
Fast and Unified Local Search for Random Walk Based
K-Nearest-Neighbor Query in Large Graphs

Yubao Wu †, Ruoming Jin ‡, Xiang Zhang †
†Department of Electrical Engineering and Computer Science, Case Western Reserve University

‡Department of Computer Science, Kent State University
yubao.wu@case.edu, jin@cs.kent.edu, xiang.zhang@case.edu

ABSTRACT
Given a large graph and a query node, finding its k-nearest-
neighbor (kNN) is a fundamental problem. Various random
walk based measures have been developed to measure the
proximity (similarity) between nodes. Existing algorithms
for the random walk based top-k proximity search can be
categorized as global and local methods based on their search
strategies. Global methods usually require an expensive pre-
computing step. By only searching the nodes near the query
node, local methods have the potential to support more ef-
ficient query. However, most existing local search methods
cannot guarantee the exactness of the solution. Moreover,
they are usually designed for specific proximity measures.

Can we devise an efficient local search method that applies
to different measures and also guarantees result exactness?
In this paper, we present FLoS (Fast Local Search), a unified
local search method for efficient and exact top-k proximity
query in large graphs. FLoS is based on the no local opti-
mum property of proximity measures. We show that many
measures have no local optimum. Utilizing this property, we
introduce several simple operations on transition probabili-
ties, which allow developing lower and upper bounds on the
proximity. The bounds monotonically converge to the exact
proximity when more nodes are visited. We further show
that FLoS can also be applied to measures having local op-
timum by utilizing relationship among different measures.
We perform comprehensive experiments to evaluate the ef-
ficiency and applicability of the proposed method.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Application-
s—Data mining ; G.2.2 [Discrete Mathematics]: Graph
Theory—Graph algorithms

Keywords
Local search; nearest neighbors; top-k search; random walk;
proximity search

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’14, June 22–27, 2014, Snowbird, UT, USA.
Copyright 2014 ACM 978-1-4503-2376-5/14/06 ...$15.00.
http://dx.doi.org/10.1145/2588555.2610500.

1. INTRODUCTION
Given a large graph and a query node, finding its k-

nearest-neighbor (kNN) is a primitive operation that has re-
cently attracted intensive research interests in the database
research community [18, 5, 13, 9]. In general, there are
two challenges in this problem. One is to design proximity
measures that can effectively capture the similarity between
nodes. Another is to devise efficient algorithms to compute
the top-k nodes for a given measure.

Designing effective proximity (similarity) measures is a
difficult task. Random walk based measures have been shown
to be effective in many applications. Some examples include
discounted/truncated hitting time [17, 18], penalized hitting
probability [11, 21], and random walk with restart [1, 20, 3].

Although various proximity measures have been develop-
ed, how to efficiently compute them remains a challenging
problem. For most random walk based measures, the naive
method requires matrix inversion, which is prohibitive for
large graphs. Two global approaches have been developed.
One applies the power iteration method over the entire graph
[16, 9]. Another approach precomputes and stores the in-
version of a matrix [20, 8, 10]. The precomputing step is
usually expensive and needs to be repeated whenever the
graph changes.

To improve efficiency, local methods dynamically expand
the search range to visit nodes near the query node [17,
19, 18, 21]. Node proximities are estimated based on lo-
cal information only. Without using the global information,
however, most of the existing local search methods cannot
guarantee to find the exact solution. Moreover, they are
designed for specific measures and cannot be generalized to
other measures.

In this paper, we propose FLoS (Fast Local Search), a
simple and unified local search method for efficient and exact
top-k proximity query in large graphs. FLoS has several
desirable properties.

• It guarantees to find the exact top-k nodes.

• It is a general method that can be applied to a variety
of random walk based proximity measures.

• It uses a simple local search strategy that needs neither
preprocessing nor iterating over the entire graph.

The key idea behind FLoS is that we can develop up-
per and lower bounds on the proximity of the nodes near
the query node. These bounds can be dynamically updated
when a larger portion of the graph is explored and will finally
converge to the exact proximity value. The top-k nodes can

be identified once the differences between their upper and
lower bounds are small enough to distinguish them from the
remaining nodes.

The theoretical basis of FLoS relies on the no local op-
timum property of proximity measures. That is, given a
query node q, for any node i (i 6= q) in the graph, i always
has a neighbor that is closer to q than i is. We show that
many measures have no local optimum. This property en-
sures that the proximity of unvisited nodes is bounded by
the maximum proximity (or minimum proximity for some
measures) in the boundary of the visited nodes. It can be
utilized to find the top-k nodes without exploring the entire
graph under the assumption that the exact proximity can
be computed based on local information. However, for most
measures, the exact proximity cannot be computed without
searching the entire graph. To tackle this challenge, we in-
troduce several simple operations to modify transition prob-
abilities, which enable developing upper and lower bounds
on the proximity of visited nodes. The developed upper
(lower) bounds monotonically decrease (increase) when more
nodes are visited. We further study the relationship among
different measures and show that FLoS can also be applied
to measures having local optimum. Extensive experimen-
tal results show that, for a variety of measures, FLoS can
dramatically improve the efficiency compared to the state-
of-the-art methods.

2. RELATED WORK
Various random walk based proximity measures have been

proposed recently [6]. Examples include truncated or dis-
counted hitting time [17, 19, 18], penalized hitting proba-
bility [11, 21], and random walk with restart [1, 20, 18] and
its variants such as effective importance (degree normalized
random walk with restart) [3].

The basic approach for proximity query is to use the pow-
er iteration method [16]. An improved iteration method
designed for random walk with restart decomposes the prox-
imity into random walk probabilities of different length [9].
It tries to reduce the number of iterations by estimating the
proximity based on the information collected so far. Another
approach precomputes the information needed for proxim-
ity estimation during the query process [20, 8, 10]. How-
ever, this step is time consuming and becomes infeasible
when the graph is large or constantly changing. Graph em-
bedding method embeds nodes into geometric space so that
node proximities can be preserved as much as possible [22].
The embedding step is also time-consuming. Moreover, the
proximities in the new space are not exactly the same as the
ones in the original graph.

Based on the intuition that nodes near the query node
tend to have high proximity, local search methods try to
visit a small number of nodes to approximate the prox-
imities. Best-first [21] and depth-first [14] search strate-
gies simply extract a fixed number of nodes near the query
node. An approximate local search algorithm is proposed
for truncated hitting time [17]. The key idea is to develop
upper and lower bounds that can be used to approximate
the proximities of local nodes. Methods in [18, 3] apply a
similar idea on the effective importance proximity measure.
Most of the existing local search methods cannot guarantee
the exactness. Moreover, all of them are designed for specif-
ic proximity measures. It is unclear whether the local search
methods can be generalized to other measures.

Table 1: Main symbols

Symbol Definition

G(V,E) undirected graph G with node set V and edge set E

Ni neighbors of node i
wij weight of edge (i, j)
wi weighted node degree wi =

∑
j∈Ni wij

q query node
k number of returned nodes

S a set of nodes

S̄ complement of S: S̄ = V \ S
δS boundary of S: {i ∈ S|∃j ∈ Ni ∩ S̄}
δS̄ boundary of S̄: {i ∈ S̄|∃j ∈ Ni ∩ S}
r n× 1 vector, ri is the proximity of node i w.r.t. query q

r upper bound of r: ri ≥ ri (∀i ∈ S)
r lower bound of r: ri ≤ ri (∀i ∈ S)
pi,j transition probability from node i to j; pi,j = wij/wi
P transition probability matrix with Pi,j = pi,j
T modified P: Ti,j = 0, if i = q; Ti,j = Pi,j , if i 6= q

d, rd a dummy node d with constant proximity value rd

c decay factor (PHP or DHT); restart probability (RWR)

3. NO LOCAL OPTIMUM PROPERTY
In this section, we first introduce the basic concept of no

local optimum property of proximity measures and discuss
how it can be used to bound the proximity of the unvisited
nodes. Then we study whether commonly used measures
have no local optimum and discuss the relationship between
them. Table 1 lists the main symbols and their definitions.

