
Adaptive Neural Network for Node Classification in
Dynamic Networks

Dongkuan Xu1∗, Wei Cheng2∗, Dongsheng Luo1, Yameng Gu1, Xiao Liu1,
Jingchao Ni2, Bo Zong2, Haifeng Chen2, and Xiang Zhang1∗

1The Pennsylvania State University 2NEC Laboratories America, Inc.
{dux19,dul262,yug56,xxl213,xzz89}@psu.edu, {weicheng,jni,bzong,haifeng}@nec-labs.com

Abstract—Given a network with the labels for a subset of
nodes, transductive node classification targets to predict the labels
for the remaining nodes in the network. This technique has
been used in a variety of applications such as voxel functionality
detection in brain network and group label prediction in social
network. Most existing node classification approaches are per-
formed in static networks. However, many real-world networks
are dynamic and evolve over time. The dynamics of both node
attributes and network topology jointly determine the node
labels. In this paper, we study the problem of classifying the nodes
in dynamic networks. The task is challenging for three reasons.
First, it is hard to effectively learn the spatial and temporal
information simultaneously. Second, the network evolution is
complex. The evolving patterns lie in both node attributes and
network topology. Third, for different networks or even different
nodes in the same network, the node attributes, the neighborhood
node representations and the network topology usually affect
the node labels differently, it is desirable to assess the relative
importance of different factors over evolutionary time scales. To
address the challenges, we propose AdaNN, an adaptive neural
network for transductive node classification. AdaNN learns node
attribute information by aggregating the node and its neighbors,
and extracts network topology information with a random walk
strategy. The attribute information and topology information are
further fed into two connected gated recurrent units to learn
the spatio-temporal contextual information. Additionally, a triple
attention module is designed to automatically model the different
factors that influence the node representations. AdaNN is the
first node classification model that is adaptive to different kinds
of dynamic networks. Extensive experiments on real datasets
demonstrate the effectiveness of AdaNN.

Index Terms—Dynamic Networks, Node Classification, Spatio-
Temporal, RNN, Attention Mechanism

I. INTRODUCTION

The rapid growth of information in the past decades has led
to a vast increase in the volume of information about individual
instances and the connections between them. A large part of
this data can be organized in the form of network data where
each node represents an instance and the edge indicates the
connection, such as brain networks [1] and social networks
[2]. When dealing with network data, a subset of nodes may
be labeled. Node classification leverages the node proximity
manifested to extend the labeling so that each node is assigned
a label. For example, in brain networks, a node represents a
tidy cube of brain tissue called a voxel and the edge indicates
the connectivity between voxels. Node classification in a brain

∗These authors contributed equally to this work.

Time 1 Time 2 Time T

...

Time 3

Fig. 1. An illustration of a dynamic brain network.

network is to classify the voxels into different categories
according to their functionality [3]. Node classification helps
us understand the underlying functionality of the unknown
nodes and their role when interacting with others. Take the
brain network as an example. A brain consists of plenty of
voxels, but people usually know the functionality of a part
of them. This is because it is with high cost to analyze the
functionality of all the voxels and the expressing patterns of
some voxels are too complicated to recognize. So people are
interested in exploring the unknown voxels based on the voxels
with available labels.

Due to its importance, there have been considerable research
efforts attracted on node classification in recent years [4]–[8].
Perozzi et al. in [4] use the local information extracted by
random walks to generate the node representations and predict
the node labels with the hierarchical softmax. A convolutional
architecture is proposed to classify nodes in networks by con-
sidering both node attributes and network topology [6]. Node
labels are predicted by the softmax function. The authors in
[8] propose an attention-based architecture that performs node
classification on network data. These classification approaches
are for the static networks.

