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Abstract—Finding dense subgraphs is an important problem
that has recently attracted a lot of interests. Most of the existing
work focuses on a single graph (or network1). In many real-
life applications, however, there exist dual networks, in which
one network represents the physical world and another network
represents the conceptual world. In this paper, we investigate
the problem of finding the densest connected subgraph (DCS)
which has the largest density in the conceptual network and is
also connected in the physical network. Such pattern cannot be
identified using the existing algorithms for a single network. We
show that even though finding the densest subgraph in a single
network is polynomial time solvable, the DCS problem is NP-
hard. We develop a two-step approach to solve the DCS problem.
In the first step, we effectively prune the dual networks while
guarantee that the optimal solution is contained in the remaining
networks. For the second step, we develop two efficient greedy
methods based on different search strategies to find the DCS.
Different variations of the DCS problem are also studied. We
perform extensive experiments on a variety of real and synthetic
dual networks to evaluate the effectiveness and efficiency of the
developed methods.

I. INTRODUCTION

Finding the densest subgraph is an important problem with
a wide range of applications [1], [2]. Most of the existing work
focuses on a single network, i.e., given a graph G(V,E), find
the subgraph with maximum density (average edge weight)
[3]. This problem can be solved in polynomial time [4].

In many real-life applications, we often observe two com-
plementary networks: one represents the physical interaction
among a set of nodes and another one represents the concep-
tual interaction. In such applications, it is important to find
subgraphs that are dense in the conceptual network and also
connected in the physical network.

For example, in genetics, it is crucial to interpret genetic
interactions by protein interactions. The genetic interaction
network represents the conceptual interaction among genes,
where the interactions are measured by statistical test [5]. Two
genes with strong genetic interaction may not have physical
interaction. The protein interaction network represents phys-
ical interactions and can be used to uncover the biological
mechanisms behind the genetic interactions [6].

Figure 1 shows an example of the dual biological networks.
Figure 1(a) shows the protein interaction network and Figure

1In this paper, we use network and graph interchangeably.

(a) Protein interaction network

(b) Genetic interaction network

Fig. 1. Dual protein and genetic
interaction networks

(a) Physical connectivity network

(b) Interest similarity network

Fig. 2. Dual user interest similarity
and connectivity networks

1(b) shows the genetic interaction network2. The set of genes
have high density in the genetic interaction network indicating
their statistical interactions are strong. They are also connect-
ed in the protein interaction network, which represents the
physical signal transduction pathway [7].

As another example, consider the dual networks shown in
Figure 2. A conceptual user similarity network can be easily
derived from the user-item rating matrix (e.g., by measuring
the correlation of common ratings between two users). Two
users with similar interests may not have direct physical con-
tact. However, if a set of users with highly similar interest, as
shown in Figure 2(b), are also physically connected, as shown
in Figure 2(a), it may be utilized for verbal recommendation.
If one of the users receives an advertisement of an interested
product, this information is likely to propagate to the rest
of the group because of their common interest and physical
connectivity.

Research interest similarity and collaboration network a-
mong researchers is another example of dual networks. The
research interest network is conceptual (which can be con-
structed, for example, by measuring the similarity of keywords
in the papers of different researchers). Two researchers with
similar interest may not collaborate with each other. The col-
laboration network represents the physical interaction between
researchers, i.e., whether two researchers have co-authored a
paper.

2We use solid (dotted) lines to represent the edges in the physical (concep-
tual) network throughout the paper.



Fig. 3. DCS in dual networks

In this paper, we study the problem of finding the densest
connected subgraph (DCS) in dual networks. Given two graphs
Ga(V,Ea) and Gb(V,Eb) representing the physical and con-
ceptual networks respectively, the DCS consists of a subset
of nodes S ⊆ V such that the induced subgraph Ga[S] is
connected and the density of Gb[S] is maximized. Figure 3
summarizes the problem setting.

Note that our problem is different from finding co-dense
subgraphs [8], [9] or coherent dense subgraphs [10], [11],
whose goal is to find the dense subgraphs preserved across
multiple networks of the same type. In our problem, the
physical and conceptual networks represent complementary
information and need different treatments.

Even though finding the densest subgraph in a single
network can be solved in polynomial time, finding the DCS in
dual networks is NP-hard. We devise a two-step approach to
solve this problem. In the first step, we show that by removing
low degree leaf nodes in the dual network, we can not only
dramatically reduce the search space, but also guarantee the
optimal solution is still retained in the remaining networks.
In the second step, we develop two greedy approaches to
find the DCS in the pruned dual networks. The first approach
finds the densest subgraph in the conceptual network first and
then refines and makes it connected in the physical network.
The second approach keeps the target subgraph connected in
the physical network while deleting low degree nodes in the
conceptual network. We further study different variations of
the DCS problem. One problem aims to find the DCS with a
fixed number of nodes. Another problem requires a set of input
nodes to be included in the identified subgraph. We perform
extensive empirical study using a variety of real and synthetic
dual networks to demonstrate the effectiveness and efficiency
of the developed algorithms.

