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Finding the densest subgraph in a single graph is a fundamental problem that has been extensively stud-
ied. In many emerging applications, there exist dual networks. For example, in genetics, it is important to
use protein interactions to interpret genetic interactions. In this application, one network represents physi-
cal interactions among nodes, e.g., protein-protein interactions, and another network represents conceptual
interactions, e.g., genetic interactions. Edges in the conceptual network are usually derived based on certain
correlation measure or statistical test measuring the strength of the interaction. Two nodes with strong
conceptual interaction may not have direct physical interaction.

In this paper, we propose the novel dual network model and investigate the problem of finding the densest
connected subgraph (DCS) which has the largest density in the conceptual network and is also connected in
the physical network. Density in the conceptual network represents the average strength of the measured
interacting signals among the set of nodes. Connectivity in the physical network shows how they interact
physically. Such pattern cannot be identified using the existing algorithms for a single network. We show
that even though finding the densest subgraph in a single network is polynomial time solvable, the DCS
problem is NP-hard. We develop a two-step approach to solve the DCS problem. In the first step, we ef-
fectively prune the dual networks while guarantee that the optimal solution is contained in the remaining
networks. For the second step, we develop two efficient greedy methods based on different search strategies
to find the DCS. Different variations of the DCS problem are also studied. We perform extensive experiments
on a variety of real and synthetic dual networks to evaluate the effectiveness and efficiency of the developed
methods.
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(a) Protein interaction network

(b) Genetic interaction network
Fig. 1. An example of dual biological networks Fig. 2. Finding DCS in dual networks
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1. INTRODUCTION
Finding the densest subgraph in a single graph is a key primitive with a wide range
of applications, such as modularity detection in biological networks [Saha et al. 2010]
and community detection in social networks [Chen and Saad 2012]. Given a graph
G(V,E), the goal is to find the subgraph with maximum average edge weight [Lee
et al. 2010]. This problem can be solved in polynomial time [Gallo et al. 1989]. For
large graphs, approximation algorithms have also been developed [Asahiro et al. 2000;
Bahmani et al. 2012; Charikar 2000].

In many real-life applications, we can often observe dual networks representing
physical and conceptual interactions among a set of nodes respectively. For example,
in genetics, it is crucial to examine interaction between genetic variants since many
diseases are caused by the joint effect of multiple genetic factors [Phillips 2008]. The
interacting strength between two genetic variants is usually measured by statistical
tests such as likelihood ratio test or analysis of variance [Prabhu and Pe’er 2012].
These statistical interactions are conceptual. Even two genetic variants have strong
statistical interaction, their corresponding protein products may not have direct phys-
ical interaction. On the other hand, protein-protein interaction network represents
physical interactions among proteins and can be used to uncover physical mechanisms
behind statistical genetic interactions [Sun and Kardia 2010].

Figure 1 shows an example of dual biological networks, where Figure 1(a) shows the
physical protein interaction network among a set of nodes and Figure 1(b) shows the
statistical genetic interaction network. The set of nodes have high density in the ge-
netic interaction network demonstrating that the statistical interactions among them
are strong. Moreover, this set of nodes are connected in the protein-protein interaction
network, which provides biological interpretation on how they interact with each other
through signal transduction among proteins [Ulitsky and Shamir 2007]. Note that we
will use solid (dotted) lines to represent the edges in the physical (conceptual) network
throughout the paper.

Dual research interest and collaboration networks can be constructed using biblio-
graphic information such as the DBLP dataset [Tang et al. 2008]. Dual networks can
also be found in social recommender systems. Please see Section 10 for a detailed de-
scription of various real-life dual networks.

In this paper, we study the problem of finding the densest connected subgraph (DCS)
in dual networks. Given two graphs Ga(V,Ea) and Gb(V,Eb) representing the physical
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and conceptual networks respectively, the DCS consists of a subset of nodes S ⊆ V
such that the induced subgraph Ga[S] is connected and the density of Gb[S] is maxi-
mized. Density in the conceptual network indicates strong interacting signals among
the nodes, and connectivity in the physical network explains the signal transduction
process.

Figure 2 summarizes our DCS problem setting. Note that our problem is different
from finding co-dense subgraphs [Kelley and Ideker 2005; Pei et al. 2005] or coherent
dense subgraphs [Hu et al. 2005; Li et al. 2012a], whose goal is to find the dense
subgraphs preserved across multiple networks of the same type. In our problem, the
physical and conceptual networks complement each other and require different treat-
ments.

We show that the DCS problem is NP-hard and develop a two-step approach to solve
the DCS problem. In the first step, we effectively prune the dual networks while guar-
antee that the optimal solution is contained in the remaining networks. For the second
step, we develop two efficient greedy approaches based on different search strategies
to find the DCS. The first approach finds the densest subgraph in the conceptual net-
work first and then refines it according to the physical network to make it connected.
Although finding the densest subgraph in a single graph can be solved in polynomi-
al time, its actual computational cost is still high and becomes prohibitive for large
graphs. We show how to effectively remove nodes in the conceptual network while still
retaining the densest subgraph in it. The second approach keeps the target subgraph
connected in the physical network while deleting low degree nodes in the conceptual
network. We further study two variations of the DCS problem. One problem aims to
find the DCS with fixed number of nodes. Another problem requires a set of input seed
nodes to be included in the identified subgraph. Both problems are of practical inter-
ests. For the DCS problem with input seed nodes, we design an efficient heuristic local
search algorithm.

Based on the basic DCS problem, we further study several extensions. First, we ob-
serve that the conceptual network has node weights in some applications. Thus we
study the DCS problem with both node and edge weights in the conceptual network.
All the developed algorithms above can be readily extended to solve the new problem.
Second, we formulate a more general problem, where there are multiple types of net-
works. Third, we provide the MapReduce implementation of the proposed algorithms.

We perform extensive empirical study using real-life biological, social and co-author
networks to demonstrate the usefulness of the identified patterns and evaluate the
efficiency of the developed algorithms.

Compared to the previous conference version [Wu et al. 2015], several significant
improvements have been made in this paper.

(1) In Section 8, we study the densest connected subgraph problem with both node and
edge weights in the conceptual network.

(2) We provide a more general problem formulation and the MapReduce implementa-
tion of the proposed algorithms in Section 9.

(3) We develop a heuristic local search algorithm to efficiently find the densest con-
nected subgraph with input seed nodes in Section 7.

(4) In experimental studies, Subsection 10.1.2 shows the effectiveness evaluation on
a new biological dataset, which demonstrates that the discovered biological signal
can be replicated using an independent dataset. Comprehensive results are pro-
vided to further evaluate the effectiveness and efficiency of the proposed methods.
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2. RELATED WORK
Finding the densest subgraph is an important problem with a wide range of applica-
tions [Saha et al. 2010; Chen and Saad 2012] and has attracted intensive research
interests. Most of the existing work focuses on a single network, i.e., given a graph1

G(V,E), find the subgraph with maximum density (average edge weight) [Lee et al.
2010]. This problem can be solved in polynomial time using parametric maximum flow
[Gallo et al. 1989]. However, its complexity O(nm log(n2/m)) is prohibitive for large
graphs, where n is the number of nodes andm is the number of edges. For large graphs,
efficient approximation algorithms have been developed. A 2-approximation algorithm
is proposed in [Asahiro et al. 2000; Charikar 2000]. The basic strategy is deleting the
node with minimum degree. This idea can be traced back to [Kortsarz and Peleg 1994],
which shows that the density of the maximum core of a graph is at least half of the
density of the densest subgraph. Recently, an improved 2(1 + ε) approximation greedy
node deletion algorithm has been proposed [Bahmani et al. 2012]. The algorithm takes
O(log1+ε n) iterations. In each iteration, it deletes a set of nodes with degree smaller
than 2(1 + ε) times the density of the remaining subgraph.

Variations of the densest subgraph problem have also been studied. The densest k
subgraph problem aims to find the densest subgraph with exactly k nodes, which has
been shown to be NP-hard [Bhaskara et al. 2010]. The problem of finding the densest
subgraph with seed nodes requires that a set of input nodes must be included in the
resulting subgraph, which can be solved in polynomial time [Saha et al. 2010].

In biomedical domain, the densest subgraph has been used to analyze the gene an-
notation graph [Saha et al. 2010]. The idea can be generalized to analyze multiple
networks. For example, in [Hu et al. 2005; Li et al. 2012a], the authors aim to find
coherent dense subgraphs whose edges are not only densely connected but also fre-
quently occur in multiple gene co-expression networks. Finding co-dense subgraphs
that exist in multiple gene co-expression or protein interaction networks are studied
in [Kelley and Ideker 2005; Pei et al. 2005]. The underlying assumption of these works
is that the set of networks under study are of the same type.

The network-based methods have shown to be promising in integrating different
datasets in systems biology. In [Ideker et al. 2002], the authors use the gene expres-
sion data to weight the nodes in the protein interaction networks. Their goal is to find
the maximum score connected subgraph. The maximum score connected subgraph
requires that the subgraph is connected and also maximizes certain objective func-
tion. This approach has also been applied to integrate genome-wide association study
datasets and protein interaction networks [Baranzini et al. 2009; Jia et al. 2011]. Since
the problem of finding the maximum score connected subgraph is NP-hard, heuristics
are developed to find approximate solutions [Baranzini et al. 2009; Jia et al. 2011]. All
these methods aim to find dense subgraphs from a single network.

3. THE DCS PROBLEM
We adopt the classic graph density definition [Asahiro et al. 2000; Bahmani et al. 2012;
Charikar 2000; Gallo et al. 1989] to formulate the DCS problem. Table I lists the main
symbols and their definitions.

Definition 3.1. Given a graph G(V,E) and S ⊆ V , density ρ(S) is defined as

ρ(S) =
e(S)

|S|
,

1In this paper, we use network and graph interchangeably.
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Table I. Main Symbols

Symbols Definitions
G(V,E) graph G with node set V and edge set E

G(V,Ea, Eb) dual networks Ga(V,Ea) and Gb(V,Eb)
n;ma;mb number of nodes; number of edges in Ga; number of edges in Gb

S node set S ⊆ V
G[S] subgraph induced by S in graph G

Ga[S], Gb[S] subgraph induced by S in graph Ga, Gb
|S| number of nodes in S

e(u, v) weight of edge (u, v)

e(S) sum of the weights of edges in subgraph G[S]

eb(S) sum of the weights of edges in subgraph Gb[S]
e(S, T ) sum of edge weights, e(S, T ) =

∑
u∈S,v∈T e(u, v)

r(u) weight of node u
r(S) sum of node weights, r(S) =

∑
u∈S r(u)

ρ(S) density of subgraph G[S]

N(u) the set of neighbor nodes of node u in graph G
δ(S) boundary of S, δ(S) = {u ∈ S | ∃v ∈ N(u) ∩ (V \S)}
wG(u) degree of node u in graph G
w′G(u) sum of node degree and node weight, w′G(u)=wG(u)+r(u)

(a) Physical network Ga (b) Conceptual network Gb
Fig. 3. An example of dual networks

where e(S) is the sum of the weights of edges in subgraph G[S], and |S| is the number
of nodes in G[S].

Let Ga(V,Ea) be an unweighted graph representing the physical network and
Gb(V,Eb) be an edge weighted graph representing the conceptual network. We denote
the subgraphs induced by node set S ⊆ V in the physical and conceptual networks as
Ga[S] and Gb[S] respectively. For brevity, we also use G(V,Ea, Eb) to represent the dual
networks. Let eb(S) denote the sum of the weights of edges in subgraph Gb[S].

Definition 3.2. Given dual networks G(V,Ea, Eb), the densest connected subgraph
(DCS) consists of a set of nodes S ⊆ V such that Ga[S] is connected and the density of
Gb[S] is maximized.

An example is shown in Figure 3. In this example, the DCS consists of nodes
S = {6, 7, 8, 9, 10}. Its induced subgraph Ga[S] is connected in the physical network
and Gb[S] has the largest density in the conceptual network. Note that the dense com-
ponent consisting of nodes {1, 2, 3, 4, 5, 6} in Gb is not connected in Ga.

THEOREM 3.3. Finding the DCS in dual networks is NP-hard.

