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Efficient and Exact Local Search for Random
Walk Based Top-K Proximity Query in Large

Graphs
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Abstract—Top-k proximity query in large graphs is a fundamental problem with a wide range of applications. Various random walk
based measures have been proposed to measure the proximity between different nodes. Although these measures are effective,
efficiently computing them on large graphs is a challenging task. In this paper, we develop an efficient and exact local search method,
FLoS (Fast Local Search), for top-k proximity query in large graphs. FLoS guarantees the exactness of the solution. Moreover, it can be
applied to a variety of commonly used proximity measures. FLoS is based on the no local optimum property of proximity measures. We
show that many measures have no local optimum. Utilizing this property, we introduce several operations to manipulate transition
probabilities and develop tight lower and upper bounds on the proximity values. The lower and upper bounds monotonically converge
to the exact proximity value when more nodes are visited. We further extend FLoS to measures having local optimum by utilizing
relationship among different measures. We perform comprehensive experiments on real and synthetic large graphs to evaluate the
efficiency and effectiveness of the proposed method.
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1 INTRODUCTION

G IVEN a large graph and a query node, finding its k-
nearest-neighbor (kNN) is a primitive operation that

has recently attracted intensive research interests [1], [2],
[3], [4]. In general, there are two challenges in top-k prox-
imity query. One is to design proximity measures that can
effectively capture the similarity between nodes. Another
challenge is to develop efficient algorithms to compute the
top-k nodes for a given measure.

Designing effective proximity (similarity) measures is a
nontrivial task. Random walk based measures have been
shown to be effective in many applications. Some examples
include discounted/truncated hitting time [1], [5], penalized
hitting probability [6], [7], random walk with restart [8], [9],
RoundTripRank [10], and absorption probability [11].

Although various proximity measures have been de-
veloped, how to efficiently compute them remains a chal-
lenging problem. For most random walk based measures,
a naive method requires matrix inversion, which is pro-
hibitive for large graphs. Two global approaches have been
developed. One applies the power iteration method over the
entire graph [12], [4], [13]. Another approach precomputes
and stores the inversion of a matrix [8], [14], [15]. The
precomputing step is usually expensive and needs to be
repeated whenever the graph changes.

To improve the efficiency, local methods have been de-
veloped [1], [5], [7], [9]. The idea is to visit the nodes near
the query node and dynamically expand the search range.
Node proximities are estimated based on local information
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only. Without using the global information, however, most
existing local search methods cannot guarantee to find the
exact solution. Moreover, they are usually designed for spe-
cific measures and cannot be generalized to other measures.

In this paper, we propose FLoS (Fast Local Search), a
simple and unified local search method for efficient and
exact top-k proximity query in large graphs. FLoS has the
following properties.

• Exact: It guarantees to find the exact top-k nodes.
• Unified: It is a general method that can be applied to

a variety of random walk based proximity measures.
Most existing methods are designed for specific mea-
sures.

• Efficient: It uses a simple local search strategy that
needs neither preprocessing nor iterating over the
entire graph. Experimental results show that it is
orders of magnitude faster than alternatives.

The key idea behind FLoS is that we can develop upper
and lower bounds on the proximity of the nodes near the
query node. These bounds can be dynamically updated
when a larger portion of the graph is explored and will
finally converge to the exact proximity value. The top-k
nodes can be identified once the differences between their
upper and lower bounds are small enough to distinguish
them from the remaining nodes.

The theoretical basis of FLoS relies on the no local
optimum property of proximity measures. That is, given
a query node q, for any node i (i 6= q) in the graph, i
always has a neighbor that is closer to q than i is. We show
that many measures have no local optimum. This property
ensures that the proximity of unvisited nodes is bounded
by the maximum proximity (or minimum proximity for
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some measures) in the boundary of the visited nodes. It can
be utilized to find the top-k nodes without exploring the
entire graph under the assumption that the exact proximity
can be computed based on local information. However, for
most measures, the exact proximity cannot be computed
without searching the entire graph. To tackle this challenge,
we introduce several simple operations to modify transition
probabilities, which enable developing upper and lower
bounds on the proximity of visited nodes. The developed
upper (lower) bounds monotonically decrease (increase)
when more nodes are visited. We further study the relation-
ship among different measures and show that FLoS can also
be applied to measures having local optimum. Extensive
experimental results show that, for a variety of measures,
FLoS can dramatically improve the efficiency compared to
the state-of-the-art methods.

2 RELATED WORK

Various random walk based proximity measures have been
proposed recently [16]. Examples include truncated or dis-
counted hitting time [5], [17], [1], penalized hitting prob-
ability [6], [7], random walk with restart [8], [1], effective
importance (degree normalized random walk with restart)
[9], RoundTripRank [10], and absorption probability [11].
The Katz score [18] captures multiple paths between two
nodes and is closely related to the random walk based
proximity measures [13].

The basic approach for proximity query is to use the
power iteration method [12]. An improved iteration method
designed for random walk with restart decomposes the
proximity into random walk probabilities of different length
[4]. It tries to reduce the number of iterations by estimating
the proximity based on the information collected so far. The
iteration method can also be improved by the prioritized
execution of the iterative computation, where the node with
the largest residual proximity value is updated first [13].
Another approach precomputes the information needed for
proximity estimation during the query process [8], [14],
[15]. However, this step is time consuming and becomes
infeasible when the graph is large or constantly changing.
Graph embedding method embeds nodes into geometric
space so that node proximities can be preserved as much as
possible [19]. The embedding step is also time-consuming.
Moreover, the proximities in the new space are not exactly
the same as the ones in the original graph.

Based on the intuition that nodes near the query node
tend to have high proximity, local search methods try to visit
a small number of nodes to approximate the proximities.
Best-first [7] and depth-first [20] search strategies simply
extract a fixed number of nodes near the query node. An ap-
proximate local search algorithm is proposed for truncated
hitting time [5]. The key idea is to develop upper and lower
bounds that can be used to approximate the proximities
of local nodes. A similar local search algorithm is devel-
oped for personalized PageRank and degree normalized
personalized PageRank [1]. The push style method is first
developed in [21] for random walk with restart, and later
improved by [22], [2] for the top-k query problem. Starting
from the query node, the push style method propagates
the proximity value to the nodes in the neighborhood of

TABLE 1
Main symbols

Symbols Definitions
G(V,E) undirected graph G with node set V and edge set E
Ni neighbors of node i
wi,j weight of edge (i, j)

wi degree of node i, wi=Σj∈Niwi,j

q query node
e n×1 vector with eq=1 and ei=0 if i 6=q, where n= |V |
k number of returned nodes
S a set of nodes

S̄ complement of S : S̄=V \S
δS boundary of S : {i∈S | ∃j∈Ni∩ S̄}
δS̄ boundary of S̄ : {i∈ S̄ | ∃j∈Ni∩S}
r n×1 vector, ri : proximity of node i w.r.t. the query node q
r upper bound of r : ri≥ri, ∀i∈S
r lower bound of r : ri≤ri, ∀i∈S
pi,j transition probability from node i to j
P transition probability matrix : Pq,j=0;Pi,j=pi,j if i 6=q

d, rd a dummy node d with constant proximity value rd

c decay factor in PHP, DHT, RWR, EI, or RT
u↝v node u can reach node v in the transition graph
u v node u cannot reach node v in the transition graph
u↝S node u can reach at least one node in S
u S node u cannot reach any node in S

the query node, and obtains approximate proximity values
for them. This basic idea has been adapted to compute the
top-k nodes for effective importance [9], RoundTripRank
[10], and Katz score [23]. Most of the existing local search
methods cannot guarantee the exactness. Moreover, all of
them are designed for specific proximity measures. It is
unclear whether the local search methods can be generalized
to other measures.

