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Abstract

Transfer learning aims to leverage the knowledge in the
source domain to facilitate the learning tasks in the tar-
get domain. It has attracted extensive research interests
recently due to its effectiveness in a wide range of applica-
tions. The general idea of the existing methods is to utilize
the common latent structure shared across domains as the
bridge for knowledge transfer. These methods usually model
the common latent structure by using either the marginal
distribution or the conditional distribution. However, with-
out exploring the duality between these two distributions,
these single bridge methods may not achieve optimal capa-
bility of knowledge transfer.

In this paper, we propose a novel approach, Dual
Transfer Learning (DTL), which simultaneously learns the
marginal and conditional distributions, and exploits the du-
ality between them in a principled way. The key idea behind
DTL is that learning one distribution can help to learn the
other. This duality property leads to mutual reinforcement
when adapting both distributions across domains to trans-
fer knowledge. The proposed method is formulated as an
optimization problem based on joint nonnegative matrix tri-
factorizations (NMTF). The two distributions are learned
from the decomposed latent factors that exhibit the duality
property. An efficient alternating minimization algorithm
is developed to solve the optimization problem with con-
vergence guarantee. Extensive experimental results demon-
strate that DTL is more effective than alternative transfer
learning methods.
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1 Introduction

In many real-life applications, it may be impractical to
obtain a large number of labeled examples. Lacking suf-
ficient labeled examples poses a great challenge to tra-
ditional learning methods [2, 6, 17]. Transfer learning,
which utilizes the labeled data in some source domain
to help to train better models in the target domain,
has recently attracted extensive research interests. It
is widely applied to cross-domain classification, cluster-
ing, and information retrieval problems. The key idea
is that, although the data distributions between the
source domain and target domain are different, there
is some common knowledge structure shared across do-
mains. Such common structure can be utilized for the
learning task in the target domain where the labeled
examples are hard to collect [18].

Let Pso(x,y) and Pi.(x,y) be the data distribu-
tions in the source domain and the target domain re-
spectively, where x is an example and y is its label.
Transfer learning aims to fit distribution Pig,.(x,y) with
the labeled data drawn from Pg,..(x,y) and unlabeled
data drawn from Pj,-(x,y). The main challenge is to
identify regions, in either the original or transformed
latent space, where Py ..(X,y) and P (X,y) are simi-
lar. In this way, the shared common structure can be
explored for across domain learning [17].

Many methods have been proposed to extract the
common structure across the domains so that the dis-
tribution divergence between domains is reduced and
the traditional learning algorithms can be applied. By
definition, P(x,y) = P(x) - P(y|x), where P(x) is the
marginal distribution, and P(y|x) is the conditional dis-
tribution that can be viewed as a classification model.
A common assumption of the existing transfer learning
methods is that, if the marginal distributions of exam-
ples are similar in some latent space, then the condi-
tional distributions of the corresponding examples will
also be similar [22]. More intuitively, if two data points
are close in the latent space, then their class labels
should also be similar [1]. Some methods have been pro-
posed to learn the marginal distribution for knowledge
transfer [6, 21, 17]. These methods try to find a la-
tent feature space, where the marginal distributions are



drawn closer across domains. Other methods have been
developed to learn the conditional distribution [24, 25].
They directly learn a latent space using the association
between feature clusters and class labels so that the con-
ditional distributions are drawn closer.

These methods use either the marginal distribution
or the conditional distribution as the bridge for knowl-
edge transfer. We refer to such approach as the single
bridge transfer learning. The limitation of the exist-
ing single bridge approach is two-fold. (1) To trans-
fer knowledge, these methods usually construct a la-
tent space to represent the common structure shared
across domains. However, not all latent factors in the
space can be used to draw the two distributions closer.
Some of the latent factors may represent the discrep-
ancy between the distributions across domains. The
“sharing all” latent factors assumption may cause the
existing methods to underperform when the marginal
distribution or the conditional distribution can only be
drawn closer in a subspace of the latent space. In the
worst case, when the distribution divergence between
domains is so large that little knowledge can be shared,
this strict assumption will result in negative transfer [4].
(2) These methods do not consider the duality between
the marginal distribution and the conditional distribu-
tion. The duality between these two distributions is that
learning one distribution can help to learn the other.
It will lead to mutual reinforcement when learning the
two distributions simultaneously. Without exploiting
the duality, the existing methods may only transfer the
common knowledge based on the marginal distribution
and leave the common knowledge from the conditional
distribution untransferred or only partially transferred,
or vice versa. This may result in ineffective transfer.

In this paper, we propose a novel approach, Dual
Transfer Learning (DTL), which simultaneously learns
the marginal and conditional distributions, and exploits
the duality between them to achieve effective knowledge
transfer. The intuition behind DTL is as follows. If we
can find a latent space where the marginal distributions
across domains are close to each other, then a classifi-
cation model can be learned in this space and shared
across domains to draw the conditional distributions
across domains closer. On the other hand, the learned
conditional distributions can be used to refine the latent
space so that the marginal distributions may become
even closer. More specifically, the distribution of the ob-
served data may be dominated by several latent factors.
Some of the latent factors may cause the discrepancy be-
tween the distributions of the data in different domains.
We refer to these factors as the domain-specific latent
factors. On some other latent factors, the data distribu-
tions may be similar across domains. We refer to these

latent factors as the common latent factors. We can
uncover the common latent factors so that the marginal
distributions across domains will be close in the common
latent space [17]. We can learn a shared classification
model in this latent space so that the conditional distri-
butions across domains are close. On the other hand, if
we have learned an accurate shared classification model
across domains, we can use it to supervise the learning
of the common latent factors so that the marginal dis-
tributions become even closer. The common latent fac-
tors and the common classification model are the means
for adapting the marginal distributions and conditional
distributions across domains respectively. By taking ad-
vantage of the duality, they reinforce the learning of the
two distributions and improve each other to facilitate
effective transfer learning.