3.1 Theoretical Basis
Note that for some measures, such as penalized hitting

probability, random walk with restart and effective impor-
tance, the larger the proximity the closer the nodes. In this
case, no local optimum means no local maximum. For oth-
er measures, such as discounted/truncated hitting time, the
smaller the proximity the closer the nodes. In this case, no
local optimum means no local minimum.

Given an undirected and edge weighted graph G = (V,E)
and a query node q ∈ V , let r be the proximity vector with
ri representing the proximity of node i ∈ V with respect to
the query node q.

Definition 1. [No Local Maximum] A proximity mea-
sure has no local maximum if for any node i 6= q, there exists
a neighbor node j of i (i.e., j ∈ Ni), such that rj > ri.

Definition 2. [No Local Minimum] A proximity mea-
sure has no local minimum if for any node i 6= q, there exists
a neighbor node j of i (i.e., j ∈ Ni), such that rj < ri.

We say that a proximity measure has no local optimum if
it has no local maximum or minimum. In Section 3.2, we will
examine whether the commonly used proximity measures
have no local optimum. Unless otherwise mentioned, in the
next, we assume that the larger the proximity the closer the
nodes, and focus on the no local maximum property. All
conclusions can also be applied to the proximity measures
with no local minimum.

Let S be a set of nodes, and S̄ = V \ S be the remaining
nodes. We use δS = {i ∈ S|∃j ∈ Ni ∩ S̄} to denote the
boundary of S, and δS̄ = {i ∈ S̄|∃j ∈ Ni ∩ S} to denote the
boundary of S̄.

Algorithm 1: Basic top-k local search

Input: G(V,E), q, r, k
Output: Top-k nodes set K

1: S ← {q}; δS̄ ← Nq ;
2: while |S| < k + 1 do
3: u = arg maxi∈δS̄ ri;

4: S = S ∪ {u}; δS̄ = δS̄ \ {u} ∪ (Nu \ S);

5: return S \ {q};

Figure 1(a) shows an undirected graph with 8 nodes. Sup-
pose that the node set S = {1, 2, 3, 4}, then we have S̄ =
{5, 6, 7, 8}, δS = {3, 4}, and δS̄ = {5, 6, 7}.

Theorem 1. Let S be a node set containing the query
node, and u be the node with the largest proximity in δS. If
a proximity has no local maximum, we have that ru > rj
(∀j ∈ S̄).

Proof. Suppose otherwise. We have that ∃j ∈ S̄, such
that ru ≤ rj . Now suppose that node v is the node with
the largest proximity in S̄. We have that ∀i ∈ S̄ ∪ δS,
rv ≥ ri. The neighbors of node v must exist in S̄ ∪ δS,
i.e., Nv ⊆ S̄ ∪ δS. Therefore, we have rv ≥ ri (∀i ∈ Nv),
which means node v is a local maximum. This contradicts
the assumption.

Theorem 1 can also be generalized to δS̄.

Corollary 1. Let S be a node set containing the query
node, and u be the node with the largest proximity in δS̄. If
a proximity has no local maximum, we have that ru ≥ rj
(∀j ∈ S̄).

Proof. Let S′ = S ∪ δS̄. We have δS′ ⊆ δS̄. Suppose
that node b ∈ δS′ has the largest value in δS′. We have
ru ≥ rb. From Theorem 1, we have rb > ri (∀i ∈ S̄′). Then,
we have ru ≥ rj (∀j ∈ S̄ = S̄′ ∪ δS̄).

Based on Corollary 1, assuming that we already have the
exact proximity vector r, we can design a simple local search
strategy as shown in Algorithm 1 to find the top-k nodes.
It begins from the query node q and uses S to store the
top-k nodes. In each iteration, the algorithm finds the node
u that has the largest proximity in δS̄ and put it in S. δS̄
is then updated accordingly. The algorithm continues until
|S| = k + 1.

Let h be the average number of neighbors of a node. In
each iteration i, on average h nodes are added to δS̄. This
takes O(h log hi) time for a sorted list. The overall complex-

ity of Algorithm 1 is thus O(
∑k
i=1 h log hi) = O(hk log hk).

3.2 Measures with and without local optimum
Table 2 summarizes whether the commonly used proxim-

ity measures have no local optimum property. Next, we use
penalized hitting probability (PHP) [11, 21] as an example
to illustrate that it has no local maximum. We use wi to
denote the weighted degree of node i, and wij to denote
the edge weight between i and j. The transition probability
from i to j is thus pi,j = wij/wi.

Suppose the undirected graph in Figure 1(a) has unit edge
weight. Node 3 has weighted degree 3, thus its transition
probability to node 4 is p3,4 = 1/3. Based on these transition
probabilities, we can construct the corresponding transition
graph as shown in Figure 1(b). In the transition graph,

(a) Original graph (b) Transition graph (PHP, q = 1)

Figure 1: An example graph and its transition graph

Table 2: No local optimum property of some measures

Proximity measures Abbr. Ref. Property
Penalized hitting probability PHP [11, 21] No local maximum

Effective importance EI [3] No local maximum
Discounted hitting time DHT [18] No local minimum

Truncated hitting time THT [17]
No local minimum

(within L hops)
Random walk with restart RWR [20] Local maximum

each directed edge and the number on the edge represent
the transition probability from one node to the other.

PHP penalizes the random walk for each additional step.
It can be defined as the following recursive function:

ri =

{
1 if i = q;
c
∑
j∈Ni pi,jrj if i 6= q.

where c (0 < c < 1) is the decay factor in the random walk
process. In [11], c = e−1 is used as the decay factor. The
query node q in PHP has constant proximity value 1, and
there is no transition probability going out of the query node.
For example, there is no outgoing edges from the query node
1 in the transition graph in Figure 1(b).

Let P be the transition probability matrix with Pi,j =
pi,j , and T be the modified transition probability matrix
with

Ti,j =

{
0 if i = q;
Pi,j if i 6= q.

Then the proximity r based on PHP can be written in the
following matrix form

r = cTr + eq,

where eq(i) = 1 if i = q, and eq(i) = 0 if i 6= q.

Lemma 1. PHP has no local maximum.

Proof. Suppose that node i is a local maximum. We
have ri = c

∑
j∈Ni pi,jrj ≤ c

∑
j∈Ni pi,jri = cri < ri. We

get a contradiction that ri < ri.

The proofs of other proximity measures in Table 2 can be
derived in a similar way. The detailed proofs can be found
in the Appendix.

Some proximity measures have inherent relationship. The
following theorem says that PHP, EI, and DHT are equiva-
lent in terms of ranking.

Theorem 2. PHP, EI, and DHT give the same ranking
results.

Proof. The proof is in the Appendix.

From the discussion in this section, we know that if a
proximity measure has no local optimum, we can apply local
search described in Algorithm 1 to find the top-k nodes un-
der the assumption that the proximity values of all the nodes

(a) Deletion and restoration (b) Destination change

Figure 2: Basic operations on transition probability

are given. However, without exploring the entire graph, the
exact values of all the nodes are unknown. To tackle this
challenge, we can develop lower and upper bounds on the
proximity values of the visited nodes. When more nodes
are visited, the lower and upper bounds become tighter and
eventually converge to the exact proximity value.