PROOF. We show that the DCS problem can be reduced from the set cover problem
[Karp 1972]. Let Z = {Z1, · · · , Zl} be a family of sets with C = {c1, · · · , ch} =

⋃l
i=1 Zi
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(a) Physical network Ga (b) Conceptual network Gb
Fig. 4. Dual networks construction from an instance of the set cover problem

being the elements. The set cover problem aims to find a minimum subset Zopt ⊆ Z,
such that each element cj is contained in at least one set in Zopt.

The dual networks can be constructed as follows. Let the node set V =
{x, c1, · · · , ch, Z1, · · · , Zl}. In the physical network Ga, node x is connected to every
node Zi ∈ Z, and every node cj ∈ C is connected to node Zi if cj ∈ Zi in the set cover
problem. The conceptual network Gb is constructed by creating a unit edge weight
clique among nodes {x, c1, · · · , ch} and leaving nodes {Z1, · · · , Zl} isolated.

Figure 4 gives an example of the dual networks constructed from an instance of the
set cover problem with Z1={c1, c2}, Z2 = {c1}, Z3 = {c2, c4}, Z4 = {c2, c3}, Z5 = {c4}.

Let Zopt ⊆ Z be the optimal solution to the set cover problem and |Zopt| = l∗ ≤ l.
Denote X = {x, c1, · · · , ch}. The subgraph induced from S = X∪Zopt is connected in Ga,
and has density h(h+1)/2

h+l∗+1 in Gb. Let S′ denote any node set, where Ga[S′] is connected.
Next, we prove that the density of Gb[S] is no less than that of Gb[S′].

First, we consider the case when S′ contains all nodes in X. S′ must contain a set
of nodes Z ′⊆Z to be connected in Ga. Thus S′=X ∪Z ′, |S′|=h+1+ |Z ′|, and eb(S

′)=
h(h+1)/2. Since Zopt has the minimum number of sets (nodes) among all subsets of Z
that cover all elements in C, the density of Gb[S] is no less than that of Gb[S′].

Second, we consider the case when S′ contains a subset of nodes X ′ ⊂ X. S′ must
contain a set of nodes Z ′ ⊆ Z to be connected in Ga. Thus S′ = X ′ ∪ Z ′. Let |X ′| = h′

and |Z ′| = l′ ≥ 1. The density of Gb[S′] is h′(h′−1)/2
h′+l′ . Next, we show that adding nodes

in X \X ′ to S′ will only increase its density.
If x /∈ S′, after adding x to S′, the resulting subgraph has density h′(h′−1)/2+h′

h′+l′+1 >
h′(h′−1)/2
h′+l′ in Gb, and is also connected in Ga since x is connected to every Zi ∈ Z. To

add a node cj ∈ X \ X ′ to S′ and make it still connected, we need to add at most one
node Zi, where cj ∈ Zi. The density of the resulting subgraph is at least h′(h′−1)/2+h′

h′+l′+2 >
h′(h′−1)/2
h′+l′ . We can repeat this process by adding remaining nodes to S′ until it contains

all the nodes in X. During this process, the density of the resulting subgraph will keep
increasing. In the first case, we already prove that the density of Gb[S] is no less than
that of Gb[S′] when X ⊂ S′. This completes the proof for the second case.

Therefore, the subgraph induced from S = X ∪ Zopt is the DCS, and it gives an
optimal solution to the set cover problem.

Let’s continue the example in Figure 4. The subgraph induced from S =
{x, c1, c2, c3, c4, Z1, Z3, Z4} is the DCS which is connected in Ga and has maximum den-
sity 1.25 in Gb. Zopt = {Z1, Z3, Z4} is an optimal solution to the set cover problem.

The DCS with size constraint (DCS k) and input seed nodes (DCS seed) can be de-
fined as follows.

Definition 3.4. Given dual networks G(V,Ea, Eb) and an integer k, the DCS k con-
sists of a set of nodes S ⊆ V such that |S| = k, Ga[S] is connected and the density of
Gb[S] is maximized.
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Definition 3.5. Given dual networks G(V,Ea, Eb) and an input query node set Q ⊆
V , the DCS seed consists of a set of nodes S ⊆ V such that Q ⊆ S, Ga[S] is connected
and the density of Gb[S] is maximized.

The DCS k and DCS seed problems are also NP-hard. The proofs are omitted.

4. OPTIMALITY PRESERVING PRUNING
In this section, we introduce a pruning step, which removes the low degree leaf nodes
from the dual networks and still guarantees that the optimal DCS is contained in the
resulting networks.

Definition 4.1. Given dual networks G(V,Ea, Eb), suppose that its DCS consists of
a set of nodes S. Let ρ(S) represent its density in Gb, i.e., ρ(S) = ρ(Gb[S]). A node u ∈ V
is a low degree leaf node if (1) u is a leaf node in Ga, i.e., wGa

(u) = 1, and (2) its degree
in Gb is less than ρ(S), i.e., wGb

(u) < ρ(S).

LEMMA 4.2. The DCS in dual networks does not contain any low degree leaf node.

PROOF. Suppose otherwise. We remove u from S and let S′ be the remaining set of
nodes. Since Ga[S] is connected and u is a leaf node in Ga, so after deleting u, Ga[S′]
is still connected. However, its density ρ(S′) = eb(S

′)
|S′| =

eb(S)−wGb[S](u)

|S|−1 > eb(S)
|S| = ρ(S),

since wGb[S](u) ≤ wGb
(u) < ρ(S) = eb(S)

|S| . This contradicts the assumption.

Even though the density of DCS (ρ(S)) is unknown beforehand, we can still effec-
tively prune many low degree leaf nodes as follows. Let G0 = G be the original dual
networks. We remove all low degree leaf nodes (using density ρ(Gb[V ])) in the physical
network Ga0 and conceptual network Gb0 respectively. That is, we remove all the nodes
that have degree one in Ga and have degree less than ρ(Gb[V ]) in Gb from the dual
networks. Let the resulting dual networks be G1(V1, Ea(V1), Eb(V1)), where Ea(V1) and
Eb(V1) represents the edge sets induced by V1 in network Ga and Gb respectively. We
then continue to remove the low degree leaf nodes using density ρ(V1) in G1. That is,
we remove all the nodes that have degree one in Ga[V1] and have degree less than
ρ(Gb[V1]) in Gb from the dual networks. We repeat this process until no such nodes left.

Let {G0, G1, · · · , Gl} represent the sequence of dual networks generated by this pro-
cess and {vij} represent the set of nodes deleted in iteration i (0 ≤ i ≤ l). The following
theorem shows that the DCS is retained in this process.

THEOREM 4.3. Iteratively removing low degree leaf nodes will not delete any node
in the DCS.

PROOF. Consider two adjacent dual networks Gi and Gi+1 in the sequence
{G0, G1, · · · , Gl}. From Gi to Gi+1, we delete a set of nodes {vij}. For a node u ∈ {vij},
it is a leaf node in Gai , and its degree in Gbi is wGb

i
(u) < ρ(Gbi ). Let Si be the node set

of the DCS in Gi. We have that ρ(Gbi ) ≤ ρ(Si). Thus wGb
i
(u) < ρ(Si). Therefore, node u

is a low degree leaf node with respect to the DCS in Gi. From the proof of Lemma 4.2,
node u must not exist in Si. By induction, we have that the DCS of the original dual
networks is retained in the low degree leaf nodes removing process.

Using this pruning strategy, we can safely remove the nodes that are not in the DCS,
thus reduce the overall search space. Experimental results on real graphs show that
40% to 60% of the nodes can be pruned using this method.

Complexity: Let ma and mb be the numbers of edges in the graphs Ga and Gb re-
spectively. At each iteration, the algorithm will delete a set of nodes and their adjacent
edges in both Ga and Gb. For each deleted edge, the algorithm needs to update the
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node degree if the other endpoint still exists. Each update takes O(1) time. Thus, the
running time of the algorithm is O(ma +mb).

Next, we introduce two greedy algorithms, DCS RDS (Refining the Densest Sub-
graph) and DCS GND (Greedy Node Deletion), to find the DCS from the size reduced
dual networks.

5. THE DCS–RDS ALGORITHM
The DCS RDS algorithm first finds the densest subgraph in Gb, which usually is dis-
connected in Ga. It then refines the subgraph by connecting its disconnected com-
ponents in Ga. Although the densest subgraph can be identified in polynomial time
by the parametric maximum flow method [Gallo et al. 1989], its actual complexity
O(nm log(n2/m)) is prohibitive for large graphs (n and m are the number of nodes and
edges in the graph respectively). Next, we first introduce an effective procedure that
can dramatically reduce the cost of finding the densest subgraph in a single graph.

5.1. Fast Densest Subgraph Finding in Conceptual Network
To find the densest subgraph in a single network, greedy node deletion algorithms
[Asahiro et al. 2000; Charikar 2000] and peeling algorithms [Alvarez-Hamelin et al.
2005; Bahmani et al. 2012; Batagelj and Zaversnik 2003] keep deleting the nodes with
low degree. However, these methods do not guarantee that the densest subgraph is
contained in the identified subgraph.

We introduce an approach which effectively removes nodes inGb and still guarantees
to retain the densest subgraph. Our node removal procedure is based on the following
key observation.

LEMMA 5.1. Let ρ(T ) be the density of the densest subgraph G[T ]. Any node u ∈ T
has degree wG[T ](u) ≥ ρ(T ).

PROOF. Suppose there exists a node u ∈ T with wG[T ](u) < ρ(T ). Then the subgraph
G[T ′] = G[T \ {u}] has density ρ(T ′) = e(T )−wG[T ](u)

|T |−1 > e(T )
|T | = ρ(T ). Thus we find a sub-

graph G[T ′] whose density is larger than that of G[T ]. This contradicts the assumption
that G[T ] is the densest subgraph.

The lemma says that the degree of any node in the densest subgraph G[T ] must
be no less than its density ρ(T ). Since the density of G[T ] is also equivalent to half
of the average degree in G[T ], i.e., ρ(T ) = wG[T ]/2, this is equivalent to say that any
node should have degree more than wG[T ]/2. Note that this is a necessary condition for
characterizing the densest subgraph. It is also related to the concept of d-core.

Definition 5.2. The d-core D of G is the maximal subgraph of G such that for any
node u in D, wD(u) ≥ d.

Note that the d-core of a graph is unique and may consist of multiple connected
components. It is easy to see that any subgraph in which every node’s degree is no less
than d is part of the d-core.

THEOREM 5.3. The densest subgraph G[T ] of G is a subgraph of the d-core D of G
(G[T ] ⊆ D) when d ≤ ρ(T ).

PROOF. From Lemma 5.1, any node u∈T has degree wG[T ](u)≥ρ(T ). Since d≤ρ(T ),
any node u∈T has degree wG[T ](u)≥d. Thus G[T ] is a subgraph of the d-core D.

LEMMA 5.4. Let α = ρ(T )/d. The d-core subgraph D is a 2α-approximation of the
densest subgraph T .
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(a) Physical network Ga (b) Conceptual network Gb
Fig. 5. Refining the densest subgraph

PROOF. Let D.V represent the node set in D. Since the density of the d-core is
ρ(D) = e(D.V )

|D.V | =
∑

u∈D.V wD(u)

2|D.V | ≥
∑

u∈D.V d

2|D.V | = d
2 = ρ(T )

2α , we have that ρ(T ) ≤ 2αρ(D).

From Theorem 5.3 and Lemma 5.4, if we can find a density value d (d ≤ ρ(T )),
then we have both: 1) G[T ] ⊆ D, and 2) D is a 2ρ(T )/d approximation of the dens-
est subgraph G[T ]. Therefore, if we use the density of the 2-approximation subgraph
generated by the greedy node deletion algorithm [Asahiro et al. 2000; Charikar 2000]
for d-core, we obtain a 4-approximation ratio (2α ≤ 2(2d)/d = 4) of the densest sub-
graph G[T ]. Note that d-core can be generated by iteratively removing all nodes with
degree less than d until every node in the remaining graph has degree no less than d
[Bahmani et al. 2012].

To sum up, we use the following three-step procedure to find the exact densest sub-
graph from G: (1) Find a 2-approximation of the densest subgraph in G, where the
density of the discovered subgraph d ≥ ρ(T )/2; (2) Find the d-core D of G; (3) Compute
the exact densest subgraph from D.