II. RELATED WORK

Finding the densest subgraph in a single graph has at-
tracted intensive research interests. In its basic form, the
problem is to find the subgraph with maximum average
edge weight. This problem can be solved in polynomial time
using parametric maximum flow [4]. However, its complexity
O(nm log(n2/m)) is prohibitive for large graphs, where n
is the number of nodes and m is the number of edges. For
large graphs, efficient approximation algorithms have been
developed. A 2-approximation algorithm is proposed in [12],
[13]. The basic strategy is deleting the node with minimum
degree. This idea can be traced back to [14], which shows that
the density of the maximum core of a graph is at least half
of the density of the densest subgraph. Recently, an improved

TABLE I
MAIN SYMBOLS

Symbol Definition
G(V,E) graph G with node set V and edge set E

G(V,Ea, Eb) dual networks Ga(V,Ea) and Gb(V,Eb)

S node set S ⊆ V
G[S] subgraph induced by S in graph G

Ga[S], Gb[S] subgraph induced by S in graph Ga, Gb

|S| number of nodes in S
w(u, v) weight of edge (u, v)

E(S) edge set {(u, v)|u, v ∈ S}
|E(S)| sum of edge weight

∑
(u,v)∈E(S)

w(u, v)

ρ(S) density (average edge weight) of subgraph G[S]

wG(u) degree of node u in graph G

2(1 + ε) approximation greedy node deletion algorithm has
been proposed [15]. The algorithm takes O(log1+ε n) itera-
tions. In each iteration, it deletes a set of nodes with degree
smaller than 2(1 + ε) times the density of the remaining
subgraph.

Variations of the densest subgraph problem have also been
studied. The densest k subgraph problem aims to find the
densest subgraph with exactly k nodes, which has been shown
to be NP-hard [16]. The problem of finding the densest
subgraph with seed nodes requires that a set of input nodes
must be included in the resulting subgraph, which can be
solved in polynomial time [1].

In computational biology, the densest subgraph has been
used to analyze gene annotation graph [1]. The idea can
be generalized to analyze multiple networks. For example,
in [10], [11], the authors aim to find coherent dense sub-
graphs whose edges are not only densely connected but also
frequently occur in multiple gene co-expression networks.
Finding co-dense subgraphs that exist in multiple gene co-
expression or protein interaction networks are studied in [8],
[9]. The underlying assumption of these works is that the set
of networks under study are of the same type.

Dense subgraphs have also been used to identify commu-
nities of common interests in social networks [2], [17]. In
recommender systems, it has been shown that trust relation
among users and their social network have the potential to
further improve the performance of the algorithms [18], [19].

III. THE DCS PROBLEM

We adopt the classic graph density definition [12], [15],
[13], [4] to formulate the DCS problem. Table I lists the main
symbols and their definitions.

Definition 1: Given a graph G(V,E) and S ⊆ V , density
ρ(S) is defined as

ρ(S) =
|E(S)|
|S|

.

Let Ga(V,Ea) be an unweighted graph representing the
physical network and Gb(V,Eb) be an edge weighted graph
representing the conceptual network. We denote the subgraphs



(a) Physical network Ga (b) Conceptual network Gb

Fig. 4. An example of dual networks

induced by node set S ⊆ V in the physical and conceptual
networks as Ga[S] and Gb[S] respectively, and edge sets
induced by S as Ea(S) and Eb(S) respectively. For brevity,
we also use G(V,Ea, Eb) to represent the dual networks.

Definition 2: Given dual networks G(V,Ea, Eb), the
densest connected subgraph (DCS) consists of a set of nodes
S ⊆ V such that Ga[S] is connected and the density of Gb[S]
is maximized.

An example is shown in Figure 4. In this example, the DCS
consists of nodes S = {6, 7, 8, 9, 10}. Its induced subgraph
Ga[S] is connected in the physical network and Gb[S] has the
largest density in the conceptual network. Note that the dense
component consisting of nodes {1, 2, 3, 4, 5, 6} in Gb is not
connected in Ga.

Theorem 1: Finding the DCS in dual networks is NP-hard.
Proof: We show that the DCS problem can be reduced

from the set cover problem [20]. Let C = {C1, · · · , Cq} be
a family of sets with R = {r1, · · · , rp} =

⋃q
i=1 Ci being

the elements. The set cover problem aims to find a minimum
subset Copt ⊆ C, such that each element rj is contained in at
least one set in Copt.

The dual networks can be constructed as follows. Let the
node set V = {h, r1, · · · , rp, C1, · · · , Cq}. In the physical
network Ga, node h is connected to every node Ci ∈ C, and
every node rj ∈ R is connected to node Ci if rj ∈ Ci in the set
cover problem. The conceptual network Gb is constructed by
creating a unit edge weight clique among nodes {h, r1, · · · , rp}
and leaving nodes {C1, · · · , Cq} isolated.

Figure 5 gives an example of the dual networks construct-
ed from an instance of the set cover problem with C1 =
{r1, r2}, C2 = {r1}, C3 = {r2, r4}, C4 = {r2, r3}, C5 = {r4}.

Let Copt ⊆ C be the optimal solution to the set cover
problem and |Copt| = q∗ ≤ q. Denote H = {h, r1, · · · , rp}.
The subgraph induced from S = H∪Copt is connected in Ga,
and has density p(p+1)/2

p+q∗+1 in Gb. Let S′ denote any node set,
where Ga[S′] is connected. Next, we prove that the density of
Gb[S] is no less than that of Gb[S′].

First, we consider the case when S′ contains all nodes in
H . S′ must contain a set of nodes C ′ ⊆ C to be connected
in Ga. Thus S′ = H ∪C ′, |Eb(S′)| = p(p+1)/2, and |S′| =
p + 1 + |C ′|. Since Copt has the minimum number of sets
(nodes) among all subsets of C that cover all elements in R,
the density of Gb[S] is no less than that of Gb[S′].