Next, we will use PHP, which has no local optimum, as
a concrete example to explain how to derive the lower and
upper bounds. The strategy can be applied to other prox-
imity measures with no local optimum, and their bounds are
shown in the Appendix. How to apply the local search strat-
egy to the measure having local optimum will be discussed
in Section 5.6.

4. BOUNDING THE PROXIMITY
To develop the lower and upper bounds, we introduce

three basic operations, i.e., deletion, restoration, and desti-
nation change of transition probability. We show how prox-
imities change if we modify transition probabilities accord-
ing to these operations. Then we discuss how to derive lower
and upper bounds based on them.

4.1 Modifying Transition Probability
We first introduce the operation of deleting a transition

probability. Figure 2(a) shows an example, in which the
original graph is on the top, with node 1 being the query
node and transition probabilities p2,1 = p2,3 = 0.5 and
p3,2 = 1. After deleting p2,3, the resulting graph is shown
at the bottom. Note that deleting a transition probability is
different from deleting an edge. Deleting an edge will change
the transition probabilities on the remaining graph, while
deleting a transition probability will not.

Theorem 3. Deleting a transition probability will not in-
crease the proximity of any node.

Proof. Let T be the original transition probability ma-
trix of PHP. Deleting Ti,j from T is the same as setting Ti,j

to 0. Let T′ represent the resulting matrix. PHP proximity
r is computed based on T, and r′ is based on T′.

Let ∆r = r − r′, and ∆T = T − T′. Note that ∆T
has only one non-zero element ∆Ti,j = Ti,j . We have that
∆r = c(T′ + ∆T)r− cT′r′ = cT′∆r + c∆Tr = cT′∆r + ei,
where ei is a vector with the only non-zero element ei(i) =
cTi,jrj . The solution of the previous equation is ∆r =
(I − cT′)−1ei. The elements of cT′ are non-negative and
||cT′||∞ < 1. It can be expanded by Neumann series [15] as
(I− cT′)−1 =

∑∞
l=0(cT′)l > 0. Thus the solution ∆r must

be non-negative. This completes the proof.

Continue with the example in Figure 2(a). Suppose that
the decay factor c = 0.5. The original PHP proximity vector
is r = [1, 2/7, 1/7]. After deleting p2,3, the new proximity
vector is r′ = [1, 1/4, 1/8].

It can be shown in a similar way that if we restore the
transition probability as shown in Figure 2(a), the proximi-
ties will not decrease.

(a) Original r (b) LB r (c) UB r

Figure 3: Lower and upper bounds based on basic op-

erations

Theorem 4. Restoring a deleted transition probability will
not decrease the proximity of any node.

Proof. Omitted.

Figure 2(b) shows an example in which we change the
destination of the original transition probability p3,2 from
node 2 to 1. Thus p3,1 is set to p3,2, and p3,2 is set to 0.

Theorem 5. Changing the destination of transition prob-
ability pi,j from node j to node l with rl ≥ rj (rl ≤ rj) will
not decrease (increase) the proximity of any node.

Proof. The proof is in the Appendix.

Let us continue with the example in Figure 2(b), where
node 1 is the query node. After we change the destina-
tion of p3,2 from node 2 to 1, the proximity values should
be non-decreasing. With a decay factor c = 0.5, the prox-
imity vectors before and after the destination change are
r = [1, 2/7, 1/7] and r′ = [1, 3/8, 1/2] respectively.

The proofs for other measures having no local optimum
are similar and omitted here.

4.2 Lower Bound
Recall that in Algorithm 1, S, S̄, δS and δS̄ represent the

set of visited nodes, the set of unvisited nodes, the boundary
of S, and the boundary of S̄, respectively. From Theorem
3, if we delete all transition probabilities {pi,j : i or j ∈ S̄}
in the original graph, the proximity value of any node u
computed using the resulting graph, ru, will be less than or
equal to its original value ru, i.e., ru ≤ ru. Therefore, r can
be used as the lower bound of r.

Let us take the undirected graph in Figure 1(a) for exam-
ple. Its transition graph is shown in Figure 3(a), with node
1 being the query node and transition probabilities shown
on the edges. Suppose that the current set of visited nodes
S = {1, 2, 3, 4}. Thus S̄ = {5, 6, 7, 8}, δS = {3, 4}, and
δS̄ = {5, 6, 7}. The nodes in S but not in δS are black. The
nodes in δS are gray. The nodes in S̄ are white.

Figure 3(b) shows the resulting graph after deleting all
transition probabilities {pi,j : i or j ∈ S̄}. The proximity
values r computed based on Figure 3(b) will lower bound
the original proximity values r for the nodes in S.

4.3 Upper Bound
From Theorem 5, if we change the destination of the

transition probabilities {pi,j : i ∈ δS, j ∈ δS̄} to a newly
added dummy node d with a constant proximity value rd

and rd > rv (∀v ∈ S̄), the proximity value of any node u
computed using the resulting graph, ru, will be greater than
or equal to its original value ru, i.e., ru ≥ ru. Therefore, r
can be used as the upper bound of r.

Continue with the example in Figure 3(a). In the original
graph, δS = {3, 4}, δS̄ = {5, 6, 7}, p3,5 = 1/3, p4,6 = p4,7 =
1/4. The left figure in Figure 3(c) shows the resulting graph

Algorithm 2: Fast top-k local search (FLoS)

Input: G(V,E), q, k, c, τ
Output: Top-k nodes set K

1: S0 ← {q}; δS0 ← {q}; r0
q = 1; r0

q = 1; T0
q,q = 0;

2: bStop = false; t = 0;
3: while bStop == false do
4: t++;
5: LocalExpansion();
6: UpdateLowerBound();
7: UpdateUpperBound();
8: CheckTerminationCriteria();

9: return K;

Algorithm 3: LocalExpansion()

1: u = arg maxi∈δSt−1
1
2

(rt−1
i + rt−1

i);

2: St = St−1 ∪Nu;

3: Update δSt;

after we change all the transition probabilities going from
δS to δS̄ to the newly added dummy node d. Specifically,
p3,d = 1/3 and p4,d = p4,6 + p4,7 = 1/2. Note that after
changing the destination to d, there will be no transition
probability from any node in S to any node in S̄. Therefore,
for the nodes in S, the upper bounds can be computed by
the subgraph induced by the nodes in S and the dummy
node d, as shown on the right in Figure 3(c).

Note that to get the upper bound, we need to add a dum-
my node d with constant proximity value rd ≥ rv (∀v ∈ S̄).
In the next section, we will present the fast local search al-
gorithm, FLoS, and discuss how to choose rd .

5. FAST LOCAL SEARCH
In this section, we present the FLoS algorithm, which

utilizes the bounds developed in Section 4 to enable local
search. We show that the bounds can only change monoton-
ically when more nodes are visited. A theoretical analysis
on the number of visited nodes is also provided.

5.1 The FLoS Algorithm
Algorithm 2 describes the FLoS algorithm. It has four

main steps. In the first step, the algorithm expands locally
to the neighbors of a selected visited node. In the second
and third steps, it updates the lower and upper bounds of
the visited nodes. Finally, it checks whether the top-k nodes
are identified.

The local expansion step is shown in Algorithm 3. It picks
the node in δS having the largest average lower and upper
bound values, and expands to the neighbors of this node. S
and δS are then updated accordingly. We take the average
of the lower and upper bound value as an approximation
of the exact proximity value. Expanding the node with the
largest value is the best-first search strategy.