Empirical results show that after applying this approach, the remaining subgraph
can be orders of magnitude smaller than the original graphs. It can significantly speed
up the process of finding the exact densest subgraph. Moreover, we have shown that
the density of the remaining subgraph is a 4-approximation of the density of the dens-
est subgraph.

Complexity: Let n and mb be the number of nodes and edges in the original graph Gb,
and n′ and m′b be the number of nodes and edges in the d-core D. The first and second
steps run in O(mb+n log n) and O(mb) respectively. To find the exact densest subgraph
from D, the parametric maximum flow algorithm runs in O(n′m′b log(n

′2/m′b)). Note
that n′ (m′b) can be orders of magnitude smaller than n (mb).

5.2. Refining Subgraph in Physical Network
Suppose that the densest subgraph of Gb consists of node set T and is denoted
as Gb[T ]. The induced subgraph in the physical network Ga[T ] is typically discon-
nected. Given dual networks G(V,Ea, Eb) and the densest subgraph Gb[T ], we use
{Ga[V1], Ga[V2], · · · , Ga[Vκ]} to represent all connected components in Ga[T ], where
T = V1 ∪ V2 ∪ · · · ∪ Vκ.

Example 5.5. In Figure 5, the densest subgraph in the conceptual network consists
of nodes T = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. Its corresponding connected components in the
physical network are V1={6, 7, 8, 9, 10}, V2={1, 2, 3, 4}, and V3={5}.

In the next, we discuss how to refine the subgraph Ga[T ] to make it connected in
the physical network Ga while still preserving its high density in Gb. Specifically, we
consider the following dense subgraph refinement problem.

Definition 5.6. Given dual networks G(V,Ea, Eb) and the densest subgraph Gb[T ]
of Gb, the problem of refining the densest subgraph aims to find a nonempty subset
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Algorithm 1: Refining the densest subgraph
Input: G(V,Ea, Eb), nodes T (densest subgraph in Gb)
Output: node set Ŝ of DCS
1: Find all κ connected components {Ga[Vi]} in Ga[T ];
2: Sort Ga[Vi] by the density ρ(Gb[Vi]) in descending order;
3: Weigh the node u in Ga by (wGb(u))

−1;
4: S1 ← V1;
5: for i← 1 to κ− 1 do
6: Compute the shortest path Hi(Si, Vi+1) in Ga;
7: Si+1 ← Si ∪ Vi+1 ∪Hi;
8: j ← argmaxi ρ(Gb[Si]); return Sj ;

of {Ga[V1], Ga[V2], · · · , Ga[Vκ]} with node set Y and a node set X ⊆ V \ T , such that
Ga[Y ∪X] is connected and the density of Gb[Y ∪X] is maximized.

The problem of refining the densest subgraph is also NP-hard, which can be proved
using similar reduction method as in the proof of Theorem 3.3.

We introduce a greedy heuristic procedure to refine the densest subgraph as outlined
in Algorithm 1. The algorithm puts the node set T to Ga, and finds all the connected
components {Ga[Vi]}. It then sorts {Ga[Vi]} by their density ρ(Gb[Vi]) in descending
order. It weights the nodes in Ga by the reciprocal of its degree in Gb. The intuition is
that we want to select nodes that have high degree in Gb to connect {Ga[Vi]}. The algo-
rithm merges the connected components in Ga iteratively. In each iteration, it merges
two components by adding the nodes on the node weighted shortest path connecting
two components. The density of the newly merged component is calculated after each
iteration. The component with the largest density is returned as the DCS.

Example 5.7. Continue the example in Figure 5. The densities of the connected
components in the physical network are ρ(V1={6, 7, 8, 9, 10})=1.6, ρ(V2={1, 2, 3, 4})=
0.75, and ρ(V3={5})=0. Initially, the subgraph induced by S1 = V1 has density ρ(S1) =
1.6. Algorithm 1 first connects S1 and V2 through the shortest pathH1 = {11, 12, 13, 14}.
The subgraph induced by S2 = S1 ∪ V2 ∪H1 has density ρ(S2) = 1.31. After merging V3,
the subgraph induced by S3 has density ρ(S3) = 1.5. Therefore, the subgraph induced
by S1 has the largest density in Gb and is returned as the DCS.

The approximation ratio of the DCS RDS algorithm can be estimated as α =

ρ(T )/ρ(Ŝ), where ρ(T ) is the density of the densest subgraph in the conceptual net-
work. Experimental results show that the approximation ratio is usually around 1.5∼2
using real networks.

Complexity: Algorithm 1 runs in O(ma + n log n) as we can easily modify Dijkstra’s
algorithm to find the shortest path in node weighted graph by transforming each node
as an edge.

6. THE DCS–GND ALGORITHM
The basic DCS GND algorithm keeps deleting nodes with low degree in the conceptual
network, while avoiding disconnecting the physical network.

Definition 6.1. A node is an articulation node if removing this node and the edges
incident to it disconnects the graph.

Articulation nodes can be identified in linear time by the depth first search [Tarjan
1972]. The basic DCS GND algorithm deletes one node in each iteration. The deleted
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(a) Ga[V0] (b) Gb[V0] (c) Ga[V1] (d) Gb[V1]

Fig. 6. Greedy node deletion example

node has the minimum degree in the conceptual network among all the non-articula-
tion nodes in the physical network. Since in each iteration, only one non-articulation
node is deleted, the remaining physical network will keep connected. Note that as
long as the graph is not empty, there always exists a non-articulation node in the
graph. Thus, the DCS GND algorithm can always find a non-articulation node to delete
until the graph becomes empty. Density of the subgraphs generated in this process is
recorded and the subgraph with the largest density is returned as the identified DCS.

Example 6.2. Suppose that the input physical and conceptual networks are as
shown in Figures 6(a) and 6(b) respectively. Nodes {3, 7} in gray color are articula-
tion nodes and the remaining ones are non-articulation nodes. Node 6, which has the
minimum degree 2 among all the non-articulation nodes, will be deleted. The resulting
dual networks are shown in Figures 6(c) and 6(d), where node 3 is the only articulation
node.

To further improve the efficiency, we can delete a set of low degree non-articulation
nodes in each iteration. However, not all non-articulation nodes can be deleted simul-
taneously, since deleting one non-articulation node may make another non-articulation
node to become an articulation node. Thus we need to find the subset of non-
articulation nodes that can be deleted together.

Definition 6.3. A set of non-articulation nodes are independent if the deletion of
them does not disconnect the graph.

LEMMA 6.4. Let {Bi} represent the set of biconnected components of graph G such
that each Bi has at least one non-articulation node. If we select one non-articulation
node from each Bi, the set of selected nodes are independent non-articulation nodes.

PROOF. Suppose that we delete one non-articulation node vi ∈ Bi. The deletion of
node vi does not disconnect Bi since it is biconnected. Since two distinct biconnected
components share at most one articulation node, deleting node vi does not disconnect
any other biconnected components. So if we delete one non-articulation node from each
component in {Bi}, every component is still connected. Therefore, the remaining sub-
graph is still connected.

Algorithm 2 illustrates the algorithm based on deleting independent non-
articulation nodes iteratively. Parameter γ is used to control the degree of the non-
articulation nodes to be deleted. γ is usually set between 0 ∼ 2. Since 2ρ(Gb) is the
average node degree, there are about half of the nodes whose degree is smaller than
the threshold 2ρ(Gb). More nodes are deleted in each iteration when larger γ value is
used. Please refer to experimental evaluation for further discussion on the effect of γ. If
all low degree nodes are articulations nodes, the algorithm picks the non-articulation
node with the minimum degree to delete.

Example 6.5. Let’s continue the example in Figure 6. Suppose that γ=1.5. We have
that γ ·ρ(Gb[V0])=2.44. The fast DCS GND method will delete nodes {6, 8} simultane-
ously, since they have degree 2<2.44 and are independent non-articulation nodes.
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Algorithm 2: Fast DCS GND algorithm
Input: G(V,Ea, Eb), parameter γ > 0

Output: node set Ŝ of DCS
1: V0 ← V ; i← 0;
2: while |Vi| > 0 do
3: Compute the articulation nodes A in Ga[Vi]; A← Vi \A;
4: Select a set of nodes L⊆A such that the nodes in L are independent non-articulation

nodes and have low degrees, i.e., for any u ∈ L, wGb[Vi](u) ≤ γ · ρ(Gb[Vi]);
5: if |L| = 0 then L← {u |u = argminv∈A wGb[Vi](v)};
6: Vi+1 ← Vi \ L; i← i+ 1;
7: j ← argmaxi ρ(Gb[Vi]); return Vj ;

Complexity: It takes O(nma) time to find the non-articulation nodes and biconnected
components in line 3 by depth first search. It takes O(mb) time to find the low degree
nodes in line 4. It takes O(mb + n log n) time to select the node with minimum degree
in line 5. Thus, the DCS GND algorithm runs in O(nma +mb + n log n).

We can estimate the approximation ratio of DCS GND as follows. When deleting a
node v, we assign its incident edges in Gb to it. Let edg(v) denote the sum of the edge
weights, and edgmax represent the maximum edg(v) among all nodes (deleted in order
by the algorithm). Let S be the node set of the optimal DCS, T be the node set of the
densest subgraph in the conceptual network Gb. We have the following inequality.

LEMMA 6.6. ρ(S) ≤ ρ(T ) ≤ edgmax.

PROOF. It is easy to see that ρ(S)≤ ρ(T ). Next, we show that ρ(T )≤ edgmax. Each
edge in Gb[T ] must be assigned to a node in T in the node deletion process. Thus we
have that eb(T )≤

∑
u∈T edg(u)≤

∑
u∈T edgmax= |T |·edgmax. This means that ρ(T )= eb(T )

|T |≤edgmax.

LEMMA 6.7. Let Ŝ be the node set of the DCS identified by the DCS GND algorithm.
The approximation ratio of the algorithm is α = edgmax/ρ(Ŝ) ≥ ρ(S)/ρ(Ŝ).

Based on Lemma 6.7, we can estimate the approximation ratio α from the results
returned by the algorithm. Empirical study shows that α is usually around 2 in real
networks.

The DCS GND algorithm can be easily extended to solve the DCS k and DCS seed
problems. For the DCS k problem, we can keep deleting low degree non-articulation
nodes until there are k nodes left. For the DCS seed problem, we avoid deleting the
seed nodes during the process. The approximation ratio analysis discussed above also
applies to these variants.

7. THE DCS–MAS ALGORITHM FOR THE DCS–SEED PROBLEM
In this section, we introduce a heuristic algorithm, DCS MAS, for the DCS seed prob-
lem. DCS MAS uses a local search procedure, which iteratively include one more node
with the maximum adjacency value to the visited nodes.

The algorithm is outlined in Algorithm 3. Given the query nodes, we first compute
the Steiner tree in the physical network by the Mehlhorn’s algorithm [Mehlhorn 1988].
Thus the query nodes become connected.

Next, the algorithm begins a local search process. The Steiner tree is used as the
initial subgraph. In each iteration (lines 4-5), the algorithm adds the node u ∈ δa(V \Vi)
with the maximum adjacency value eb({v}, Vi) to Vi. Here, δa(S) denotes the boundary
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Algorithm 3: Maximum adjacency search (DCS MAS) algorithm for the DCS seed problem
Input: G(V,Ea, Eb), query nodes Q, parameter K
Output: node set Ŝ of DCS seed
1: Compute the Steiner tree of Q in Ga, and let S be its node set;
2: V0 ← S; i← 0;
3: while |Vi| < K do
4: u← argmaxv∈δa(V \Vi) eb({v}, Vi);
5: Vi+1 ← Vi ∪ {u}; i← i+ 1;
6: j ← argmaxi ρ(Gb[Vi]); return Vj ;

of the node set S in the physical network. The intuition is that the node u is adjacent
to Vi in the physical network, and has the maximum adjacency value to Vi in the
conceptual network. The subgraph during the local search process is always connected
in the physical network. The subgraph with the maximum density in the conceptual
network during the local search process is returned. Parameter K is used to control
the search space. When the number of nodes in Vi is equal to K, the algorithm will
terminate.

The local search process needs at most K iterations. Let Na be the average number
of neighbors in the physical network and N b be the average number of neighbors in
the conceptual network. Then, in the ith iteration, it takes O(|Vi| ·Na) to find the node
with the maximum adjacency value in line 4, and it takes O(N b) to add this node and
update the adjacency values of its neighborhood nodes in the conceptual network. Thus
the local search process runs in O(

∑
i(|Vi| ·Na +N b)) = O(K2Na +KN b). Mehlhorn’s

algorithm runs in O(ma + n log n) [Mehlhorn 1988].