Many real-world networks are dynamic and network topol-
ogy evolves over time. Fig. 1 shows the voxel connectivity
of the brain network when the subject conducts different
tasks at different time steps. The connectivity between voxels
will change when the subject conducts different tasks, which
results in the edge deletion or addition. This is because the
connections between different brain neurons will change under
different tasks. Some efforts have been made on the node
classification in dynamic networks recently [9]–[11]. Goyal et
al. in [10] use autoencoder to capture the nonlinear proximity
of nodes and incrementally generate the representations at time
t from the ones at time t-1. The triadic closure process is mod-

eled to preserve the evolution patterns of dynamic networks
in [11]. Nodes are further classified by a logistic regression
model. A large part of these approaches are designed for the
dynamic networks where network topology evolves over time.
However, a majority of networks are with a rich set of node at-
tributes, which also evolve over time. The research on the node
classification in the dynamic networks with node attributes
is still very limited. Additionally, for different networks, the
node attributes and the network topology show differential
influence on node representations. Even in the same network,
the representations of some nodes can be dominated by node
attributes and some are dominated by network topology. These
dynamic characteristics motivate us to develop an effective
method that can be adaptive to different networks and model
different factors influencing the node representations.

In this work, we study the problem of node classification
in dynamic networks. Given a sequence of networks for the
same set of nodes, where nodes are with attributes and each
node has an unique label across difference time steps, the
goal is to classify the unlabeled nodes based on the labeled
ones. The task is challenging: First, as the spatial and temporal
dimensions of dynamic networks are entangled, it is hard to
effectively learn node representation based on both spatial and
temporal aspects. Second, the dynamic characteristics of dy-
namic networks are complex. Both node attributes and network
topology evolve over time. Third, there are different factors
that influence node representations. For example, different
neighbors show different influence on node representation. The
importance of node representation in different time periods
also varies. Another factor is related to the network property.
Node representations are influenced by node attributes and
network topology differently for different networks.

To address these challenges, we propose AdaNN (Fig. 2.),
an adaptive neural network, for node classification in dynamic
networks. AdaNN aims to learn node representations for clas-
sification by considering the evolution of both node attributes
and network topology. More specifically, at each time step,
AdaNN learns the node attribute information by aggregating
the representation of the node and its neighbors. To extract
the network topology information, AdaNN applies a random
walk strategy to obtain the structural context of each node. The
attribute information and the structural context are further fed
into two connected gated recurrent unit (GRU) network [12] to
jointly learn the spatio-temporal information of node attributes
and network topology. The spatio-temporal information is used
as the node representation to classify the node. Moreover,
a triple attention module is developed to model different
factors that influence the node representations in dynamic
networks. In particular, an attention module on spatial aspect
helps to differentiate the importance of different neighbors
on the target node’s representation. On the temporal aspect,
an attention module helps to recognize the importance of
node representations in different time steps. Another attention
module helps to differentiate the relative influence of node
attribute and network topology for different networks.

A-GRU

T-GRU

FC Layer

tanh

Softm
ax

FC Layer

Spatial Attention

FC Layer

tanh

Softm
ax

FC Layer

FC Layer

tanh

Softm
ax

FC Layer

Temporal AttentionAttribute-Topology Attention

Fig. 2. Overall architecture of AdaNN.

II. THE PROBLEM

A dynamic network is a collection of snapshots of an
attributed network at different time steps, denoted by G =
(G1, G2, · · · , GT). Gt = (V , At, Xt) is the network at time
step t. The set of nodes V is fixed for all time steps. Each
node has a consistent label across T time steps. At ∈ RN×N
is the adjacency matrix and Xt ∈ RN×d is the node attribute
matrix. Both At and Xt change at different time steps. Given
G and the labels of a subset of nodes VL, the goal of node
classification in dynamic networks is to classify the nodes in
subset VU whose labels are unknown, where V = VL ∪ VU .

III. ADAPTIVE NEURAL NETWORK FOR NODE
CLASSIFICATION IN DYNAMIC NETWORKS

A. Attribute-Topology GRU Network

To integrate both node attribute information and network
topology information, we design a neural network consisting
of two connected GRUs, called attribute-topology GRU net-
work (AT-GRUs). The intuition behind AT-GRUs is that two
GRUs are used to consider the attribute information and the
topology information respectively, and the outputs of the two
GRUs are concatenated as a joint state vector.