Algorithm 4 shows how to update the lower bound by
using PHP as an example. It can also be applied to other
measures with no local optimum. To update the bounds, we
first construct the modified transition matrix T. Note that
the size of T is |S| × |S| instead of |V | × |V |. We do not
allocate memory for the full matrix T, and only use adjacent
list to represent it. The lower bound vector r is initiated the
same as in the previous iteration or 0 for the newly added
nodes. We then use the standard iterative method (as shown

Algorithm 4: UpdateLowerBound()

1: Tti,j = wij/
∑
l∈Ni wil, if node i or j are newly added;

2: Tti,j = Tt−1
i,j , if nodes i and j exist in the last iteration;

3: rti = 0, if node i is newly added;

4: rti = rt−1
i , if node i exists in the last iteration;

5: e(i) = 1, if i = q; e(i) = 0, otherwise;

6: rt = IterativeMethod(Tt, rt, e, c, τ);

Algorithm 5: UpdateUpperBound()

1: Extend Tt with 1 column and 1 row for the dummy node d;

2: Tti,d = 1−
∑
j∈Ni Tti,j , if node i ∈ δSt;

3: Tti,d = 0, if i ∈ St \ δSt;
4: Ttd,i = 0, for any node i;

5: rti = 1, if node i is newly added;

6: rti = rt−1
i , if node i exists in the last iteration;

7: rtd = rtd = maxi∈δSt−1 rt−1
i ; // dummy node value

8: Extend e with 1 new element e(d) = rtd for the node d;

9: rt = IterativeMethod(Tt, rt, e, c, τ);

Algorithm 6: CheckTerminationCriteria()

1: if |St \ δSt \ {q}| ≥ k then
2: K ← k nodes in St \ δSt \ {q} with largest rt;

3: if mini∈K rti ≥ maxi∈St\K\{q} rti then bStop = true;

Algorithm 7: IterativeMethod()

Input: T, rin, e, c, τ
Output: rout

1: r0 = rin; n = 0;

2: repeat n++; rn = cTrn−1 + e; until ||rn − rn−1|| < τ ;
3: return rn;

in Algorithm 7) to solve the linear equation r = cTr + e to
update r.

Algorithm 5 shows how to update the upper bound. The
transition matrix T has one additional dummy node d and
its related transition probabilities {pi,d : i ∈ δS}. The val-
ues in r are initiated the same as the values in the previous
iteration or 1 for the newly added nodes. The smaller the
value of rd, the tighter the upper bounds. On the other
hand, we also need to make sure that the value rd is larg-
er than the exact proximity value of any unvisited node.
Therefore in line 7, we use the largest upper bound val-
ue in the boundary of the last iteration as rtd. We have
rtd = maxi∈δSt−1 rt−1

i ≥ maxi∈δSt−1 ri > rj(∀j ∈ S̄t−1),
where the last inequality is based on Theorem 1. Thus
rtd > rj(∀j ∈ S̄t), since S̄t ⊆ S̄t−1. This guarantees the
correctness of the upper bound according to Theorem 5. Fi-
nally, we solve the linear equation r = cTr + e to update r
by using Algorithm 7. Algorithm 7 is very efficient in prac-
tice. This is because when the initial values of the iterative
method is close to the exact solution, the algorithm will
converge very fast. In our method, between two adjacent
iterations, the proximity values of the visited nodes are very
close. Therefore, updating the proximity is very efficient.

Algorithm 6 shows the termination criteria. We select
the k nodes in S \ δS \ {q} with largest r values. If the
minimum lower bound of the selected nodes is greater than
the maximum upper bound of the remaining visited nodes,
the selected nodes will be the top-k nodes in the entire graph.

Figure 4: Lower and upper bounds in different iterations

(PHP: q = 1, c = 0.8)

Table 3: Newly visited nodes in each iteration

Iteration 1 2 3 4 5
Newly visited nodes {2, 3} {4} {5} {6, 7} {8}

This is because the maximum proximity of unvisited nodes
is bounded by the maximum proximity in δS, which is in
turn bounded by the maximum upper bound in δS.

Figure 4 shows the lower and upper bounds at different
iterations using the example graph in Figure 1(a). One it-
eration represents one local expansion process. The newly
visited nodes in each iteration are listed in Table 3.

The left figure in Figure 4 shows how the lower and upper
bounds change through local expansions. Query node 1 has
constant proximity value 1.0 thus is not shown. It can be
seen that the bounds monotonically change and eventually
converge to the exact proximity value when all the nodes are
visited. The monotonicity of the bounds is proved theoreti-
cally in next section.

The right figure in Figure 4 shows the lower and upper
bounds in iteration 3 (at the top) and 4 (at the bottom).
The interval from the lower to upper bounds is indicated by
the vertical line segment. The interval of the unvisited node
is indicated by the dashed line segment. In iteration 3, nodes
{6, 7, 8} are unvisited, and their upper bound is the upper
bound for node 4, which is the maximum upper bound for
the boundary nodes {4, 5}. In iteration 4, the bounds be-
come tighter, and the minimum lower bound of nodes {2, 3}
is larger than the maximum upper bound of the remaining
nodes {4, 5, 6, 7, 8}, which is indicated by the horizontal red
dashed line. Therefore, nodes {2, 3} are guaranteed to be
the top-2 nodes after iteration 4, even though node 8 is still
unvisited.

5.2 Monotonicity of the Bounds
We first consider the monotonicity of the lower bound. Let

St−1 and St represent the set of visited nodes in iterations
(t − 1) and t respectively. From iteration (t − 1) to t, we
only restore some transition probabilities in {pi,j : i or j ∈
St \ St−1, i 6= q}. From Theorem 4, we have rti ≥ rt−1

i (∀i ∈
St−1). Therefore, the lower bound will monotonically non-
decrease when more nodes are visited.

Next we examine the monotonicity of the upper bound.
From iteration (t − 1) to t, we add new nodes in St \ St−1

and decrease rd. After adding new nodes, the transition
probabilities need to be updated accordingly. Specifically,
we need to (1) add transition probabilities {pi,j} from the
newly added nodes i(∈ St \ St−1) to nodes j(∈ δSt−1), and

(a) 1st iter. (b) after step 1 (c) after step 2 (d) 2nd iter.

Figure 5: Transition graphs between two adjacent iter-

ations

{pi,d} from i to the dummy node d; (2) add the transi-
tion probabilities {pj,i} from nodes j(∈ δSt−1) to the newly
added nodes i(∈ St \ St−1), and remove their correspon-
dences in {pj,d}.

An example is shown in Figure 5. Figure 5(a) shows the
transition graph for the first iteration. Figure 5(b) shows
the resulting graph after applying step 1. Figure 5(c) shows
the resulting graph after applying step 2. Reducing rd in
Figure 5(c) will result in the final transition graph for the
next iteration as shown in Figure 5(d).

Note that applying step 1 will not change the upper bound
values for the nodes in St−1, since all the newly added tran-
sition probabilities begin from nodes i(∈ St \ St−1). Step 2
resets the transition probabilities from nodes j(∈ δSt−1) to
the newly added nodes i(∈ St \ St−1). This is equivalent to
destination change, i.e., changing {pj,d} to {pj,i}. Moreover,
we have rd ≥ ri. Thus, step 2 will not increase the upper
bound values according to Theorem 5. From Theorem 5,
reducing the value of rd will not increase the upper bound
values. Therefore, the upper bound will be monotonically
non-increase from iteration (t− 1) to t.

