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Abstract

DNA microarray techniques present a novel way for ge-
neticists to monitor interactions among tens of thousands of
genes simultaneously, and have become standard lab rou-
tines in gene discovery, disease diagnosis, and drug design.
There has been extensive research on coherent subspace
clustering of gene expressions measured under consistent
experimental settings. This implies that all experiments are
run using the same batch of microarray chips with similar
characteristics of noise. Algorithms developed under this
assumption may not be applicable for analyzing data col-
lected from heterogeneous settings, where the set of genes
being monitored may be different and expression levels may
be not directly comparable even for the same gene. In this
paper, we propose a model, F-cluster, for mining subspace
coherent patterns from heterogeneous gene expression data,
which is shown effective for revealing truthful patterns and
reducing spurious ones. We also develop an efficient and
scalable hybrid approach that combines gene-pair based
and sample-pair based pruning to generate F-clusters from
multiple gene expression matrices simultaneously. The ex-
perimental results demonstrate that our model can discover
significant clusters that may not be identified by previous
models.

1 Introduction
Recent advances in microarray technology have made

large amounts of gene expression data available from a va-
riety of different experimental settings. Studies have shown
that analyzing microarray data is essential for understand-
ing the gene functions[25], gene regulation[10], cellular
process[9] and subtypes of cells [4].

Clustering is a popular method used to analyze microar-
rays. By grouping the genes that exhibit similar patterns,
biologists can gain valuable insights in genetics. Originally
developed for general data mining applications, subspace
clustering algorithms [3] have demonstrated their utility in
gene expression analysis. A special class of subspace clus-

tering algorithms called bi-clustering can effectively iden-
tify meaningful gene groups [27, 28]. This approach is mo-
tivated by the fact that a group of genes may only have
coherent expressions under a subset of the experimental
conditions. By finding shifting and/or scaling patterns, bi-
clustering algorithms can identify co-regulated genes whose
expressions differ in value but are highly correlated. Tri-
cluster [29] extends the model to the temporal domain. It
finds clusters in gene-sample-time space. The algorithm
first finds the bi-clusters in the matrix at each time point,
then combines those bi-clusters sharing coherent patterns
along the time dimension to generate triclusters.

Although previous coherent subspace clustering meth-
ods have demonstrated their usefulness, all of these methods
focus on analyzing expression data generated by a single
microarray technique. However, there have been several mi-
croarray techniques using fundamentally different mecha-
nisms to measure gene expression levels. Some widely used
techniques include Affymetrix oligonucleotide microarrays
[16], cDNA microarrays [20], and serial analysis of gene
expression (SAGE) [26]. The expression levels reported
by different techniques are not necessarily comparable with
each other. Since previously proposed subspace cluster-
ing methods were developed under the assumption that the
gene expressions are measured under consistent experimen-
tal settings, they can not be readily applied to analyze data
generated by different techniques.

To overcome the limitation of previous methods, we pro-
pose a more general model for mining coherent subspace
clusters from multiple microarrays that may be generated
by different techniques.

1.1 Motivation

Methods for subspace clustering heterogeneous data are
needed and will benefit wide applications.

First, gene clusters preserved in multiple microarrays
generated by different techniques are more likely to be bio-
logically relevant to each other than those preserved in only
a single matrix. Previous study [12] has shown that gene



pairs having similar expression patterns across multiple mi-
croarray platforms have higher correlation with functional
terms classified in Gene Ontology (GO) than those only
showing similar patterns in a single microarray.

Second, data heterogeneity exists in other bioinformatics
applications beyond gene expression analysis. For exam-
ple, we want to predict whether a gene is up or down reg-
ulated in a particular experiment [17]. The decision rules
can be learned based on (1) the presence of binding site
subsequences (motifs) in the gene’s regulatory region and
(2) the expression levels of regulators, such as transcription
factors, in the experiment. The promoter sequences can be
modelled as a {0, 1} matrix encoding the presence or ab-
sence of a certain motif in a sequence. Now the task is to
find clusters of genes that are preserved in the subspace of
promoter sequence matrix, gene expression profile, and reg-
ulator expression profile.

Finally, this problem is also observed in other application
domains. For example, in transaction databases, if a group
of customers show similar transactional patterns across dif-
ferent databases, the patterns are unlikely to be coincidence.

1.2 Matrix Concatenation does not Resolve Het-
erogeneity

A natural approach to subspace clustering of the expres-
sion levels from multiple arrays would be to simply con-
catenate the samples from all arrays to create a single sub-
space clustering problem to be solved by existing methods
like [27, 28]. However, the heterogeneity of the arrays dis-
qualifies this approach. While we expect that co-expressed
genes exhibit related expression levels in each individual ar-
ray (or at least in many of the arrays), we can not expect that
their expression levels will be related the same way across
multiple arrays.

As a result subspace clustering of the concatenated ma-
trices may fail to find a cluster that has sufficient support
in each matrix individually. This is illustrated in Figure 1.
Genes g1, g2, and g3 are a coherent cluster on the three
samples in each of the matrices M1, M2 and M3 consid-
ered in isolation. Note that their expression levels relate to
each other differently in different matrices (e.g., they may
have different scaling and shifting factors). When the ma-
trices are combined, the largest coherent cluster (subject to
uniform scaling and shifting) only has 3 samples, which
may be insufficient to consider the genes to be co-expressed
within the combined array.