Second, we consider the case when S′ contains a subset of
nodes H ′ ⊂ H . S′ must contain a set of nodes C ′ ⊆ C to
be connected in Ga. Thus S′ = H ′ ∪ C ′. Let |H ′| = p′ and

(a) Physical network Ga (b) Conceptual network Gb

Fig. 5. Dual networks construction from an instance of the set cover problem

|C ′| = q′ ≥ 1. The density of Gb[S′] is p′(p′−1)/2
p′+q′ . Next, we

show that adding nodes in H \H ′ to S′ will only increase its
density.

If h /∈ S′, after adding h to S′, the resulting subgraph
has density p′(p′−1)/2+p′

p′+q′+1 > p′(p′−1)/2
p′+q′ in Gb, and is also

connected in Ga since h is connected to every Ci ∈ C. To add
a node rj ∈ H \H ′ to S′ and make it still connected, we need
to add at most one node Ci, where rj ∈ Ci. The density of
the resulting subgraph is at least p′(p′−1)/2+p′

p′+q′+2 > p′(p′−1)/2
p′+q′ .

We can repeat this process by adding remaining nodes to S′

until it contains all the nodes in H . During this process, the
density of the resulting subgraph will keep increasing. In the
first case, we already prove that the density of Gb[S] is no less
than that of Gb[S′] when H ⊂ S′. This completes the proof
for the second case.

Therefore, the subgraph induced from S = H ∪Copt is the
DCS, and it gives an optimal solution to the set cover problem.

Let’s continue the example in Figure 5. The subgraph
induced from S = {h, r1, r2, r3, r4, C1, C3, C4} is the DCS
which is connected in Ga and has maximum density 1.25 in
Gb. Copt = {C1, C3, C4} is an optimal solution to the set
cover problem.

The DCS with size constraint (DCS k) and input seed nodes
(DCS seed) can be defined as follows.

Definition 3: Given dual networks G(V,Ea, Eb) and an
integer k, the DCS k consists of a set of nodes S ⊆ V such
that |S| = k, Ga[S] is connected and the density of Gb[S] is
maximized.

Definition 4: Given dual networks G(V,Ea, Eb) and an
input node set U ⊆ V , the DCS seed consists of a set of
nodes S ⊆ V such that U ⊆ S, Ga[S] is connected and the
density of Gb[S] is maximized.

The DCS k and DCS seed problems are also NP-hard. The
proofs are omitted.

IV. OPTIMALITY PRESERVING PRUNING

In this section, we introduce a pruning step, which removes
the low degree leaf nodes from the dual networks and still
guarantees that the optimal DCS is contained in the resulting
networks.

Definition 5: Given dual networks G(V,Ea, Eb), suppose
that its DCS consists of a set of nodes S. Let ρ(S) represent
its density in Gb, i.e., ρ(S) = ρ(Gb[S]). A node u ∈ V is
a low degree leaf node if (1) u is a leaf node in Ga, i.e.,
wGa

(u) = 1, and (2) its degree in Gb is less than ρ(S), i.e.,
wGb

(u) < ρ(S).



Lemma 1: The DCS in dual networks does not contain any
low degree leaf node.

Proof: Suppose otherwise. We remove u from S and let
S′ be the remaining set of nodes. Since Ga[S] is connected
and u is a leaf node in Ga, so after deleting u, Ga[S′] is
still connected. However, its density ρ(S′) = |Eb(S

′)|
|S′| =

|Eb(S)|−wGb
(u)

|S|−1 > |Eb(S)|
|S| =ρ(S), since wGb

(u)<ρ(S)= |Eb(S)|
|S| .

This contradicts the assumption.

Even though the density of DCS (ρ(S)) is unknown be-
forehand, we can still effectively prune many low degree
leaf nodes as follows. Let G0 = G be the original dual
networks. We remove all low degree leaf nodes (using density
ρ(Gb[V ])) in the physical network Ga0 and conceptual network
Gb0, respectively. That is, we remove all the nodes that have
degree one in Ga and have degree less than ρ(Gb[V ]) in Gb
from the dual networks. Let the resulting dual networks be
G1(V1, Ea(V1), Eb(V1)). We then continue to remove the low
degree leaf nodes using density ρ(V1) in G1. That is, we
remove all the nodes that have degree one in Ga[V1] and have
degree less than ρ(Gb[V1]) in Gb from the dual networks. We
repeat this process until no such nodes left.

Let {G0, G1, · · · , Gl} represent the sequence of dual net-
works generated by this process and {vij} represent the set of
nodes deleted in iteration i (0 ≤ i ≤ l). The following theorem
shows that the DCS is retained in this process.

Theorem 2: Iteratively removing low degree leaf nodes will
not delete any node in the DCS.

Proof: Consider two adjacent dual networks Gi and Gi+1

in the sequence {G0, G1, · · · , Gl}. From Gi to Gi+1, we delete
a set of nodes {vij}. For a node u ∈ {vij}, it is a leaf node in
Gai , and its degree in Gbi is wGb

i
(u) < ρ(Gbi ). Let Si be the

node set of the DCS in Gi. We have that ρ(Gbi ) ≤ ρ(Si). Thus
wGb

i
(u) < ρ(Si). Therefore, node u is a low degree leaf node

with respect to the DCS in Gi. From the proof of Lemma
1, node u must not exist in Si. By induction, we have that
the DCS of the original dual networks is retained in the low
degree leaf nodes removing process.

Using this pruning strategy, we can safely remove the nodes
that are not in the DCS, thus reduce the overall search space.
Experimental results on real graphs show that 40% to 60% of
the nodes can be pruned using this method.