3 NO LOCAL OPTIMUM PROPERTY

In this section, we first introduce the basic concept of no
local optimum property of proximity measures and discuss
how it can be used to bound the proximity of the unvisited
nodes. Then we study whether commonly used measures
have no local optimum and discuss the relationship between
them. Table 1 lists the main symbols and their definitions.
The top-k query problem is defined as
Definition 1. [Top-k Query Problem] Suppose that we have an

undirected graph G(V,E), a query node q and a number
k. Let ri represent the proximity of node i with regard
to the query node q. The top-k query problem aims at
finding a node set K ⊆ V \ {q} such that |K|= k and
ri≥rj , for any node i∈K and j∈V \

(
K∪{q}

)
.

3.1 Theoretical Basis
Note that for some measures, such as penalized hitting
probability, random walk with restart, effective importance,
RoundTripRank, Katz score and absorption probability, the
larger the proximity the closer the nodes. In this case, no lo-
cal optimum means no local maximum. For other measures,
such as discounted or truncated hitting time, the smaller
the proximity the closer the nodes. In this case, no local
optimum means no local minimum.
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(a) original graph (b) transition graph (PHP, q=1)
Fig. 1. An example graph and its transition graph

Given an undirected and edge weighted graph G =
(V,E) and a query node q∈V , let r be the proximity vector
with ri representing the proximity of node i∈V with respect
to the query node q.

Definition 2. [No Local Maximum] A proximity measure has
no local maximum if for any node i 6= q, there exists a
neighbor node j of i (i.e., j∈Ni), such that rj>ri.

Definition 3. [No Local Minimum] A proximity measure has
no local minimum if for any node i 6= q, there exists a
neighbor node j of i (i.e., j∈Ni), such that rj<ri.

We say that a proximity measure has no local optimum if
it has no local maximum or minimum. In Section 3.2, we will
examine whether the commonly used proximity measures
have no local optimum. Unless otherwise mentioned, in the
next, we assume that the larger the proximity the closer the
nodes, and focus on the no local maximum property. All
conclusions can also be applied to the proximity measures
with no local minimum.

Let S be a set of nodes, and S̄=V \S be the remaining
nodes. We use δS = {i ∈ S |∃j ∈ Ni ∩ S̄} to denote the
boundary of S, and δS̄= {i∈ S̄ |∃j ∈Ni ∩S} to denote the
boundary of S̄.

Figure 1(a) shows an undirected graph with 8 nodes.
Suppose that the node set S={1,2,3,4}, then we have S̄=
{5,6,7,8}, δS={3,4}, and δS̄={5,6,7}.
Theorem 1. Let S be a node set containing the query node,

and u be the node with the largest proximity in δS. If a
proximity has no local maximum, we have that ru> rj
(∀j∈ S̄).

Proof: Suppose otherwise. We have that ∃j ∈ S̄, such
that ru≤rj . Now suppose that node v is the node with the
largest proximity in S̄. We have that ∀i∈ S̄∪δS, rv≥ri. The
neighbors of node v must exist in S̄ ∪ δS, i.e., Nv⊆ S̄ ∪ δS.
Therefore, we have rv≥ri (∀i∈Nv), which means node v is
a local maximum. This contradicts the assumption.

Based on Theorem 1, assuming that we already have the
exact proximity vector r, we can design a simple local search
strategy as shown in Algorithm 1 to find the top-k nodes. It
starts from the query node q and uses K and S to store the
top-k nodes and visited nodes respectively. In each iteration,
the algorithm finds the node u that has the largest proximity
in S \K and expands S to the neighbors of node u. Since
δS ⊆ S \K , the maximum proximity value in S \K must
be no less than the maximum proximity value in δS, and
greater than the maximum proximity value in the unvisited
nodes S̄ based on Theorem 1. Thus, K contains the top-k
nodes. The algorithm continues until |K|=k+1.

Let h be the average number of neighbors of a node. In
each iteration t, on average h nodes are added to S. This
takes O(h loght) time for a sorted list. The overall complex-
ity of Algorithm 1 is thus O(

∑k
t=1h loght)=O(hk loghk).

Algorithm 1 The basic top-k local search algorithm
Input: G(V,E), query node q, proximity vector r, number k
Output: Top-k node set K
1: S←{q}; K←{};
2: while |K|<k+1 do
3: u←argmaxi∈S\K ri;
4: K←K∪{u}; S←S∪Nu;
5: return K \{q};

3.2 Measures With and Without Local Optimum

Table 2 summarizes whether the commonly used proximity
measures have no local optimum property. Next, we use
penalized hitting probability (PHP) [6], [7] as an example to
illustrate that it has no local maximum. We use wi to denote
the degree of node i, and wi,j to denote the edge weight
between i and j. The transition probability from i to j is
thus pi,j=wi,j/wi.

Suppose the undirected graph in Figure 1(a) has unit
edge weight. Node 3 has degree 3, thus its transition prob-
ability to node 4 is p3,4 = 1/3. Based on these transition
probabilities, we can construct the corresponding transition
graph as shown in Figure 1(b). In the transition graph, each
directed edge and the number on the edge represent the
transition probability from one node to the other.

PHP penalizes the random walk for each additional step.
Given a query node q, let r denote the PHP proximity vector,
with ri representing the proximity value of node i. PHP can
be defined recursively as

ri=

{
1, if i=q,
c
∑
j∈Ni pi,jrj , if i 6=q,

where c (0<c< 1) is the decay factor in the random walk
process. In [6], c = e−1 is used as the decay factor. The
query node q has constant proximity value 1, and there is
no transition probability going out of the query node. For
example, there is no outgoing edges from the query node 1
in the transition graph in Figure 1(b).

Let P be the transition probability matrix with

Pi,j=

{
0, if i=q,
pi,j , if i 6=q.

Then the above recursive definition can be expressed as the
following matrix form

r=cPr+e,

where ei=1 if i=q, and ei=0 if i 6=q.

Lemma 1. PHP has no local maximum.
Proof: Suppose that node i is a local maximum. We

have ri= c
∑
j∈Ni pi,jrj≤ c

∑
j∈Ni pi,jri= cri<ri. We get a

contradiction that ri<ri.
The proofs for whether other proximity measures in

Table 2 have local optimum can be found in the Appendices.
In particular, in Appendix A, we show that EI, DHT, and
THT have no local optimum. In Appendix G, we show that
RWR, RT, KZ, and AP have local maximum.

Some proximity measures have inherent relationship.
The following theorem says that PHP, EI, and DHT are
equivalent in terms of ranking.