8. FINDING DCS WITH BOTH NODE AND EDGE WEIGHTS IN THE CONCEPTUAL NETWORK
In the conceptual network, in addition to edge weights, we can often have node weights
as well. For example, in the genetic interaction network, in addition to measuring ge-
netic interactions, i.e., the edge weights, we can also apply statistical tests to measure
node weights [Jia and Zhao 2014]. A node weight represents the strength of the asso-
ciation between a single genetic factor and the disease trait. In this section, we study
the DCS problem when there are both edge and node weights in the conceptual net-
work. To integrate both node and edge weights, we revise the classic density definition
as follows.

Definition 8.1. Given a graph G(V,E) and a set of nodes S ⊆ V , the node and edge
weighted density ρ(S) is defined as

ρ(S) =
e(S) + r(S)

|S|
,

where e(S) is the sum of the weights of edges in the subgraph G[S], r(S) =
∑
u∈S r(u)

is the sum of the node weights, and r(u) is the weight of node u. For brevity, the node
and edge weighted density is also referred to as density when there is no ambiguity.

If we need to tune the composition ratio of the node and edge weights, we can
reweight the nodes and edges in a pre-processing step. Let η (0≤ η≤ 1) be a constant.
For each node u, its weight is changed to (1−η) · r(u). For each edge (u, v), its weight
is changed to η · e(u, v). Then, the node and edge weighted density of subgraph G[S] is
changed to (η · e(S)+(1−η) · r(S))/|S|. Thus, we can tune the composition ratio of the
two parts through the node and edge reweighting step.
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The node and edge weighted density is adopted in the work [Goldberg 1984]. When
all nodes have unit weights, we have that r(S) = |S| and ρ(S) = e(S)

|S| +1, which degrades
to the classic density as in Definition 3.1. The DCS problem with both node and edge
weights is also NP-hard.

Next, we show how to extend the techniques developed before to solve the DCS prob-
lem following Definition 8.1.

8.1. Optimality Preserving Pruning
In this section, we extend the optimality preserving pruning step. We need to re-define
the low degree leaf nodes. We still use wG(u) to denote the degree of node u in graph
G. Let w′G(u) denote the sum of node degree and node weight of node u, i.e., w′G(u) =
wG(u) + r(u).

Definition 8.2. Given dual networks G(V,Ea, Eb), suppose that its DCS consists of
a set of nodes S. Let ρ(S) represent the node and edge weighted density in Gb, i.e.,
ρ(S) = ρ(Gb[S]). A node u ∈ V is a low degree leaf node if (1) u is a leaf node in Ga, i.e.,
wGa

(u) = 1, and (2) u satisfies that w′Gb
(u) < ρ(S).

LEMMA 8.3. The DCS in dual networks does not contain any low degree leaf node.

PROOF. Suppose otherwise. We remove u from S and let S′ be the remaining set of
nodes. SinceGa[S] is connected and u is a leaf node inGa, after deleting u,Ga[S′] is still

connected. However, its density ρ(S′)=eb(S
′)+r(S′)
|S′| =

eb(S)+r(S)−w′Gb[S](u)

|S|−1 >eb(S)+r(S)
|S| =ρ(S),

since w′Gb[S]
(u)≤w′Gb

(u)<ρ(S)= eb(S)+r(S)
|S| . This contradicts the assumption that G[S]

is the optimal solution to the DCS problem.

Therefore, when we iteratively remove the low degree leaf nodes from the dual net-
works, the DCS is retained in the resulting networks.

THEOREM 8.4. Iteratively removing low degree leaf nodes will not delete any node
in the DCS.

PROOF. The proof is similar to that of Theorem 4.3.

The optimality preserving pruning procedure still runs in O(ma +mb).

8.2. The DCS–RDS Algorithm
8.2.1. The Greedy Node Deletion Algorithm. In this section, we extend the greedy node

deletion algorithm to find a 2-approximation for the densest subgraph problem with
Definition 8.1.

Algorithm 4 shows the greedy node deletion algorithm. It keeps deleting the node
with the minimum w′G[Vi]

(u) value. After deleting one node, we compute the density
of the remaining subgraph. Then the subgraph with the maximum density during the
node deletion process is returned. This algorithm still finds a 2-approximation solution.

LEMMA 8.5. For any node u in the densest subgraph G[T ], w′G[T ](u) ≥ ρ(T ).

PROOF. Since G[T ] is the densest subgraph, ρ(T ) ≥ ρ(T \ {u}). Therefore, we have
that e(T )+r(T )

|T | ≥ e(T )+r(T )−w′G[T ](u)

|T |−1 . Then we can prove this lemma.

LEMMA 8.6. Algorithm 4 obtains a 2-approximation solution to the densest sub-
graph problem with Definition 8.1.
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Algorithm 4: Greedy node deletion algorithm for the densest
subgraph problem with the node and edge weighted density
Input: G(V,E)

Output: node set Ŝ
1: V0 ← V ; i← 0;
2: while |Vi| > 0 do
3: u← argminv∈Vi w

′
G[Vi]

(v);
4: Vi+1 ← Vi \ {u}; i← i+ 1;
5: j ← argmaxi ρ(G[Vi]); return Vj ;

PROOF. Let S = Vi. That is, S represents the remaining nodes in the ith iteration.
We have that

∑
u∈S w

′
G[S](u) = 2|S| · ρ(S) − r(S) ≤ 2|S| · ρ(S), which means that the

average w′G[S](u) value is no greater than 2ρ(S). If a node u has the minimum w′G[S](u)

value, we have that w′G[S](u) ≤ 2ρ(S).
Now, consider the first time in the iteration when a node u from the densest subgraph

G[T ] is deleted. Clearly, S ⊇ T . Thus we have that ρ(T ) ≤ w′G[T ](u) ≤ w
′
G[S](u) ≤ 2ρ(S),

where we use Lemma 8.5 in the first inequality. This implies that ρ(S) ≥ ρ(T )/2 and
hence the algorithm gives a 2-approximation solution.

Algorithm 4 runs in O(mb+ n log n) time when using Fibonacci heaps [Cormen et al.
2001].

8.2.2. Removing Low Degree Nodes. In this section, we show that the densest subgraph
is contained in the node and edge weighted d-core. Thus, we can prune the search space
by first finding the node and edge weighted d-core.

Definition 8.7. The node and edge weighted d-core D of G is the maximal subgraph
of G such that for any node u in D, w′D(u) ≥ d.

THEOREM 8.8. The densest subgraph G[T ] of G is a subgraph of the node and edge
weighted d-core D of G (G[T ] ⊆ D) when d ≤ ρ(T ).

PROOF. The proof is similar to that of Theorem 5.3.

To compute the node and edge weighted d-core, we can iteratively remove the nodes
with low w′G(u) values, i.e., w′G(u) < d. This procedure still runs in O(mb).

8.2.3. The Parametric Maximum Flow Method. In this section, we show how to apply the
parametric maximum flow method to exactly solve the densest subgraph problem with
the node and edge weighted density. Given an undirected graph G, the flow network
can be constructed as follows.

(1) Replace each edge (u, v) of G by two oppositely directed edges 〈u, v〉 and 〈v, u〉 of
capacity e(u, v);

(2) Add a source node s and a sink node t;
(3) Create directed edge 〈s, u〉 of capacity wG(u) + 2r(u) for each node u;
(4) Create directed edge 〈u, t〉 of capacity 2λ for each node u;

Figure 7 shows one example of constructing the flow network. Figure 7(a) shows
the original undirected graph, and Figure 7(b) shows the flow network. We change the
undirected edge into two directed edges, add the source node s and the edges from s to
each node, and add the sink node t and the edges from each node to t.

By computing the parametric maximum flow on the flow network, we can solve the
densest subgraph problem exactly. Suppose that any s-t cut partitions the node set V
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(a) Original network (b) Flow network (c) s-t cut

Fig. 7. Constructing the flow network from the original network

into two parts S and T , where S is on the s side and T is on the t side. For example,
in Figure 7(c), the s-t cut is indicated by the dotted curve, and we have that S = {1, 2}
and T = {3, 4}. The capacity of an s-t cut is∑

u∈T (wG(u) + 2r(u)) + e(S, T ) + 2λ|S|
= 2e(V ) + 2r(V )− 2(e(S) + r(S)− λ|S|).

Therefore, minimizing the capacity of an s-t cut is equivalent to maximizing the quan-
tity e(S) + r(S) − λ|S|. Thus we can maximize the ratio e(S)+r(S)

|S| by searching for the
largest λ value [Gallo et al. 1989].

8.2.4. Refining Subgraph in Physical Network. We can simply change the line 3 of Algo-
rithm 1 to the following line.

3: Weigh the node u in Ga by (w′Gb
(u))−1;

The analysis of the approximation ratio and complexity is the same as that of the
original algorithm.

8.3. The DCS–GND Algorithm
To extend the DCS GND algorithm to handle the node and edge weighted conceptual
network, we can change the lines 4 and 5 in Algorithm 2 to the following two lines.

4: Select a set of nodes L ⊆ A such that the nodes in L are independent non-articulation
nodes and have low w′Gb[Vi]

(u) values, i.e., for any u ∈ L, w′Gb[Vi]
(u) ≤ γ · ρ(Gb[Vi]);

5: If |L| = 0 then L← {u |u = argminv∈A w
′
Gb[Vi]

(v)};

Next, we derive the approximation ratio. We still use S to denote the node set of
the optimal DCS, T to denote the node set of the densest subgraph in the conceptual
network Gb, and edg(u) to denote the sum of the weights of edges, which are deleted
together with node u during the node deletion process. We have the following lemmas.

LEMMA 8.9. ρ(S) ≤ ρ(T ) ≤ maxu∈V (edg(u) + r(u)).

PROOF. It is easy to see that ρ(S) ≤ ρ(T ). Next, we show that ρ(T ) ≤
maxu∈V (edg(u) + r(u)). Each edge in Gb[T ] must be assigned to a node in T in the
node deletion process. Thus we have that eb(T )≤

∑
u∈T edg(u). Therefore, eb(T )+r(T ) ≤∑

u∈T edg(u)+
∑
u∈T r(u)≤|T |·maxu∈V (edg(u)+r(u)). This means that ρ(T )= eb(T )+r(T )

|T |
≤ maxu∈V (edg(u) + r(u)).

LEMMA 8.10. Let Ŝ be the node set of the DCS identified by the DCS GND algorithm.
The approximation ratio of the algorithm is α=maxu∈V (edg(u)+r(u))/ρ(Ŝ)≥ρ(S)/ρ(Ŝ).

The complexity of the modified DCS GND algorithm is the same as that of the orig-
inal algorithm.
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Table II. Complexities of the Methods

Methods (with/without node weights) Complexities
Optimality preserving pruning O(ma +mb)

DCS RDS

Greedy node deletion O(mb + n logn)

Removing low degree nodes O(mb)

Parametric maximum flow O(n′m′b log(n
′2/m′b))

Refining densest subgraph O(ma + n logn)

Basic/fast DCS GND O(nma +mb + n logn)

DCS MAS
Maximum adjacency search O(K2Na +KNb)

Mehlhorn’s algorithm O(ma + n logn)

8.4. The DCS–MAS Algorithm for the DCS–seed Problem
We can simply change line 4 in Algorithm 3 to the following line.

4: u← argmaxv∈δa(V \Vi)(eb({v}, Vi) + r(v));

The complexity is the same as that of the original algorithm.

Table II lists the complexities of the methods. The complexity of each method for the
networks with node weights is the same as that of the corresponding method for the
networks without node weights.

9. FURTHER EXTENSIONS
In this section, we discuss two extensions to the DCS problem: one from the theoretical
perspective, and one from the implementation perspective.

9.1. A More General Problem Formulation
The basic DCS problem can be treated as a special case of a more general prob-
lem formulation, where the edges in the network may have different labels [Kivelä
et al. 2013]. Specifically, we can define the graph with multiple edge labels as a triple
G(V,E, L), where V is a set of nodes, L is a set of labels, and E is a set of labeled edges.
One triple (u, v, l) ∈ E with u, v ∈ V and l ∈ L represents one edge (u, v) with edge
label l. An edge label induced subgraph, Gl(V,El), consists of the edges El of a partic-
ular label l ∈ L. Different optimization objective functions or constraints (such as edge
density, k-edge or k-vertex connectivity, diameter of the subgraph, etc.) can be defined
on different edge label induced subgraphs.