The GRU that considers the topology information is called
T-GRU. T-GRU takes the vector containing the topology
information related to the node as input and outputs a state
vector. In this paper, we use random walk with restart (RWR)
[13] to extract the topology information vector for each node
which has been shown effective in exploring network data.
Given a network at time step t, Gt = (V , At, Xt), and
a starting node v, the k-step RWR vector is defined as
p(k) = cp(k−1)[(D−1)At] + (1− c)p(0) where p(k) ∈ R1×N

+ .
p
(k)
u represents the probability of node u after k step transitions

from v. p(0) is the initial vector with p
(0)
v = 1 and all other

entries equal 0. D is a diagonal matrix with Dii =
∑N
j=1 Atij .

1 - c is the probability that the random walker will restart from
v. Thus, the topology context vector for node v at time step t
is defined as

at =
K∑
k=1

p(k) (1)

where K indicates the number of considered steps. We apply
the process to all nodes.

T-GRU is described in Eqs. (2)-(5). It takes the topology
vectors of a node at different time steps, i.e., a1, ..., aT ∈ Rd,

as inputs. A state vector h∗t ∈ Rdh is learned for each time
step by applying the following equations iteratively.

z∗t = σ(W∗z[at ⊕ h∗t−1] + b∗z), (2)
r∗t = σ(W∗r [at ⊕ h∗t−1] + b∗r), (3)

h̃
∗
t = tanh(W∗h[at ⊕ (r∗t � h∗t−1)] + b∗h), (4)

h∗t = (1− z∗t)� h∗t−1 + z∗t � h̃
∗
t , (5)

where W∗z,W
∗
r ,W

∗
h ∈ Rdh×(d+dh) and b∗z,b

∗
r ,b
∗
h ∈ Rdh are

parameters. z∗t , r∗t ∈ Rdh are the update gate and the reset gate
respectively. T-GRU shares the similar calculation process of
a standard GRU.

The GRU that considers the attribute information is called
A-GRU. The intuition behind A-GRU is that, for a node,
the attribute information lies in both its node attributes and
the representations of its node neighbors. Thus, to generate
the new proposal to update the state vector, A-GRU will
consider the neighborhood information besides the attributes
of the node itself and the previous state vector (Eq. (9)). How
to extract the neighborhood information will be discussed in
Section III-B.

A-GRU is described in Eqs. (6)-(10). Given the node
attribute vectors at different time steps x1, ..., xT ∈ Rd and the
neighborhood representation vectors e1, ..., eT ∈ Rdg , a state
vector h

′

t ∈ Rdh is learned for each time step by applying the
following equations iteratively.

z
′

t = σ(W
′

z[xt ⊕ h
′

t−1 ⊕ et] + b
′

z), (6)

r
′

t = σ(W
′

r[xt ⊕ h
′

t−1 ⊕ et] + b
′

r), (7)

s
′

t = σ(W
′

s[xt ⊕ h
′

t−1 ⊕ et] + b
′

s), (8)

h̃
′

t = tanh(W
′

h[xt ⊕ (r
′

t � h
′

t−1)⊕ (s
′

t � et)] + b
′

h), (9)

h
′

t = (1− z
′

t)� h
′

t−1 + z
′

t � h̃
′

t, (10)

where b
′

z , b
′

r, b
′

s, b
′

h ∈ Rdh , W
′

s ∈ Rdg×(d+dh+dg), W
′

z , W
′

r,
W

′

s ∈ Rdh×(d+dh+dg) are the parameters. z
′

t, r
′

t ∈ Rdh , s
′

t ∈
Rdg are the update gate, the reset gate and the neighborhood
gate respectively.

Eqs. (6)-(8) describe how to calculate the three gates. Eq. (9)
describes how to calculate a new proposal. The values in all
gates are in the range of [0,1] and they control the information
when generating the state vector. r

′

t � h
′

t−1 indicates how
much information to keep from the previous state vector.
s
′

t � et indicates how much information to keep from the
neighborhood representation vector. Eq. (10) describes how to
calculate a new state vector.

B. Vector Representation of the Neighborhood

A neighborhood vector is extracted for each node at each
time step to represent its neighborhood information. The
key idea is to aggregate the neighbors’ representations. We
consider K-hop neighbors.

