that imputeNeighbourMean is
more suitable for S&P500 data set. This is reasonable since
this strategy captures the local properties of the typical time
series data. By contrast, imputeOverallMean works better
on IMAGE data set. This is because IMAGE data set is not
a time series data and lack of continuity and consistency.
Thus a global mean is capable of reducing randomness, thus
more suitable for IMAGE data. Our framework provides the
flexibility to the user to choose the appropriate imputation
strategy for specific applications.



7.2.5 Evaluation of Subsequence Matching on Dimen-
sion Incomplete Data
In this section, we examine the quality of our framework for
subsequence matching on dimension incomplete data. We
use the first 5 dimensions of the whole sequence queries
as the queries for subsequence matching in S&P500 and
IMAGE data sets. The subsequences obtained from the
complete data are used as the “ground truth”. To make
it clear, for instance, in Fig. 15, the original complete
sequence is (...1, 3, 1, 2, 5, 4, 6, 9, 8, 8, 2, 7, ...), among which
the gray values are observed, and the length of query
is 5. As shown in Fig. 15(a), if the algorithm identifies
that the subsequence between value 5 and 7 satisfies the
query condition, then this is a true positive if and only if
(4, 6, 9, 8, 8) or (6, 9, 8, 8, 2) satisfies the distance condition.
If the algorithm identifies (5) as the dimension incomplete
search result, then this is true if and only if (2, 5, 4, 6, 9)
or (5, 4, 6, 9, 8) meets the distance condition. Similarly in
Fig. 15(c), if (1, 1, 5) is identified as the search result, it
will be a false positive if (1, 3, 1, 2, 5) does not meet the
distance condition. Furthermore, if (5, 7) is identified as a
search result, then it is definitely a false positive.

Fig. 16 and Fig. 18 show the precision and recall of
subsequence matching for S&P500 and IMAGE data sets.
Different minimal length constraints are used to match
the query (c=0.1 for both data sets, r=20 for S&P500,
and r=0.4 for IMAGE). This constraint reveals the prior
knowledge for the missing ratio of dimension incomplete
sequences. For larger missing ratio, a smaller value for the
constraint of minimal length is more appropriate. This con-
straint also reveals a tradeoff between precision and recall.
If the user wants to identify more matched subsequences,
a smaller constraint value is better. The results of a naive
solution is presented as the baseline. This naive solution
neglects the fact of dimension incompleteness, and treats
data objects as complete examples. The results demonstrate
the superiority of our framework for tackling subsequence
matching on dimension incomplete data.

The results also show that, with the increase of minimal
length constraint, precision and recall are more sensitive
to the missing ratio. When the minimal length constraint
is small (e.g., minimal length≤ 2), the precision and recall
remain stable with the increase of missing ratio. Fig. 17(a)
and Fig. 17(b) present the evolution of precision and recall,
as a function of the minimal length constraint (missing
ratio=0.25 and c=0.1 for both data sets, r=20 for S&P500,
and r=0.4 for IMAGE). From the figures, we can see that
the constraint value of length provides an effective tradeoff
between precision and recall. With the increase of minimal
length constraint, the precision increases, and the recall
decreases. When the minimal length constraint arrives at
5, the algorithm degenerates into the naive solution in that
the query is of dimensionality 5.

7.2.6 Performance for Data with Different Dimensionali-
ties
In this section, we study the effect of dimensionality of
the dataset on pruning power and the search quality. The
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Fig. 16. Missing ratio vs precision/recall on S&P500

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

minimal length constraint

pr
ec

is
io

n/
re

ca
ll

 

 

precision_PSM
recall_PSM
precision_naive
recall_naive

(a) S&P500

0 2 4 6
0

0.2

0.4

0.6

0.8

1

minimal length constraint

pr
ec

is
io

n/
re

ca
ll

 

 

precision_PSM
recall_PSM
precision_naive
recall_naive

(b) IMAGE

Fig. 17. Minimal length constraint vs precision/recall

original S&P500 dataset has 250 dimensions. It enables to
vary the dimensionality in a wide range. When the dimen-
sionality is large, the naive evaluation step is intractable.
We use strategy Neg and simply judge them as dismissals.
The distance threshold r is set to the value so that half of
the data objects satisfy the query condition. The probability
threshold c is set to 0.2, and the missing ratio is set to 0.2.
Due to using strategy Neg, the precision values for different
dimensionalities are all 1. The recall values are shown in
Fig. 19(a). The pruning power of all four pruners (including
probability bounds and probability triangle inequality) are
shown in Fig. 19(b). From the figures, we observe that both
recall and pruning power decrease as the dimensionality
of data increase. This is because for a give missing ratio,
with the increase of the dimensionality, the uncertainty of
the data object increases. In other words, there are more
possible recovery versions for the dimension incomplete
data. This causes the probability bounds become looser,
together with the decline of the search quality. Nevertheless,
we still observed that even when the dimensionality reaches
250, our algorithm achieves more than 0.84 in terms of
recall and more than 0.88 in terms of the pruning power.
This well illustrates the effectiveness of our algorithm
for tackling high-dimensional time series data. Another
indicator of the performance is the running time. We will
study the running time of the algorithm when varying the
dimensionality of the data in Section 7.2.7.