The proposed DTL method enhances the transfer
capability in a principled way. It finds the latent
feature space where the marginal distributions across
domains are close, and simultaneously learns a shared
classification model in the latent space to make the
conditional distributions across domains closer. The
main contributions of this paper are: (1) distinguishing
the common and domain-specific latent factors to avoid
negative transfer; (2) exploiting the duality between
the marginal distribution and conditional distribution
to achieve effective transfer. The method is formulated
as an optimization problem of joint nonnegative matrix
tri-factorizations (NMTF), where the two distributions
are learned with the help of the decomposed latent
factors that exhibit the duality property. An efficient
alternating minimization algorithm is developed to solve
the optimization with convergence guarantee. Extensive
experiments on benchmark data sets demonstrate the
effectiveness of the proposed method.

The remainder of this paper is organized as follows.
The related work is discussed in Section 2. In Section 3,
we review NMTF and discuss its relevance to distribu-
tion learning, which motivates the formulation of our
method. In Section 4, we describe the proposed DTL
method, along with the learning algorithm, followed by
the optimization derivation, and the proof of conver-
gence. The experimental results are reported in Sec-
tion 5. The conclusions and future work are discussed
in Section 6.

2 Related Work

In this section, we review several existing work that are
most related to our work, including transfer learning
and semi-supervised learning.

2.1 Transfer Learning Transfer learning is widely
applied in the applications where the training data



and the test data are obtained from different resources
and with different distributions. Most transfer learning
methods assume that there is some knowledge structure
that defines the domain relatedness, and incorporate
this structure in the learning process. The existing
methods can be categorized into two types: instance
transfer learning and feature representation transfer
learning. Please refer to [18] for a comprehensive survey.

Instance transfer learning uses a re-weighting strat-
egy for instances. The general idea is to increase the
weights of instances in the source domain that are close
to the instances in the target domain, and decreases
the weights of instances in the source domain that are
far away from the instances in the target domain [7, 11].
Feature representation transfer learning aims to discover
a shared feature space in which the data distributions
across domains are close to each other. The shared
feature space can be constructed either in the original
feature space [2, 16], or in the transformed subspace
[6, 21, 25, 14, 5, 10, 15, 17]. In the original feature
space, the correspondence among features are identified
by modeling their correlations with pivot features that
behave similarly across domains. In the transformed
subspace, dimensionality reduction methods are applied
to extract the underlying common structure.

The existing feature representation transfer learn-
ing methods focus on learning either the marginal dis-
tribution or the conditional distribution for knowledge
transfer. For example, Co-Clustering based Classifica-
tion (CoCC) [6] and Label Propagation [21] transfer
the common feature clusters, which can be regarded as
learning the marginal distribution. Collaborative Dual-
PLSA [24] and Matrix Tri-Factorization based Classi-
fication (MTrick) [25] transfer the common association
between feature clusters and example classes, which can
be regarded as learning the conditional distribution.
Another well-designed method for learning the marginal
distribution is Joint Subspace Nonnegative Matrix Fac-
torization [10]. It learns the common latent factors
and domain-specific latent factors that span a shared
subspace where the marginal distributions across do-
mains are close. However, this method does not learn
the conditional distribution thus can not be applied to
cross-domain classification tasks. The proposed DTL
method also adopts the block matrix factorization tech-
nique. The key difference between DTL and previous
single bridge learning methods is that DTL simultane-
ously learns the marginal and conditional distributions.
Exploiting the duality between these two distributions
is a crucial step to enhance the transfer capability.

Two very recent methods, cross domain distribu-
tion adaptation via kernel mapping [22] and dual knowl-
edge transfer [20], started exploring the idea of learning

both distributions for knowledge transfer. In [22], both
the marginal distribution and the conditional distribu-
tion are adapted. It uses kernel mapping to draw the
marginal distributions across domains closer. A sample
selection strategy is applied to ensure the closeness of
the conditional distributions across domains. However,
the two distributions are learned separately without ex-
ploiting the duality for mutual reinforcement. More-
over, it requires a few labeled data available in the target
domain for inducing transfer learners for that domain.
Therefore, it cannot be applied to transductive trans-
fer learning, where no labeled data are available in the
target domain. In [20], the proposed method discov-
ers two types of latent factors from nonnegative matrix
tri-factorization as two paths, through which knowledge
can be transferred across domains. However, it does not
exploit the duality between the marginal distribution
and the conditional distribution. Our method integrates
the duality in a unified subspace learning paradigm and
requires fewer trade-off parameters. The effectiveness
of DTL over the existing methods is demonstrated by
extensive experimental evaluation.

2.2 Semi-Supervised Learning Semi-supervised
learning also aims to learn from both labeled and
unlabeled data [19, 23]. In semi-supervised learning,
the labeled and unlabeled instances are sampled from
the same domain and follow the dame data distribu-
tion. In transfer learning, the labeled instances and
unlabeled instances are sampled from different domains
with different distributions. Semi-supervised learning
cannot be applied in this problem setting. For example,
the nonnegative matrix tri-factorization used in [19] for
semi-supervised clustering cannot be directly applied
to solve transfer learning problems, since it assumes
that all the latent factors are shared across domains.
This assumption is not valid if data have different
distributions across domains.