It is not sufficient to lower the minimum number of sam-
ples for a cluster in the combined array approach. This can
introduce spurious subspace clusters as illustrated in Fig-
ure 2. In this case there are 2 matrices, M1 and M2. Each
matrix has 2 samples,and the cluster of genes {g1, g2} is a
coherent cluster in each matrix. In the combined matrix we
find that {g1, g2} is supported by two samples, but in addi-

M1 M2 M3

a b c α β γ x y z
g1 30 40 30 45 35 45 8 18 8
g2 25 35 25 15 5 15 28 38 28
g3 20 30 20 28 18 28 20 30 20

(a) Expression values of g1, g2, g3
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Figure 1. Example 1

M1 M2

a b α β

g1 15 20 35 25
g2 25 30 15 5
g3 10 40 25 30

(a) Expression values of g1, g2, g3
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(b) Expression patterns of g1, g2, g3

Figure 2. Example 2

tion cluster {g2, g3} is supported by two samples as well.
Note that {g2, g3} is a spurious cluster since it is not pre-
served in either M1 or M2.

The fundamental reason why concatenating matrices
does not work is that expression levels measured by differ-
ent microarray techniques are not necessarily comparable
with each other. They should not be treated in the same
manner as those collected in a homogeneous setting (i.e.,
data in the same matrix). Instead this problem must be
solved by identifying clusters in the arrays individually.

1.3 Goal
To overcome the limitations of previous models, we pro-

pose the model of F-cluster (Frequent cluster), which mines
genes co-expressed in subsets of samples within multiple



microarrays. Intuitively, an F-cluster is a group of genes
that show similar expression patterns in some subspaces
(of samples) in at least a (user-specified) number of ma-
trices. For example, as shown in Figure 1, the gene group
{g1, g2, g3} is an F-cluster which is preserved in matrices
M1,M2, and M3.

F-clusters can be viewed as consensus subspace clusters
in multiple microarray matrices. To mine the F-clusters, in
a straightforward manner, we can adopt a 2-step approach.
In the first step, we mine subspace clusters in each matrix.
Then in the second step, we find F-clusters from these sub-
space clusters. However, there are usually thousands to mil-
lions of subspace clusters (even if we only keep maximal
subspace clusters) in a single matrix, so this 2-step approach
can become very inefficient. To efficiently find F-clusters,
we propose a method that simultaneously mines multiple
matrices.

Previous methods for mining subspace clusters (or bi-
clusters) in a single matrix can be classified into 2 cate-
gories: sample based enumeration and gene based enumer-
ation. These methods explore the search space by enumer-
ating either the combinations of genes or the combinations
of samples. These two approaches, as discussed in detail
in Section 4, are inefficient to find F-clusters. The gene
based enumeration will generate a huge number of candi-
date F-clusters and the sample based enumeration is ineffi-
cient to validate candidates. We propose a hybrid approach
to mine the F-clusters. This approach generates candidate
F-clusters based on samples and validates them using gene-
pairs. Our method incorporates effective pruning strategies
that can avoid unnecessary candidate validations.

1.4 Contributions

We propose the F-cluster model for mining coherent sub-
space clusters in multiple gene expression data generated
by different microarray techniques. We develop an effi-
cient hybrid approach that combines gene-pair based and
sample-pair based pruning to generate F-clusters from mul-
tiple gene expression matrices simultaneously. Our experi-
mental results show that the F-cluster model is able to cap-
ture significant gene clusters which may not be found using
previous models.

2 Related work
Recent studies have shown that microarray clustering al-

gorithms are able to discover patterns with significant bio-
logical meanings. For example, clustering genes with simi-
lar expression patterns helps to infer unknown functions of
genes [10] and gives rise to hypotheses regarding the mech-
anism of the transcriptional regulatory network [9]. Ex-
isting clustering algorithms applicable to microarray data
analysis can be classified into either full space clustering
algorithms (e.g., [10, 11, 23, 25]), or subspace clustering

algorithms (e.g., [1, 2, 3, 14, 27, 28, 29]). In this section,
we briefly survey some representative methods.

Many classical clustering algorithms are full-space clus-
tering algorithms. Some widely used approaches include K-
means algorithms [25], hierarchical algorithms [5, 10], and
graph-theoretic approaches [7, 21]. A recent approach [13]
employed a graph mining algorithm to find co-expressed
genes in multiple microarrays. Each microarray is modelled
as an unweighted and undirected graph. Two genes are con-
nected with an edge if they show high correlation across
all samples in a microarray. Coherent dense subgraphs are
then mined from these graphs and are used to model co-
expressed gene groups. A common limitation of these full-
space clustering methods is that they are only able to iden-
tify clusters in the space formed by all features (i.e., all ex-
perimental samples in a microarray). However, a group of
genes with similar functions may only be co-expressed un-
der a subset of samples [8, 14, 27], which motivated the
development of subspace clustering methods.

Subspace clustering was first studied in [1, 2, 3] to dis-
cover clusters of objects that share similar values in a subset
of dimensions. A distance function, such as Euclidean dis-
tance or cosine distance, is usually adopted as the similarity
measure. This allows the utilization of spatial distribution of
objects as an effective pruning mechanism, but at the same
time, limits the gene expression patterns that can be dis-
covered. Recent bi-clustering algorithms [8, 14, 27] over-
come this limitation by finding coherent patterns allowing
arbitrary shifting and scaling by a constant (but unknown)
amount. The algorithms not only identify the clusters of
genes, but also show in which subspaces the genes form
clusters.