First, we prepare the K-hop neighbors Given a set of nodes
B to be classified, we sample the immediate neighbors of
the nodes in B. These sampled neighbors and the nodes in
B together form a new set B1. We do the same for B1 and

Algorithm 1: Generating Neighborhood Vector
Input: Temporal attributed graph G = (G1,G2, ...,GT), K-hop

neighbors B0t ... BKt , where B0t = B.
Output: Neighborhood vector et(v) for all v ∈ B0t .

1 for t = 1, ..., T do
2 gK

t(v)
← xt(v), ∀v ∈ BKt

3 for k = K-1, ..., 1 do
4 for v ∈ Bkt do
5 gk+1

N (t(v))
← AGGk+1({gk+1

t(u)
, ∀u ∈ N (v)})

6 gk
t(v)
← σ(W k+1

trans[g
k+1
t(v)
⊕ gk+1
N (t(v))

])

7 for v ∈ B0t do
8 et(v) ← AGG1({g1t(u), ∀u ∈ N (v)})

get another new set B2. As a result, we get a sequence of sets
denoted by B0 ... BK , where B0 = B. The neighbors are sam-
pled by sampling function N (·). Then, based on these node
sets, we generate the neighborhood vectors for all the nodes in
B (Algorithm 1). gkt(v) is the representation of node v at time
step t after aggregating its k-th hop neighbors. Line 5 describes
the operation of aggregating neighbors’ representations. Line
6 describes how to generate a new representation. Wk

trans ∈
Rdg×2dg is the transformation matrix that we need to learn.
We will introduce aggregator AGG(·) in Section III-C1.

C. Triple Attention Module

A triple attention module is developed to model three types
of factors that influence the node representations in dynamic
networks.

1) Spatial Attention: Different neighbors influence node
presentations diversely. Attention technique can adaptively
capture the pertinent information [14]. We design a spatial
attention module to detect the important neighbors of a node.

The spatial attention is applied to the aggregator during
the aggregation process (Line 5 in Algorithm 1). Based on
the attention values, the aggregator sums up the neighbors’
representations as follows.

AGGk({gkt(u),∀u ∈ N (v)}) =
∑

u∈N (v)

βkuVkgkt(u), (11)

where
∑
βku = 1 and Vk ∈ Rdg×dg are parameters. βku is

the attention value of neighbor u located at the k-th hop. It
indicates the importance of u to node v compared to other
neighbors located at the k-th hop. βku is produced by our spatial
attention module that takes the representations of the node and
its neighbors as inputs, which is described as follows.

βku =
exp{F (w>k [Vkgkt(u) ⊕ Vkgkt(v)])}∑

v′∈N (v) exp{F (w>k [Vkgkt(v′) ⊕ Vkgkt(v)])}
, (12)

where F (·) is an activation function. wk ∈ Rdg and Vk ∈
Rdg×dg are parameters.

2) Attribute-Topology Attention: Node representations can
be dominated by the network topology or node attributes. The
relative importance of topology and attributes can be different

at different time steps. Based on this insight, a attribute-
topology attention module is designed to pay different levels
of attention to the topology and attributes.

The attribute-topology attention takes the state vectors h∗t
and h

′

t as inputs and outputs the attention values γ∗t and γ
′

t:

γ∗t =
exp{ẇ> tanh(V̇h∗t)}

exp{ẇ> tanh(V̇h∗t)}+ exp{ẇ> tanh(V̈h∗t)}
, (13)

γ
′
t =

exp{ẇ> tanh(V̇h
′
t)}

exp{ẇ> tanh(V̇h′
t)}+ exp{ẇ> tanh(V̇h′

t)}
, (14)

where ẇ> ∈ Rdγ and V̇ ∈ Rdγ×dh are parameters. γ∗t and γ
′

t

represents the relative importance of topology and attributes
respectively at time step t for influencing the target node’s
representation. Thus, the final state vector at time step t is

ht = [(γ∗t × h∗t)
> ⊕ (γ

′

t × h
′

t)
>]> ∈ R2dh . (15)