3 Nonnegative Matrix Tri-Factorization and
Its Relationship to Distribution Learning

DTL is based on the nonnegative matrix tri-
factorization (NMTF) model [8]. NMTF is very effec-
tive for mining text and image data. In this section,
we explore the intuitions behind NMTF and discuss
two different but closely related interpretations of the
NMTF model. One is the traditional clustering inter-
pretation that has been extensively studied. The other
one is the transformation interpretation that motivates
our DTL method.

In NMTF, a data matrix X € R™*" is decomposed
into a product of three nonnegative factors U € R™**



H c RF*¢ and V € R"*¢, such that X ~ UHVT. This
approximation can be achieved by the following matrix
norm optimization:

(3.1) min_ Lxurr = ||[X - UHVT|

UH, V>0
where || - || is the Frobenius norm of matrix. X =
[x1,...,%,] is an m X n data matrix containing n

examples. Each example x; is an m x 1 feature vector
in the original feature space of m dimensions.

3.1 Clustering Interpretation of NMTF From
a clustering perspective, the three nonnegative factors
decomposed from NMTF can be interpreted in the
following way [8]:

e U = [uy,...,ux] is an m X k cluster assign-
ment matrix representing the feature clusters. If
argmax;(U);; = j*, then the ith feature belongs
to the j*th feature cluster. Each u; is a probabil-
ity distribution over m features and is referred to
as a feature cluster. There are k feature clusters in
total.

eV = [vy,...,v.] is an n X ¢ cluster assign-
ment matrix representing example clusters. If
argmax;(V);; = j*, then the ith example belongs
to the j*th example cluster. Each v; is a probabil-
ity distribution over n examples and is referred to
as an example cluster. There are ¢ example clusters
in total. In the classification setting, each example
cluster can be regarded as a class or category.

e H=[hy,...,h.]is a k x ¢ weight matrix represent-
ing the association between feature clusters and ex-
ample clusters. (H);; is the probability that the ith
feature cluster is associated with the jth example
cluster. Thus H is referred to as the cluster asso-
ciation matrix.

By clustering both sides of the data matrix simul-
taneously, NMTF makes use of the interrelatedness be-
tween features and examples, resulting in superior per-
formance over other clustering methods. The clustering
interpretation helps to define the terminologies for the
transformation interpretation of NMTF.

3.2 Transformation Interpretation of NMTF
We observe that, in addition to the widely used clus-
tering interpretation, NMTF can also be interpreted
from the viewpoint of linear transformation. This in-
terpretation can be used in learning the marginal and
conditional distributions.

Note that Equation (3.1) can be viewed as a com-
bination of the following two alternating factorizations:

2 i = ||IX - UX’
(3:2) o Lo =X - UX|
(3.3) min Ly = ||X' - HV"||
H, V>0
where X’ = [x],...,x}] is a k x n dimension-reduced

data matrix containing n examples. Each example x’ is
a k x 1 feature vector in the latent feature space of k
dimensions, spanned by the columns of U.

Assume that data in the original feature space fol-
low the marginal distribution P(x) and the conditional
distribution P(y|x). The above two factorizations can
be interpreted in terms of a linear transformation on the
data distributions:

e Factorization in Equation (3.2) derives a linear
transformation ¢ : R™ — RF. x’ = ¢(x) maps each
example x € R™*! in the original feature space to
x’ € RF*! in the latent feature space spanned by
the columns of U. After mapping ¢, the marginal
distribution changes from P(x) to P(x’). We refer
to ¢ as the marginal mapping. ¢ and U are related
to learning the marginal distribution.

e Factorization in Equation (3.3) derives another
linear transformation 6 : R¥ — R¢. vT = 4(x)
maps each example x’ € R¥*! in the latent feature
space to vI € R°*! in the example cluster/class
space spanned by the columns of H. After mapping
6, the conditional distribution changes from P(y|x)
to P(y|x’). For any example x; in the original
feature space, its label can be predicted by j* =
argmax; {P(y; = j|x}) = (V)i;}. We refer to 6 as
the conditional mapping. 6 and H are related to
learning the conditional distribution.

From the discussion above, we observe that the la-
tent factors U and H are closely related to the linear
transformations ¢ and @ for learning the marginal and
conditional distributions. However, NMTF in Equa-
tion (3.1) is designed for one domain. In transfer learn-
ing, there may be several source and target domains.
Utilizing the relationship between NMTF and distri-
bution learning, in the next section, we will show how
to use NMTF to perform linear transformation on the
marginal and conditional distributions. Such transfor-
mation will draw the data points closer across domains.
The duality between these two distributions will also be
exploited to facilitate knowledge transfer.

It is worth noting that the duality addressed by our
work is a general property. NMTF is only one of many
possible techniques to formulate distribution learning
and realize dual transfer learning.



4 Dual Transfer Learning

In this section, we present the DTL method for cross-
domain classification. DTL exploits the duality prop-
erty that learning one distribution can help to learn the
other for mutual reinforcement. DTL is formulated as
an optimization problem of joint nonnegative matrix tri-
factorizations.