Theorem 2. PHP, EI, and DHT give the same ranking results.
Please see Appendix A for the proof.
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TABLE 2
No local optimum property of some measures

Proximity measures Abbr. Ref. Property
Penalized hitting probability PHP [6] No local maximum

Effective importance EI [9] No local maximum
Discounted hitting time DHT [1] No local minimum

Truncated hitting time THT [5]
No local minimum

(within L hops)
Random walk with restart RWR [8] Local maximum

RoundTripRank RT [10] Local maximum
Katz score KZ [18] Local maximum

Absorption probability AP [11] Local maximum

From the discussion in this section, we know that if a
proximity measure has no local optimum, we can apply
local search described in Algorithm 1 to find the top-k
nodes under the assumption that the proximity values of
all the nodes are given. However, without exploring the
entire graph, the exact values of all the nodes are unknown.
To tackle this challenge, we can develop lower and upper
bounds on the proximity values of visited nodes. When
more nodes are visited, the lower and upper bounds be-
come tighter and eventually converge to the exact proximity
value.

Next, we will use PHP, which has no local optimum, as
a concrete example to explain how to derive the lower and
upper bounds. The strategy can be applied to other proxim-
ity measures with no local optimum. How to apply the local
search strategy to the measures having local optimum will
be discussed in Section 6.

4 BOUNDING THE PROXIMITY

To develop the lower and upper bounds, we introduce three
basic operations, i.e., deletion, restoration, and destination
change of transition probability. We show how proximities
change if we modify transition probabilities according to
these operations. Then we discuss how to derive lower and
upper bounds based on them.

4.1 Modifying Transition Probability
We first introduce the operation of deleting a transition
probability. Figure 2(a) shows an example, in which the orig-
inal graph is on the top, with node 1 being the query node
and transition probabilities p2,1 = p2,3 = 0.5 and p3,2 = 1.
After deleting p2,3, the resulting graph is shown at the
bottom. Note that deleting a transition probability is dif-
ferent from deleting an edge. Deleting an edge will change
the transition probabilities on the remaining graph, while
deleting a transition probability will not.

Theorem 3. Deleting a transition probability will not increase
the proximity of any node.

Please see Appendix B for the proof.
Continue with the example in Figure 2(a). Suppose that

the decay factor c=0.5. The original PHP proximity vector
is r = [1,2/7,1/7]. After deleting p2,3, the new proximity
vector is r =[1,1/4,1/8].

It can be shown in a similar way that if we restore the
transition probability as shown in Figure 2(a), the proximi-
ties will not decrease.

(a) deletion and restoration (b) destination change
Fig. 2. Basic operations on transition probability

Theorem 4. Restoring a deleted transition probability will
not decrease the proximity of any node.

Proof: Omitted.
Figure 2(b) shows an example in which we change the

destination of the original transition probability p3,2 from
node 2 to 1. Thus, p3,1 is set to p3,2, and p3,2 is set to 0.

Theorem 5. Changing the destination of transition probabil-
ity pi,j from node j to node u with ru≥rj (ru≤rj) will
not decrease (increase) the proximity of any node.

Please see Appendix B for the proof.
Let us continue with the example in Figure 2(b), where

node 1 is the query node. After we change the destination of
p3,2 from node 2 to 1, the proximity values should be non-
decreasing. With a decay factor c=0.5, the proximity vectors
before and after the destination change are r = [1,2/7,1/7]
and r =[1,3/8,1/2] respectively.

The proofs for other measures having no local optimum
are similar and omitted here.

4.2 Lower Bound
Let S, S̄, δS and δS̄ represent the set of visited nodes, the set
of unvisited nodes, the boundary of S, and the boundary of
S̄, respectively. From Theorem 3, if we delete all transition
probabilities {pi,j : i or j ∈ S̄} in the original graph, the
proximity value of any node u computed using the resulting
graph, ru, will be less than or equal to its original value ru,
i.e., ru≤ru. Thus, r can be used as the lower bound of r.

Let us take the undirected graph in Figure 1(a) for
example. Its transition graph is shown in Figure 3(a), with
node 1 being the query node and transition probabilities
shown on the edges. Suppose that the current set of visited
nodes S= {1,2,3,4}. Thus S̄= {5,6,7,8}, δS= {3,4}, and
δS̄= {5,6,7}. The nodes in S but not in δS are black. The
nodes in δS are gray. The nodes in S̄ are white.

Figure 3(b) shows the resulting transition graph after
deleting all transition probabilities {pi,j : i or j ∈ S̄}. The
proximity values r computed based on Figure 3(b) will
lower bound the original proximity values r for the nodes
in S.

4.3 Upper Bound
From Theorem 5, if we change the destination of the tran-
sition probabilities {pi,j :i ∈ δS,j ∈ δS̄} to a newly added
dummy node d with a constant proximity value rd and
rd>rv (∀v∈S̄), the proximity value of any node u computed
using the resulting graph, ru, will be greater than or equal
to its original value ru, i.e., ru≥ru. Thus, r can be used as
the upper bound of r.

Continue with the example in Figure 3(a). In the original
graph, δS={3,4}, δS̄={5,6,7}, p3,5 =1/3, p4,6 =p4,7 =1/4.
The left figure in Figure 3(c) shows the resulting graph after
we change all the transition probabilities going from δS to
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(a) original r (b) LB r (c) upper bound r

Fig. 3. Lower and upper bounds based on basic operations

Algorithm 2 Fast top-k local search (FLoS)
Input: G(V,E), query q, number k, decay factor c, value τ
Output: Top-k node set K
1: S0←{q}; δS0←{q}; r0

q←1; r0
q←1; P0

q,q←0;
2: bStop← false; t←0;
3: while bStop = false do
4: t← t+1;
5: LocalExpansion();
6: UpdateLowerBound();
7: UpdateUpperBound();
8: CheckTerminationCriterion();
9: return K;

δS̄ to the newly added dummy node d. Specifically, p3,d =
1/3 and p4,d =p4,6 +p4,7 =1/2. Note that after changing the
destination to d, there will be no transition probability from
any node in S to any node in S̄. Therefore, for the nodes
in S, the upper bounds can be computed by the subgraph
induced by the nodes in S and the dummy node d, as shown
on the right in Figure 3(c).

Note that to get the upper bound, we need to add a
dummy node d with constant proximity value rd≥rv (∀v∈
S̄). In the next section, we will present the fast local search
algorithm, FLoS, and discuss how to choose the value rd.

5 FAST LOCAL SEARCH

In this section, we present the FLoS algorithm, which u-
tilizes the bounds developed in Section 4 to enable the
local search. We show that the bounds can only change
monotonically when more nodes are visited.

5.1 The FLoS Algorithm
Algorithm 2 describes the FLoS algorithm. It has four main
steps. In the first step, the algorithm expands locally to the
neighbors of a selected visited node. In the second and
third steps, it updates the lower and upper bounds of the
visited nodes. Finally, it checks whether the top-k nodes are
identified.

The local expansion step is shown in Algorithm 3. It
picks the node in δS having the largest average lower and
upper bound values, and expands to the neighbors of this
node. S and δS are then updated accordingly. We take
the average of the lower and upper bound value as an
approximation of the exact proximity value. Expanding the
node with the largest value is the best-first search strategy.