Some recent work [28, 29] studied the problem of min-
ing gene-sample-time microarray data. Tricluster [29] in-
troduced the problem of finding clusters in the microarray
data generated at synchronized time points for the same set
of samples. For example, ({g0, g2, g7} × {s1, s3, s9} ×
{t2, t6}) can be interpreted as ”at time points t2 and t6,
genes {g0, g2, g7} show similar expression patterns in sam-
ples s1, s2 and s3”. Tricluster algorithm builds on bi-cluster
subroutines. The algorithm first mines bi-clusters in each
matrix by searching for maximal cliques in the weighted
range graph which is a compact representation of similar
expression ranges in the dataset between any pair of sam-
ples. Then it finds the triclusters by combining bi-clusters
along the time dimension. In [28], a similar 2-step approach
was taken to mine clusters that exhibit shifting and scal-
ing patterns in gene-sample-time microarray data. Despite
differences in cluster definitions and mining algorithms, a
common limitation of these methods is that they assume the
same set of samples are examined over time and the expres-
sion measurements are compatible with each other. Thus
they are not readily applicable to heterogenous microarray



datasets. In this paper, we do not require homogeneity. Our
approach will be applicable to both homogeneous and het-
erogenous data.

Some statistical/probablistic methods have been pro-
posed for the study of heterogenous biological data. In [24],
the authors proposed a statistical algorithm that models het-
erogenous datasets as a weighted bipartite graph and ap-
plies heuristics to identify subsets of genes that jointly re-
spond across a subset of samples. However, this method
cannot identify shifting/scaling coherent patterns which
have been demonstrated useful in discovering highly co-
regulated genes [27, 28]. Moveover, the heuristic methods
do not guarantee completeness and optimality.

3 The F-Cluster Model
This section presents the formal definition of the F-

cluster model for mining coherent subspace clusters in mul-
tiple microarray matrices. We also give a brief comparison
between our model and previous models. At the end of this
section, we analyze the complexity of the search space of
F-clusters.

3.1 Definitions and Problem Statement
Let G = {g1, g2, . . . , gI} be a set of I genes and M =

{M1,M2, . . . ,MK} be a set of K microarray data matrices
for G. Each matrix Mk = G × Sk = {vijk

} (1 ≤ k ≤ K)
is an I × Jk matrix of real numbers, where Sk is the set
of samples in matrix Mk. Jk = |Sk| denotes the number of
samples in Mk and vijk

denotes the expression level of gene
gi(1 ≤ i ≤ I) in sample sjk

(1 ≤ jk ≤ Jk). For example,
Tables 1(a) to 1(c) show a dataset of 3 microarray matrices
for 6 genes. Note that each matrix may have independent
sample set. There may be no direct correspondence between
samples in different matrices. In principle, the gene sets
used in different matrices may not be identical. In practice,
there is substantial overlap between the gene sets measured
by different microarray techniques. Therefore, we focus on
the set of genes that are common to all types of microarray
chips. The proposed model and algorithms can be easily
generalized to accommodate genes that are absent on some
microarray chips.

Informally speaking, our goal is to find the complete set
of gene clusters, each of which appears in at least δ (1 ≤
δ ≤ K) matrices. The cluster in each matrix can be defined
in many different ways. In this paper, we adopt the pattern-
based (subspace)1 cluster definition [27].

A cluster C in matrix Mk is a sub-matrix of Mk: C =
X × Yk = {vijk

}, where X ⊆ G and Yk ⊆ Sk, such

that for any 2×2 sub-matrix
(

vax vay

vbx vby

)

of C, we have

||(vax−vbx)−(vay−vby)|| ≤ ε, where ε is the user-specified

1In the following discussion, we sometime omit the term subspace for
brevity.

s11
s21

s31
s41

s51
s61

s71
s81

s91

g1 1 12 1 1 1 17 4 62 42
g2 2 23 2 2 2 32 18 21 31
g3 3 34 79 3 3 73 6 52 37
g4 5 43 58 5 5 21 32 49 72
g5 2 72 33 2 41 77 56 53 19
g6 3 53 28 83 3 33 47 26 52

(a) Matrix M1

s12
s22

s32
s42

s52
s62

s72

g1 7 3 8 5 34 3 2
g2 7 1 8 3 2 1 66
g3 7 2 8 52 3 2 1
g4 7 78 8 25 92 53 37
g5 71 3 33 58 19 3 25
g6 79 13 41 27 39 62 21

(b) Matrix M2

s13
s23

s33
s43

s53
s63

s73
s83

g1 4 6 8 54 7 6 23 13
g2 1 3 5 3 62 48 4 62
g3 52 2 29 2 3 2 3 31
g4 38 82 37 62 22 14 27 79
g5 19 31 97 46 25 38 62 21
g6 72 39 55 34 62 72 30 43

(c) Matrix M3

Genes samples (M1) samples (M2) samples (M3)
g1, g2, g3 s11

, s41
, s51

s22
, s62

∅

(d) An F-cluster (δ = 2, ming = 2, mins = 2, ε = 0)

Table 1. (a)-(c): A dataset containing 3 mi-
croarray matrices (d): An F-cluster in the
dataset

cluster threshold. Intuitively, ε describes the allowed dis-
parity between the expression patterns of two genes in two
samples. The smaller the value of ε, the more similar the
expression patterns of the two genes. The size of cluster
C is defined as the number of genes |X| in C. For exam-
ple, ({g1, g2} × {s11

, s21
}M1

) represents a cluster of size
2 in matrix M1, whose genes {g1, g2} are co-expressed in
samples {s11

, s21
}.