4.1 Problem Definition We focus on transductive
transfer learning where the source domains have abun-
dant labeled examples while the target domains only
have unlabeled examples. Let D be a domain, t be the
total number of domains, s be the number of source do-
mains, 7 € [1,¢] be the domain index. Then {D,}$_,
represent the source domains, and {D,}._,,, repre-
sent the target domains. For each domain D., let
X, = [x],...,x] | € R™" be the feature-example
co-occurrence matrix of n, examples, Y, € R" %€ be
the corresponding labels if 7 € [1,s]. Each example x]
is a feature vector in the shared feature space spanned
by m different features, and can be calculated by tf-idf
(term frequency-inverse document frequency) for text
data. Each example x] in source domain D, is asso-
ciated with one of the ¢ labels: yj; = 1 if x] belongs
to class j, j € [1,¢], and yf; = 0 otherwise. For clar-
ity, frequently used notations and their descriptions are
summarized in Table 1.

Given labeled examples {X,,Y,}$_; in the source
domains and unlabeled examples {X }._ ., in the
target domains, transfer learning aims at finding a
function f that for any unlabeled example x in the
target domain, predicts its correct label y, i.e., y = f(x).
A standard way to learn this function is to minimize the
loss between the label predicted by the function and the
true label. However, since the distribution divergence
between the source and target domains is large in cross-
domain learning, f may not generalize well in the target
domain. The goal of transfer learning is to alleviate this
difficulty by making data distributions between domains
drawn closer in a latent space so that we can train the
cross-domain classifier f as accurate as possible.

4.2 The Proposed Method Existing clustering
based methods [6, 21, 24, 25] assume that the cluster
structures hidden across domains can be extracted to
learn the marginal distribution or the conditional dis-
tribution for knowledge transfer. The clustering of data
in domain 7 can be performed using NMTF

(4.4) L, =X, - UH VI

min
UL H, .V, >0

Here U’ € R™*k V_ € R"*¢ and H, € RF*€¢ are the
k feature clusters, ¢ example clusters/classes, and the

Table 1: Notations and descriptions used in this paper.

Notation [ Description
t,s #total/source domains
T domain index 1 <7<t
D, domain T
N #examples in D,
m #features in the shared feature space
c #classes in the shared label space
k, Kk #total/common feature clusters
¢, 0 marginal/conditional mapping
X m X n, data matrix of D,
Y, n, X ¢ label matrix of D,
U,U, common/domain-specific feature clusters of Dr
V- example clusters of D,
H association between feature/example clusters
H,, H, H,=H(:k,:), Ho=H(k+1:k,:)
1 m X 1 vector of ones
A, T, Lagrange multipliers for constraints in D
o, %, NG element-wise product/division/root

association between them in domain D,.

As discussed in Section 3.2, UL ~ ¢/ is related to
learning the marginal distribution of D,, and H, ~ 6,
is related to learning the conditional distribution of D..
By extracting the common parts of U’ or H,, data from
different domains are mapped to a shared latent space
in which the divergence of the marginal distributions or
the conditional distributions across domains is reduced.

Next we will formulate the learning of the two distri-
butions as an optimization problem of joint nonnegative
matrix tri-factorizations, in which the duality property
is realized naturally by using NMTF.

4.2.1 Marginal Mapping We derive the marginal
mapping ¢! by learning feature clusters U.. Moti-
vated by [10], the feature clusters across domains can
be reasonably partitioned into a common part and a
domain-specific part. The common part is used to
draw the marginal distributions across domains closer.
So we partition U’ into x common feature clusters
U € R™** and k — k domain-specific feature clusters
U, € R™*(k=%)_ That is, U’ = [U, U,]. This also leads
to the partition of the marginal mapping ¢, = [¢, ¢-],
where only the common part ¢ can be shared across do-
mains to draw the marginal distributions closer, while
the domain-specific part ¢, is used to respect domain-
specific knowledge. By doing so, the marginal distri-
bution is learned in an adaptive way with the sharing
level controlled depending on the relatedness between
domains. We extend Equation (4.4) so that it can ex-
actly model the marginal distribution learning process:

(4.5) L, =X, - [U, U1, V]|’

min
U, U, H;, V>0



4.2.2 Conditional Mapping We derive the condi-
tional mapping 6, by learning the cluster association
matrix H,. Motivated by [25], the association between
feature clusters and example clusters usually remain
stable or unchanged across domains. The validity of
this assumption is further strengthened since we have
learned the feature clusters in an adaptive way in the
marginal mapping, which in return can help learning the
conditional distribution more effectively due to the du-
ality property. Therefore, we let H, = H and 6. = 0 for
all domains, and share the entire conditional mapping
0 across domains to draw the conditional distributions
closer. We can further extend Equation (4.5) so that
the learning of the two distributions are integrated in a
unified subspace learning paradigm:

(4.6) mi ’

N L= HXT ~[U,U,]HVT
U, U, H,V,>0

The duality between the two distributions is real-
ized in Equation (4.6) since U and H in the extended
NMTF model also exhibit the duality property: a better
clustering of features can help clustering the examples
better, as well as the association between them; and vice
versa. By learning the two distributions simultaneously
for mutual reinforcement, this duality property enables
optimal knowledge transfer across domains.

4.2.3 Optimization The common marginal map-
ping ¢ and the conditional mapping 6 can serve as two
means for learning the marginal distribution and the
conditional distribution, respectively. The learning of ¢
and 6 has been addressed in Equation (4.6). Here we
share them to multiple domains simultaneously, arriving
at the following objective function:

2
(4.7)

t
=% HXT ~[U,U,]HVT
T=1

Learning the objective in Equation (4.7) involves
the following optimization problem, which is termed
joint nonnegative matriz tri-factorizations:

min L
U, U, H, V>0

(4.8)
[U,U.]%1,, =1;,V,1.=1,_,V7 € [1,{]

s.t.