Algorithm 4 shows how to update the lower bound by
using PHP as an example. It can also be applied to other
measures with no local optimum. To update the bounds,
we first construct the transition matrix P. Note that the size
of P is |S| × |S| instead of |V | × |V |. We do not allocate
memory for the full matrix P, but only use adjacency list to
represent it. The lower bound vector r is initiated the same

Algorithm 3 LocalExpansion()

1: u←argmaxi∈δSt−1(rt−1
i +rt−1

i );
2: St←St−1∪Nu;
3: Update δSt;

Algorithm 4 UpdateLowerBound()

1: Pt
i,j←wi,j/

∑
v∈Ni wi,v , if node i or j are newly added;

2: Pt
q,j←0, if node j is newly added;

3: Pt
i,j←Pt−1

i,j , if nodes i and j exist in the last iteration;
4: rti←0, if node i is newly added;
5: rti←rt−1

i , if node i exists in the last iteration;
6: ei←1, if i=q; ei←0, otherwise;
7: rt← IterativeMethod(Pt, rt, e, c, τ );

Algorithm 5 UpdateUpperBound()

1: ExtendPtwith 1 column and 1 row for the dummy node d;
2: Pt

i,d←1−
∑
j∈Ni∩StP

t
i,j , if node i∈δSt;

3: Pt
i,d←0, if i∈St \δSt;

4: Pt
d,i←0, for any node i;

5: rti←1, if node i is newly added;
6: rti←rt−1

i , if node i exists in the last iteration;
7: rtd←rtd←maxi∈δSt−1 rt−1

i ; // dummy node value
8: Extend e with 1 new element ed =rtd for the node d;
9: rt← IterativeMethod(Pt, rt, e, c, τ );

Algorithm 6 CheckTerminationCriterion()

1: if |St \(δSt∪{q})|≥k then
2: K ← k nodes in St \(δSt∪{q}) with largest rt;
3: if mini∈K rti≥maxi∈St\(K∪{q}) r

t
i then bStop← true;

Algorithm 7 IterativeMethod()

Input: matrix P, vector rin, vector e, decay factor c, value τ
Output: proximity vector rout

1: r0←rin; l←0;
2: repeat l← l+1; rl←cPrl−1 +e; until ||rl−rl−1||<τ ;
3: return rl;

as in the previous iteration or 0 for the newly added nodes.
We then use the standard iterative method, which is shown
in Algorithm 7, to solve the linear equation r=cPr+e and
update r.

Algorithm 5 shows how to update the upper bound.
The transition matrix P has one additional dummy node
d and its related transition probabilities {pi,d : i∈ δS}. The
values in r are initiated the same as the values in the
previous iteration or 1 for the newly added nodes. The
smaller the value of rd, the tighter the upper bounds.
On the other hand, we also need to make sure that the
value rd is larger than the exact proximity value of any
unvisited node. Therefore in line 7, we use the largest upper
bound value in the boundary of the last iteration as rtd. We
have rtd = maxi∈δSt−1 rt−1

i ≥maxi∈δSt−1 ri > rj(∀j ∈ S̄t−1),
where the last inequality is based on Theorem 1. Thus
rtd>rj(∀j∈S̄t), since S̄t⊆S̄t−1. This guarantees the correct-
ness of the upper bound according to Theorem 5. Finally, we
solve the linear equation r = cPr + e to update r by using
Algorithm 7. Algorithm 7 is very efficient in practice. This
is because when the initial values of the iterative method
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Fig. 4. Lower and upper bounds in different iterations (PHP: q=1, c=0.8)

TABLE 3
Newly visited nodes in each iteration

Iteration 1 2 3 4 5
Newly visited nodes {2, 3} {4} {5} {6, 7} {8}

is close to the exact solution, the algorithm will converge
very fast. In our method, between two adjacent iterations,
the proximity values of the visited nodes are very close.
Therefore, updating the proximity is very efficient.

Algorithm 6 shows the termination criterion. We select
the k nodes in S \

(
δS ∪ {q}

)
with largest r values. If the

minimum lower bound of the selected nodes is greater than
or equal to the maximum upper bound of the remaining
visited nodes, the selected nodes will be the top-k nodes in
the entire graph. This is because the maximum proximity of
unvisited nodes is bounded by the maximum proximity in
δS, which is in turn bounded by the maximum upper bound
in δS.

Figure 4 shows the lower and upper bounds at different
iterations using the example graph in Figure 1(a). One
iteration represents one local expansion process. The newly
visited nodes in each iteration are listed in Table 3.

The left figure in Figure 4 shows how the lower and
upper bounds change through local expansions. Query node
1 has constant proximity value 1.0 thus is not shown. It
can be seen that the bounds monotonically change and
eventually converge to the exact proximity value when all
the nodes are visited. The monotonicity of the bounds is
proved theoretically in next two sections.

The right figure in Figure 4 shows the lower and upper
bounds in iteration 3 (at the top) and 4 (at the bottom).
The interval from the lower to upper bounds is indicated
by the vertical line segment. The interval of the bounds
for the unvisited node is indicated by the dashed vertical
line. In iteration 3, nodes {6,7,8} are unvisited, and their
upper bound is the upper bound for node 4, which is the
maximum upper bound for the boundary nodes {4,5}. In
iteration 4, the bounds become tighter, and the minimum
lower bound of nodes {2,3} is larger than the maximum
upper bound of the remaining nodes {4,5,6,7,8}, which
is indicated by the horizontal red dashed line. Therefore,
nodes {2,3} are guaranteed to be the top-2 nodes after
iteration 4, even though node 8 is still unvisited.

5.2 Monotonicity of the Lower Bound

We first consider the monotonicity of the lower bound. Let
St−1 and St represent the set of visited nodes in iterations
(t− 1) and t respectively. In the next, we prove that the

(a) original (b) 1st iteration (c) 2nd iteration
Fig. 5. Example transition graphs between two adjacent iterations for
analyzing lower bound monotonicity with query node 3.

lower bound is monotonically non-decreasing when more
nodes are visited, i.e., rti≥rt−1

i (i∈St−1).
Given a directed transition graph, we say that a node

u can reach a node v if there exists a sequence of adjacent
nodes (i.e., a path) which starts from u and ends at v. For
example, in the transition graph in Figure 5(a), node 1 can
reach node 6, but node 5 cannot reach node 6. We use u↝v
to denote that node u can reach v, and u v to denote that
node u cannot reach v. We also use u↝S to denote that node
u can reach at least one node in S, and u S to denote that
node u cannot reach any node in S.

From iteration (t−1) to t, we only restore some transi-
tion probabilities in {pi,j : i or j ∈St\St−1}. The following
Theorem 6 says that if node i can reach at least one of the
newly added nodes, the lower bound of node i is strictly
increasing. If node i cannot reach any of the newly added
nodes, the lower bound value of node i will not change
during the iteration.

Figure 5 shows an example. Figure 5(a) shows the full
transition graph when the query is node 3. Figures 5(b) and
5(c) show the transition graphs constructed in the first and
second iteration of Algorithm 2 respectively. S1 ={3,1,4,5},
S2 = {3,1,4,5,2}, and node 2 is the newly visited node in
the second iteration. We can see that node 5 cannot reach
node 2. Thus, the lower bound value r5 is unchanged. The
lower bound values of nodes {1,4} are strictly increasing.

Theorem 6. (Monotonicity of the lower bound) For any node
i∈St−1, we have that{

rti=rt−1
i , if i St\St−1,

rti>rt−1
i , if i↝St\St−1,

where ↝ and   represent the reachability in the transi-
tion graph at the t-th iteration.

Please see Appendix C for the proof.

5.3 Monotonicity of the Upper Bound

In this subsection, we analyze the monotonicity of the upper
bound. Specifically, we prove that the upper bound values
are strictly increasing until they converge to the exact prox-
imity values. That is, for any node i∈St−1, rti< rt−1

i until
rt−1
i =ri.