7.2.7 Runtime Evaluation
There are three major steps in our approach for the whole
sequence matching: (1) pruning with probability triangle
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Fig. 18. Missing ratio vs precision/recall on IMAGE
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Fig. 20. Time Complexity Evaluation

inequality; (2) pruning with probability lower and upper
bounds; (3) naive probability verification. We examine
running time of these steps using the S&P500 data set on a
computer with 3.0GHz CPU and 1.0GB RAM. The running
time is averaged over all queries. The results are shown in
Fig. 20(a). We can see that the first two steps are very
efficient compared with the naive probability verification
step. Moreover, Table 2 in section 7.2.3 demonstrates that
this naive probability verification is not necessary for the
data sets with time series characteristics. Thus the efficiency
of the overall query process can be dramatically improved
without compromising the quality of the results.

To study the scalability of the proposed algorithms, we
limit the usage of the maximal memory for the proposed
algorithms to 10MB, and compare the CPU and IO costs
separately when the size of dataset changes (from 20KB
to 100MB). We use the original S&P500 data (containing
500 data objects with dimensionality 250) and IMAGE data.
Since when the dimensionality is large, the naive evaluation
step is intractable, we use strategy Neg and simply judge
them as dismissals. When varying the number of data
objects, the total running time for randomly selected 20
queries is shown in Fig. 21. From the figure, we observe
that both CPU and IO costs on the two datasets grow
approximately linearly with the increase of the size of
dataset. This is reasonable because our algorithm dose not
need to fit all the data objects and queries in the memory. It
only needs to fit one query and one dimension incomplete
data object to be verified in the memory. Thus, the running
time (both CPU and IO costs) for the whole searching
process grows linearly when increasing the size of dataset.
In addition, due to the fact that the time complexity of our
algorithm mainly depends on the dimensionality of data,
we also study the average query time cost when varying
the dimensionality with a given missing ratio. The results
in Fig. 20(b) show that the average time cost for each query
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Fig. 21. CPU/IO costs vs size of dataset
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processing has an approximately cubic growth with respect
to the dimensionality of data. This is due to the fact that
the time complexity is O(|Xo| · (|Q| − |Xo|)2). When fixing
the missing ratio, it is identical to O(|Q|3).

We also measured the running time of subsequence
matching using different missing ratios and minimal length
constraints. Fig. 22(a) shows that for both data sets, the
running time declines with the increase of the missing
ratio when the minimal length constraint is fixed (minimal
length constraint=0, c=0.1, r=20 for S&P500, r=0.4 for
IMAGE). From Section 5, we know that this is because the
complexity of subsequence matching is proportional to |Xo|.
With the increase of the missing ratio, |Xo| decreases. Fig.
22(b) presents the relationship between the running time of
subsequence matching and the minimal length constraint
when the missing ratio is fixed (missing ratio=0.2). This
figure shows that with larger minimal length constraint,
running time can be effectively reduced. This is because
a larger minimal length constraint enables the algorithm
to neglect more data missing cases. Recall that in Section
5, we find that the minimal length constraint provides
an effective trade-off among precision, recall and time
complexity.

8 Conclusions
This paper addresses the similarity query problem on di-
mension incomplete data, which is of both practical im-
portance and technical challenge. A probability framework
is proposed to model this problem. To solve this problem
efficiently, we develop the lower and upper probability
bounds and the probability triangle inequality that can be
used to dramatically prune the search space. Furthermore,
the similarity query framework is extended to tackle subse-
quence matching in dimension incomplete data. For a query
Q and a dimension incomplete data object Xo, the brute
force method is of complexity O(|Q| ·

( |Q|
|Xo |

)
). Our method

achieves a significant improvement: most data objects can
be handled in O(|Xo| · (|Q| − |Xo|)2) or even O(|Q|) time.



We conduct extensive experimental evaluation using real
data sets. The results indicate that (1) our approach achieves
satisfactory performance in querying dimension incomplete
data for both whole sequence matching and subsequence
matching; (2) both the probability triangle inequality and
the probability bounds have a good pruning power and
improve query efficiency significantly;

Our future work will focus on the following directions.
Since a probability triangle inequality holds, we plan to
develop an index structure that can utilize the inequality to
further improve the efficiency of the query process. Further
more, we plan to investigate how to extend our query
strategy to incorporate a wide range of distance functions.
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