Next, we introduce two greedy algorithms, DCS RDS
(Refining the Densest Subgraph) and DCS GND (Greedy
Node Deletion), to find the DCS from the size reduced dual
networks.

V. THE DCS RDS ALGORITHM

The DCS RDS algorithm first finds the densest subgraph in
Gb, which usually is disconnected in Ga. It then refines the
subgraph by connecting its disconnected components in Ga.
Although the densest subgraph can be identified in polynomial
time by the parametric maximum flow method [4], its actual
complexity O(nm log(n2/m)) is prohibitive for large graphs
(n and m are the number of nodes and edges in the graph

respectively). Next, we first introduce an effective procedure
that can dramatically reduce the cost of finding the densest
subgraph in a single graph.

A. Fast Densest Subgraph Finding in Conceptual Network

To find the densest subgraph in a single network, greedy
node deletion algorithms [12], [13] and peeling algorithms
[21], [15], [22] keep deleting the nodes with low degree.
However, these methods do not guarantee that the densest
subgraph is contained in the identified subgraph.

We introduce an approach which effectively removes nodes
in Gb and still guarantees to retain the densest subgraph.
Our node removal procedure is based on the following key
observation.

Lemma 2: Let ρ(T ) be the density of the densest subgraph
G[T ]. Any node u ∈ T has degree wG[T ](u) ≥ ρ(T ).

Proof: Suppose there exists a node u ∈ T with
wG[T ](u) < ρ(T ). Then the subgraph G[T ′] = G[T \ {u}]
has density ρ(T ′) =

|E(T )|−wG[T ](u)

|T |−1 > |E(T )|
|T | = ρ(T ). Thus

we find a subgraph G[T ′] whose density is larger than that of
G[T ]. This contradicts the assumption that G[T ] is the densest
subgraph.

The lemma says that the degree of any node in the densest
subgraph G[T ] must be no less than its density ρ(T ). Since
the density of G[T ] is also equivalent to half of the average
degree in G[T ], i.e., ρ(T ) = wG[T ]/2, this is equivalent to say
that any node should have degree more than wG[T ]/2. Note
that this is a necessary condition for characterizing the densest
subgraph. It is also related to the concept of d-core.

Definition 6: The d-core D of G is the maximal subgraph
of G such that for any node u in D, wD(u) ≥ d.

Note that the d-core of a graph is unique and may consist
of multiple connected components. It is easy to see that any
subgraph in which every node’s degree is no less than d is
part of the d-core.

Theorem 3: The densest subgraph G[T ] of G is a subgraph
of the d-core D of G (G[T ] ⊆ D) when d ≤ ρ(T ).

Proof: From Lemma 2, any node u ∈ T has degree
wG[T ](u) ≥ ρ(T ). Since d ≤ ρ(T ), any node u ∈ T
has degree wG[T ](u) ≥ d. Thus G[T ] is a subgraph of the
d-core D.

Lemma 3: Let α = ρ(T )/d. The d-core subgraph D is a
2α-approximation of the densest subgraph G[T ].

Proof: Let D.V represent the node set in D. Since the

density of the d-core is ρ(D) = |E(D.V )|
|D.V | =

∑
u∈D.V

wD(u)

2|D.V | ≥∑
u∈D.V

d

2|D.V | = d
2 = ρ(T )

2α , we have that ρ(T ) ≤ 2αρ(D).

From Theorem 3 and Lemma 3, if we can find a density
value d (d ≤ ρ(T )), then we have both: 1) G[T ] ⊆ D, and
2) D is a 2ρ(T )/d approximation of the densest subgraph
G[T ]. Therefore, if we use the density of the 2-approximation
subgraph generated by the greedy node deletion algorithm
[12], [13] for d-core, we obtain a 4-approximation ratio



(a) Physical network Ga (b) Conceptual network Gb

Fig. 6. Refining the densest subgraph

(2α ≤ 2(2d)/d = 4) of the densest subgraph G[T ]. Note that
d-core can be generated by iteratively removing all nodes with
degree less than d until every node in the remaining graph has
degree no less than d [15].

To sum up, we use the following three-step procedure
to find the exact densest subgraph from G: (1) Find a 2-
approximation of the densest subgraph in G, where the density
of the discovered subgraph d ≥ ρ(T )/2; (2) Find the d-core
D of G; (3) Compute the exact densest subgraph from D.

Empirical results show that after applying this approach,
the remaining subgraph can be orders of magnitude smaller
than the original graphs. It can significantly speed up the
process of finding the exact densest subgraph. Moreover, we
have shown that the density of the remaining subgraph is a
4-approximation of the density of the densest subgraph.

Complexity: Let n and m be the number of nodes and edges
in the original graph Gb, and n′ and m′ be the number of
nodes and edges in the d-core D. The first and second steps
run in O(m + n log n) and O(m) respectively. To find the
exact densest subgraph from D, the parametric maximum flow
algorithm runs in O(n′m′ log(n′2/m′)). Note that n′ (m′) can
be orders of magnitude smaller than n (m).

B. Refining Subgraph in Physical Network

Suppose that the densest subgraph of Gb consists of node
set T and is denoted as Gb[T ]. The induced subgraph in the
physical network Ga[T ] is typically disconnected. Given dual
networks G(V,Ea, Eb) and the densest subgraph Gb[T ], we
use {Ga[V1], Ga[V2], · · · , Ga[Vt]} to represent all connected
components in Ga[T ], where T = V1 ∪ V2 ∪ · · · ∪ Vt.