5.3 Tightening the Bounds
The bounds used in FLoS can be further tightened by

adding self-loop transition probabilities to the nodes in δS.
We will still use PHP as an example to illustrate the pro-
cess. We first define the star-to-mesh transformation on the
transition graph, which is inspired by the star-mesh trans-
formation in circuit theory [12].

Definition 3. [Star-to-mesh transformation] (1) Delete
a node u ∈ V \ {q} and its incident transition probabilities;
(2) For any pair of nodes i, j ∈ Nu, add transition probabil-
ities p′i,j = cpi,upu,j.

Note that if i = j, it becomes the self-loop transition prob-
ability p′i,i = cpi,upu,i. Applying the star-to-mesh transfor-
mation for a node will not change the PHP proximity values
of the remaining nodes.

Lemma 2. Applying the star-to-mesh transformation of
node u will not change the PHP proximity values of nodes
V \ {q, u}.

Proof. This can be proved by plugging the equation
ru = c

∑
i∈Nu pu,iri into the recursive equations of neigh-

bor nodes i ∈ Nu in the original transition graph.

The self-loop transition probabilities generated in the star-
to-mesh transformation can be used to further tighten the
lower and upper bounds.

Lemma 3. Adding self-loop transition probability pi,i =
c
∑
j∈Ni∩δS̄ pi,jpj,i (∀i ∈ δS) will tighten the lower bound.

(a) Adding self-loop for LB r (b) Adding self-loop for UB r

Figure 6: Transition graphs with self-loops

Proof. Adding a self-loop transition probability is equiv-
alent to changing the destination of the transition probabil-
ity pi,i from a dummy node with proximity value 0 to node
i. Therefore, the lower bound values of all the nodes will be
non-decreasing.

Next we show the new bound values are still lower bounds.
For the nodes in δS̄, we apply star-to-mesh transformation
sequentially in any order. After the star-to-mesh transfor-
mation of one node j ∈ δS̄, we delete all the newly added
transition probabilities except the self-loop transition prob-
abilities of nodes in δS. After all the nodes in δS̄ have been
deleted, the self-loop transition probability of a node i ∈ δS
is pi,i = c

∑
j∈Ni∩δS̄ pi,jpj,i. During this process, we only

apply star-to-mesh transformation and transition probabili-
ty deletion. Therefore, the new bound values are still lower
bounds.

Lemma 4. Adding self-loop transition probability pi,i =
c
∑
j∈Ni∩δS̄ pi,jpj,i and set pi,d = c

∑
j∈Ni∩δS̄ pi,j(1 − pj,i)

(∀i ∈ δS) will tighten the upper bound.

Proof. Note that the sum is pi,i+pi,d = c
∑
j∈Ni∩δS̄ pi,j

<
∑
j∈Ni∩δS̄ pi,j , which is the transition probability to dum-

my node d in the original transition graph. This means that
we change the destination of transition probability pi,i from
node d to node i. Since the proximity of d is no less than that
of i, the upper bound of all nodes will be non-increasing. We
can prove that the proximity values are still upper bounds
through the star-to-mesh transformation.

Figure 6 shows the transition graphs with self-loop prob-
abilities for computing the lower and upper bounds. The
original ones are shown in Figure 3.

5.4 Analysis on the Number of Visited Nodes
In this subsection, we analyze the number of visited nodes.

Let h be the average number of neighbors of a node. Suppose
that the nodes in the boundary of visited nodes are ρ hops
away from the query node q. We assume that the number
of visited nodes equals hρ. Note that this is an upper bound
of the number of visited nodes. In Section 6, we show the
actual number of visited nodes in real graphs.

The proximity of one node will decrease by a factor of c
when it is one hop farther away from the query node. The
nodes in the boundary of the visited nodes have proximity
less than cρ because they are ρ hops away from the query.

What is the distribution of the gaps between the upper
and lower bounds? The upper bound r is computed based
on the recursive equation r = cTr + eq,d, where vector eq,d
has only two non-zero elements eq,d(q) = 1 and eq,d(d) = rd.
When we set the proximity value of dummy node to 0, i.e.,
eq,d(d) = 0, we will get the recursive equation r = cTr+ eq
for the lower bound r. Let r′ = r−r be the gaps between the
upper and lower bounds. We have that r′ = cTr′+ed, where
vector ed has only one non-zero element ed(d) = rd. Thus

the gaps r′ can be interpreted as the PHP proximity values
when the query node is the dummy node d with constant
proximity value rd.

Based on this observation, the gap r′u of one node u will
decrease by a factor of c when it is one hop farther away
from the boundary. Let ρu denote the number of hops that
u is away from the query node. Node u is ρ− ρu hops away
from the boundary. So, the gap r′u is less than cρ−ρu · cρ,
i.e., r′u < c2ρ−ρu .

For any two nodes u and v, we can distinguish their rank-
ings if r′u + r′v < ε, where ε is the difference of the exact
proximity values of nodes u and v. We already derive that
r′u < c2ρ−ρu and r′v < c2ρ−ρv . Thus if we have that ρ >
1
2

logc ε− 1
2

logc(c
−ρu + c−ρv), then the pair of nodes u and

v can be distinguished.
Now we consider the case when u and v are the kth and

(k + 1)th nodes in the exact ranking list respectively. We
have hρu ≥ k and hρv ≥ k + 1. Thus, the number of visited
hops should satisfy ρ > 1

2
logc

ε
2

+ 1
2

logh k. Therefore, we

need to visit hρ = O((khlogc
ε
2)

1
2) nodes to distinguish the

kth and (k + 1)th nodes.

5.5 Complexity
Assume Algorithm 2 executes in β iterations, which is

proportional to (khlogc
ε
2)

1
2 . Let h be the average number of

neighbors of a node. The LocalExpansion step takes O(hi)
time to find the node to expand. To update the lower bound,
updating T needs O(h2) operations, and updating r and e
needs O(h) operations. Subgraph induced by S has O(h2i)
edges, so matrix T has O(h2i) non-zero entries. Therefore
using the iterative method to solve linear equations takes
O(αh2i) time, where α is the number of iterations. Thus the
overall complexity of UpdateLowerBound in the ith iteration
is O(αh2i). The complexity of UpdateUpperBound function
is the same as that of UpdateLowerBound. In CheckTer-
minationCriteria step, finding the nodes with largest lower
bounds takes O(hi) time. Therefore, the overall complexity

of FLoS is O(
∑β
i=1(αh2i+ hi)) = O(αh2β2).

Note that so far, we have used PHP to illustrate the key
principles underlying the fast local search method. All re-
sults are applicable to other measures with no local optimum
such as DHT, THT, and EI. The derivations are similar to
those of PHP and omitted here.

5.6 Extension to RWR
In this section, we discuss how to apply local search to

RWR which has local optimum. The key idea is to utilize
the relationship between RWR and PHP. Utilizing such re-
lationship, we can easily derive the lower and upper bounds
for RWR based on the lower and upper bounds for PHP.

Random walk with restart (also known as personalized
PageRank) [20] is a widely used proximity measure. RWR
can be described as follows. From a node i, the random
walker can walk to its neighbors with probabilities propor-
tional to the edge weights. In each step, it has a probability
of c to return to i, where c is a constant. The proximity
of node i w.r.t. q is defined as the stationary probabili-
ty that the walker will finally stay at q. RWR can be de-
fined recursively as ri = (1 − c)

∑
j∈Ni pj,irj , if i 6= q, and

rq = (1 − c)
∑
j∈Nq pj,qrj + c, where c (0 < c < 1) is the

constant restart probability.