In the DCS problem, there are two edge labels, i.e., conceptual and physical edges.
On the conceptual edge induced subgraph, the objective function is to maximize the
density among a subset of nodes. On the physical edge induced subgraph, the con-
straint is the connectivity among the nodes. In the future work, we will explore the
generalized subgraph discovery problem and their applications in the real-world.

9.2. MapReduce Implementation
Recently, there have been a lot of interests using MapReduce for processing large
graphs [Bahmani et al. 2012]. In the following, we show that the DCS RDS and DC-
S GND methods can be easily implemented on top of the MapReduce framework. The
DCS MAS method is a local search heuristic, thus we do not discuss its implementa-
tion on MapReduce. In the discussion, we assume that the classic density in Definition
3.1 is used in the DCS problem. All the implementations can also be readily extended
to solve the DCS problem with the node and edge weighted density in Definition 8.1.
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9.2.1. DCS RDS on MapReduce. The DCS RDS method has four steps: computing the
2-approximation densest subgraph; finding d-core; computing the exact densest sub-
graph from the d-core; refining the densest subgraph in the physical network.

In the first step, we can directly apply the MapReduce algorithm developed in [Bah-
mani et al. 2012] to compute a 2(1 + ε)-approximation densest subgraph, where ε is
a small constant. Note that this algorithm gives a relaxed approximation ratio. The
density of the discovered subgraph will be used as the threshold for finding d-core in
the second step. The densest subgraph is still guaranteed to be contained in the d-core,
since we are using a slightly smaller d value. In the second step, we can apply the
same strategy when removing low degree nodes to find the d-core. In the third step,
we can use the MapReduce implementation of the Ford-Fulkson method [Halim et al.
2011] as a subroutine of the parametric maximum flow method [Gallo et al. 1989] to
compute the densest subgraph. In the fourth step, we can apply the MapReduce im-
plementation of single-source shortest path algorithm [Lin and Dyer 2010] to connect
the disconnected components in the physical network.

9.2.2. DCS GND on MapReduce. The DCS GND method has four steps: computing the
articulation nodes of Ga; computing the density ρ(Gb); selecting the low degree inde-
pendent non-articulation nodes; removing those nodes.

To compute the density ρ(Gb) and remove nodes, we can still apply the method in
[Bahmani et al. 2012]. To compute the articulation nodes, we can use the algorithm in
[Ausiello et al. 2012]. Let π(u) denote whether node u is an articulation node. Let θ(u)
denote the identifier of the biconnected component which contains the node u. Note
that θ(u) may contain multiple identifiers if node u is an articulation node. The output
of this step has the form 〈u;π(u), θ(u)〉.

To select the low degree independent non-articulation nodes, we need two passes
on MapReduce. In the first pass, we duplicate each edge (u, v) and its weight e(u, v)
to two 〈key; value〉 pairs 〈u; e(u, v)〉 and 〈v; e(v, u)〉 in the mapping step. We also add
〈u;π(u), θ(u)〉 for each node in the mapping step. The input to the reduce task is of the
form 〈u;π(u), θ(u), e(u, v1), e(u, v2), . . . , e(u, vk)〉 where v1, v2, . . . , vk are the neighbors of
u. The reducer will do nothing if node u is an articulation node. Otherwise, the reducer
will sum up the associated edge weights for each key, and output 〈θ(u);u,wGb

(u)〉 if
wGb

(u) ≤ γ · ρ(Gb). In the second pass, we just emit the key-value pairs in the form
of 〈θ(u);u,wGb

(u)〉 in the mapping step. The reducer will pick one node v with the
minimum degree from each θ(u), and output 〈v; $〉, which denotes that the node v will
be deleted.

10. EXPERIMENTAL RESULTS
In this section, we perform comprehensive experiments to evaluate the effectiveness
and efficiency of the proposed methods using a variety of real and synthetic datasets.
All the programs are written in C++. All experiments are performed on a server with
32G memory, Intel Xeon 3.2GHz CPU, and Redhat OS.

10.1. Effectiveness Evaluation in the Biological Application Domain
We first evaluate the effectiveness of the DCS method in the biological application
domain. The dual biological networks include the physical protein interaction network
and the conceptual genetic interaction network. The protein interaction network is
downloaded from the BioGRID database (http://thebiogrid.org/). After filtering out
duplicate interactions, the network contains 8,468 proteins and 25,715 unique physical
bonding interactions.

The first genetic interaction network is generated by performing chi-square test on
genetic marker pairs in the Wellcome Trust Case Control Consortium (WTCCC) hy-
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Table III. Statistics of the Dual Biological Networks

Dual networks Abbr. #nodes #edges in Ga #edges in Gb
WTCCC WT 8, 468 25, 715 67, 744

ARIC AR 8, 468 25, 715 81, 810

(a) Subgraph in protein interaction network (b) Subgraph in genetic interaction network

Fig. 8. The DCS k (k = 40) identified from the WTCCC dataset

pertension dataset [Burton et al. 2007]. The WTCCC dataset includes 4, 890 European
adults. The most significant interactions between genes are used to weight the edges
in the genetic interaction network, which has 67, 744 edges. Note that we use half of
the samples in the WTCCC dataset to construct the dual networks. Another half is
used for significance evaluation of the identified DCS.

The second genetic interaction network is generated in a similar way from the
atherosclerosis risk in communities (ARIC) study dataset downloaded from dbGaP
[Levy et al. 2009; the ARIC Investigators 1989]. The ARIC dataset includes 15, 792
African American and European American adults. We focus on the 9, 319 European
American adults. We study hypertension and calculate genetic interaction using the
chi-square test. The resulting genetic interaction network has 81, 810 edges. Note that
the WTCCC and ARIC datasets are independent. We use the WTCCC dataset to eval-
uate the significance of the DCS identified from the ARIC dataset. Table III shows the
basic statistics of the dual biological networks constructed from the WTCCC and ARIC
datasets.

10.1.1. The DCSs Identified from the WTCCC Dataset. The DCS identified in the dual bio-
logical networks has 211 nodes. The figures are omitted because of the large size. The
set of nodes are sparsely connected in the protein interaction network, while the sub-
graph in the genetic interaction network has high density. Specifically, the DCS has
282 edges in the protein interaction network and 4, 258 edges in the genetic interaction
network.

Note that the densest subgraph of the genetic interaction network is not connected
in the protein interaction network. There are 73 nodes in the densest subgraph of the
genetic interaction network. Only 2 of them are connected in the protein interaction
network. This demonstrates that dual networks can help to uncover pattern that can-
not be identified in individual networks. Such pattern cannot be identified by finding
dense subgraphs preserved in both networks either. There are 68 overlapping nodes be-
tween the densest subgraph in the genetic interaction network and the DCS identified
by DCS RDS.

Figure 8 shows the identified DCS k with k = 40. From the figure, it is clear that
the identified subgraph is connected in the protein interaction network and highly
dense in the genetic interaction network. Several genes in this subgraph have been re-
ported to be associated with hypertension. For example, MYO6 encodes an actin-based
molecular motor involved in intracellular vesicle and organelle transport, and has been
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(a) Subgraph in protein interaction network (b) Subgraph in genetic interaction network

Fig. 9. The DCS seed identified from the WTCCC dataset (renin pathway genes are in red ellipses)

shown to have association with hypertension [Slavin et al. 2011]. The CUBN gene is
associated with albuminuria, which is an important factor for cardiovascular disease
[McMahon et al. 2013]. The STK39 gene has been reported many times as a hyper-
tension susceptibility gene [Wang et al. 2009]. This gene encodes a serine/threonine
kinase that is thought to function in the cellular stress response pathway. These genes
are highlighted by stars in the figure. Other genes in the identified subgraph are poten-
tial hypertension candidate genes or important for signal transduction in hypertension
related pathways.

To identify the DCS seed, we use a set of 16 genes in renin pathways known to be
associated with hypertension as the input seed nodes [Yue et al. 2006]. Renin path-
way, also called renin-angiotensin system, is a hormone system that regulates blood
pressure. The resulting subgraphs are shown in Figure 9. The input seed genes are
in red ellipses and the remaining nodes represent the newly added genes. As can be
seen from the figure, the seed nodes are originally not directly connected in the protein
interaction network. The newly added genes tend to have large degree in the genetic
interaction network. In addition to the genes discussed above, we can see the NED-
D4L gene is connected to multiple seed genes. It has been reported that NEDD4L is
involved in the regulation of plasma volume and blood pressure by controlling cell
surface expression of the kidney epithelial Na+ channel [Luo et al. 2009].

To evaluate the statistical significance of the discovered DCSs, we apply 4 widely
used pathway evaluation methods : the GenGen method, the gene set ridge regres-
sion (GRASS) method, the Plink set-based test method, and the hybrid set-based test
(HYST) method [Wang et al. 2010; Li et al. 2012b]. Given a set of genes, these methods
evaluate the significance of the association between the set of genes and the disease
phenotype. These methods adopt the null hypothesis that none of the genes in a gene
set harbor genetic markers associated with the disease risk. The alternative hypothe-
sis is that at least one gene harbors genetic markers associated with the disease risk.
Different methods adopt different strategies to perform the tests. The GenGen method
assigns the best test statistic among genetic markers in or near a gene to represent the
gene level signal, then calculates the Kolmogorov-Smirnov-like enrichment score for a
pathway [Wang et al. 2007]. The GRASS method first uses the regularized regression
to select representative genetic markers for each gene, then assesses their joint associ-
ation with the disease risk [Chen et al. 2010]. The Plink set-based test method selects
the independent and significant genetic markers in the pathway, and then calculates
the average of the test statistics as the pathway enrichment score [Purcell et al. 2007].
The HYST method combines the extended Simes’ test and the scaled chi-square test to
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Table IV. P -values of the DCSs Identified from the WTCCC Dataset
(without node weights, tested on half of the WTCCC dataset)

Methods GenGen GRASS Plink HYST
DCS (1) 2.4× 10−6 1.0× 10−6 2.3× 10−6 1.1× 10−9

DCS (2) 1.6× 10−5 2.8× 10−5 4.6× 10−5 5.6× 10−7

DCS (3) 4.8× 10−5 7.4× 10−5 9.5× 10−5 8.2× 10−7

DCS k 5.6× 10−5 1.3× 10−6 4.6× 10−6 3.7× 10−8

DCS seed 8.5× 10−5 4.9× 10−6 1.5× 10−5 2.4× 10−6

DS 0.36 0.47 0.33 0.17
MSCS 0.15 0.13 0.21 0.12

assess the overall significance of the association in a set of genetic markers [Li et al.
2012b]. Note that the test dataset consists of the samples that are not used for con-
structing the dual networks to ensure the independence between pattern discovering
and significance evaluation.

Table IV shows the p-value of the identified DCSs. DCS (1), (2) and (3) represent
the top-3 DCSs. The top DCSs are identified iteratively: after the top-1 DCS is identi-
fied, we remove its nodes and edges from the dual networks; the DCS GND algorithm
is then applied to each connected component to find the next DCS in the remaining
graph. As can be seen from the table, the DCSs are highly significant. In the table, we
also show the results of two other methods for finding pathways in biological networks.
One method finds the densest subgraph (DS) in the protein interaction network. An-
other method aims to find the maximum-score connected subgraph (MSCS) in the pro-
tein interaction network [Ideker et al. 2002]. The DS method uses the most significant
genetic interactions between genes to weight the edges in the protein interaction net-
work. The MSCS method uses the most significant chi-square test statistics to weight
the nodes in the protein interaction network. As we can see, the subgraphs identified
by these two methods are not as significant as the DCSs. This indicates the impor-
tance of integrating the complementary information encoded in the physical protein
interaction network and the conceptual genetic interaction network.

10.1.2. The DCSs Identified from the ARIC Dataset. Using the genetic interaction network
generated from the ARIC dataset, the identified DCS has 184 nodes. The figures are
omitted because of the large size. The set of nodes are sparsely connected in the protein
interaction network, while the subgraph in the genetic interaction network has high
density. Specifically, the DCS has 246 edges in the protein interaction network and
4, 135 edges in the genetic interaction network.