An F-cluster is of form FC = X×Ȳ , where X ⊆ G is a
set of genes, Ȳ = {Yk} is a set of sample sets. Yk ⊆ Sk is a
set of samples in matrix Mk and C = X×Yk is a cluster2 in
Mk. Mk is a supporting matrix of FC. We refer to the num-
ber of genes as the size of FC and the number of matrices
supporting FC (i.e., |Ȳ |) as the support of FC. For exam-
ple, ({g1, g2, g3} × {{s11

, s41
, s51

}M1
, {s22

, s62
}M2

}) is a
size 3 F-cluster in the dataset shown in Table 1(a) to 1(c),
with supporting matrices M1 and M2.

2We distinguish the concepts of cluster and F-cluster. A cluster is a
set of genes that have similar expression patterns in a single matrix. An
F-cluster is a set of genes that have similar patterns in at least δ matrices.



Given two F-clusters FC1 = X1 × Ȳ1, FC2 = X2 × Ȳ2,
if the two gene sets satisfy X1 ⊆ X2, we call FC1 a sub-
cluster of FC2 and FC2 a super-cluster of FC1. A maxi-
mal F-cluster is an F-cluster whose super-clusters have sup-
port less than δ. Since our focus is on mining gene clusters
that show similar expression patterns across different matri-
ces, we define sub-cluster in terms of gene sets. For exam-
ple, ({g1, g2}× {{s11

, s31
, s41

, s51
}M1

, {s22
, s42

, s62
}M2

,

{s13
, s23

, s33
}M3

}) is a sub-cluster of ({g1, g2, g3} ×
{{s11

, s41
, s51

}M1
, {s22

, s62
}M2

}). Note that this is differ-
ent from the definition in [27] which consider both gene set
and sample set3.

Given user-specified thresholds δ, ming , and mins, our
objective is to find all maximal F-clusters which have at
least ming genes, at least δ supporting matrices, and at least
mins samples in each supporting matrix. In practice, a user
may wish to specify different thresholds for different ma-
trices. Our algorithms can be extended to handle this sce-
nario. In the remainder of this paper, we assume that the
same threshold is used for all matrices for simplicity of ex-
planation.

3.2 Comparison with Previous Models

Previous coherent subspace clustering methods focus on
mining data generated under homogeneous settings. Our
model, on the other hand, can be applied to microarray data
collected from heterogeneous settings. Since experimen-
tal settings used in different microarray techniques and the
samples may be different and incompatible, we do not re-
quire the genes in an F-cluster have same expression pat-
terns in different microarrays. As shown in Figure 1, the
F-cluster {g1, g2, g3} is preserved in M1, M2, and M3 sep-
arately. But the expression patterns are not preserved across
matrices. (There are cross-overs between matrices as shown
in Figure 1.) Our experimental results show that our model
can identify clusters that cannot be found by previous meth-
ods.

3.3 Exponential Search Space

There can be as many as 2I potential gene clusters in
each matrix, where I typically ranges from thousands to
tens of thousands. Identifying those supported by at least δ

out of K matrices requires intelligent pruning strategies to
confine the search space. In this paper, we propose a method
that mines the F-clusters simultaneously from all the matri-
ces. This method enumerates the candidate F-clusters over
the small set of sample-pairs, and validate the candidates by
the gene-pairs. We employ four effective pruning strategies
to avoid unnecessary candidate validations.

3In [27], a cluster C1 = A×B is a sub-cluster of C2 = C×D if and
only if A ⊆ C and B ⊆ D.

Genes samples (M1) samples (M2) samples (M3)
g1, g2 s11

, s31
, s41

, s51
s22

, s42
, s62

s13
, s23

, s33

g2, g3 s11
, s41

, s51
s22

, s52
, s62

s23
, s43

, s73

g1, g3 s11
, s41

, s51
, s71

s22
, s62

, s72
s23

, s53
, s63

Table 2. Frequent gene-pair MDSs

4 The Algorithms
In this section, we discuss two algorithms which mine

F-clusters simultaneously from multiple matrices. The first
algorithm is a straightforward approach which applies Apri-
ori property to generate candidates in a bottom-up fashion.
We then present a hybrid algorithm that integrates sample
based and gene based enumeration and incorporates effec-
tive pruning strategies. Before formally presenting the al-
gorithms, we first introduce some basic concepts.

4.1 Frequent MDSs

We adopt the notion of Maximum Dimension Set (MDS)
introduced in [27]. In matrix Mk, a cluster clu1 =
({g1, g2} × Yk) is a gene-pair MDS (Maximum Dimension
Set), if there does not exist a cluster clu

′

1
= ({g1, g2}×Y

′

k )

such that Yk ⊂ Y
′

k . A cluster clu2 = (X × {s1k
, s2k

})
is a sample-pair MDS, if there does not exist a cluster
clu

′

2
= (X

′

× {s1k
, s2k

}) such that X ⊂ X
′

. Intuitively,
a gene-pair or sample-pair MDS in a matrix is a maximal
cluster containing only two genes or two samples. Since
MDSs can be computed efficiently [27] for any given ma-
trix, our algorithms utilize MDSs to mine F-clusters. Please
refer to [27] for the method of finding MDSs in one matrix.