From iteration (t− 1) to t, we decrease the proximity
value of the dummy node and add new nodes in St \St−1.
After adding the new nodes, the transition probabilities
need to be updated accordingly. Specifically, we need to

1) Decrease the proximity value of the dummy node
from rt−1

d to rtd;
2) Add the transition probabilities {pi,j} from the new-

ly added nodes i(∈St\St−1) to nodes j(∈St), and
{pi,d} from i to the dummy node d;
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(a) 1st iteration (b) after step 1 (c) after step 2 (d) 2nd iteration
Fig. 6. Transition graphs between two adjacent iterations (upper bound)

3) Add the transition probabilities {pj,i} from nodes
j(∈δSt−1) to the newly added nodes i(∈St\St−1),
and remove their correspondences in {pj,d}.

An example is shown in Figure 6. Figure 6(a) shows the
transition graph for the first iteration. Figures 6(b), 6(c) and
6(d) show the resulting graphs after applying steps 1, 2, and
3 respectively. The graph in Figure 6(d) is the final transition
graph for the next iteration.

The upper bound values will monotonically change at
each step. In step 1, reducing the value of rd will not increase
the upper bound values. Applying step 2 will not change
the upper bound values for the nodes in St−1, since all
the newly added transition probabilities begin from nodes
i(∈ St \St−1). In step 3, we resets the transition proba-
bilities from nodes j(∈ δSt−1) to the newly added nodes
i(∈St\St−1). This is equivalent to destination change, i.e.,
changing {pj,d} to {pj,i}. Moreover, we have that rtd≥ rti.
Thus, in step 3, the upper bound values will not increase. We
provide rigorous analysis for the three steps in Appendix D.
Theorem 7. (Monotonicity of the upper bound) For any node

i∈St−1, we have that{
rt−1
i =rti, if i d,

rt−1
i >rti, if i↝d,

where ↝ and   represent the reachability in the transi-
tion graph at the t-th iteration.
Please see Appendix D for the proof.
If we have that i d in the transition graph at the t-th

iteration, we have that i d in the transition graph at any
future iteration. Thus, rti will not change during the future
iterations. Since rti converges to the exact proximity value ri
when the entire graph is visited. We must have that rti =ri
when i d. In conclusion, the upper bound strictly decreases
until it converges to the exact proximity value.

The lower and upper bounds can be further tightened by
adding self-loop transition probabilities to the nodes in δS.
Please see Appendix E for more details.

5.4 Complexity
Assume Algorithm 2 executes in β iterations. Let h be the
average number of neighbors of a node. The LocalExpansion
step takes O(ht) time to find the node to expand at the t-
th iteration. To update the lower bound, updating P needs
O(h2) operations, and updating r and e needs O(h) opera-
tions. Subgraph induced by S has O(h2t) edges, so matrix
P has O(h2t) non-zero entries. Therefore using the iterative
method to solve linear equations takes O(αh2t) time, where
α is the number of iterations used in IterativeMethod. Thus the
overall complexity of UpdateLowerBound in the t-th iteration
is O(αh2t). The complexity of UpdateUpperBound function is
the same as that of UpdateLowerBound. In the CheckTermination-
Criterion step, finding the nodes with largest lower bounds

Fig. 7. Relationships between PHP and other proximity measures

takes O(ht) time. Therefore, the overall complexity of FLoS
is O(

∑β
t=1(αh2t+ht))=O(αh2β2).

At each iteration, FLoS visits h new nodes on average. In
the worst case, where the whole graph is visited, FLoS needs
to run β=n/h iterations. Thus, the worst case complexity of
FLoS is O(αh2β2)=O(αn2).

In the above complexity analysis, the number of iter-
ations β is proportional to the number of visited nodes.
Appendix F provides theoretical analysis of the number of
visited nodes. In Section 8, we show experimental results on
the number of visited nodes using real graphs.

Note that so far, we have used PHP to illustrate the
key principles underlying the fast local search method. EI
and DHT are equivalent with PHP thus there is no need to
develop algorithm for them. For THT, deleting a transition
probability will not increase the proximity of any node.
Therefore, when we delete all the transition probabilities
{pi,j : i or j ∈ S̄} in the original transition graph, the prox-
imity value of any node computed based on the modified
transition graph will be the lower bound. For the upper
bound, we add a dummy node with value L, which is the
largest possible proximity value of THT. All other processes
are similar to those of PHP and omitted here.

6 EXTENSIONS OF FLOS TO THE PROXIMITY
MEASURES HAVING LOCAL MAXIMUM

In this section, we study how to extend the FLoS method to
random walk with restart, RoundTripRank, Katz score, and
absorption probability.

The idea is to use the relationships between PHP and
these proximity measures. Figure 7 summarizes the rela-
tionships between PHP and other proximity measures. For
RWR, its proximity is proportional to the PHP proximity
multiplied by the node degree. For RT, its proximity is
proportional to the PHP proximity multiplied by the node
degree to the power of β, where β is a constant in RT. For
KZ, we define a new proximity measure PHP’, which is
a variant of PHP. There is a simple relationship between
KZ and PHP’. For AP, we define another new proximity
measure PHP”, which is also a variant of PHP. There is
a simple relationship between AP and PHP”. Compared
with PHP, the transition probabilities in PHP’ and PHP” are
changed. In PHP, the transition probability is normalized
by the node degree wi. In PHP’, the transition probability
is normalized by the maximum degree wmax. In PHP”, the
transition probability is normalized by the value (λi+wi),
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where λi is a constant in AP. Thus, the FLoS algorithm for
PHP can be readily modified for PHP’ and PHP”. Appendix
G provides proofs for these relationships.

Next, we use RWR as an example to show how to
extend FLoS to these proximity measures by using the
relationship. Suppose that node v ∈ δSt has the largest
PHP proximity value. Based on Theorem 1, for any node
i ∈ S̄t, we have that PHP(i)≤ PHP(v). Let w(S̄t) denote the
maximum degree of unvisited nodes in S̄t. We have that
wi · PHP(i)≤w(S̄t) · PHP(i)≤w(S̄t) · PHP(v). Therefore, if we
maintain the maximum degree of unvisited nodes, we can
develop the upper bound for the proximity values of unvis-
ited nodes.

Specifically, we can apply FLoS to RWR as follows. In
Algorithm 3, we can change line 1 to the following line.

1: u←argmaxi∈δSt−1 wi ·(rt−1
i +rt−1

i );

In Algorithm 6, we can change line 2 and 3 to the
following two lines.
2: K←k nodes in St \(δSt∪{q}) with largest wi ·rti values;
3: if mini∈Kwi ·rti≥maxi∈St\(K∪{q})wi ·rti and mini∈Kwi ·rti≥
w(S̄t) ·maxi∈δSt r

t
i then bStop← true;

All other processes remain the same.

For other proximity measures, we extend the FLoS algo-
rithm in a similar way. Please see Appendix G for further
details.

7 TOP-K REVERSE-PROXIMITY QUERY PROBLEM

In this section, we study the top-k reverse-proximity query
problem [24] and discuss how FLoS can be applied to solve
it efficiently.