To study the overall relative importance of topology and
attributes for each node another attribute-topology attention
module is designed:

γ∗ =
exp{ẅ> tanh(V̈h∗)}

exp{ẅ> tanh(V̈h∗)}+ exp{ẅ> tanh(V̈h∗)}
, (16)

γ
′
=

exp{ẅ> tanh(V̈h
′
)}

exp{ẅ> tanh(V̈h′
)}+ exp{ẅ> tanh(V̈h′

)}
, (17)

where h∗ = [h∗>1 ⊕· · ·⊕h∗>T]> ∈ RTdh and h
′

= [h
′>
1 ⊕· · ·⊕

h
′>
T]> ∈ RTdh . ẅ> ∈ Rdγ and V̈ ∈ Rdγ×Tdh are parameters.
γ∗ and γ

′
represent the overall relative importance of topology

and attributes respectively. Thus, the final state vector based
on this attention module is

ht = [(γ∗ × h∗t)
> ⊕ (γ

′
× h

′

t)
>]> ∈ R2dh . (18)

3) Temporal Attention: For a dynamic network, the amount
of valuable information provided by different time steps is
different. Only some contain the most discriminative informa-
tion for determining node representations. Thus, we design a
temporal attention module to pay different levels of attention
to different time steps.

The temporal attention module takes the state vector ht as
input and outputs an attention value:

αt =
exp{w̃> tanh(Ṽht)}∑T
i=1 exp{w̃

> tanh(Ṽhi)}
, (19)

where w̃ ∈ Rdα and Ṽ ∈ Rdα×2dh are parameters. αt indicates
the importance of time step t for influencing the target node’s
representation compared to others. We concatenate all ht as
H = [h1⊕· · ·⊕hT] ∈ RT×2dh . Therefore the attention values
of different time steps are ααα = softmax(w̃> tanh(ṼH>)) ∈
RT . Then we sum up all the state vectors scaled by ααα to
generate the final vector representation for the node as q =
ααα>H ∈ R2dh .

D. Objective Function

Given the node representations denoted by q1,· · · , qN and
the node labels y1,· · · , yN , where N is the number of nodes,
the objective function of AdaNN is

J = Lce + λPnn. (20)

TABLE I
DESCRIPTION OF THE DATASETS

Dataset # Nodes # Edges # Attributes # Time Steps # Categories

Brain 5000 1955488 20 12 10
DBLP-5 6606 42815 100 10 5
Epinions 16025 1144258 20 11 10
Reddit 8291 264050 20 10 4

Lce = - 1
N

∑N
i=1 yi log (ỹi) is the cross-entropy loss. ỹi

is the estimate, which is produced by applying softmax(·)
to the output of a fully connected layer that takes the node
representation as input, i.e., ỹi = softmax(Woqi + bo). Wo ∈
Rc×2dh and bo ∈ Rc are the parameters. c is the number of
categories. Pnn is the penalization term for the parameters to
prevent AdaNN from over-fitting. λ is a hyper-parameter.

IV. EXPERIMENTS

A. Datasets

We use four real-world datasets. The description of datasets
is shown in Table I. The datasets and the code of this paper
are publicly available1. In the Brain dataset, nodes represent
tidy cubes of brain tissue and edges indicate the connectivity.
Brain is generated from the real-world task based functional
magnetic resonance imaging (fMRI) data2. This fMRI data
is collected when the subject conducts different tasks succes-
sively. We apply PCA to the fMRI of a time period to generate
the node attributes for a network snapshot. Two nodes are
connected if they show similar degree of activation during the
time period. DBLP-53 is a co-author network dataset where the
nodes represent the authors. The node attributes in a network
snapshot are extracted from the titles and abstracts of the
corresponding author’s publications during a time period by
word2vec. The authors in DBLP-5 are from five research areas.
In Reddit4, the nodes represent posts. We apply word2vec
to the comments of a post to generate its node attributes
[7]. Two nodes are connected in a network snapshot of if
their corresponding posts contain similar keywords during
a time period. Epinions is extracted from a product review
site5, where users construct trust graphs to seek advice from
others. Nodes represent users and two nodes are connected in
a network snapshot if one of them seeks advice from the other.
Node attributes are generated from the reviews by word2vec.