Example 1: In Figure 6, the densest subgraph in the con-
ceptual network consists of nodes T = {1, 2, 3, 4, 5, 6, 7, 8, 9,
10}. Its corresponding connected components in the physical
network are V1={6, 7, 8, 9, 10}, V2={1, 2, 3, 4}, and V3={5}.

In the next, we discuss how to refine the subgraph Ga[T ]
to make it connected in the physical network Ga while still
preserving its high density in Gb. Specifically, we consider the
following dense subgraph refinement problem.

Definition 7: Given dual networks G(V,Ea, Eb) and the
densest subgraph Gb[T ] of Gb, the problem of refining the
densest subgraph aims to find a nonempty subset of {Ga[V1],
Ga[V2], · · · , Ga[Vt]} with node set Y and a node set X ⊆
V \ T , such that Ga[Y ∪X] is connected and the density of
Gb[Y ∪X] is maximized.

The problem of refining the densest subgraph is also NP-
hard, which can be proved using similar reduction method as

Algorithm 1: Refining the densest subgraph
Input: G(V,Ea, Eb), nodes T (densest subgraph in Gb)
Output: node set Ŝ of DCS

1: Find all t connected components {Ga[Vi]} in Ga[T ];
2: Sort Ga[Vi] by density ρ(Gb[Vi]) in descending order;
3: Weigh the node u in Ga by (wGb(u))

−1;
4: S1 ← V1;
5: for i← 1 to t− 1 do
6: Compute shortest path Hi(Si, Vi+1) in Ga;
7: Si+1 ← Si ∪ Vi+1 ∪Hi;

8: j ← argmaxi ρ(Gb[Si]); return Sj ;

in the proof of Theorem 1.
We introduce a greedy heuristic procedure to refine the

densest subgraph as outlined in Algorithm 1. The algorithm
puts the node set T to Ga, and finds all the connected
components {Ga[Vi]} in line 1. It then sorts {Ga[Vi]} by their
density ρ(Gb[Vi]) in descending order in line 2. In line 3, it
weights the nodes in Ga by the reciprocal of its degree in Gb.
The intuition is that we want to select nodes that have high
degree in Gb to connect {Ga[Vi]}. The algorithm merges the
connected components in Ga iteratively. In each iteration in
lines 6-7, it merges two components by adding the nodes on
the node weighted shortest path connecting two components.
The density of the newly merged component is calculated
after each iteration. The component with the largest density
is returned as the DCS.

Example 2: Continue the example in Figure 6. The densi-
ties of the connected components in the physical network are
ρ(V1 = {6, 7, 8, 9, 10}) = 1.6, ρ(V2 = {1, 2, 3, 4}) = 0.75,
and ρ(V3 = {5}) = 0. Initially, the subgraph induced by
S1 = V1 has density ρ(S1) = 1.6. Algorithm 1 first connects
S1 and V2 through the shortest path H1 = {11, 12, 13, 14}.
The subgraph induced by S2 = S1 ∪ V2 ∪ H1 has density
ρ(S2) = 1.31. After merging V3, the subgraph induced by S3

has density ρ(S3) = 1.5. Therefore, the subgraph induced by
S1 has the largest density in Gb and is returned as the DCS.

The approximation ratio of the DCS RDS algorithm can
be estimated as α = ρ(T )/ρ(Ŝ), where ρ(T ) is the density of
the densest subgraph in the conceptual network. Experimental
results show that the approximation ratio is usually around
1.5∼2 using real networks.

Complexity: Algorithm 1 runs in O(m+n log n) as we can
easily modify Dijkstra’s algorithm to find the shortest path in
node weighted graph by transforming each node as an edge.

VI. THE DCS GND ALGORITHM

The basic DCS GND algorithm keeps deleting nodes with
low degree in the conceptual network, while avoiding discon-
necting the physical network.

Definition 8: A node is an articulation node if removing
this node and the edges incident to it disconnects the graph.

Articulation nodes can be identified in linear time by depth
first search [23]. The basic DCS GND algorithm deletes one
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Fig. 7. Greedy node deletion example

node in each iteration. The deleted node has the minimum de-
gree in the conceptual network among all the non-articulation
nodes in the physical network. Since in each iteration, only
one non-articulation node is deleted, the remaining physical
network will keep connected. Note that as long as the graph
is not empty, there always exists a non-articulation node in
the graph. Thus, the DCS GND algorithm can always find a
non-articulation node to delete until the graph becomes empty.
Density of the subgraphs generated in this process is recorded
and the subgraph with the largest density is returned as the
identified DCS.

Example 3: Suppose that the input physical and conceptual
networks are as shown in Figures 7(a) and 7(b) respectively.
Nodes {3, 7} in gray color are articulation nodes and the
remaining ones are non-articulation nodes. Node 6, which has
the minimum degree 2 among all the non-articulation nodes,
will be deleted. The resulting dual networks are shown in
Figures 7(c) and 7(d), where node 3 is the only articulation
node.

To further improve the efficiency, we can delete a set of
low degree non-articulation nodes in each iteration. However,
not all non-articulation nodes can be deleted simultaneously,
since deleting one non-articulation node may make another
non-articulation node to become an articulation node. Thus
we need to find the subset of non-articulation nodes that can
be deleted together.

Definition 9: A set of non-articulation nodes are indepen-
dent if the deletion of them does not disconnect the graph.

Lemma 4: Let {Bi} represent the set of biconnected com-
ponents of graph G such that each Bi has at least one non-
articulation node. If we select one non-articulation node from
each Bi, the set of selected nodes are independent non-
articulation nodes.