The source domain label supervision is incorporated by
{V, =Y, }_,. The ¢; normalization constraints on
each column of U, and each row of V, are used to
make the optimization well defined. The assigned label
for any example x] in domain 7 can be determined by

(4.9) f(x]) = argmax; (V,),

g J j

The DTL optimization is performed in an alter-
nating minimization process until convergence. Dur-
ing each iteration, it extracts the common and domain-
specific feature clusters to learn the marginal distribu-
tion; and simultaneously, it extracts the common as-
sociation between feature clusters and example clus-
ters/classes to learn the conditional distribution. After
the iterative process, both distributions across domains
are drawn closer by exploiting the duality property so
that knowledge can be transferred effectively.

4.3 Learning Algorithm We present the solution
to the DTL optimization problem in Equation (4.8) as
the following theorem. The theoretical aspects of the
optimization are presented in the next subsection.

THEOREM 4.1. Updating U,, U, V. and H us-
ing FEquations (4.10)~(4.13) for each domain T will
monotonically decrease the objective function in Equa-
tion (4.8) until convergence.

T
(410) U, — U,o X,V H,)
(U, U BV V. H]]
{Zt X,V HT]
(4.11) U—TUo i
{zizl [U,U,] HVIVTH};}
(412) V,«<V,o [XI [U,U.]H]

[VTHT U,U,]"[U,U,] H}

[0 [0 U)X,

(4.13) H—Ho
[Zizl U, U.]"[U,U,] HVIVT}

where H, = H(1 : k,:), H, = H(k + 1 : k,:), operator
o 1s element-wise product, ﬁ is element-wise division,
/- is element-wise root.

Based on Theorem 4.1, we develop the learning al-
gorithm for the DTL optimization and summarize it in
Algorithm 1. To make the algorithm converge faster,
we initialize the labels of target domain data by logis-
tic regression trained on the source domain data. We
also keep the labels of source domain data unchanged,
ie, {V, = Y,}_,, instead of updating them dur-
ing iterations. The time complexity of Algorithm 1 is
o (Zj—:l maxIter - kmnT> on t domains, which is ap-

proximately the sum of the NMTF running time on each
domain.



Algorithm 1 DTL: Dual Transfer Learning

input: data sets {X,}t_,,{Y,}:_,, parameters k, x representing the number of total/common feature clusters.
ouput: feature clusters {U,}._,, U, cluster association H, classification results in target domains {V }.__ ;.
1: normalize each data set into probability by X, « X,/ Zij(XT)ij7 T € [1,t].
2: initialize {U,}._,, U, H by random positives, {V.}5_; by {Y}5_,, {V,}L_, | by logistic regression trained

on {X,, Y, }5 4.
3. for iter < 1 to maxlter do

4 for 7— 1totdo

5 update U,, U, V., H by Equations (4.10)~(4.13) with {V, =Y, }5_, fixed.

6 for each update above, normalize each column of [U, U] or each row of V. by ¢; norm.
7: compute objective L¢" by Equation (4.7).

8 end for

9: end for

4.4 Theoretical Analysis

4.4.1 Derivation We derive the solution to Equa-
tion (4.8) following the theory of constrained optimiza-
tion [3]. Specifically, we will optimize one variable and
derive its updating rule while fixing the rest variables.
The procedure repeats until convergence.

We formulate the Lagrange function for the opti-
mization with normalization constraints as follows

2

L= Zizl HXT —[U,U,]HV?

+Z;1 tr (I‘T([U,UT]Tlm —1:)([U, U] 1, — 1k)T)
+ Zizl tr (AT (Vi1.—1,.)(V,1, — 1n7)T)

where T'; € R*¥** A_ € R"*" are the Lagrange
multipliers for the normalization constraints.

Without loss of generality, we only show detailed
derivation of the updating rule for V.. Using the
Karush-Kuhn-Tucker (KKT) complementarity condi-
tion [3] for the constraint on V., we have

- 2X7 [U,U,]H
+2V,H"[U,U.]" U, U, |H
+2A,V, 117 —2A.1, 17

VVTLOVT: OVTZO

This leads to the following update formula

T T
VT — V‘I’ ° [X‘T [Ua U‘f‘] H + AT 1n7‘ 1c ]
[VTHT [U,U,]"[U,U,]H + ATVTlclcT}

We need to compute the Lagrange multiplier A, to
obtain the updating rule for V... We adopt an iterative
normalization technique [25] to satisfy the constraint
in the optimization independent of the computation of
A. Specifically, at each iteration, we normalize each
row of V. so that V1. =1,,_. After that, we get two
equal terms A;1,_ 1? = ATVTlcl;r that depend only
on A, and can be omitted from the above updating

formula without influencing convergence. This leads to
the updating rule for V, in Equation (4.12).

Following the similar derivations as shown above,
we can obtain the updating rules for all the rest vari-
ables in the DTL optimization, as shown in Equa-
tions (4.10)~(4.13).

4.4.2 Convergence We use the auxiliary function
approach [13] to prove the convergence of Theorem 4.1
and Algorithm 1. We first introduce the definitions of
auxiliary function as follows.

DEFINITION 4.1. [18] A(Z,Z) is an auziliary function
for L(Z) if the conditions

A(Z,Z) > L(Z) and A(Z,Z) = L(Z)
are satisfied for any given Z, Z.