B. Baseline Methods

We compare AdaNN with some baseline methods. Deep-
Walk [4], GAT [8], GCN [6], GraphSAGE [7] and node2vec
[5] are originally designed for static networks. We apply them
to each network snapshot to generate the node representation at
each time step first. Then we concatenate these representations
into a vector. A logistic regression is applied to predict the
node label. GRU [12], DynGEM [10], DynAERNN [15],

1https://tinyurl.com/y6d74mmv
2https://tinyurl.com/y4hhw8ro
3https://dblp.uni-trier.de/
4https://www.reddit.com/
5http://www.epinions.com

TABLE II
NODE CLASSIFICATION COMPARISON (%).

Method Brain DBLP-5 Epinions Reddit

ACC AUC F1 ACC AUC F1 ACC AUC F1 ACC AUC F1

DeepWalk 71.4 97.2 70.2 35.4 61.0 26.9 30.1 68.4 23.0 47.5 71.9 46.8
GAT 43.8 86.2 49.2 32.5 48.6 26.1 22.5 63.1 18.3 29.6 52.4 21.8
GCN 65.0 86.7 60.1 33.7 50.0 28.9 20.9 62.4 17.8 27.7 54.0 21.3
GraphSAGE 69.4 96.7 74.1 71.0 90.7 69.7 24.5 63.9 18.7 42.5 66.8 42.5
node2vec 71.0 96.8 70.6 36.9 64.2 27.2 32.8 70.2 26.0 48.0 72.2 47.9

GRU 80.4 98.2 80.2 75.6 91.5 75.2 17.3 61.7 17.2 42.1 67.2 41.9
DynGEM 49.6 90.6 50.0 41.0 66.0 22.3 32.7 66.8 24.1 27.1 51.4 17.3
DynAERNN 46.6 89.0 47.0 36.8 55.9 16.0 32.9 68.3 23.8 28.9 53.6 18.6
DANE 85.2 94.8 85.9 82.5 92.3 81.6 31.8 67.1 23.5 45.7 70.0 45.1
STAR 89.2 99.2 90.0 80.3 95.5 80.7 32.6 67.4 24.0 50.8 75.0 51.1

AdaNN-S 87.8 95.8 88.4 83.9 94.8 82.4 30.9 68.1 25.5 42.3 67.1 42.1
AdaNN-P 85.1 91.5 84.7 81.5 93.7 81.7 27.5 62.8 22.4 46.1 71.3 46.2
AdaNN-T 79.5 90.2 79.9 78.1 92.5 77.6 29.2 65.3 25.0 44.6 68.0 44.4

AdaNN 91.0 99.5 92.3 88.5 97.8 88.4 34.5 72.7 28.1 52.1 79.6 53.4

DANE [9] and STAR [16] are used to model the evolution of
dynamic networks. GRU only consider the evolving patterns
of node attributes. DynGEM and DynAERNN can model the
evolving patterns of network topology. DANE learns offline
node representations in terms of both network topology and
node attributes. STAR employs a spatio-temporal GRU to
jointly model temporal evolution of attributes and topology. To
gain insights about AdaNN, we study its variants. AdaNN-S is
the variant without applying the spatial attention. It generates
neighborhood representations by the mean pooling. AdaNN-P
is the variant without applying the attribute-topology attention.
AdaNN-T does not apply the temporal attention.

In our experiments, λ is set to 10−3. dh, dg , dγ , dα are
set to 10. K is set to 2. The number of sampled neighbors
ns is set to 4. They are determined by grid-search from {0,
2×10−4, 5×10−4, 1×10−3, 2×10−3}, {2,5,10,15}, {1,2,3,4}
and {2,4,8,16} respectively. N (·) is the uniform sampling
function. LeakyReLU is used as F (·). 10-fold cross-validation
is applied. AdaNN is optimized by Adam.