Proof: Suppose that we delete one non-articulation node
vi ∈ Bi. The deletion of node vi does not disconnect Bi
since it is biconnected. Since two distinct biconnected com-
ponents share at most one articulation node, deleting node vi
does not disconnect any other biconnected components. So
if we delete one non-articulation node from each component
in {Bi}, every component is still connected. Therefore, the
remaining subgraph is still connected.

Algorithm 2 illustrates the algorithm based on deleting
independent non-articulation nodes iteratively. Parameter γ in
line 4 is used to control the degree of the non-articulation
nodes to be deleted. γ is usually set between 0 ∼ 2. Since
2ρ(Gb) is the average node degree, there are about half of
the nodes whose degree is smaller than the threshold 2ρ(Gb).

Algorithm 2: Fast DCS GND algorithm
Input: G(V,Ea, Eb), parameter γ > 0
Output: node set Ŝ of DCS

1: V0 ← V ; i← 0;
2: while |Vi| > 0 do
3: Compute the articulation nodes A in Ga[Vi]; A← Vi \A;
4: Select a set of nodes L ⊆ A such that the nodes in L are

independent non-articulation nodes and have low degrees,
i.e., for any node u ∈ L, wGb[Vi](u) ≤ γ · ρ(Gb[Vi]);

5: if |L| = 0 then L← {u |u = argminv∈A wGb[Vi](v)};
6: Vi+1 ← Vi \ L; i← i+ 1;

7: j ← argmaxi ρ(Gb[Vi]); return Vj ;

More nodes are deleted in each iteration when larger γ value
is used. Please refer to experimental evaluation for further
discussion on the effect of γ. If all low degree nodes are
articulation nodes, the algorithm picks the non-articulation
node with the minimum degree to delete as shown in line 5.

Example 4: Let’s continue the example in Figure 7. Sup-
pose that γ = 1.5. We have γρ(Gb[V0]) = 2.44. The fast
DCS GND method will delete nodes {6, 8} simultaneously,
since they have degree 2 < 2.44 and are independent non-
articulation nodes.

Complexity: The DCS GND algorithm runs in O(nm) for
finding the articulation nodes and biconnected components by
depth first search.

We can estimate the approximation ratio of DCS GND as
follows. When deleting a node v, we assign its incident edges
in Gb to it. Let edg(v) denote the sum of the edge weights,
and edgmax represent the maximum edg(v) among all nodes
(deleted in order by the algorithm). Let S be the node set of
the optimal DCS, T be the node set of the densest subgraph in
the conceptual network Gb. We have the following inequality.

Lemma 5: ρ(S) ≤ ρ(T ) ≤ edgmax.
Proof: It is easy to see that ρ(S) ≤ ρ(T ). Next, we show

ρ(T ) ≤ edgmax. Each edge in Eb(T ) must be assigned to a
node in T in the node deletion process. Thus we have that
|Eb(T )| ≤

∑
u∈T edg(u) ≤

∑
u∈T edgmax = |T | · edgmax.

This means ρ(T ) = |Eb(T )|
|T | ≤ edgmax.

Lemma 6: The approximation ratio of the DCS GND al-
gorithm is α = edgmax/ρ(Ŝ) ≥ ρ(S)/ρ(Ŝ), where Ŝ is the
node set identified by the algorithm.

Based on Lemma 6, we can estimate the approximation ratio
α from the results returned by the algorithm. Empirical study
shows that α is usually around 2 in real networks.

The DCS GND algorithm can be easily extended to solve
the DCS k and DCS seed problems. For the DCS k problem,
we can keep deleting low degree non-articulation nodes until
there are k nodes left. For the DCS seed problem, we avoid
deleting the seed nodes during the process. The approximation
ratio analysis discussed above also applies to these variants.



TABLE II
STATISTICS OF THE DUAL NETWORKS

Dual networks Abbr. #nodes #edges in Ga #edges in Gb

Research-DM DM 7, 169 14, 526 30, 000
Research-DB DB 6, 131 17, 940 30, 000

Recom-Epinions EP 49, 288 487, 002 313, 432
Recom-Flixster FX 786, 936 7, 058, 819 2, 713, 671
Protein-Genetic Bio 8, 468 25, 715 67, 744

VII. EXPERIMENTAL RESULTS

In this section, we perform comprehensive experiments
to evaluate the effectiveness and efficiency of the proposed
methods using a variety of real and synthetic datasets. All the
programs are written in C++. All experiments are performed
on a server with 32G memory, Intel Xeon 3.2GHz CPU, and
Redhat OS.

A. Real Dual Networks

We constructed several dual networks from different appli-
cation domains. We use the DBLP dataset [24] to build two
dual networks, one for data mining research community and
one for database research community. To construct the dual
networks for the data mining community, we extract a set of
papers published in 5 data mining conferences: KDD, ICDM,
SDM, PKDD and CIKM. The dataset contains 4,284 papers
and 7,169 authors. The physical network is the co-author
network with authors being the nodes and edges representing
two authors have co-authored a paper. The conceptual research
interest similarity network among authors is constructed based
on the similarity of the terms in the paper titles of different
authors. The shrunk Pearson correlation coefficient is used to
compute the research interest similarity between authors [25].
The dual networks for the database community are constructed
in a similar way based on papers published in SIGMOD,
VLDB and ICDE.