Given a query node q, we can compute the proximity
values of all other nodes. We can also use each node i
as the query, and compute the proximity value of q. We
refer to this proximity of node q as the reverse proximity
of node i. The top-k reverse-proximity query problem aims
at finding the top-k nodes that are ranked by the reverse
proximity. In Table 2, only EI and KZ are symmetric and
all other proximity measures are not symmetric. The top-k
reverse-proximity query problem is different from the top-
k proximity query problem when the proximity measure is
not symmetric.

Note that the top-k reverse-proximity query problem is
different from the reverse top-k problem studied in [25].
Given a query node q, the reverse top-k problem aims at
finding all the nodes that have q in their top-k proximity
sets. In this paper, we study the top-k reverse-proximity
query problem, which aims at finding the top-k nodes
ranked by the reverse proximity [24].

The top-k reverse-proximity query problem has been
studied when RWR is used as the proximity measure [24].
In a recent paper [10], the original and reverse proximity
values in RWR are interpreted as importance and specificity
respectively. If node i has large RWR proximity value when
the query node is q, node i is important for node q. On
the other hand, if node q has large RWR proximity value
when the query node is i, node i is specific for node q.
The authors show that ranking by the combination of two
directions performs better than ranking by one direction.

Fig. 8. Relationships between PHP and the reverse proximity measures

The naive method to solve the top-k reverse-proximity
query problem is as follows. First, each node is used as the
query node, and the proximity value of node q is computed
by the iterative method. Then the top-k nodes with largest
reverse proximity values are selected. Suppose that the
iterative method takes O(αm) for each query node. The
naive method takes time O(αmn), where α is the number
of iterations in the iterative method, m is the number of
edges, and n is the number of nodes. This is expensive and
prohibitive for large graphs.

For the RWR proximity measure, it is shown that the
reverse proximity vector can be computed using the iter-
ative method, which has the same complexity O(αm) as
computing the original proximity vector [25]. However, the
iterative method is still expensive since it needs to iterate
over the entire graph. Moreover, it is unclear how to com-
pute the reverse proximity vectors for other measures in a
similar way.

To extend FLoS to the reverse proximity measures, we
use the relationships between PHP and the reverse prox-
imity measures. Figure 8 summarizes these relationships.
rPHP, rRWR, rEI, rDHT, rRT, rKZ, and rAP represent the re-
versed version of their corresponding measures. Appendix
H provides the proofs for these relationships. Based on these
relationships, we can develop the bounds for the reverse
proximity values based on the bounds for the PHP or its
variant proximity values. Appendix H shows more details
about how to extend the FLoS algorithm to the reverse
proximity measures.

8 EXPERIMENTAL RESULTS

In this section, we present extensive experimental re-
sults on evaluating the performance of the FLoS al-
gorithm. The datasets are shown in Table 4. The real
datasets are publicly available from the website http:/
/snap.stanford.edu/data/. The synthetic datasets are
generated using the Erdös-Rényi random graph (RAND)
model [26] and R-MAT model [27] with different parame-
ters. All programs are written in C++. All experiments are
performed on a server with 32G memory, Intel Xeon 3.2GHz
CPU, and Redhat 4.1.2 OS.

8.1 State-of-the-Art Methods
The measures we use include PHP, EI, RWR, RT, KZ, THT,
and AP. We compare FLoS with the state-of-the-art methods
for each measure as summarized in Table 5. These methods
are categorized into global and local methods.
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TABLE 4
Datasets used in the experiments

Datasets Abbr. #Nodes #Edges

Real

Amazon AZ 334,863 925,872
DBLP DP 317,080 1,049,866

Youtube YT 1,134,890 2,987,624
LiveJournal LJ 3,997,962 34,681,189

Synthetic
In-memory – Varying size

– Varying density
Disk-resident – Varying size

TABLE 5
State-of-the-art methods used for comparison

Our methods State-of-the-art methods
(Exact) Abbr. Key idea Ref. Exactness

FLoS PHP

GI PHP Global iteration [12] Exact
DNE Local search [7] Approx.

NN EI Local search [9] Exact
LS EI Local search [1] Approx.

FLoS RWR

GI RWR Global iteration [12] Exact
GE RWR Graph embedding [19] Approx.
Castanet Improved GI [4] Exact
K-dash Matrix inversion [14] Exact

LS RWR Local search [1] Approx.

FLoS RT
GI RT Global iteration [12] Exact
LS RT Local search [10] Approx.

FLoS KZ
GI KZ Global iteration [12] Exact
LS KZ Local search [23] Approx.
AA KZ Improved GI [13] Exact

FLoS THT
GI THT Global iteration [12] Exact
LS THT Local search [5] Approx.

FLoS AP GI AP Global iteration [12] Exact
FLoS rPHP GI rPHP Global iteration [12] Exact

The global iteration (GI) method directly applies the iter-
ative method on the entire graph [12]. It guarantees to find
the exact top-k nodes. The graph embedding (GE) method
can answer the query in constant time after embedding [19].
It can only be applied to RWR. However, the embedding
process is very time consuming. Moreover, it only returns
approximate results. The Castanet algorithm is specifically
designed for RWR. It improves the GI method and guar-
antees the exactness of the results [4]. AA KZ improves
the global iteration method by prioritized execution of the
iterative computation and also guarantees the exactness
of the results [13]. K-dash is the state-of-the-art matrix-
based method for RWR which guarantees result exactness
[14]. Note that K-dash and GE can only be applied on
two medium-sized real graphs because of the expensive
preprocessing step.

Dynamic neighborhood expansion (DNE) method ap-
plies a best-first expansion strategy to find the top-k n-
odes using PHP [7]. This strategy is heuristic and does
not guarantee to find the exact solution. The number of
visited nodes is fixed to 4,000 in the experiments. NN EI
applies the push style method [21], [2] in local search, and
guarantees the exactness of the top-k results [9]. Since PHP
and EI are equivalent in terms of ranking, we can compare
the methods for PHP and EI directly. LS RWR applies the
dynamic programming technique [28] to develop bounds
in local search [1]. It returns approximate results. LS EI is
based on LS RWR and has similar performance [1]. LS RT

leverages the push style method [21] developed for RWR to
estimate the bounds and find the approximate top-k nodes
with largest RoundTripRank proximity values. LS KZ local-
ly searches a small portion of the graph and adapts the push
style method [21] to find the approximate top-k results for
the Katz score. LS THT is a local search method for THT [5].

The decay factors in PHP, RWR, EI, and RT are all set to
0.5. The decay factor in KZ is set to 0.99/wmax. In RT, we set
the parameter β= 0.4. In AP, we set the parameter λi = 10
for any node i. The truncated length in THT is set to 10.

We use FLoS rPHP to denote the FLoS method for re-
verse PHP. Reverse RWR gives the same ranking as PHP, so
we only evaluate FLoS PHP. The FLoS method for reverse
RT is quite similar to that for RT, thus we only evaluate
FLoS RT. When we set the parameter λi= 10 for any node
i, AP becomes symmetric. Thus AP and reverse AP give the
same ranking results, and we only evaluate FLoS AP.

8.2 Evaluation on Real Graphs

We study the efficiency of the selected methods on real
graphs when varying the number of returned nodes k. For
each k, we repeat the experiments 103 times, each with a
randomly picked query node. The average running time
is reported. For methods using the iteration procedure in
Algorithm 7, the termination threshold is set to τ = 10−5.
We also perform experiments using a fixed number of 10
iterations. The results are similar and omitted here.