C. Node Classification

Table II shows the results. It is observed that AdaNN
achieves the best performance in general. DeepWalk and
node2vec show good performance on the Epinions and Reddit
datasets. This is because the representations of most nodes
in the two datasets are dominated by network topology in-
formation, and DeepWalk and node2vec are good at extract-
ing topology information. GRU shows good performance on
Brain and DBLP-5. This is because a large part of node
representations in the two datasets are dominated by the node
attribute information and the temporal change. GRU has the
advantage of modeling the evolving patterns of node attributes.
DANE outperforms DynGEM and DynAERNN on Brain and
DBLP-5 because it considers the evolving patterns of both
attributes and topology. AdaNN outperforms STAR because it
utilizes network topology better. AdaNN outperforms AdaNN-
S, AdaNN-P and AdaNN-T, indicating the importance of the
triple attention on learning better node representations for
classification. AdaNN achieves good performance in general
because it is adaptive to the dynamic characteristics of dif-

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

4300 4322 2298 254 2415 2147 3421 4566 4085 366 4939 3088 4589 628 2270 3864

4519 1081 4805 4647

3717
Target Node

1-hop Neighbors

2-hop Neighbors

Fig. 3. Visualization of spatial attention values. Edge thickness indicates
attention value between nodes.

ferent networks and can model different factors for node
representations.

D. Insights of Effectiveness

1) Visualization of Spatial Attention Values: To evaluate the
spatial attention module, we visualize the attention values of
different node neighbors. We take node 3717 from Brain at
time step 10 as an example. The visualization is shown in
Fig. 3. Different colors represent different categories. Edge
thickness indicates attention value between nodes. Thicker
edge represents larger value, which indicates that the neighbor
is more important to the node. It is observed that for node
3717, the learned attention values of nodes 4519, 4805 and
4647 are larger. This is because these nodes are from the
same category and show more influence on each other. For
nodes 4519, 4805 and 4647, the neighbors from their category
also have larger attention values. In addition, we observe the
attention values of nodes 254 and 366 are also larger. This is
because the two nodes are from the C3 category (Cognitive
Control) that is functionally related to the C4 category (Body
Movement) at time step 10. These observations verify the
effectiveness of the spatial attention module.

2) Visualization of Attribute-Topology Attention Values:
To verify the effectiveness of the attribute-topology attention
module, we visualize the attention paid to the node attribute
information (the attention paid to the network topology infor-
mation are the opposite). Fig. 4 shows the attention values for
attribute information of each node with respect to different
number of iterations on Brain and Reddit respectively. The
red color represents higher attention value. It is observed that
along the iterations, the attention values for attribute informa-
tion evolve differently for the Brain and Reddit nodes. This
is because the network properties of different networks are
different. This is because the network properties of different
node categories in the Brain network are different, but are
very similar in the Reddit network. These observations verify
the effectiveness and the necessity of the attribute-topology
attention module that focuses on the overall network property.

3) Visualization of Temporal Attention Values: To evaluate
the temporal attention module, we visualize the attention
values of different time steps. Fig. 5 shows the visualiza-
tion results of two categories of nodes from Brain. The red
color represents higher attention values. It is observed that
different categories of brain nodes have different attention
value distribution over time steps and the nodes from the
same category share the similar attention distribution. This is

(a) All nodes of Brain (b) All nodes of Reddit

Fig. 4. Visualization of attention paid to attribute information.

(a) Body Movement (b) Cognitive Control

Fig. 5. Visualization of temporal attention at different time steps of different
categories of brain nodes.

(a) Varying λ (b) Varying dh (c) Varying ns

Fig. 6. Performance evaluation of AdaNN.

because the subject conducts different tasks along the time,
and different categories of brain nodes show different degrees
of activation under different tasks. These observations verify
the effectiveness of the temporal attention module.

4) Parameter Sensitivity Study: We study the sensitivity of
AdaNN with respect to three parameters, the hyper-parameter
λ, the state vector size dh, and the number of sampled
neighbors ns. Figs. 6(a)-6(c) show the classification accuracy
on four datasets by changing one parameter while fixing others
as the same as Section IV-B. It is observed that as these
parameters increase, the accuracy increases in general until
an optimal value. λ ∈ [4×10−4,1×10−3], dh ∈ [10,15], and
ns ∈ [4,8] give the optimal results. Thus it is reasonable to set
them as 10−3, 10 and 4 respectively. Moreover, the non-zero
choices of λ verify the importance of the penalization term.