We construct two dual networks using recommender system
datasets, Flixster [26] and Epinions [27]. In the original
Flixster dataset, the physical network has 786,936 nodes
(users) and 7,058,819 edges representing their social con-
nectivity. The user-item rating matrix consists of 8,184,462
user ratings for 48,791 items with rating scale from 1 to
5 with 0.5 increment. We construct the conceptual interest
similarity network by measuring the correlation coefficients
of the common ratings between users [19]. Note that we
only calculate the correlation coefficient between two users
with more than 5 common ratings. The constructed interest
similarity network has 2,713,671 edges. The trust network in
Epinions dataset has 49,288 nodes and 487,002 edges. The
user-item rating matrix consists of 664,811 user ratings for
139,737 items with rating scale from 1 to 5 with 1 increment.
The interest similarity network is constructed in a similar way
as the one in the Flixster dataset. It has 313,432 edges.

The biological dual networks include the physical protein
interaction network and the conceptual genetic interaction
network. The protein interaction network is downloaded from
the BioGRID database (http://thebiogrid.org/ ). After filtering

out duplicate interactions, the network contains 8,468 proteins
and 25,715 unique physical bonding interactions. The genetic
interaction network is generated by performing chi-square test
on genetic marker pairs in the Wellcome Trust Case Control
Consortium (WTCCC) hypertension dataset [28]. The most
significant interactions between genes are used to weight the
edges in the genetic interaction network, which has 67,744
edges. Note that we use half of the samples in the WTCCC
dataset to construct the dual networks. Another half is used
for significance evaluation of the identified DCS.

Table II shows the basic statistics of the real dual networks
used in the experiments.

B. Effectiveness Evaluation
1) Research interest similarity and co-author dual networks:

The DCS identified in the dual co-author networks consists of
hundreds of nodes. Here we only show the identified DCS k
for data mining in Figure 8 and DCS seed for database in
Figure 9.

Figures 8(a) and 8(b) shows the DCS k (k = 30) identified
in the dual networks of the data mining research community.
The subgraph in the co-author network is sparsely connected
and highly dense in the research interest similarity network.
This indicates that the set of researchers have very close
research interest. The subgraph in the co-author network shows
their collaboration pattern.

Figures 9(a) and 9(b) shows the DCS seed identified in the
dual networks of the database research community. The names
of the 4 input seed authors are in red ellipses. The researchers
with similar interest and their collaboration patterns are clearly
shown in the two subgraphs. The 4 seed authors do not have
direct co-authorship with each other. Through the resulting
DCS seed, we uncover the connected community of common
interests.

Note that a dense subgraph in the research interest similarity
network may not be connected in the co-author network.
One example is shown in Figure 10. Figure 10(b) shows a
dense subgraph identified from the research interest similarity
network for data mining. Figure 10(a) shows the induced
subgraph in the co-author network. We can see that very
few authors are connected. Thus finding dense subgraphs in a
single network may miss important information presented in
the other network.

2) User interest similarity and social connectivity dual
networks: The DCS k (k = 40) identified in the dual network
constructed from the Epinions dataset is shown in Figure 11.
The subgraph in the interest similarity network is a dense
component and not shown here. In this figure, each node
is a user, whose name is not shown because of the privacy
issue. Because this group of users have high interest similarity
and also have social connection, if one of the users receives
an advertisement of an interested product, this information is
likely to be propagated to the rest of the group.

To demonstrate the effectiveness of the DCS pattern, we
compare it with the dense subgraphs discovered from a single



(a) Subgraph in co-author network (b) Subgraph in research interest similarity network

Fig. 8. The DCS k (k = 30) identified from the dual co-author (data mining) networks

(a) Subgraph in co-author network (b) Subgraph in research interest similarity network

Fig. 9. The DCS seed identified from the dual co-author (database) networks

(a) Induced subgraph in co-author network (b) Dense subgraph in research interest similarity network

Fig. 10. The dense subgraph in the research interest similarity network of the dual co-author (data mining) networks

Fig. 11. The social connectivity network of the DCS k (k = 40) identified
in the Epinions dataset

network. Figure 12(b) shows a dense subgraph in the interest
similarity network. Figure 12(a) shows its induced subgraph
in the social connectivity network. We can see that this set of
users have no social connectivity even though they have high
interest similarity. Figure 13(a) shows a dense subgraph in the
social connectivity network. Figure 13(b) shows its induced
subgraph in the interest similarity network. We can see that the
subgraph in the interest similarity network is very sparse. This
indicates that a group of users having high social connectivity
may not have similar interest. Similar observations can be
made in the dual networks constructed from the Flixster
dataset.

3) Protein and genetic interaction dual networks: The DCS
identified in the dual biological networks has 211 nodes. The
figures are omitted because of the large size. The set of nodes
are sparsely connected in the protein interaction network,
while the subgraph in the genetic interaction network has high
density. Specifically, the DCS has 282 edges in the protein
interaction network and 4, 258 edges in the genetic interaction
network.

Note that the densest subgraph of the genetic interaction
network is not connected in the protein interaction network.
There are 73 nodes in the densest subgraph of the genetic in-
teraction network. Only 2 of them are connected in the protein
interaction network. This demonstrates that dual networks can
help to uncover pattern that cannot be identified in individual
networks. Such pattern cannot be identified by finding dense
subgraphs preserved in both networks either. There are 68
overlapping nodes between the densest subgraph in the genetic
interaction network and the DCS identified by DCS RDS.