LEMMA 4.1. [13] If A is an auziliary function for L,
then L is non-increasing under the update

Z*Y) = argming A(Z,ZY)

THEOREM 4.2. Let L(V ;) denote the sum of all terms
in L that contain V... The following function

; ; . (V222
A (VT,VT) =X (VTHT[U, U,]" [U,U,]H + ATvrlclz) . (VT);

ij

- (Vo)
= (XE [U, U, H +A,1n71f)7’j(v,)“ (1 + log -4
ij

T)ij

is an auziliary function for L(V ;). Furthermore, it is
a convex function in V. and has a global minimum.

Theorem 4.2 can be proved similarly to [8] by
validating A(VTaVT) > L(Vr)a A(VT7VT) = L(V‘r)7
and the Hessian matrix VVv, A(V,, V) = 0. Due to
limited space, we omit the details of the validation.




Based on Theorem 4.2, we can minimize A(V., \77

with respect to V., with V. fixed. Set Vv.A(V,, \77) =
0 we get the following updating formula

Table 2: Cross-domain data sets generated from 20-
NewsGroups and Reuters-21578.

Data Set [ Source Domain [

Target Domain

T T
VT — V‘r o — [X‘r [U7 UT] H + AT]‘"T 1(:~]
[VTHT [U,U.]"[U,U,]H + ATVTlglg]

which is consistent with the updating formula derived
from the KKT condition aforementioned.

By Lemma 4.1 and Theorem 4.2, for each sub-
sequent iteration of updating V,, we have L(V?)
Z(VO.VY) > Z(VLVY) > Z(VL V1) = L(V]) >
... > L(Vmazlter) Qo [(V,) is monotonically decreas-
ing. This is also true for the other variables. Since ob-
jective L is lower bounded by 0, the correctness and con-
vergence of Theorem 4.1 and Algorithm 1 are proved.
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5 Experiments

In this section, we conduct experiments on two bench-
mark data sets to evaluate the proposed DTL algorithm
and compare it with several state-of-the-art unsuper-
vised, semi-supervised, and transfer learning methods.

5.1 Data Sets and Evaluation Criteria The
cross-domain data sets for classification shown in Ta-
ble 2 are generated from 20-NewsGroups® and Reuters-
215782 utilizing their hierarchy structures following the
work [6]. On one hand, data sets constructed this way
are divergent across domains since they contain different
subcategories. On the other hand, these data sets are
also related since they are from the same top categories.
Such data sets have also been widely used in previous
transfer learning studies as benchmarks for performance
evaluation [6, 9, 15, 21, 24, 25].

20-NewsGroups This data set contains 20,000
documents distributed evenly in 20 different news-
groups. Each newsgroup corresponds to a different
topic. Some of the newsgroups are closely related and
can be grouped into one category at a higher level,
while others remain as separate categories. For ex-
ample, the top category sci contains 4 subcategories
sci.crypt, sci.electronics, sci.med and sci.space in the
science field. Any two top categories can be selected
to construct the cross-domain data set. The source do-
main contains some subcategories from the two top cat-
egories. The target domain contains the rest of the sub-
categories. The details of the constructed data sets are
listed in Table 2, among which the first 6 data sets are
generated from 20-NewsGroups. We preprocess the 20-
NewsGroups data by removing stop words and words

Thttp:/ /people.csail.mit.edu/jrennie/20Newsgroups

2http:/ /www.daviddlewis.com /resources/testcollections/
reuters21578

comp Vs rec comp.{graphics, os} comp.sys.{ibm, mac}
rec.{autos, motorcycles}|rec.sport.{baseball, hokey}
comp.{graphics, os} comp.sys.{ibm, mac}
sci.{crypt, med} sci.{electronics, space}
comp.{graphics, os} comp.sys.{ibm, mac}
politics.{guns, mideast} talk.{politics.misc, religion}
rec.{autos, motorcycles}|rec.sport.{baseball, hokey}
sci.{crypt, med} sci.{electronics, space}
rec.{autos, motorcycles}|rec.sport.{baseball, hokey}
politics.{guns, mideast} talk.{politics.misc, religion}
sci.{crypt, med} sci.{electronics, space}
politics.{guns, mideast} talk.{politics.misc, religion}
orgs vs people|orgs.{...}, people.{...}| orgs.{...}, people.{...}
orgs vs place | orgs.{...}, place.{...} orgs.{...}, place.{...}
people vs placepeople.{...}, place.{...}| people.{...}, place.{...}

comp Vs sci

comp vs talk

rec vs sci

rec vs talk

sci vs talk

occurring in less than 15 documents. There are 15,981
features left after preprocess.

Reuters-21578 This data set contains 5 top cate-
gories and many subcategories. We directly use the pre-
processed data in [9], which are generated from Reuters-
21578 for testing cross-domain learning algorithms. The
preprocessed data consists of three data sets orgs vs peo-
ple, orgs vs place and people vs place as shown in Table 2.

We use the Accuracy of predicting unlabeled data
in the target domains as the evaluation criteria. It has
been widely used in the literature [6, 15, 21, 24, 25].

’{x cxe{D g A f(x)= y(x)}‘
|{X X € {DT}fr:erl}’

where y(x) is the true label of example x, and f(x) is
the label predicted by the classification algorithm.

Accuracy =

5.2 Baseline Methods and Parameter Settings
The cross-domain classification task is performed in a
binary-class setting. One source domain and one target
domain are used in each experiment following the same
setting as in [6, 21, 25, 20]. Note that due to its general
formulation, DTL can be easily applied to multi-class
classification problems in multiple domains.