V. RELATED WORK

Node classification has drawn extensive research attention
in recent years [4], [6]–[8]. Perozzi et al. in [4] apply the
random walks to extract the local information of a node in
networks. Nodes are then classified by the logistic regression
model. Veličković et al. in [8] apply attention mechanism to
perform node classification in networks. These methods are for
the static networks. However, many real-world networks are
dynamic. Both network topology and node attributes evolve
over time. Some progresses have been made on the node
classification in the dynamic networks recently. Zhou et al.
in [11] use the triadic closure process to model the evolution

patterns of dynamic networks and a logistic regression model
is applied to classify nodes. Goyal et al. in [10] propose a node
embedding algorithm based on autoencoder, which builds the
embedding of snapshot at time t from the embedding at time
t-1. However, none of these approaches can be adaptive to the
dynamic characteristics of different networks and model the
different factors that influence node representations.

VI. CONCLUSION

Node classification targets to classify nodes in networks
where labels are known for only a subset of nodes. Many real-
world networks are dynamic. In this paper, we propose AdaNN
for node classification in dynamic networks. AdaNN consists
of two connected GRUs and a triple attention module. The
connected GRUs take node attribute information and network
topology information as inputs to generate the spatio-temporal
contextual information. The triple attention module is designed
to automatically model different factors that influence node
representations. Extensive experimental results demonstrate
the effectiveness of AdaNN.

ACKNOWLEDGEMENTS

This work was partially supported by the National Science
Foundation grant IIS-1707548.

REFERENCES

[1] S. Wang, L. He, B. Cao, C.-T. Lu, P. S. Yu, and A. B. Ragin, “Structural
deep brain network mining,” in SIGKDD. ACM, 2017, pp. 475–484.

[2] J. Ni, S. Chang, X. Liu, W. Cheng, H. Chen, D. Xu, and X. Zhang, “Co-
regularized deep multi-network embedding,” in WWW. International
World Wide Web Conferences Steering Committee, 2018, pp. 469–478.

[3] Z. Bai, P. Walker, and I. Davidson, “Mixtures of block models for brain
networks,” in SDM. SIAM, 2018, pp. 46–54.

[4] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of
social representations,” in SIGKDD. ACM, 2014, pp. 701–710.

[5] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in SIGKDD. ACM, 2016, pp. 855–864.

[6] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in ICLR, 2017.

[7] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in NeurIPS, 2017, pp. 1024–1034.

[8] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and
Y. Bengio, “Graph attention networks,” 2018.

[9] J. Li, H. Dani, X. Hu, J. Tang, Y. Chang, and H. Liu, “Attributed network
embedding for learning in a dynamic environment,” in CIKM. ACM,
2017, pp. 387–396.

[10] P. Goyal, N. Kamra, X. He, and Y. Liu, “Dyngem: Deep embedding
method for dynamic graphs,” arXiv preprint arXiv:1805.11273, 2018.

[11] L. Zhou, Y. Yang, X. Ren, F. Wu, and Y. Zhuang, “Dynamic network
embedding by modeling triadic closure process,” in AAAI, 2018.

[12] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using rnn
encoder-decoder for statistical machine translation,” in EMNLP, 2014.

[13] S. Cao, W. Lu, and Q. Xu, “Deep neural networks for learning graph
representations,” in AAAI, 2016.

[14] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in NeurIPS,
2017, pp. 5998–6008.

[15] P. Goyal, S. R. Chhetri, and A. Canedo, “dyngraph2vec: Capturing
network dynamics using dynamic graph representation learning,” arXiv
preprint arXiv:1809.02657, 2018.

[16] D. Xu, W. Cheng, D. Luo, X. Liu, and X. Zhang, “Spatio-temporal
attentive rnn for node classification in temporal attributed graphs,” in
IJCAI, 2019, pp. 3947–3953.