A frequent gene-pair MDS is an F-cluster of two genes,
which contains a set of gene-pair MDSs from at least δ sup-
porting matrices (for the same pair of genes). Table 2 shows
an example of frequent gene-pair MDS in the dataset shown
in Table 1(a) to 1(c) with ε = 0, mins = 3 and δ = 3. The
following strategies can be used for initial pruning. The
proof of the correctness is straightforward and thus omitted
here.

Prune MDSs: (1) A gene must appear in at least
(

mins

2

)

sample-pair MDSs in at least δ matrices, and in at least
(ming − 1) frequent gene-pair MDSs. (2) A sample must
appear in at least

(

ming

2

)

frequent gene-pair MDSs, and in
at least (mins − 1) sample-pair MDSs.

4.2 The Basic F-cluster Miner

In this section, we show a basic approach to find the F-
clusters using the Apriori property: the support of an F-
cluster is always smaller than or equal to that of its sub-
clusters. The detailed algorithm is shown in Algorithm 1. It
first finds frequent gene-pair MDSs and sample-pair MDSs
(line 1), and applies the above two strategies for initial prun-
ing (line 2). The algorithm then proceeds in iterations. In



Algorithm 1: The basic F-cluster Miner
Input: a set of gene expression matrices {M1, M2, . . . , MK},

cluster threshold ε, minimum number of genes ming ,
minimum number of samples mins, minimum support δ.

Output: the complete set of F-clusters.

Find frequent gene-pair MDSs and sample-pair MDSs;1
Prune frequent gene-pair MDSs and sample-pair MDSs;2
FC2 ← frequent gene-pair MDSs;3
for (l = 3; FCl−1 6= ∅; l + +) do4

CFCl ← GenerateCandidate(FCl−1);5
for c ∈ CFCl do6

if SubsetCheck (c, FCl−1) is true then7
if Validate (c, FCl−1) is true then8

FCl ← c;9
end10

end11
end12

end13
Return

⋃

l
FCl(l ≥ ming).14

each iteration, the algorithm generates larger candidates by
extending the current F-clusters to include one more gene
(line 5). For each candidate c of size l, there are l sub-
clusters of size (l − 1). In line 7, the SubsetCheck func-
tion checks if all of these l sub-clusters are in the set of
F-clusters FCl−1. If any sub-cluster is absent, then the can-
didate is dropped immediately. The Validate function in
line 8 joins the l sub-clusters of size (l − 1) to validate if
the candidate has at least δ supporting matrices. Note that
in each supporting matrix, the candidate must have at least
mins samples. If a candidate is an F-cluster, the algorithm
outputs it. The algorithm terminates if no more candidate
can be generated.

This basic approach is inefficient for mining F-clusters
of large size. To find an F-cluster of size l, all of its 2l sub-
clusters have to be generated and validated. If ming = 30,
then the algorithm needs to generate at least 230 sub-clusters
before a valid F-cluster is reached.

4.3 A Hybrid Approach
In this section, we present a much more efficient algo-

rithm to mine F-clusters. This algorithm takes advantage
of a hybrid search strategy, i.e., it enumerates the combina-
tions of sample-pair MDSs to generate candidates, and uses
frequent gene-pairs MDSs to validate the candidates. By
using the hybrid search strategy, we can avoid expensive
clique detection, which is necessary in previous methods,
such as [27]. Our method also incorporates novel strategies
to prune the search space.

4.3.1 The Algorithm

As shown in Algorithm 2, the algorithm starts by finding all
frequent gene-pair MDSs and sample-pair MDSs (lines 1
and 2). Then it applies the initial pruning presented in Sec-

Algorithm 2: The Hybrid F-cluster Miner
Input: a set of gene expression matrices {M1, M2, . . . , MK},

cluster threshold ε, minimum number of genes ming ,
minimum number of samples mins, minimum support δ.

Output: the complete set of F-clusters.

FGP ← frequent gene-pair MDSs1
SP ← sample-pair MDSs in each matrix;2
Prune FGP and SP ;3
Sort sample-pair MDSs in SP ;4
EnumStack ← SP ;5
while EnumStack 6= ∅ do6

c′ = EnumStack.pop();7
for sp ∈ SP do8

c = Intersect(sp, c′);9
if c.size ≥ ming then10

if c.potential-support≥ δ then11
if c /∈ FC ∪ IFC then12

if Validate(c, FGP ) is true then13
FC ← c;14

else15
IFC ← c;16
EnumStack.push(c);17

end18
end19

else20
EnumStack.push(c);21

end22
end23

end24
end25
Return FC.26

tion 4.1 (line 3). In line 4, the algorithm sorts the sample-
pair MDSs into an ordered list stored in SP . The idea is
to place the sample-pair MDS with highest potential prun-
ing power first in the list. In SP , sample-pair MDSs are
grouped by matrices, and are placed in ascending order of
the number of sample-pair MDSs per matrix. That is, if
the number of sample-pair MDSs of a matrix Ma is smaller
than that of Mb, the sample-pair MDSs of Ma will be placed
before those of Mb in SP . For the sample-pair MDSs in the
same matrix, they are placed in ascending order of the size
of their gene sets. We will see later that examining sample-
pair MDSs in this order maximizes the pruning power and
accelerate the enumeration process.