8.2.1 Evaluation of FLoS PHP

Figure 9 shows the running time of different methods for
PHP. The running time of DNE is almost a constant for dif-
ferent k, because it visits a fixed number of nodes. The run-
ning time of NN EI increases when k increases. FLoS PHP
is more efficient than NN EI, which demonstrates that the
bounds of FLoS are tighter. LS EI has a constant running
time. This is because it extracts the cluster containing the
query node. Note that LS EI takes tens of hours in the
preprocessing step to cluster the graphs.

Figure 11(a) shows the ratio between the number of
visited nodes using FLoS PHP and total number of nodes
in the graph. The value indicated by the bar is the average
ratio of 103 queries. The minimum and maximum ratios are
also shown in the figure. As can be seen from the figure,
only a very small part of the graph is needed for FLoS to
find the exact solution. Moreover, the ratio decreases when
the graph size increases. This indicates that FLoS is more
effective for larger graphs.

8.2.2 Evaluation of FLoS RWR

Figure 10 shows the running time for RWR. K-dash has the
best performance after precomputing the matrix inversion
as shown in Figures 10(a) and 10(b). The precomputing step
of K-dash takes tens of hours for the medium-sized AZ and
DP graphs and cannot be applied to the other two larger
graphs. GE RWR also has fast response time. However, as
discussed before, its embedding step is time consuming and
not applicable to larger graphs. Moreover, it does not find
the exact solution. Castanet method cuts the running time
from the GI method by 72% to 91%. LS RWR method has
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(a) AZ (b) DP (c) YT (d) LJ
Fig. 9. Running time of different methods for PHP on real graphs

(a) AZ (b) DP (c) YT (d) LJ
Fig. 10. Running time of different methods for RWR on real graphs

(a) FLoS PHP (b) FLoS RWR
Fig. 11. Ratio between the number of visited nodes and the total number
of nodes on real graphs

constant running time, and it needs tens of hours in the
precomputing step to cluster the graphs.

Figure 11(b) shows the ratio of the number of visited
nodes of the FLoS RWR method. The results are similar to
that of Figure 11(a).

8.2.3 Evaluation of FLoS RT
Figure 12(a) shows the running time of different methods
for RT. The number on the right side of the rectangle legend
indicates the value of k. Since the GI RT method has almost
constant running time for different k, we only show the
result when k=10. The running time of FLoS RT and LS RT
increases when k increases. FLoS RT is the most efficient
method. FLoS RT is about 1 order of magnitude faster than
LS RT, and 2 orders of magnitude faster than GI RT. LS RT
uses the push style method to develop the bounds, which
are looser than those of FLoS RT.

8.2.4 Evaluation of FLoS KZ
Figure 12(b) shows the running time of different methods
for KZ. We also only show the running time when k=10 for

the GI KZ method since it has almost constant running time
for different k. FLoS KZ, LS KZ, and AA KZ methods all
have increasing running time when increasing k. FLoS KZ
is about 1-2 orders of magnitude faster than LS KZ and
AA KZ. LS KZ uses the push style method to develop the
bounds, which are not as tight as those of FLoS KZ. The
results also demonstrate that the bounds in AA KZ are
looser than those of FLoS KZ.

8.2.5 Evaluation of FLoS THT
Figure 12(c) shows the running time for THT. As we can see,
FLoS THT runs faster than LS THT, which is specifically
designed to speed up the computation for THT. This is
because the lower and upper bounds of FLoS THT are
tighter than those of LS THT. Both of the two local search
methods are 2 to 3 orders of magnitude faster than GI THT.

8.2.6 Evaluation of FLoS AP
Figure 12(d) shows the running time for AP. Similar to
the results of other proximity measures, FLoS AP runs 2-
3 orders of magnitude faster than the GI AP method.

8.2.7 Evaluation of FLoS rPHP
In FLoS rPHP, we pre-compute the exact values EIi(i) for
each node i by the K-dash method [14]. The precomputa-
tion step takes 28.5 and 34.6 hours for two medium-sized
graphs, AZ and DP. Thus we did not apply FLoS rPHP on
the large graphs.

Figure 12(e) shows the running time of our local search
method and the global iteration method for reverse PHP.
Similar to the results for other proximity measures, F-
LoS rPHP runs 2-3 orders of magnitude faster than the
GI rPHP method.
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(a) RT (b) KZ (c) THT (d) AP (e) rPHP
Fig. 12. Running time of different methods for RT, KZ, THT, AP, and rPHP on real graphs

(a) YT (b) LJ
Fig. 13. Ratio between the number of visited nodes and the total number of nodes on real graphs for the local search methods

8.2.8 Number of Visited Nodes in Local Search Methods
In this subsection, we study the number of visited nodes of
different local search methods on real graphs. The number
of visited nodes in the DNE method is fixed, thus it is not
included. Figure 13(a) shows the ratio between the number
of visited nodes using different local search methods and
total number of nodes in the YT graph. Figure 13(b) shows
that in the LJ graph. The value indicated by the bar is the
average ratio of 103 queries. The minimum and maximum
ratios are also shown in the figure. As can be seen from
the figure, other local search methods need to visit larger
number of nodes than the FLoS methods do. This demon-
strates the tightness of the bounds in the FLoS methods. We
also can observe that the LS EI and LS RWR methods visit
relatively large number of nodes and the ratio is stable when
the number k changes. This is because in each expansion of
the LS EI and LS RWR methods, all the nodes in one cluster
will be visited. Thus, they need to visit larger number of
nodes.

8.3 Evaluation on In-Memory Synthetic Graphs

We generate synthetic graphs with different parameters to
evaluate the selected methods. More specifically, we study
two types of graphs: Erdös-Rényi random graph (RAND)
[26] and scale-free graph based on the R-MAT model [27].
There are two parameters, the size and density of the graph-
s. We study how these two parameters affect the running
time of different methods for PHP, RWR, RT, and KZ.

We download the graph generator available from the
website https://github.com/dhruvbird/GTgraph and
use the default parameters to generate two series of graphs
with varying size and varying density, using RAND and R-
MAT respectively. The graphs with varying size have the

TABLE 6
Statistics of in-memory synthetic graphs

Varying
size

#Nodes 1×220 2×220 4×220 8×220

#Edges 1×107 2×107 4×107 8×107

Density 9.5 9.5 9.5 9.5

Varying
density

#Nodes 1×220 1×220 1×220 1×220

#Edges 5×106 10×106 15×106 20×106

Density 4.8 9.5 14.3 19.1

same density but different number of nodes. The graphs
with varying density have the same number of nodes but
different densities. The statistics are shown in Table 6.

We apply the selected methods for PHP, RWR, RT and
KZ on these graphs with k=20. For each graph, we repeat
the query 103 times with randomly picked query nodes, and
report the average running time.