Let RWR(i) and PHP(i) represent the proximity of node
i based on RWR and PHP respectively. We first show that
RWR and PHP have the following relationship.

Theorem 6. RWR(i) =
RWR(q)

wq
· wi · PHP(i)

Proof. Based on the recursive definition of RWR, we

have RWR(i)
wi

= (1−c)
∑
j∈Ni

wij
wj
·RWR(j)

wi
= (1−c)

∑
j∈Ni

wij
wi
·

RWR(j)
wj

, for ∀i 6= q. So, we have RWR(i)
wi

= (1−c)
∑
j∈Ni pi,j ·

RWR(j)
wj

, for ∀i 6= q. This degree normalized RWR, RWR(i)
wi

,

has the same recursive equation as PHP with decay factor

(1− c). So we have RWR(i)
wi·PHP(i)

= RWR(q)
wq·PHP(q)

.

Based on Theorem 6, we have that RWR(i) ∝ wi ·PHP(i)
when the query node q is fixed. Suppose node b ∈ δS has the
largest PHP proximity value. Based on Theorem 1, we have
PHP(i) ≤ PHP(b),∀i ∈ S̄. Let w(S̄) denote the maximum
degree of unvisited nodes in S̄. We have wi · PHP(i) ≤
w(S̄) · PHP(i) ≤ w(S̄) · PHP(b). Therefore, if we maintain
the maximum degree of the unvisited nodes, we can develop
upper bound for the proximity values of unvisited nodes.

Specifically, we can apply FLoS to RWR as follows. In
Algorithm 3, change line 1 to u = arg maxi∈δSt−1

wi
2

(rt−1
i +

rt−1
i). In Algorithm 6, we select k nodes in St\δSt\{q} with

largest wi · rti values, and change the termination criteria to
(mini∈K wi ·rti ≥ maxi∈St\K\{q} wi ·rti) and (mini∈K wi ·rti ≥
w(S̄) ·maxi∈δSt r

t
i). All other processes remain the same.

6. EXPERIMENTAL RESULTS
In this section, we present extensive experimental results

on evaluating the performance of the FLoS algorithm. The
datasets are shown in Table 4. The real datasets are publicly
available from the website http://snap.stanford.edu/data/.
The synthetic datasets are generated using the Erdös-Rényi
random graph (RAND) model [7] and R-MAT model [4] with
different parameters. All programs are written in C++. All
experiments are performed on a server with 32G memory,
Intel Xeon 3.2GHz CPU, and Redhat 4.1.2 OS.

6.1 State-of-the-art Methods
The measures we use include PHP, EI, THT, and RWR.

We compare FLoS with the state-of-the-art methods for each
measure as summarized in Table 5. These methods are cat-
egorized into global and local methods.

The global iteration (GI) method directly applies the iter-
ative method on the entire graph [16]. It guarantees to find
the exact top-k nodes. The graph embedding (GE) method
can answer the query in constant time after embedding [22].
It can only be applied to RWR. However, the embedding
process is very time consuming. Moreover, it only returns
approximate results. The Castanet algorithm is specifically
designed for RWR. It improves the GI method and guaran-
tees the exactness of the results [9]. K-dash is the state-
of-the-art matrix-based method for RWR which guarantees
result exactness [8]. Note that K-dash and GE can only
be applied on two medium-sized real graphs because of the
expensive preprocessing step.

Dynamic neighborhood expansion (DNE) method applies
a best-first expansion strategy to find the top-k nodes using
PHP [21]. This strategy is heuristic and does not guar-
antee to find the exact solution. The number of visited
nodes is fixed to 4, 000 in the experiments. NN EI applies

Table 4: Datasets used in the experiments

Datasets Abbr. Nodes Edges

Real

Amazon AZ 334,863 925,872
DBLP DP 317,080 1,049,866

Youtube YT 1,134,890 2,987,624
LiveJournal LJ 3,997,962 34,681,189

Synthetic In-memory
– Varying size
– Varying density

Disk-resident – Varying size

Table 5: State-of-the-art methods used for comparison

Our methods State-of-the-art methods
(Exact) Abbr. Key idea Ref. Exactness

FLoS PHP

GI PHP Global iteration [16] Exact
DNE Local search [21] Approx.

NN EI Local search [3] Exact
LS EI Local search [18] Approx.

FLoS RWR

GI RWR Global iteration [16] Exact
GE RWR Graph embedding [22] Approx.
Castanet Improved GI [9] Exact
K-dash Matrix inversion [8] Exact

LS RWR Local search [18] Approx.

FLoS THT
GI THT Global iteration [16] Exact
LS THT Local search [17] Approx.

the push style method [2, 5] in local search, and guarantees
the exactness of the top-k results [3]. Since PHP and EI are
equivalent in terms of ranking, we can compare the method-
s for PHP and EI directly. LS RWR also applies the push
style method [2, 5] in local search [18]. It returns approx-
imate results. LS EI is based on LS RWR and has similar
performance [18]. LS THT is a local search method for THT
[17]. In the experiments, we set the truncated length to 10.
The decay factor in PHP and the restart probability in RWR
and EI are set to 0.5.

6.2 Evaluation on Real Graphs
We study the efficiency of the selected methods on real

graphs when varying the number of returned nodes k. For
each k, we repeat the experiments 103 times, each with a
randomly picked query node. The average running time is
reported. For methods using the iteration procedure in Al-
gorithm 7, the termination threshold is set to τ = 10−5. We
also perform experiments using a fixed number of 10 itera-
tions. The results are similar and omitted here due to the
space limit.

6.2.1 Evaluation of FLoS_PHP
Figure 7 shows the running time of different methods for

PHP. The running time of DNE is almost a constant for dif-
ferent k, because it visits a fixed number of nodes. The run-
ning time of NN EI increases when k increases. FLoS PHP
is more efficient than NN EI, which demonstrates that the
bounds of FLoS are tighter. LS EI has a constant running
time. This is because it extracts the cluster containing the
query node. Note that LS EI takes tens of hours in the
preprocessing step to cluster the graphs.

Figure 9(a) shows the ratio between the number of vis-
ited nodes using FLoS PHP and total number of nodes in
the graph. The value indicated by the bar is the average
ratio of 103 queries. The minimum and maximum ratios are
also shown in the figure. As can be seen from the figure,
only a very small part of the graph is needed for FLoS to
find the exact solution. Moreover, the ratio decreases when
the graph size increases. This indicates that FLoS is more
effective for larger graphs.

(a) AZ (b) DP (c) YT (d) LJ

Figure 7: Running time of different methods for PHP on real graphs

(a) AZ (b) DP (c) YT (d) LJ

Figure 8: Running time of different methods for RWR on real graphs

6.2.2 Evaluation of FLoS_RWR
Figure 8 shows the running time for RWR. K-dash has the

best performance after precomputing the matrix inversion as
shown in Figures 8(a) and 8(b). The precomputing step of
K-dash takes tens of hours for the medium-sized AZ and
DP graphs and cannot be applied to the other two larger
graphs. GE RWR also has fast response time. However,
as discussed before, its embedding step is time consuming
and not applicable to larger graphs. Moreover, it does not
find the exact solution. Castanet method cuts the running
time from the GI method by 72% to 91%. LS RWR method
has constant running time, and it needs tens of hours in the
precomputing step to cluster the graphs.

Figure 9(b) shows the ratio of the number of visited
nodes of the FLoS RWR method. The results are similar
to that of Figure 9(a).