In the next step, the algorithm makes a copy of SP into
a stack EnumStack (line 5) with the sample-pair MDS of
the highest pruning power at the top. Then the algorithm
starts to enumerate the combinations of sample-pair MDSs
stored in EnumStack to generate candidate F-clusters. The
function Intersect in line 9 returns a candidate c. The
gene set of c is the intersection of the gene sets of a sample-
pair MDS in SP and the element c′ at the top of EnumStack.
Please note that c′ only needs to intersect with the sample-
pair MDSs that have not been used in generating c′. In line
13, the Validate function validates if a candidate is F-
cluster. If it is an F-cluster, it will be stored in the set of F-



clusters FC. Otherwise, it will be put into the set of invalid
candidate F-clusters IFC, and pushed back into the stack
for further enumeration.

For example, let’s consider the dataset shown in Table
1(a) to 1(c). Suppose δ = 2, ε = 0,ming = 3,mins = 3.
The algorithm first finds the frequent gene-pair MDSs and
sample-pair MDSs. It then sorts the sample-pair MDSs in
SP . The resulting sample-pair MDSs in SP are shown
in Table 3(a). (For simplicity of presentation, we do
not show the initial pruning here.) As we can observe
from the table, the sample-pair MDSs of matrix M2 is
placed before those of M1, since the number of sample-pair
MDSs of M2 is smaller than that of M1. In each matrix,
the sample-MDSs are sorted so that the MDSs containing
less genes are ordered before the MDSs containing more
genes. Then the sorted sample-pair MDSs are pushed into
EnumStack for enumeration. The initial inputs of func-
tion Intersect are ({g1, g2, g3, g4} × {{s12

, s32
}M2

})
and ({g1, g2, g3, g5}× {{s22

, s62
}M2

}). The resulting can-
didate contains gene set {g1, g2, g3}.

Candidate validation (line 13) is a nontrivial process. We
propose to utilize frequent gene-pair MDSs to expedite this
process, which will be discussed further in Section 4.3.2.
Our algorithm also incorporates effective pruning strategies
to avoid unnecessary validations. Here we give an overview
of these pruning strategies. The detailed explanations can
be found in Section 4.3.3. In line 10, we use the threshold
ming to prune. If a candidate does not contain sufficiently
many genes, we do not need to validate it. In line 11, we
use potential support to prune and only retain a candidate if
its potential support is at least δ. In line 12, the algorithm
checks if the candidate is already validated before. If it is
either in FC or IFC, then there is no need to validate. We
also use minimum support to prune so that we only need to
enumerate the combinations of a subset of the sample-pair
MDSs in EnumStack.

4.3.2 Candidate Validation

To validate a candidate, we join all frequent gene-pair
MDSs that are sub-clusters of the candidate. For ex-
ample, suppose that δ = 2,ming = 3,mins = 2.
The frequent gene-pair MDSs are shown in Table 2. To
validate a candidate containing genes ({g1, g2, g3}), we
take the intersection of the sample sets of these gene-
pair MDSs within each matrix. If the size of the re-
sulting sample set is at least mins, the matrix is a sup-
porting matrix. An F-cluster is validated if the num-
ber of supporting matrices is at least δ. For example,
({g1, g2, g3}×{{s11

, s41
, s51

}M1
, {s22

, s62
}M2

}) is a valid
F-cluster. During the validation process, the frequent gene-
pair MDSs are stored in a prefix tree for fast access.

Why do we use the frequent gene-pair MDSs to validate

Genes Sample-pairs (M1) Sample-pairs (M2)
g1, g2, g3, g4 ∅ {s12

, s32
}

g1, g2, g3, g5 ∅ {s22
, s62
}

g1, g2, g3, g4 {s41
, s51
} ∅

g1, g2, g3, g4, g5 {s11
, s41
} ∅

g1, g2, g3, g4, g6 {s11
, s51
} ∅

(a) Sample-pair MDSs in matrices M1 and M2

Genes Sample-pairs (M1) Sample-pairs (M2)
g1, g2, g3 {s41

, s51
}{s11

, s41
}{s11

, s51
} {s12

, s32
}{s22

, s62
}

(b) Candidate generated by function Intersect()

Table 3. Validating candidate by sample-pair
MDSs

candidate clusters?
Note that, in principle, there are two ways to validate

a candidate, i.e., we can use either sample-pair MDSs or
frequent gene-pair MDSs.

Using sample-pair MDSs we can validate the candidates
in the following way. After Intersect c′ with some
sample-pair MDS (line 9), we get a candidate c. We then
check if in each supporting matrix of c, the sample-pairs
can be merged to a larger sample set. A sample set can
only be formed if for any two samples in the sample set, a
corresponding sample-pair MDS exists. For example, sup-
pose that δ = 2, ε = 0,ming = 3,mins = 3. Using the
dataset shown in Table 1(a) to 1(c), the sample-pair MDSs
are shown in Table 3(a). We need to examine every com-
bination of sample-pairs. The resulting candidate is shown
in Table 3(b). Then we check whether the sample-pairs can
be merged for each of the two matrices M1 and M2. In ma-
trix M1, we check if sample-pairs {s41

, s51
}, {s11

, s41
} and

{s11
, s51

} can be merged. This step is equivalent to finding
maximum cliques in a graph: each sample is a vertex in the
graph, and each sample-pair is an edge connecting the two
vertices. If the size of a maximum clique is at least mins,
then the corresponding sample-pairs can be merged into a
sample set and the matrix is a supporting matrix of the can-
didate. In our example, the maximum clique in matrix M1

is of size 3, thus the 3 sample pairs can be merged to a set
of 3 samples {s11

, s41
, s51

}. In M2 the size of maximum
clique is 2. Thus the two sample-pairs cannot be merged
to a larger sample set. The major drawback of this valida-
tion approach is that maximum clique detection is an NP-
complete problem [15] and it needs to be performed many
times. Previous methods [27, 29] used this approach. How-
ever, even the best clique detection algorithms [18, 19, 22]
is unable to handle the size and complexity of graphs in our
problem.