Similar to the results from the WTCCC dataset, the densest subgraph of the genetic
interaction network is not connected in the protein interaction network. The densest
subgraph of the genetic interaction network consists of 89 nodes, however, the induced
subgraph in the protein interaction network only contains 6 edges.

Figure 10 shows the identified DCS k with k = 40. Several genes in the identified
DCS have been reported to be associated with hypertension. The CSMD1 gene encodes
a transmembrane protein and is a potential tumor suppressor. It has been shown to
have association with hypertension [Hong et al. 2009]. The ESR1 gene encodes an
estrogen receptor and has been shown to have association with pregnancy-induced hy-
pertension [Tamura et al. 2008]. Considerable evidence has been accumulated suggest-
ing the involvement of receptor tyrosine kinases in the pathogenesis of pulmonary ar-
terial hypertension [Pullamsetti et al. 2012]. The SRC gene encodes a tyrosine-protein
kinase, and has been shown to be associated with pulmonary arterial hypertension
[Pullamsetti et al. 2012]. The TLR4 gene encodes toll-like receptor 4, which contributes
to blood pressure regulation and vascular contraction in spontaneously hypertensive
rats [Bomfim et al. 2012] and was also reported to be associated with hypertension in
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(a) Subgraph in protein interaction network (b) Subgraph in genetic interaction network

Fig. 10. The DCS k (k = 40) identified from the ARIC dataset

(a) Subgraph in protein interaction network (b) Subgraph in genetic interaction network

Fig. 11. The DCS seed identified from the ARIC dataset (renin pathway genes are in red ellipses)

human [Zhu et al. 2010]. The association study in 199 Nigerian families reveals that
the PARK2 gene is significantly associated with the risk for hypertension [Tayo et al.
2009]. This result is replicated in the Korean population [Jin et al. 2011]. The PARK2
and GRB2 genes exist in both the DCS seeds identified from the WTCCC and ARIC
datasets, which are shown in Figure 8 and 10 respectively. The GRB2 gene, togeth-
er with the SRC gene, is interacting with the platelet-derived growth factor, which
has been implicated in the pathobiology of vascular remodeling [Humbert et al. 2013].
These genes are highlighted by stars in the figure. Other genes in the identified sub-
graph are potential hypertension candidate genes or important for signal transduction
in hypertension related pathways.

To identify the DCS seed, we still use the set of 16 genes in the renin pathways as
the input seed nodes [Yue et al. 2006]. The resulting subgraphs are shown in Figure 11.
The newly added genes tend to have large degree in the genetic interaction network.
We observe the ESR1, TLR4, and SRC genes, which have been discussed above. We
also observe the NEDD4L gene, which was observed in Figure 9. In Figure 9, the
DCS seed contains 44 newly added genes in addition to the 16 seed genes from the
renin pathways; in Figure 11, the DCS seed contains 42 newly added genes. Between
these two sets of newly added genes, there are 14 overlapping genes, such as NEDD4L,
NEDD4, TP53, SIRT2, etc.

We also apply the GenGen, GRASS, Plink, and HYST methods to evaluate the sta-
tistical significance of the discovered DCSs. Note that we use the WTCCC dataset as
the test dataset, which is independent of the ARIC dataset. Table V shows the p-value
of the identified DCSs. DCS (1), (2) and (3) represent the top-3 DCSs. As can be seen
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Table V. P -values of the DCSs Identified from the ARIC dataset
(without node weights, tested on the WTCCC dataset)

Methods GenGen GRASS Plink HYST
DCS (1) 7.9× 10−6 5.7× 10−6 8.3× 10−6 3.1× 10−8

DCS (2) 5.2× 10−5 6.9× 10−5 9.4× 10−5 1.3× 10−6

DCS (3) 8.3× 10−5 1.2× 10−4 2.6× 10−4 6.4× 10−6

DCS k 9.4× 10−5 2.1× 10−5 2.0× 10−5 4.5× 10−7

DCS seed 7.3× 10−4 1.7× 10−5 6.8× 10−4 7.2× 10−5

DS 0.21 0.32 0.37 0.26
MSCS 0.12 0.14 0.23 0.09

(a) Subgraph in protein interaction network (b) Subgraph in genetic interaction network

Fig. 12. The DCS k (k = 40) with node and edge weighted density identified from the WTCCC dataset

from the table, the DCSs are highly significant. In the table, we also show the results
of the DS and MSCS methods. As we can see, the subgraphs identified by these two
methods are not as significant as the DCSs.

10.1.3. The DCSs with Node and Edge Weighted Density. In this section, we study the ef-
fectiveness of the DCS method when the conceptual network has both node and edge
weights as discussed in Section 8.

We perform single-marker chi-square test on the genetic markers in the WTCCC
dataset. The single-marker test statistics are used as the node weights. Then, we ap-
ply the algorithms developed for the DCS problem with node and edge weighted den-
sity. The DCS identified in the dual networks has 176 nodes. The figures are omitted
because of the large size. The set of nodes are sparsely connected in the protein interac-
tion network, while the subgraph in the genetic interaction network has high node and
edge weighted density. Specifically, the DCS has 217 edges in the protein interaction
network and 3, 928 edges in the genetic interaction network.

Figure 12 shows the DCS k with k = 40 identified from the WTCCC dataset. To bet-
ter visualize the weights, in Figure 12(b), the node and edge weights are indicated by
the colors in the color bar. The red color represents the maximum weight and the green
color represents the minimum weight. The CUBN, STK39, MYO6 genes are also ob-
served in this subgraph, which have been discussed before since they are also observed
in Figure 8. These genes are highlighted by stars in the figure. In Figure 12(b), we can
see that some genes, such as the PRKAR2A gene, have green node color, which means
that they have weak single-marker association. However, they have strong interaction
with other genes. If only the node weights are used, such as in the MSCS method, we
will miss these important interactions.

We also use the set of 16 genes in the renin pathways as the input seed nodes, and
discover the DCS seed with the node and edge weighted density. The results are simi-
lar to that in Figure 9 and omitted here.
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Table VI. P -values of the DCSs Identified from the WTCCC Dataset
(with node weights, tested on the ARIC dataset)

Methods GenGen GRASS Plink HYST
DCS 5.8× 10−6 4.6× 10−6 6.7× 10−6 1.4× 10−8

DCS k 8.2× 10−5 8.7× 10−6 9.4× 10−6 1.5× 10−7

DCS seed 4.1× 10−4 7.7× 10−6 7.4× 10−5 9.1× 10−6

DS 0.15 0.26 0.23 0.25
MSCS 0.14 0.07 0.25 0.14

Table VII. P -values of the DCSs Identified from the ARIC Dataset
(with node weights, tested on the WTCCC dataset)

Methods GenGen GRASS Plink HYST
DCS 4.2× 10−6 2.9× 10−6 3.6× 10−6 2.3× 10−8

DCS k 6.9× 10−5 7.4× 10−6 6.6× 10−6 1.8× 10−7

DCS seed 5.1× 10−4 8.5× 10−6 6.5× 10−5 8.3× 10−6

DS 0.21 0.32 0.18 0.35
MSCS 0.06 0.09 0.14 0.23

Table VIII. P -values of the DCSs Identified from the WTCCC Dataset
(without node weights, tested on the ARIC dataset)

Methods GenGen GRASS Plink HYST
DCS (1) 7.2× 10−6 8.2× 10−6 7.6× 10−6 4.8× 10−8

DCS (2) 3.8× 10−5 3.2× 10−5 6.1× 10−5 3.5× 10−7

DCS (3) 6.5× 10−5 8.1× 10−5 9.8× 10−5 7.9× 10−7

DCS k 8.9× 10−5 1.6× 10−5 2.2× 10−5 4.5× 10−7

DCS seed 6.3× 10−4 2.1× 10−5 9.3× 10−5 1.8× 10−5

DS 0.27 0.36 0.38 0.21
MSCS 0.13 0.15 0.19 0.16

We further evaluate the statistical significance of the discovered DCSs. Note that
to ensure the independence between the training and test datasets, when the DCSs
are discovered from the WTCCC dataset, we use the ARIC dataset as the test dataset;
when the DCSs are discovered from the ARIC dataset, we use the WTCCC dataset as
the test dataset.

Tables VI and VII show the p-values of the DCSs identified from the WTCCC and
ARIC datasets respectively. As can be seen from the table, the DCSs are highly signifi-
cant. The subgraphs identified by the DS and MSCS methods are not as significant as
the DCSs.

To compare the methods with and without node weights, we evaluate the significance
of the DCSs, which are discovered from the WTCCC dataset, using the ARIC dataset.
The results are shown in Table VIII. Previously, in Table IV, the DCSs discovered
from the WTCCC dataset are evaluated using the other half of the WTCCC dataset.
However, in Table VI, the results with node weights are evaluated using the ARIC
dataset. To make a fair comparison, we compare the results evaluated using the same
ARIC dataset. Comparing Tables VI and VIII, we can see that the p-values are smaller
when node weights are integrated in the method. Comparing Tables VII and V, we also
observe that the p-values are smaller when node weights are integrated. These results
demonstrate that the integration of node weights gives better performance.

10.1.4. Gene Set Enrichment Analysis. To further understand the biological meaning of
the discovered DCSs, we apply the standard gene set enrichment analysis [Bauer et al.
2008] to evaluate their significance. In particular, for each DCS (gene set) S, we identi-
fy the most significantly enriched KEGG (Kyoto Encyclopedia of Genes and Genomes)
pathways (downloaded from http://www.genome.jp/kegg/). The significance (p-value)
is determined by the Fisher’s exact test. The raw p-values are further calibrated to cor-
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Table IX. Gene Set Enrichment Analysis (WTCCC Dataset)

DCSs KEGG pathways p-values Ref.

Only

DCS (1) Neurotrophin signaling pathway 3.2× 10−6 [Smith et al. 2015]

edge weights

DCS (2) ErbB signaling pathway 2.6× 10−5 [Matsukawa et al. 2011]
DCS (3) Glioma 7.5× 10−5 –
DCS k Neurotrophin signaling pathway 9.3× 10−6 [Smith et al. 2015]

DCS seed Renin-angiotensin system 2.8× 10−5 [Kobori et al. 2007]

Node and edge
DCS Neurotrophin signaling pathway 1.4× 10−6 [Smith et al. 2015]

weights
DCS k ErbB signaling pathway 5.7× 10−6 [Matsukawa et al. 2011]

DCS seed Renin-angiotensin system 8.3× 10−6 [Kobori et al. 2007]

Table X. Gene Set Enrichment Analysis (ARIC Dataset)

DCSs KEGG pathways p-values Ref.

Only

DCS (1) Calcium signaling pathway 4.7× 10−6 [Makani et al. 2011]

edge weights

DCS (2) Neurotrophin signaling pathway 8.4× 10−6 [Smith et al. 2015]
DCS (3) ErbB signaling pathway 6.3× 10−5 [Matsukawa et al. 2011]
DCS k MAPK signaling pathway 7.2× 10−6 [Bao et al. 2007]

DCS seed Renin-angiotensin system 1.8× 10−5 [Kobori et al. 2007]

Node and edge
DCS Calcium signaling pathway 1.6× 10−6 [Makani et al. 2011]

weights
DCS k Insulin signaling pathway 3.9× 10−6 [Carvalho-Filho et al. 2007]

DCS seed Renin-angiotensin system 8.5× 10−6 [Kobori et al. 2007]

rect for the multiple testing problem [Westfall and Young 1993]. To compute calibrated
p-values for each S, we perform a randomization test, wherein we apply the same test
to 107 randomly created gene sets that have the same number of genes as S.

Tables IX and X show the most significantly enriched pathways and the corre-
sponding p-values for DCSs identified from the WTCCC and ARIC datasets respec-
tively. We can see that all the pathways have low p-values and are significantly en-
riched. We further study the existing literature and find that most of these pathways
have been previously reported to be associated with hypertension. For example, the
renin-angiotensin system is known to be associated with hypertension [Kobori et al.
2007]. The MAPK signaling pathway interacts with the angiotensin system [Bao et al.
2007]. The Neuregulin-1/ErbB signaling in rostral ventrolateral medulla is involved
in blood pressure regulation as an antihypertensive system [Matsukawa et al. 2011].
The brain-derived neurotrophic factor may be a compensatory mechanism for the high
blood pressure in Africans [Smith et al. 2015]. The calcium signaling pathway is re-
ported to interact with the renin-angiotensin system [Makani et al. 2011], and it may
also contribute to the hypertension pathogenesis. The insulin signaling pathway is also
reported to interact with the renin-angiotensin system [Carvalho-Filho et al. 2007].