6.2.3 Evaluation of FLoS_THT
Figure 10 shows the running time for THT. FLoS THT

runs faster than LS THT, which is specifically designed to
speed up the computation for THT. This is because the lower
and upper bounds of FLoS THT are tighter than those of
LS THT. Both of the two local search methods are 2 to 3
orders of magnitude faster than GI THT.

6.3 Evaluation on In-Memory Synthetic
Graphs

We use synthetic graphs with different parameters to
evaluate the selected methods. Specifically, we study two
types of graphs: Erdös-Rényi random graph (RAND) [7]

(a) FLoS PHP (b) FLoS RWR

Figure 9: Ratio between the number of visited nodes

and the total number of nodes on real graphs

and scale-free graph based on R-MAT model [4]. There are
two parameters, the size and density of the graphs. We
study how these two parameters affect the running time of
different methods for PHP and RWR.

We download the graph generator available from the web-
site http://www.cse.psu.edu/∼madduri/software/GTgraph/
and use the default parameters to generate two series of
graphs with varying size and varying density, using RAND
and R-MAT respectively. The graphs with varying size have
the same density but different number of nodes. The graphs
with varying density have the same number of nodes but
different densities. The statistics are shown in Table 6.

We apply the selected methods for PHP and RWR on
these graphs with k = 20. For each graph, we repeat the
query 103 times with randomly picked query nodes, and re-
port the average running time.

(a) AZ (b) DP (c) YT (d) LJ

Figure 10: Running time of different methods for THT on real graphs

(a) Varying size, RAND (b) Varying size, R-MAT (c) Varying density, RAND (d) Varying density, R-MAT

Figure 11: Running time of different methods for PHP on in-memory synthetic graphs (k = 20)

(a) Varying size, RAND (b) Varying size, R-MAT (c) Varying density, RAND (d) Varying density, R-MAT

Figure 12: Running time of different methods for RWR on in-memory synthetic graphs (k = 20)

Table 6: Statistics of in-memory synthetic graphs

Varying
size

|V | 1× 220 2× 220 4× 220 8× 220

|E| 1× 107 2× 107 4× 107 8× 107

Density 9.5 9.5 9.5 9.5

Varying
density

|V | 1× 220 1× 220 1× 220 1× 220

|E| 5× 106 10× 106 15× 106 20× 106

Density 4.8 9.5 14.3 19.1

6.3.1 Evaluation of FLoS_PHP
Figure 11(a) shows the running time of the selected meth-

ods for PHP on the series of RAND graphs with varying size.
The running time of GI PHP increases as the number of n-
odes increases. FLoS PHP, DNE, NN EI and LS EI all have
almost constant running time when the number of nodes in-
creases. This is because these methods only search locally.
When the density of the graph is fixed, adding more nodes to

the graph will not change the size of the search space of these
methods. Figure 11(b) shows the running time on the series
of R-MAT graphs with varying size. Similar trends are ob-
served. Comparing Figure 11(a) and 11(b), GI PHP has less
running time on R-MAT than on RAND graphs, while other
methods have more. The reason is that R-MAT graphs have
the power-law distribution, thus it is easier for FLoS PHP,
DNE, NN EI and LS EI to encounter hub nodes with larger
degree when expanding subgraph. The faster performance
of GI PHP on R-MAT may be because of the greater data
locality due to the hub node.

Figure 11(c) shows the running time of the selected meth-
ods for PHP on the series of RAND graphs with varying
density. The running time of all the methods increases as
the density increases. FLoS PHP and NN EI have increas-
ing running time because the number of visited nodes in

these two methods increases when the density becomes larg-
er. LS EI has increasing running time because the number
of nodes and edges increases in local clusters. Figure 11(d)
shows the running time on the series of R-MAT graphs with
varying density. Similar trends are observed.

6.3.2 Evaluation of FLoS_RWR
Figure 12(a) shows the running time of the selected meth-

ods for RWR on the series of RAND graphs with varying
size. The running time of GI RWR and Castanet increases
as the number of nodes increases. Castanet method cut-
s the running time from the GI method by 69% to 88%.
FLoS RWR and LS RWR both have almost constant run-
ning time when the number of nodes increases. This is be-
cause FLoS RWR and LS RWR only search locally. Figure
12(b) shows the running time on the series of R-MAT graphs
with varying size. Similar trends are observed. Comparing
Figure 12(a) and 12(b), GI RWR has less running time on
the R-MAT graphs than on the RAND graphs, while other
methods have more. The reason is similar as what discussed
previously.

Figure 12(c) shows the running time on the series of RAND
graphs with varying density. The running time of all the
methods increases as the density increases. Figure 12(d)
shows the running time on the series of R-MAT graphs with
varying density. Similar trends are observed.

6.4 Evaluation on Disk-Resident Synthetic
Graphs

What if the graphs are too large to fit into memory? To
test the performance of FLoS on disk-resident graphs, we
generate disk-resident R-MAT graphs, whose statistics are
in Table 7. We use the open source Neo4j (available from
http://www.neo4j.org) version 2.0 graph database. The F-
LoS method for disk-resident graphs only calls some basic
query functions provided by Neo4j, such as, querying the
neighbors of one node. And the remaining work is the same
as that for in-memory graphs. We apply the FLoS PHP
and FLoS RWR methods on the disk-resident graphs with
k = 20. We repeat the query 103 times with randomly
picked query nodes and report the average running time. In
the experiments, we restrict the memory usage to 2 GB.

Figure 13(a) shows the running time of the FLoS PHP
and FLoS RWR methods. From the figure, we can see that
FLoS can process disk-resident graphs in tens of seconds.
The reason is that FLoS only needs to find the neighbors of
visited nodes and the transition probabilities on the edges.
These results also verify that FLoS has almost constant run-
ning time when the number of nodes increases. Figure 13(b)
shows the ratio of the number of visited nodes to the total
number of nodes in the graph. FLoS only needs to explore a
small portion of the whole graph to return the top-k nodes.
When the graph size becomes larger, the portion of visited
nodes becomes smaller.

7. CONCLUSION
Top-k nodes query in large graphs is a fundamental prob-

lem that has attracted intensive research interests. Existing
methods need expensive preprocessing steps or are designed
for specific proximity measures. In this paper, we propose
a unified method, FLoS, which adopts a local search strat-
egy to find the exact top-k nodes efficiently. FLoS is based
on the no local optimum property of proximity measures.

Table 7: Statistics of disk-resident synthetic graphs

|V | 16× 220 32× 220 48× 220 64× 220

|E| 16× 107 32× 107 48× 107 64× 107

disk size 3.1 G 6.5 G 9.9 G 13.2 G

(a) Running time (b) Visited nodes

Figure 13: Results of FLoS PHP and FLoS RWR on

disk-resident synthetic graphs (k = 20)

By exploiting the relationship among different proximity
measures, we can also extend FLoS to the proximity mea-
sures having local optimum. Extensive experimental results
demonstrate that FLoS enables efficient and exact query for
a variety of random walk based proximity measures.

8. ACKNOWLEDGEMENTS
This work was partially supported by the National Science

Foundation grants IIS-1162374, IIS-1218036, IIS-0953950,
the NIH/NIGMS grant R01GM103309, and the OSC (Ohio
Supercomputer Center) grant PGS0218. We would like to
thank anonymous reviewers for their valuable comments.

9. REFERENCES
[1] D. Aldous and J. Fill. Reversible markov chains and

random walks on graphs, 2002.

[2] P. Berkhin. Bookmark-coloring algorithm for
personalized PageRank computing. Internet
Mathematics, 3(1):41–62, 2006.

[3] P. Bogdanov and A. Singh. Accurate and scalable
nearest neighbors in large networks based on effective
importance. In CIKM, pages 523–528, 2013.