An alternative and more efficient way to validate a candi-
date is by joining the frequent gene-pair MDSs. For a size-n



candidate c consisting of gene set X = {gi1 , gi2 , · · · , gin
},

there are
(

n

2

)

frequent gene-pair MDSs that are sub-clusters
of X . Thus in order to validate c, we only need to join these
(

n

2

)

frequent gene-pair MDSs.

4.3.3 Pruning Strategies

In this section, we discuss in detail the pruning strategies
used by our algorithm. The effectiveness of these pruning
strategies are validated by the experimental result shown in
Section 5.2.

Pruning strategy 1. In line 10, we use ming for prun-
ing. If the size of a candidate is smaller than ming , there is
no need to validate it and any other candidates containing it.
In each matrix, the sample-pair MDSs are sorted in ascend-
ing order of the size in order to expedite the enumeration
process (line 4). This is because the intersection of sample-
pair MDSs having fewer genes is more likely to be smaller
and fail the ming threshold. By joining small sample-pair
MDSs first, we can quickly restrict the search space.

Pruning strategy 2. In line 11, we use potential sup-
port to prune. For a candidate c, we say that matrix Mi

potentially supports c, if c contains at least
(

mins

2

)

sample-
pairs in Mi. A necessary condition for a candidate to be
an F-cluster is that the potential support of the candidate
must be greater or equal to the minimum support. The ra-
tionale is that we need at least

(

mins

2

)

sample-pairs in order
to merge them to a set of mins samples. The initial prun-
ing step discussed in Section 4.1 is a special case of this
strategy. Thus we can ”revise” the candidate by intersecting
additional sample-pair MDSs until there are at least δ ma-
trices potentially support c. Intuitively, the successive in-
tersections are likely to increase the number of supporting
matrices but shrink the gene set of the candidate. If the size
of a candidate (i.e., the number of genes) is already smaller
than ming before its potential support meets the minimum
support δ, we can prune it without any validation. For ex-
ample, consider the candidate shown in Table 3(b), suppose
δ = 2, and mins = 3. M1 potentially supports it, but M2

does not. Thus, we do not need to validate this candidate.
Pruning strategy 3. In line 12, we use FC and IFC

to prune. The algorithm stores the F-clusters and invalid
candidates in FC and IFC respectively using prefix trees.
If a new candidate containing at least ming genes and its
potential support is above δ, the algorithm first checks if
the gene set is a prefix of the gene set of any F-cluster in
FC. If not, then the algorithm checks if the gene set of
any invalid candidate in IFC is a prefix of the gene set
of the candidate. If both cases are false, then we perform
the necessary candidate validation. For example, suppose
that in FC there is an F-cluster containing gene set gs =
{g1, g2, g3, g4, g5}. Then any candidate consisting of gene
set that is a prefix of gs (e.g., {g1, g2, g3}) does not need to

be validated, since it must also be an F-cluster. A similar
example can be easily constructed for checking IFC.

Pruning strategy 4. We also use the minimum sup-
port δ to prune candidates during enumeration, so that
we only enumerate combinations a subset of elements in
EnumStack. Algorithm 2 employs a total order among all
sample-pair MDSs. We only need to intersect sample-pair
MDSs from the first (K − δ + 1) matrices in EnumStack
with sample-pair MDSs of lower ranks in SP . The sample-
pair MDSs from the last (δ − 1) matrices in EnumStack do
not need to be checked, since the candidates generated by
intersecting them either do not have enough supporting ma-
trices or have been generated before. This can be proved
easily by contradiction. (The proof is omitted here.) The
following example illustrates this pruning strategy. Sup-
pose that there are 5 matrices, with 10, 20, 30, 40, and
50 sample-pair MDSs, respectively. If minimum support
δ = 3, we only need to intersect the top 60 sample-pair
MDSs in EnumStack (from the first 3 matrices) with those
MDSs of lower ranks in SP . There is no need to check
the last 120 MDSs since either there are at most 2 matrices
supporting the candidates generated by them or the candi-
dates have been generated before. Recall that our algorithm
places matrices with large number of MDSs at the bottom of
EnumStack. This order is optimal in minimizing the number
of MDSs that need to be examined.

5 Experiments
To evaluate the efficiency and effectiveness of the F-

cluster algorithm, we performed experiments on real gene
expression profiles generated by different microarray tech-
niques. The experiments were performed on a 2.6-GHz PC
with 1G memory running WindowsXP system.

5.1 Data Sources

We use the microarray dataset in [12] to perform our ex-
periments. The dataset includes microarrays generated by
3 different techniques, i.e., serial analysis of gene expres-
sion (SAGE), cDNA microarrays, and Affymetrix oligonu-
cleotide microarrays.