Moreover, we can observe that the DCSs identified from the node and edge weight-
ed dual networks have more significant p-values than those identified from the dual
networks with only edge weights do. This indicates that integrating node weights can
further increase the significance of the detected patterns.

10.1.5. Robustness Evaluation. The protein interaction network is usually noisy. In this
section, we perform simulation study to evaluate the robustness of our method. Specif-
ically, given a noise ratio τ%, we randomly remove τ% edges from the protein interac-
tion network, and then randomly add the same number of edges. Thus we get a noisy
protein interaction network. We then find the DCS from these dual networks, and
evaluate the significance of the discovered DCS by the GenGen method. Note that to
ensure the independence between the training and test datasets, when the DCSs are
discovered from the WTCCC dataset, we use the ARIC dataset as the test dataset;
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(a) WTCCC dataset (b) ARIC dataset

Fig. 13. Robustness analysis

when the DCSs are discovered from the ARIC dataset, we use the WTCCC dataset as
the test dataset.

Figure 13(a) shows the p-values of the DCSs identified from the WTCCC dataset. We
can see that the p-values of the discovered DCSs slightly increase when we increase
the noise ratio. When the noise ratio is 30%, our method can still find significant pat-
terns. Figure 13(b) shows the p-values of the DCSs identified from the ARIC dataset.
A similar trend can be observed. These results demonstrate that our method is robust
to the noises in the protein interaction network. We can also observe that the method
with node and edge weights is more robust than the method with only edge weights.
This indicates that integrating node weights can further increase the robustness of our
method.

10.2. Effectiveness Evaluation in Other Application Domains
In addition to the biological application, we further evaluate the effectiveness of the
DCS method in two other application domains. One application is about the biblio-
graphic information analysis, and the other is about the social recommender system.

We use the DBLP dataset [Tang et al. 2008] to build two dual networks, one for da-
ta mining research community and one for database research community. To construct
the dual networks for the data mining community, we extract a set of papers published
in 5 data mining conferences: KDD, ICDM, SDM, PKDD and CIKM. The dataset con-
tains 4,284 papers and 7,169 authors. The physical network is the co-author network
with authors being the nodes and edges representing two authors have co-authored
a paper. The conceptual research interest similarity network among authors is con-
structed based on the similarity of the terms in the paper titles of different authors.
The shrunk Pearson correlation coefficient is used to compute the research interest
similarity between authors [Koren 2008]. The dual networks for the database commu-
nity are constructed in a similar way based on papers published in SIGMOD, VLDB
and ICDE.

We construct two dual networks using recommender system datasets, Flixster [Ja-
mali and Ester 2010] and Epinions [Massa and Avesani 2007]. In the original Flixster
dataset, the physical network has 786,936 nodes (users) and 7,058,819 edges repre-
senting their social connectivity. The user-item rating matrix consists of 8,184,462 user
ratings for 48,791 items with rating scale from 1 to 5 with 0.5 increment. We construct
the conceptual interest similarity network by measuring the correlation coefficients of
the common ratings between users [Ma et al. 2011]. Note that we only calculate the
correlation coefficient between two users with more than 5 common ratings. The con-
structed interest similarity network has 2,713,671 edges. The trust network in Epin-
ions dataset has 49,288 nodes and 487,002 edges. The user-item rating matrix consists
of 664,811 user ratings for 139,737 items with rating scale from 1 to 5 with 1 incre-
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Table XI. Statistics of the Dual Networks in Other Application Domains

Dual networks Abbr. #nodes #edges in Ga #edges in Gb
Research-DM DM 7, 169 14, 526 30, 000
Research-DB DB 6, 131 17, 940 30, 000

Recom-Epinions EP 49, 288 487, 002 313, 432
Recom-Flixster FX 786, 936 7, 058, 819 2, 713, 671

(a) Subgraph in co-author network (b) Subgraph in research interest similarity network
Fig. 14. The DCS k (k = 30) identified from the dual co-author (data mining) networks

(a) Subgraph in co-author network (b) Subgraph in research interest similarity network
Fig. 15. The DCS seed identified from the dual co-author (database) networks

ment. The interest similarity network is constructed in a similar way as the one in the
Flixster dataset. It has 313,432 edges. Table XI shows the basic statistics of the dual
networks in these applications.

10.2.1. Research Interest Similarity and Co-Author Dual Networks. The DCS identified in the
dual co-author networks consists of hundreds of nodes. Here we only show the identi-
fied DCS k for data mining in Figure 14 and DCS seed for database in Figure 15.

Figures 14(a) and 14(b) shows the DCS k (k = 30) identified in the dual networks
of the data mining research community. The subgraph in the co-author network is
sparsely connected and highly dense in the research interest similarity network. This
indicates that the set of researchers have very close research interest. The subgraph
in the co-author network shows their collaboration pattern.

Figures 15(a) and 15(b) shows the DCS seed identified in the dual networks of the
database research community. The names of the 4 input seed authors are in red el-
lipses. The researchers with similar interest and their collaboration patterns are clear-
ly shown in the two subgraphs. The 4 seed authors do not have direct co-authorship
with each other. Through the resulting DCS seed, we uncover the connected communi-
ty of common interests.

Note that a dense subgraph in the research interest similarity network may not be
connected in the co-author network. One example is shown in Figure 16. Figure 16(b)
shows a dense subgraph identified from the research interest similarity network for
data mining. Figure 16(a) shows the induced subgraph in the co-author network. We
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(a) Induced subgraph in co-author network (b) Dense subgraph in research interest similarity
network

Fig. 16. The dense subgraph in the research interest similarity network of the dual co-author (data mining)
networks

Fig. 17. The social connectivity network of the DCS k (k = 40) identified in the Epinions dataset

(a) Induced subgraph in social connectivity network (b) Dense subgraph in interest similarity network

Fig. 18. The dense subgraph in the interest similarity network of the Epinions dataset

can see that very few authors are connected. Thus finding dense subgraphs in a single
network may miss important information presented in the other network.

10.2.2. User Interest Similarity and Social Connectivity Dual Networks. The DCS k (k = 40)
identified in the dual network constructed from the Epinions dataset is shown in Fig-
ure 17. The subgraph in the interest similarity network is a dense component and not
shown here. In this figure, each node is a user, whose name is not shown because of
the privacy issue. Because this group of users have high interest similarity and also
have social connection, if one of the users receives an advertisement of an interested
product, this information is likely to be propagated to the rest of the group.

To demonstrate the effectiveness of the DCS pattern, we compare it with the dense
subgraphs discovered from a single network. Figure 18(b) shows a dense subgraph in
the interest similarity network. Figure 18(a) shows its induced subgraph in the social
connectivity network. We can see that this set of users have no social connectivity even
though they have high interest similarity. Figure 19(a) shows a dense subgraph in the
social connectivity network. Figure 19(b) shows its induced subgraph in the interest
similarity network. We can see that the subgraph in the interest similarity network
is very sparse. This indicates that a group of users having high social connectivity
may not have similar interest. Similar observations can be made in the dual networks
constructed from the Flixster dataset.
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(a) Dense subgraph in social connectivity network (b) Induced subgraph in interest similarity network

Fig. 19. The dense subgraph in the social connectivity network of the Epinions dataset

(a) Pruning effect (b) Running time

Fig. 20. Pruning effect and running time of the DCS RDS algorithm

10.3. Efficiency Evaluation on Real Networks
In this subsection, we evaluate the efficiency of the proposed DCS RDS, DCS GND
and DCS MAS algorithms using real networks.

The DCS RDS algorithm has three major components: removing low degree nodes
(RLDN) in the conceptual network, finding the densest subgraph in the remaining
graph by parametric maximum flow (PMF), and refining the densest subgraph (RDS)
to make it connected in the physical network.

We first evaluate the pruning effect of the RLDN step. Figure 20(a) shows the num-
ber of nodes in the original graph and the number of nodes remained after pruning.
It can be seen that the RLDN step can reduce the number of nodes by 2 to 4 orders
of magnitude. Moreover, the pruning effect becomes larger for larger graphs. This in-
dicates that the RLDN step is more effective when graph size increases. The effect of
the optimality preserved pruning (OPP) approach discussed in Section 4 is also shown
in this figure. We can see that the OPP step can prune 40% to 60% nodes in the 6 real
graphs. Since the real graphs are scale-free, there are many leaf nodes in the physical
networks and the OPP step has large pruning ratio.

Figure 20(b) shows the running time of each step in DCS RDS. We also run the
parametric maximum flow method on the original graph (PMF-Ori) to see the perfor-
mance improvement of our method. From the results, we can see that the RLDN and
RDS steps run efficiently. The most time consuming part is to use parametric maxi-
mum flow to find the densest subgraph. Because of the pruning effect of RLDN, finding
the densest subgraph after the RLDN step is about 2 orders of magnitude faster than
directly finding it in the original graph.

Figure 21(a) shows the running time of the basic and fast DCS GND methods. We
can see that the fast DCS GND method runs about 1 order of magnitude faster than
the basic method, even though they have the same theoretical complexity. This demon-
strates the effectiveness of simultaneously deleting independent non-articulation
nodes. The running time of DCS RDS is also shown in the figure for comparison. We
can observe that DCS GND runs faster on smaller graphs and DCS RDS runs faster
on larger graphs. The reason is that when the graph becomes larger, the depth first
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(a) Running time (b) Density ratio

Fig. 21. (a) Running time of DCS RDS, basic and fast DCS GND, and DCS MAS; (b) Density ratio of the
subgraphs identified by DCS RDS and basic DCS GND

Table XII. Approximation Ratios on Real Networks

Datasets→ DB DM WT AR EP FX
DCS RDS 1.48 1.42 1.94 1.83 1.23 2.25

Basic DCS GND 1.53 1.44 2.11 1.97 1.26 2.34
Fast DCS GND 2.21 2.10 2.35 2.14 1.87 2.62

DCS MAS 3.45 4.21 5.16 5.28 6.39 6.72

search procedure in DCS GND will take longer time. On the other hand, more nodes
will be removed by DCS RDS for larger graphs as demonstrated in Figure 20(a). The
running time of DCS MAS is also shown in the figure. In the DCS MAS method, we
randomly select 8 seed nodes initially and set the parameter K = 2000. We can see that
DCS MAS takes about one hundred seconds on large graphs. Since DCS MAS searches
the whole graph to compute the Steiner tree, DCS MAS has increasing running time
when the graph size increases.

Figure 21(b) shows the ratio of the density of the subgraphs identified by DCS RDS
and DCS GND. It can be seen that the densities of the subgraphs identified by these
two methods are very similar. The DCS GND method always results slightly larger
density value. The reason is that the densest subgraph in the conceptual network may
not have large overlap with the DCS. The exact DCS solution may contain other dense
components instead of the densest subgraph because of the connectivity constraint in
the physical network.

Table XII shows the estimated approximation ratio of the proposed methods on dif-
ferent datasets. In the fast DCS GND method, we set γ = 2.0. From the table, we can
see that the approximation ratio of DCS RDS is tighter than that of DCS GND. The
reason is that DCS RDS uses the exact densest subgraph in its first step. We can also
observe that the approximation ratio of the basic DCS GND method is always smaller
than that of the fast DCS GND method. This is because the fast DCS GND method is
greedier, which deletes a set of low degree nodes in each iteration. The basic DCS GND
method only deletes the node with the minimum degree. From the table, we can also
see that the approximation ratio of both methods is around 2, which is the theoretical
approximation ratio of the greedy node deletion algorithm for finding the densest sub-
graph in a single graph. Since we compute the density of the densest subgraph in the
DCS RDS method, we can compute the approximation ratio of the DCS MAS method.
The approximation ratios of DCS MAS are also shown in Table XII. Compared with the
approximation ratios of the other methods, the approximation ratios of the DCS MAS
method are larger. The reason is that the local dense subgraph, which DCS MAS aims
to search for, may have smaller density than the global densest subgraph.