[4] D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-MAT:
A recursive model for graph mining. In SDM, pages
442–446, 2004.

[5] S. Chakrabarti, A. Pathak, and M. Gupta. Index
design and query processing for graph conductance
search. VLDB, 20(3):445–470, 2011.

[6] S. Cohen, B. Kimelfeld, and G. Koutrika. A survey on
proximity measures for social networks. In Search
Computing, pages 191–206, 2012.

[7] P. Erdős and A. Rényi. On the evolution of random
graphs. Magyar Tud. Akad. Mat. Kutató Int. Közl,
5:17–61, 1960.

[8] Y. Fujiwara, M. Nakatsuji, M. Onizuka, and
M. Kitsuregawa. Fast and exact top-k search for
random walk with restart. VLDB, 5(5):442–453, 2012.

[9] Y. Fujiwara, M. Nakatsuji, H. Shiokawa, T. Mishima,
and M. Onizuka. Efficient ad-hoc search for
personalized PageRank. In SIGMOD, pages 445–456,
2013.

[10] Y. Fujiwara, M. Nakatsuji, T. Yamamuro,
H. Shiokawa, and M. Onizuka. Efficient personalized
PageRank with accuracy assurance. In KDD, pages
15–23, 2012.

[11] Z. Guan, J. Wu, Q. Zhang, A. Singh, and X. Yan.
Assessing and ranking structural correlations in
graphs. In SIGMOD, pages 937–948, 2011.

[12] E. A. Guillemin. Introductory circuit theory. John
Wiley & Sons, 1953.

[13] P. Lee, L. V. Lakshmanan, and J. X. Yu. On top-k
structural similarity search. In ICDE, pages 774–785,
2012.

[14] Q. Mei, D. Zhou, and K. Church. Query suggestion
using hitting time. In CIKM, pages 469–478, 2008.

[15] C. Meyer. Matrix analysis and applied linear algebra.
SIAM, 2000.

[16] Y. Saad. Iterative methods for sparse linear systems.
SIAM, 2003.

[17] P. Sarkar and A. W. Moore. A tractable approach to
finding closet truncated communicate time nieghbors
in large graphs. In UAI, pages 335–343, 2007.

[18] P. Sarkar and A. W. Moore. Fast nearest-neighbor
search in disk-resident graphs. In KDD, pages
513–522, 2010.

[19] P. Sarkar, A. W. Moore, and A. Prakash. Fast
incremental proximity search in large graphs. In
ICML, pages 896–903, 2008.

[20] H. Tong, C. Faloutsos, and J.-Y. Pan. Fast random
walk with restart and its applications. In ICDM, pages
613–622, 2006.

[21] C. Zhang, L. Shou, K. Chen, G. Chen, and Y. Bei.
Evaluating geo-social influence in location-based social
networks. In CIKM, pages 1442–1451, 2012.

[22] X. Zhao, A. Chang, A. D. Sarma, H. Zheng, and B. Y.
Zhao. On the embeddability of random walk distances.
VLDB, 6(14), 2013.

10. APPENDIX

10.1 Proofs of No Local Optimum Property
for Other Proximity Measures

Effective importance (EI) [3] is the degree normalized ver-
sion of RWR, which can be defined as ri = (1−c)

∑
j∈Ni pi,jrj ,

if i 6= q, and rq = (1 − c)
∑
j∈Nq pq,jrj + c

wq
, where c

(0 < c < 1) is a constant restart probability.

Lemma 5. EI has no local maximum.

Proof. Suppose that node i is a local maximum. We
have ri = (1 − c)

∑
j∈Ni pi,jrj ≤ (1 − c)

∑
j∈Ni pi,jri =

(1− c)ri < ri. Thus we get a contradiction that ri < ri.

Discounted hitting time (DHT) [18] is a variant of HT
which can be defined as ri = 1 + (1 − c)

∑
j∈Ni pi,jrj , if

i 6= q, and rq = 0, where c (0 < c < 1) is a constant used to
penalize the transition probability in each step.

Lemma 6. DHT has no local minimum.

Proof. The maximum discounted hitting time that a
node could have is 1

c
, when it can never reach q. For con-

nected graph, we have ri <
1
c
. Now suppose that node i is

a local minimum. We have ri = 1 + (1 − c)
∑
j∈Ni pi,jrj ≥

1 + (1− c)
∑
j∈Ni pi,jri = 1 + (1− c)ri. Thus ri ≥ 1

c
, which

contradicts that ri <
1
c
.

Truncated hitting time (THT) [17] is another variant of
HT. The L-truncated hitting time only considers paths of
length less than L, which can be defined as rq = 0 and
rLi = 1 +

∑
j∈Ni pi,jr

L−1
j , if i 6= q. If a node is more than L

hops away from the query node, its proximity is set to be L.

Lemma 7. THT has no local minimum for the nodes with-
in L hops from the query node.

Proof. For any node i within L hops from q, we have
rLi < L. Now suppose i is a local minimum, i.e., rLj ≥ rLi
(∀j ∈ Ni). We have rLi = 1+

∑
j∈Ni pi,jr

L−1
j =

∑
j∈Ni pi,j(1

+ rL−1
j) >

∑
j∈Ni pi,jr

L
j ≥

∑
j∈Ni pi,jr

L
i = rLi . We get a

contradiction that rLi > rLi .

Lemma 8. RWR has local maximum.

Proof. Counter examples can be used to show that RWR
has local maximum, which are omitted.

10.2 The Proof of Theorem 2
Proof. First, we show that PHP and EI are equivalent.

Suppose the decay factor in PHP is set to be (1−c), and the
restart probability in EI is c. Then PHP and EI have the
same recursive definition for any node i 6= q, and we have

EI(i)
PHP(i)

= EI(q)
PHP(q)

, which is a constant when q is fixed. Thus

PHP(i) is a linear function of EI(i).
Next, we show that PHP and DHT are equivalent. Sup-

pose the decay factors in PHP and DHT are set to be (1−c)
and c respectively. The relationship between PHP and DHT
is PHP(i) = 1− c ·DHT(i), which can be proved by substi-
tuting it in the recursive definition of PHP. Thus PHP(i) is
a linear function of DHT(i).

10.3 The Proof of Theorem 5
Proof. Let T be the original transition probability ma-

trix of PHP. Changing the destination of transition proba-
bility pi,j from node j to node l is the same as adding Ti,j

to Ti,l and setting Ti,j to 0. Let T′ represent the resulting
matrix. PHP proximity r is computed based on T, and r′

is based on T′.
Let ∆r = r′−r, and ∆T = T−T′. Note that ∆T has only

two non-zero elements ∆Ti,j = Ti,j and ∆Ti,l = −Ti,j . We
have that ∆r = cT′r′ − c(T′ + ∆T)r = cT′∆r − c∆Tr =
cT′∆r + ei, where ei is a vector with the only non-zero
element ei(i) = cTi,j(rl − rj). If rl ≥ rj , ∆r must be non-
negative. Otherwise, it is non-positive. This completes the
proof.

10.4 Lower and Upper Bounds of Other
Proximity Measures

For THT, deleting a transition probability will not in-
crease the proximity of any node. Therefore, when we delete
all the transition probabilities {pi,j : i or j ∈ S̄} in the
original transition graph, the proximity value of any node
computed based on the modified transition graph will be
the lower bound. For the upper bound, we add a dummy
node with value L, which is the largest possible proximity
value of THT.

EI and DHT are equivalent with PHP thus there is no
need to discuss the bounds.