8.3.1 Evaluation of FLoS PHP
Figure 14(a) shows the running time of the selected methods
for PHP on the series of RAND graphs with varying size.
The running time of GI PHP increases as the number of n-
odes increases. FLoS PHP, DNE, NN EI and LS EI all have
almost constant running time when the number of nodes
increases. This is because these methods only search locally.
When the density of the graph is fixed, adding more nodes
to the graph will not change the size of the search space of
these methods. Figure 14(b) shows the running time on the
series of R-MAT graphs with varying size. Similar trends
are observed. Comparing Figure 14(a) and 14(b), GI PHP
has less running time on R-MAT than on RAND graphs,
while other methods have more. The reason is that R-MAT
graphs have the power-law distribution, thus it is easier for
FLoS PHP, DNE, NN EI and LS EI to encounter hub nodes
with larger degree when expanding subgraph. The faster
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(a) varying size, RAND (b) varying size, R-MAT (c) varying density, RAND (d) varying density, R-MAT
Fig. 14. Running time of different methods for PHP on in-memory synthetic graphs (k=20)

(a) varying size, RAND (b) varying size, R-MAT (c) varying density, RAND (d) varying density, R-MAT
Fig. 15. Running time of different methods for RWR on in-memory synthetic graphs (k=20)

performance of GI PHP on R-MAT may be because of the
greater data locality due to the hub node.

Figure 14(c) shows the running time of the selected meth-
ods for PHP on the series of RAND graphs with varying
density. The running time of all the methods increases as the
density increases. FLoS PHP and NN EI have increasing
running time because the number of visited nodes in these
two methods increases when the density becomes larger.
LS EI has increasing running time because the number of
nodes and edges increases in local clusters. Figure 14(d)
shows the running time on the series of R-MAT graphs with
varying density. Similar trends are observed.

8.3.2 Evaluation of FLoS RWR

Figure 15(a) shows the running time of the selected meth-
ods for RWR on the series of RAND graphs with varying
size. The running time of GI RWR and Castanet increases
as the number of nodes increases. Castanet method cuts
the running time from the GI method by 69% to 88%. F-
LoS RWR and LS RWR both have almost constant running
time when the number of nodes increases. This is because
FLoS RWR and LS RWR only search locally. Figure 15(b)
shows the running time on the series of R-MAT graphs
with varying size. Similar trends are observed. Comparing
Figure 15(a) and 15(b), GI RWR has less running time on
the R-MAT graphs than on the RAND graphs, while other
methods have more. The reason is similar as what discussed
previously.

Figure 15(c) shows the running time on the series of
RAND graphs with varying density. The running time of all
the methods increases as the density increases. Figure 15(d)
shows the running time on the series of R-MAT graphs with
varying density. Similar trends are observed.

(a) varying size (b) varying density
Fig. 16. Running time of different methods for RT on in-memory synthet-
ic graphs (R-MAT, k=20)

8.3.3 Evaluation of FLoS RT
Figure 16(a) shows the running time of the selected methods
for RT on the series of R-MAT graph with varying size. The
running time of GI RT increases as the number of nodes
increases. FLoS RT has almost constant running time when
the number of nodes increases. Because it only searches
locally. LS RT has increasing running time. LS RT needs
to find the node with the largest residual proximity value
in each iteration. When the number of nodes in the graph
increases, the search space may also increase. This may be
the reason why it has a slightly increasing running time.

Figure 16(b) shows the running time of the selected
methods for RT on the series of R-MAT graph with varying
density. The running time of all the methods increases as the
density increases. Both FLoS RT and LS RT have increasing
running time because they will visit more nodes in a graph
with larger density.

8.3.4 Evaluation of FLoS KZ
Figure 17(a) shows the running time of the selected methods
for KZ on the series of R-MAT graph with varying size. The
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(a) varying size (b) varying density
Fig. 17. Running time of different methods for KZ on in-memory synthetic
graphs (R-MAT, k=20)

(a) RAND (b) R-MAT
Fig. 18. Ratio between the number of visited nodes and the total number
of nodes on synthetic graphs for the local search methods (220 nodes
and 107 edges, k=20)

running time of GI KZ increases as the number of nodes
increases. FLoS KZ has almost constant running time when
the number of nodes increases. LS KZ and AA KZ both
have increasing running time when increasing graph size.
LS KZ needs to update the node with the largest residual
proximity value in each iteration, thus it has a slightly
increasing running time when the graph size increases. In
AA KZ, computing the upper bound of each node requires
linear time O(m). Thus it has increasing running time.

Figure 17(b) shows the running time of the selected
methods for KZ on the series of R-MAT graph with varying
density. The running time of all the methods increases as
the density increases. The reason why FLoS KZ, LS KZ and
AA KZ have increasing running time is that they need to
visit more nodes when increasing the graph density.

8.3.5 Number of Visited Nodes in Local Search Methods

In this subsection, we study the number of visited nodes
using different local search methods on synthetic graphs.
We use the synthetic graphs with 220 nodes and 107 edges.
The number of query nodes is fixed to k = 20. Figure
18(a) shows the ratio between the number of visited nodes
using different local search methods for PHP and RWR and
total number of nodes in the RAND graph. Figure 18(b)
shows the ratio between the number of visited nodes using
different local search methods for PHP, RWR, RT and KZ
and total number of nodes in the R-MAT graph. The value
indicated by the bar is the average ratio of 103 queries. The
minimum and maximum ratios are also shown in the figure.
As can be seen from the figure, other local search methods
need to visit larger number of nodes than the FLoS methods
do. This demonstrates the tightness of the bounds in the
FLoS methods.

TABLE 7
Statistics of disk-resident synthetic graphs

#Nodes 16×220 32×220 48×220 64×220

#Edges 16×107 32×107 48×107 64×107

Disk size 3.1 G 6.5 G 9.9 G 13.2 G

(a) running time (b) visited nodes
Fig. 19. Results of FLoS PHP and FLoS RWR on disk-resident syn-
thetic graphs (k=20)

8.4 Evaluation on Disk-Resident Synthetic Graphs
What if the graphs are too large to fit into memory? To
test the performance of FLoS on disk-resident graphs, we
generate disk-resident R-MAT graphs, whose statistics are
in Table 7. We use the open source Neo4j (available from
http://www.neo4j.org) version 2.0 graph database. The
FLoS method for disk-resident graphs only calls some basic
query functions provided by Neo4j, such as, querying the
neighbors of one node. And the remaining work is the same
as that for in-memory graphs. We apply the FLoS PHP
and FLoS RWR methods on the disk-resident graphs with
k=20. We repeat the query 103 times with randomly picked
query nodes and report the average running time. In the
experiments, we restrict the memory usage to 2 GB.

Figure 19(a) shows the running time of FLoS PHP and
FLoS RWR. From the figure, we can see that FLoS can
process disk-resident graphs in tens of seconds. The reason
is that FLoS only needs to find the neighbors of visited nodes
and the transition probabilities on the edges. These results
also verify that FLoS has almost constant running time when
the number of nodes increases. Figure 19(b) shows the ratio
of the number of visited nodes to the total number of nodes
in the graph. FLoS only needs to explore a small portion of
the whole graph to return the top-k nodes. When the graph
size becomes larger, the portion of visited nodes becomes
smaller.

9 CONCLUSION

Top-k nodes query in large graphs is a fundamental problem
that has attracted intensive research interests. Existing meth-
ods need expensive preprocessing steps or are designed for
specific proximity measures. In this paper, we propose a
unified method, FLoS, which adopts a local search strategy
to find the exact top-k nodes efficiently. FLoS is based on
the no local optimum property of proximity measures. By
exploiting the relationship among different proximity mea-
sures, we can also extend FLoS to the proximity measures
having local optimum. FLoS can be further extended to
solve the top-k reverse-proximity query problem. Extensive
experimental results demonstrate that FLoS enables efficient
and exact query for a variety of random walk based prox-
imity measures.
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