Figure 22(a) shows the running time of the fast DCS GND method on the Flixster
dataset when varying γ. When γ = 0, it degrades to the basic DCS GND method.
When increasing γ, the fast DCS GND method will delete more nodes in each iteration.
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(a) Running time (b) Approx. ratio
Fig. 22. Effects of γ in fast DCS GND

(a) Varying the size k (b) Varying the number of seeds (c) Varying the number of seeds
Fig. 23. Running time of fast DCS GND (a,b) and DCS MAS (c)

Thus the running time decreases. Figure 22(b) shows the approximation ratio when
varying γ. We can see that the approximation ratio slightly increases when increasing
γ. This indicates that the approximation ratio of the fast DCS GND method is not very
sensitive to γ.

Figure 23(a) and Figure 23(b) show the running time of the fast DCS GND method
when varying the output size k in DCS k problem and varying the number of seeds
in DCS seed problem respectively. From the results, we can see that fast DCS GND
has almost constant running time when varying k and the number of seeds. This is
because the DCS GND method keeps deleting nodes from the dual networks and is
not sensitive to k and the number of seeds. Figure 23(c) shows the running time of the
DCS MAS method when varying the number of seeds in the DCS seed problem. We
can see that the running time slightly increases when increasing the number of seeds.
It may costs more time to find the Steiner tree when there are more seed nodes.

We further evaluate the DCS RDS, DCS GND and DCS MAS methods for the DCS
problem following the node and edge weighted density in Definition 8.1. The running
time results are similar to that in Figure 21(a). The approximation ratio results are
similar to that in Table XII. These results are omitted.

10.4. Efficiency Evaluation on Large Synthetic Networks
To further evaluate the scalability of the proposed methods, we generate a series of
synthetic dual networks. Both the physical and conceptual networks are scale-free
graphs based on the R-MAT model [Chakrabarti et al. 2004]. We use the graph gen-
erator from http://www.cse.psu.edu/∼madduri/software/GTgraph/. The statistics of
the generated graphs are shown in Table XIII.

Figure 24(a) shows the pruning ratio of the OPP and RLDN steps in the DCS RDS
method. The OPP step can prune about 50% nodes, while the RLDN step can further
reduce the number of nodes by 1∼2 orders of magnitude.
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Table XIII. Statistics of Synthetic Dual Networks

#nodes 1× 220 2× 220 4× 220 8× 220

#edges in Ga, Gb 1× 107 2× 107 4× 107 8× 107

(a) Pruning ratio (b) Running time of different methods

Fig. 24. Results on synthetic dual networks

Table XIV. Approximation Ratios on Synthetic Networks

#nodes 1× 220 2× 220 4× 220 8× 220

DCS RDS 1.53 1.48 1.44 1.41
Basic DCS GND 1.58 1.54 1.51 –
Fast DCS GND 1.72 1.69 1.67 1.63

DCS MAS 5.86 5.63 5.42 5.16

Figure 24(b) shows the running time of the DCS RDS, DCS GND and DCS MAS
methods. DCS RDS has slower increasing rate. The reason is that the RLDN step has
larger pruning ratio on larger graphs. The fast DCS GND method runs about 1 order of
magnitude faster than the basic DCS GND method. This figure also shows the running
time of the PMF method on the original conceptual network. PMF cannot be applied
to large networks because of its long running time. DCS MAS has increasing running
time when the graph size increases. This is because it will take more time to find the
Steiner tree when the graph size increases.

Table XIV shows the approximation ratios of the DCS RDS, DCS GND and DC-
S MAS methods. The approximation ratio becomes tighter when the graph size in-
creases.

To evaluate the scalability of the methods for the DCS problem following the node
and edge weighted density in Definition 8.1, we randomly generate node weights on
the synthetic conceptual networks. The running time results are similar to that in
Figure 24(b). The approximation ratio results are similar to that in Table XIV. These
results are omitted.

10.5. Efficiency Evaluation of the MapReduce Implementation
In this subsection, we evaluate the efficiency of the MapReduce implementation of the
DCS RDS and DCS GND algorithms. We rent 101 nodes from the Amazon’s Elastic
Compute Cloud. The parameter γ in the DCS GND method is set to 2.0.

Figure 25(a) shows the running time of the DCS RDS method on real networks. The
legends “MapReduce (10)” and “MapReduce (100)” denote that 10 and 100 worker nodes
are used in the MapReduce implementation respectively. The MapReduce implementa-
tion with 10 worker nodes is about 6.1 times faster than the sequential algorithm. The
MapReduce implementation with 100 worker nodes is about 64.5 times faster than the
sequential algorithm. Figure 25(b) shows the running time of the DCS GND method
on real networks. The MapReduce implementation with 10 worker nodes is about 9.2
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(a) DCS RDS (b) DCS GND

Fig. 25. Running time on real networks

(a) DCS RDS (b) DCS GND

Fig. 26. Running time on synthetic networks

times faster than the sequential algorithm. The MapReduce implementation with 100
worker nodes is about 91.5 times faster than the sequential algorithm. Comparing Fig-
ures 25(a) and 25(b), we can see that the MapReduce implementation of the DCS GND
method gets larger speed improvement than that of the DCS RDS method does. The
reason is that the DCS GND method adopts the simple greedy node deletion strategy,
which is quite suitable for the distributed computing environment.

Figures 26(a) and 26(b) show the running time of the DCS RDS and DCS GND
methods on large synthetic networks respectively, whose statistics are shown in Ta-
ble XIII. Similar patterns can be observed.

11. CONCLUSION
Dual networks exist in many real-life applications, where the physical and conceptual
networks encode complementary information. In this paper, we study the problem of
finding the densest connected subgraph in dual networks. A dense subgraph in the con-
ceptual network that is also connected in the physical network can unravel interesting
patterns that are invisible to the existing methods. We formulate the DCS problem
and prove it is NP-hard. To find the DCS, we first introduce an effective optimality
pruning strategy to remove the nodes that are not in the optimal solution. Then, we
develop two efficient greedy algorithms to find the DCS. We also develop an efficient
local search heuristic for the DCS problem with input seed nodes. We further study
the DCS problem when there are node weights in the conceptual network, and extend
the algorithms to solve this new problem. Extensive experimental results on real and
synthetic datasets demonstrate the interestingness of the identified patterns and the
efficiency of the proposed algorithms.
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José Ignacio Alvarez-Hamelin, Luca Dall’Asta, Alain Barrat, and Alessandro Vespignani. 2005. K-core de-

composition: a tool for the visualization of large scale networks. arXiv preprint cs/0504107 (2005).
Yuichi Asahiro, Kazuo Iwama, Hisao Tamaki, and Takeshi Tokuyama. 2000. Greedily finding a dense sub-

graph. Journal of Algorithms 34, 2 (2000), 203–221.
Giorgio Ausiello, Donatella Firmani, Luigi Laura, and Emanuele Paracone. 2012. Large-scale graph bicon-

nectivity in MapReduce. Technical Report.
Bahman Bahmani, Ravi Kumar, and Sergei Vassilvitskii. 2012. Densest subgraph in streaming and MapRe-

duce. PVLDB 5, 5 (2012), 454–465.
Weike Bao and others. 2007. Effects of p38 MAPK Inhibitor on angiotensin II-dependent hypertension,

organ damage, and superoxide anion production. Journal of cardiovascular pharmacology 49, 6 (2007),
362–368.

Sergio E Baranzini, Nicholas W Galwey, Joanne Wang, and others. 2009. Pathway and network-based anal-
ysis of genome-wide association studies in multiple sclerosis. Human Molecular Genetics 18, 11 (2009),
2078–2090.

Vladimir Batagelj and Matjaz Zaversnik. 2003. An O(m) algorithm for cores decomposition of networks.
arXiv preprint cs/0310049 (2003).

Sebastian Bauer, Steffen Grossmann, Martin Vingron, and Peter N Robinson. 2008. Ontologizer 2.0 – a mul-
tifunctional tool for GO term enrichment analysis and data exploration. Bioinformatics 24, 14 (2008),
1650–1651.

Aditya Bhaskara, Moses Charikar, Eden Chlamtac, Uriel Feige, and Aravindan Vijayaraghavan. 2010. De-
tecting high log-densities: an O(n1/4) approximation for densest k-subgraph. In STOC. 201–210.

Gisele F Bomfim, Rosangela A Dos Santos, Maria Aparecida Oliveira, and others. 2012. Toll-like receptor 4
contributes to blood pressure regulation and vascular contraction in spontaneously hypertensive rats.
Clinical Science 122, 11 (2012), 535–543.

Paul R Burton, David G Clayton, Lon R Cardon, and others. 2007. Genome-wide association study of 14,000
cases of seven common diseases and 3,000 shared controls. Nature 447, 7145 (2007), 661–678.

Marco A de Carvalho-Filho and others. 2007. Insulin and angiotensin II signaling pathways cross-talk:
implications with the association between diabetes mellitus, arterial hypertension and cardiovascular
disease. Arquivos Brasileiros de Endocrinologia & Metabologia 51, 2 (2007), 195–203.

Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. 2004. R-MAT: A recursive model for graph
mining. In SDM. 442–446.

Moses Charikar. 2000. Greedy approximation algorithms for finding dense components in a graph. In AP-
PROX. 139–152.

Jie Chen and Yousef Saad. 2012. Dense subgraph extraction with application to community detection. TKDE
24, 7 (2012), 1216–1230.

Lin S Chen, Carolyn M Hutter, John D Potter, Yan Liu, Ross L Prentice, Ulrike Peters, and Li Hsu. 2010.
Insights into colon cancer etiology via a regularized approach to gene set analysis of GWAS data. The
American Journal of Human Genetics 86, 6 (2010), 860–871.

Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. 2001. Introduction to algo-
rithms. MIT Press.

Giorgio Gallo, Michael D Grigoriadis, and Robert E Tarjan. 1989. A fast parametric maximum flow algorithm
and applications. SIAM J. Comput. 18, 1 (1989), 30–55.

Andrew V Goldberg. 1984. Finding a maximum density subgraph. Technical Report.
Felix Halim, Roland HC Yap, and Yongzheng Wu. 2011. A MapReduce-based maximum-flow algorithm for

large small-world network graphs. In ICDCS. 192–202.
KW Hong, MJ Go, HS Jin, and others. 2009. Genetic variations in ATP2B1, CSK, ARSG and CSMD1 loci are

related to blood pressure and/or hypertension in two Korean cohorts. Journal of Human Hypertension
24, 6 (2009), 367–372.

Haiyan Hu, Xifeng Yan, Yu Huang, Jiawei Han, and Xianghong Jasmine Zhou. 2005. Mining coherent dense
subgraphs across massive biological networks for functional discovery. Bioinformatics 21, suppl 1 (2005),
i213–i221.

Marc Humbert, Oleg V Evgenov, and Johannes-Peter Stasch. 2013. Pharmacotherapy of pulmonary hyper-
tension. Vol. 218. Springer.

Trey Ideker, Owen Ozier, Benno Schwikowski, and Andrew F Siegel. 2002. Discovering regulatory and
signalling circuits in molecular interaction networks. Bioinformatics 18, suppl 1 (2002), S233– S240.

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 00, Publication date: 2015.



Mining Dual Biological and Social Networks 00:35

Mohsen Jamali and Martin Ester. 2010. A matrix factorization technique with trust propagation for recom-
mendation in social networks. In RecSys. 135–142.

Peilin Jia and Zhongming Zhao. 2014. Network-assisted analysis to prioritize GWAS results: principles,
methods and perspectives. Human Genetics 133, 2 (2014), 125–138.

Peilin Jia, Siyuan Zheng, Jirong Long, Wei Zheng, and Zhongming Zhao. 2011. dmGWAS: dense module
searching for genome-wide association studies in protein–protein interaction networks. Bioinformatics
27, 1 (2011), 95–102.

Hyun-Seok Jin, Kyung-Won Hong, Bo-Young Kim, and others. 2011. Replicated association between genetic
variation in the PARK2 gene and blood pressure. Clinica Chimica Acta 412, 17 (2011), 1673–1677.

Richard M Karp. 1972. Reducibility among combinatorial problems. Springer.
Ryan Kelley and Trey Ideker. 2005. Systematic interpretation of genetic interactions using protein network-

s. Nature Biotechnology 23, 5 (2005), 561–566.
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