Several state-of-the-art methods are compared in
the experiments: (1) Unsupervised method Nonnegative
Matrix Factorization (NMF) [13]. It is directly applied
to the target domain data. (2) Supervised method, in-
cluding Support Vector Machine® (SVM) and Logistic
Regression* (LR). They are trained on the source do-
main data and tested on the target domain data. (3)
Semi-supervised method Transductive Support Vector
Machine (TSVM) [12]. It works in a transductive set-
ting using all data. (4) Transfer learning method, in-
"~ Shttp://www.csie.ntu.edu.tw/ " cjlin/libsvm

4http:/ /research.microsoft.com/en-us/um/people/minka/
papers/logreg



Table 3: Average classification accuracy (%) on cross-domain data sets (10 repeated experiments).

Data Set | NMF | SVM | LR | TSVM [ CoCC [ MTrick DKT | DTL
comp Vs rec 95.79 83.50 87.22 90.20 95.80 94.18 95.20 98.53
comp Vs sci 57.17 68.30 80.77 81.70 87.00 87.57 88.46 95.25
comp vs talk 53.73 89.70 95.30 90.30 98.00 93.20 94.35 99.85

rec vs sci 78.57 78.80 75.70 93.80 94.50 97.99 97.55 98.68
rec vs talk 54.49 76.70 93.95 96.00 96.50 98.71 98.35 99.35

sci vs talk 53.65 77.40 89.98 89.20 94.60 96.37 96.50 98.32

orgs vs people 63.29 74.25 74.88 73.80 79.79 80.80 80.95 82.56
orgs vs place 72.63 69.99 71.89 69.89 74.18 76.77 76.90 78.46
people vs place 60.49 59.05 58.06 58.43 66.94 69.02 69.32 70.28

cluding Co-Clustering based Classification (CoCC) [6],
Matrix Tri-Factorization based Classification (MTrick)
[25], and the recently proposed Dual Knowledge Trans-
fer (DKT) [20]. They are trained on all data and are
tested on the target domain data. All these methods are
tested using their optimal parameter settings reported
in the original papers.

Note that, though being closely related to our work,
Collaborative Dual-PLSA (CD-PLSA) [24], Joint Sub-
space Nonnegative Matrix Factorization (JSNMF) [10],
and Domain Distribution Adaptation via Kernel Map-
ping (KMap) [22] are not compared due to the following
reasons. CD-PLSA is the probabilistic reformulation of
MTrick [25] with similar performance. We only need
to evaluate one of them. JSNMF is originally designed
to handle the cross-domain retrieval task. It does not
involve learning the conditional distribution for train-
ing classifiers, thus cannot be directly used to solve the
cross-domain classification task. KMap requires a few
labeled data available in the target domain for inducing
transfer learners for that domain. It cannot be applied
to transductive transfer learning, where no labeled data
are available in the target domain.

The parameters of DTL, i.e., the number of total
and common feature clusters k and k, are tuned on
data set comp ws sci by cross validation. Then the
tuned parameters are applied to all other data sets. For
simplicity, we keep k = 20 fixed, since the performance
of DTL is very stable with respect to it. Therefore,
in the comparison experiments, we set t = 2, s = 1,
k =20, k =10, ¢ = 2, maxIter = 50.

5.3 Experimental Results Table 3 shows the com-
parison results, where the average classification accu-
racy of each method on each data set is computed over
10 repeated experiments. Figure 1 gives a more intu-
itive visualization of these results. From the results, we
have several key observations.

5.3.1 TUnsupervised Method NMF performs well
on the data sets (e.g., comp vs rec) where data are
already well separated and the cluster structures are
consistent with the classes. However, when data are
unseparated or inconsistent (e.g., comp vs sci), NMF
performs poorly. This indicates that additional super-
vision is needed to improve the classification accuracy.
In cross-domain classification problems, we can leverage
knowledge from labeled data in the source domains.

5.3.2 Supervised Method SVM and LR trained on
source domain data fail to discriminate target domain
data on some data sets (e.g., rec vs sci). The reason
is that they assume that the training data and test
data follow identical probability distribution. When
this assumption is violated, their performance may drop
dramatically. In the worst case, these methods will even
underperform unsupervised clustering methods such as
NMF (e.g., on the comp vs rec data set). The results
also indicate that SVM is more likely to have degraded
performance in cross-domain classification than LR.
The reason is that the decision boundary of SVM is
determined by support vectors that are more likely to
be influenced by divergent distributions across domains.

5.3.3 Semi-Supervised Method TSVM outper-
forms NMF, SVM and LR on many data sets. This ver-
ifies that the unlabeled data in target domains can in-
deed help the classifier fit the unseen data better, which
is a major advantage of semi-supervised learning. How-
ever, TSVM performs worse when data across domains
are significantly different and unseparated, (e.g., on the
comp vs sci and sci vs talk data sets). This is because
its identical distribution assumption is violated. There-
fore, treating data from different domains as if they were
drawn from a homogenous body typically leads to poor
performance. The traditional no-transfer methods do
not perform well for the cross-domain classification task.
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Figure 1: Experimental results of average classification accuracy (%) on cross-domain data sets (10 repeated
experiments). The results demonstrate the superior performance of the proposed DTL method.