5.2 Efficiency

We compared the naive 2-step approach (Section 1.3),
the basic bottom-up approach (Section 4.2) and the hybrid
approach (Section 4.3). But both the naive 2-step approach
and the basic bottom-up approach are usually too ineffi-
cient to run to completion and cause memory overflow (be-
cause of the huge number of candidate clusters generated).
Therefore, we only report the results of the hybrid approach.
Since the original dataset only has 3 gene expression ma-
trices, in order to perform an in-depth analysis, we parti-
tioned the SAGE microarray matrix into 10 submatrices as
the test dataset to demonstrate the efficiency of our algo-
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Figure 3. Efficiency evaluation
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Figure 4. number of candidates after pruning

rithm. Each matrix contains 500 genes and 24 samples. We
set ming = 5% · #genes, mins = 2, ε = 0.15 and δ = 2.
Figures 3(a) to 3(c) show the running time of our algorithm
as a function of different parameters.

As shown in Figure 3(a), the actual running time is ap-
proximately quadratic in the number of samples. Theoret-
ically, the worst case running time is exponential with re-
spect to the number of samples, since we enumerate the
combinations of sample-pair MDSs to generate the can-
didate clusters. The quadratic performance demonstrates
the effectiveness of the pruning strategies used by the al-
gorithm. Figure 3(b) shows that the running time of our
algorithm follows a similar trend in terms of number of
genes. This is because even though the candidates are gen-
erated by enumerating the combinations of sample-pairs
MDSs, we use frequent gene-pair MDSs to validate the can-
didates. The number of frequent gene-pair MDSs is roughly
quadratic in the number of genes. Figure 3(c) shows an
approximate quadratic running time with respect the num-
ber of matrices. The reason is that under the same mini-
mum support threshold, the more matrices the dataset has,
the bigger the F-clusters are. Thus in this case it is likely
that the enumeration process need not go very deep into the
search space before the candidates are validated to be F-
clusters. The result shows the tradeoff between the number
of sample-pairs and size of the F-clusters.

Figure 4 demonstrates the effectiveness of the pruning
methods used by our algorithm. The dataset contains 200
genes and 10 matrices, with 24 samples in each matrix. The

F-clusters Ensembl IDs GO terms
Cluster1 ENSG00000175467 intracellular

ENSG00000114514 (GO: 0005622)
ENSG00000109756
ENSG00000182606

Cluster2 ENSG00000116754 nucleobase, nucleoside,
ENSG00000167325 nucleotide and nucleic
ENSG00000112739 acid metabolism
ENSG00000005339 (GO: 0006139)

Cluster3 ENSG00000142230 protein binding
ENSG00000121031 (GO: 0005515)
ENSG00000196776
ENSG00000147162

Table 4. F-clusters and corresponding GO
terms
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Figure 5. Three F-clusters

parameters are set to be the same as in Figure 3(a) to 3(c).
The figure shows the number of candidates before and after
applying the pruning strategies sequentially as described in
Section 4.3.3, i.e., pruning by ming , potential support, and
checking FC and IFC. As we can see from the figure,
the number of candidates is reduced by orders of magnitude
after applying these pruning methods.

5.3 Effectiveness

In this section, we show some F-clusters found by our
algorithm. We ran our algorithm on SAGE, cDNA, and
Affymetrix microarrays. Each matrix includes 350 ran-
domly chosen genes that are shared by all 3 microarrays
and 130 randomly chosen samples. We require that an F-
cluster must be preserved in at least 2 microarrays and set
ε = 0.15.

Due to space limitation, we only report 3 size-4 F-
clusters that are preserved in SAGE and Affymetrix mi-
croarrays. The Gene Ontology (GO) is a controlled vo-
cabulary that describes the roles of genes and proteins
in all organisms [6]. GO is composed of three inde-
pendent ontologies: biological process, molecular func-
tion, and cellular component. We used Uniprot databases



(http://www.pir.uniprot.org) and Ensembl v37 databases
(http://www.ensembl.org) to verify the biological signifi-
cance of these F-clusters. Table 4 shows the Ensembl gene
IDs of the genes in the F-clusters and the corresponding GO
terms that confirm the F-clusters. As we can see from the
table, genes in each cluster share the same GO annotation,
which verifies the biological significance of the F-clusters.

Figure 5(a) to 5(c) show the expression patterns of the 3
F-clusters. As we can see from the figures, genes in each of
the cluster have similar expression patterns in both microar-
rays. However, the expression patterns across different ma-
trices cross over each other and do not share the same scal-
ing and shifting factors. Clearly, applying the existing meth-
ods to the concatenated microarrays cannot identify such
patterns.

6 Conclusion
Recently there has been extensive research in analyzing mi-
croarray data. All previous approaches focused on mining
patterns in a single matrix. In this paper, we propose F-
cluster model to overcome this limitation. This model can
find the clusters that are preserved in expression data gener-
ated by different microarray techniques. We develop an effi-
cient algorithm to mine the F-clusters simultaneously from
multiple matrices. Different from previous sample based or
gene based enumeration method, our approach adopts a hy-
brid search strategy that combines the benefits of both. This
approach incorporates effective pruning strategies to avoid
unnecessary computations. Our experimental results on real
dataset demonstrate the effectiveness of the F-cluster model
and the efficiency of the hybrid mining algorithm. Last but
not least, even though we focus on mining heterogeneous
data, F-cluster can readily handle homogeneous matrices.
In our future work, we plan to extend our method to take
into account missing values.
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