5.3.4 Transfer Learning Method CoCC, MTrick,
and DKT generally perform better than the no-transfer
methods. These transfer learning methods try to clas-
sify data that are not well separated by leveraging
knowledge from the source domains (e.g., sci vs talk),
while avoiding degraded performance when data are al-
ready well separated (e.g., comp vs rec). However, these
methods have not reached the best performance for all
data sets (e.g., comp vs sci). The reasons are two folds.
(1) These methods are based on a strict assumption that
are prone to negative transfer in the data set where the
marginal distribution can only be partially drawn closer
across domains (e.g., comp vs rec). (2) These methods,
except DKT, adopt a single bridge transfer mechanism,
without exploiting the duality between the marginal
and conditional distributions for mutual reinforcement.
For example, CoCC only transfers knowledge from the
marginal distribution. MTrick only transfers knowledge
from the conditional distribution. Thus they might not
reach optimal transfer capability.

Note that, Dual Knowledge Transfer (DKT) is the
first attempt to discover two possible paths and use
them both for knowledge transfer. However, it does
not address the duality property between the marginal
distribution and the conditional distribution, which can
reinforce the learning of each other. It does not solve
dual transfer learning in a principled way using a unified
subspace learning as our method does. The two paths
for transferring knowledge in DKT are separated into a
matrix factorization plus a regularization process, which
require more trade-off parameters and have less power
for mutual reinforcement. Therefore, the performance
improvement of DKT over its baseline MTrick is not as
significant as our method. These observations are also

consistent with DKT’s original work [20].

5.3.5 Dual Transfer Learning Method Our
method DTL achieves the highest classification accu-
racy on all data sets by taking advantage of dual trans-
fer learning mechanism. The reason is that DTL can
enhance the transfer capability by exploiting the dual-
ity between the marginal distribution and conditional
distribution and learning them simultaneously for mu-
tual reinforcement. In particular, if there exists some
knowledge that can be transferred, DTL will transfer
the common knowledge from the marginal distribution
and the conditional distribution across domains as much
as possible. Otherwise, DTL will leave it as domain-
specific knowledge to avoid negative transfer.

The results also show that DTL performs well
even on those hard-to-classify data sets, such as comp
vs sci. The comp wvs sci data set is difficult due
to the unbalance underlying the feature clusters and
example clusters. The data distributions in comp
category are similar across domains, while the data
distributions in sci category are very different across
domains. If we transfer all the feature clusters across
domains, the domain-specific ones (mainly from the
sci category) will result in negative transfer. On the
other hand, if we transfer only the common feature
clusters (mainly from the comp category), the stable
conditional relation between the domain-specific feature
clusters and the example classes is lost. This will lead
to ineffective transfer. DTL tackles these two difficulties
in a principled way and achieves superior performance.

5.4 Effectiveness of Dual Transfer Learning We
compare DTL with CoCC, MTrick, and DKT to show
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Figure 2: Accuracy of CoCC, MTrick and DTL with
respect #common feature clusters x (k = 20) on data
set comp wvs sci, which verifies the effectiveness of the
duality property addressed by this work.
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Figure 3: Accuracy of DTL with respect to #common
feature clusters £ (kK = 20) on data sets comp vs rec,
comp vs sci, orgs vs people, which shows DTL is stable
with respect to a wide range of parameter settings.

that the duality between the marginal distribution and
conditional distribution indeed brings effectiveness to
transfer learning. For a fair comparison, the number
of total feature clusters is set to &k = 20 for all four
methods. For DTL in particular, the number of common
feature clusters can vary in the interval x € [0,k].
Figure 2 shows the accuracy of the four methods on data
set comp vs sci as a function of the parameter . From
the figure, we see that when there exists some common
knowledge which can be transferred across domains (i.e.,
k € [8,16]), DTL is more effective than the other three
methods. By exploiting the duality between the two
distributions, DTL achieves optimal transferability.

5.5 Parameter Sensitivity We evalutate parame-
ter sensitivity of DTL with respect to x fixing k = 20.
Figures 3 shows the accuracy of DTL on data sets comp
vs rec, comp vs sct and orgs vs people with respect to
parameter k. It can be seen that when the parameter
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Figure 4: Accuracy of DTL with respect to #iterations
on data sets comp vs rec, comp vs sci, orgs vs people,
which shows that DTL converges with guarantee.

varies in a wide range k € [8,16], DTL performs quite
stably and consistently outperforms the baseline meth-
ods by a large margin. When x — 0, the learning of
the marginal distribution vanishes and DTL degener-
ates to single bridge transfer. When « — 20, all the
feature clusters are used as the common ones while the
domain-specific ones are not well fitted. Thus DTL suf-
fers from negative transfer when x/k is large. Neverthe-
less, by exploiting the duality between the marginal dis-
tribution and conditional distribution, the adaptiveness
of the transfer process is greatly enhanced. Therefore,
DTL is generally not sensitive to parameter k, except
the extreme cases when kK — 0 or Kk — k.

5.6 Algorithm Convergence Since DTL employs
an iterative algorithm, an important issue is its con-
vergence property. We check the convergence of DTL
empirically by testing it on several data sets: comp wvs
rec, comp vs sci, and orgs vs people. Figure 4 shows
the accuracy with respect to the number of iterations.
We see that the accuracy of DTL increases with more
iterations and it usually converges after 50 iterations.

6 Conclusion

In this paper, we present a novel dual transfer learn-
ing (DTL) method based on the duality between the
marginal and conditional distributions. We observe that
learning one distribution can help to learn the other
for mutual reinforcement. DTL is formulated as an
optimization problem of joint nonnegative matrix tri-
factorizations. This integrated formulation can natu-
rally explore the duality property. An efficient algo-
rithm is developed to solve the optimization problem.
We conduct extensive experiments on benchmark data
sets to compare DTL with several state-of-the-art meth-
ods. Experimental results demonstrate that DTL out-
performs alternative methods in all data sets.
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