Figure 14 shows the identified DCS k with k = 40. From
the figure, it is clear that the identified subgraph is connected in
the protein interaction network and highly dense in the genetic
interaction network. Several genes in this subgraph have been
reported to be associated with hypertension. For example,



(a) Induced subgraph in social connectivity network (b) Dense subgraph in interest similarity network

Fig. 12. The dense subgraph in the interest similarity network of the Epinions dataset

(a) Dense subgraph in social connectivity network (b) Induced subgraph in interest similarity network

Fig. 13. The dense subgraph in the social connectivity network of the Epinions dataset

(a) Subgraph in protein interaction network (b) Subgraph in genetic interaction network

Fig. 14. The DCS k (k = 40) identified from the dual biological networks

(a) Subgraph in protein interaction network (b) Subgraph in genetic interaction network

Fig. 15. The DCS seed identified from the dual biological networks (renin pathway genes are in red ellipses)

MYO6 encodes an actin-based molecular motor involved in
intracellular vesicle and organelle transport, and has been
shown to have association with hypertension [29]. The CUBN
gene is associated with albuminuria, which is an important
factor for cardiovascular disease [30]. The STK39 gene has
been reported many times as a hypertension susceptibility
gene [31]. This gene encodes a serine/threonine kinase that
is thought to function in the cellular stress response pathway.
These genes are highlighted by stars in the figure. Other genes
in the identified subgraph are potential hypertension candidate
genes or important for signal transduction in hypertension
related pathways.

To identify the DCS seed, we use a set of 16 genes in
renin pathways known to be associated with hypertension as
the input seed nodes [32]. Renin pathway, also called renin-
angiotensin system, is a hormone system that regulates blood
pressure. The resulting subgraphs are shown in Figure 15. The
input seed genes are in red ellipses and the remaining nodes
represent the newly added genes. As can be seen from the
figure, the seed nodes are originally not directly connected
in the protein interaction network. The newly added genes
tend to have large degree in the genetic interaction network.
In addition to the genes discussed above, we can see the
NEDD4L gene is connected to multiple seed genes. It has



TABLE III
P -VALUE OF THE IDENTIFIED DCSS

Methods GenGen GRASS Plink HYST
DCS (1) 2.4× 10−6 1.0× 10−6 2.3× 10−6 1.1× 10−9

DCS (2) 1.6× 10−5 2.8× 10−5 4.6× 10−5 5.6× 10−7

DCS (3) 4.8× 10−5 7.4× 10−5 9.5× 10−5 8.2× 10−7

DCS k 5.6× 10−5 1.3× 10−6 4.6× 10−6 3.7× 10−8

DCS seed 8.5× 10−5 4.9× 10−6 1.5× 10−5 2.4× 10−6

DS 0.36 0.47 0.33 0.17
MSCS 0.15 0.13 0.21 0.12

been reported that NEDD4L is involved in the regulation of
plasma volume and blood pressure by controlling cell surface
expression of the kidney epithelial Na+ channel [33].

To evaluate the statistical significance of the discovered
DCSs, we apply 4 widely used pathway evaluation methods :
the GenGen method, gene set ridge regression (GRASS), Plink
set-based test, and hybrid set-based test (HYST) [34], [35].
Given a set of genes, these methods evaluate the significance
of the association between the set of genes and the disease
phenotype. Note that the test dataset consists of the samples
that are not used for constructing the dual networks to ensure
the independence between pattern discovering and significance
evaluation.

Table III shows the p-value of the identified DCSs. DCS
(1), (2) and (3) represent the top-3 DCSs. The top DCSs
are identified iteratively: after the top-1 DCS is identified,
we remove its nodes and edges from the dual networks;
the DCS GND algorithm is then applied to each connected
component to find the next DCS in the remaining graph. As
can be seen from the table, the DCSs are highly significant.
In the table, we also show the results of two other methods
for finding pathways in biological networks. One method
finds the densest subgraph (DS) in the protein interaction
network. Another method aims to find the maximum-score
connected subgraph (MSCS) in the protein interaction net-
work [36]. The DS method uses the most significant genetic
interactions between genes to weight the edges in the protein
interaction network. The MSCS method uses the most sig-
nificant chi-square test statistics to weight the nodes in the
protein interaction network. As we can see, the subgraphs
identified by these two methods are not as significant as
the DCSs. This indicates the importance of integrating the
complementary information encoded in the physical protein
interaction network and the conceptual genetic interaction
network.

C. Efficiency Evaluation on Real Networks

We first evaluate the efficiency of the proposed DCS RDS
and DCS GND algorithms using both real and synthetic
networks.

The DCS RDS algorithm has three major components:
removing low degree nodes (RLDN) in the conceptual net-
work, finding the densest subgraph in the remaining graph
by parametric maximum flow (PMF), and refining the densest
subgraph (RDS) to make it connected in the physical network.

(a) Pruning effect (b) Running time

Fig. 16. Pruning effect and running time of the DCS RDS algorithm

(a) Running time (b) Density ratio

Fig. 17. (a) Running time of DCS RDS, basic and fast DCS GND; (b) Density
ratio of the subgraphs identified by DCS RDS and basic DCS GND

We first evaluate the pruning effect of the RLDN step.
Figure 16(a) shows the number of nodes in the original
graph and the number of nodes remained after pruning. It
can be seen that the RLDN step can reduce the number
of nodes by 2 to 4 orders of magnitude. Moreover, the
pruning effect becomes larger for larger graphs. This in-
dicates that the RLDN step is more effective when graph
size increases. The effect of the optimality preserved pruning
(OPP) approach discussed in Section IV is also shown in
this figure. We can see that the OPP step can prune 40%
to 60% nodes in the 5 real graphs. Since the real graphs
are scale-free, there are many leaf nodes in the physical
networks and the OPP step has large pruning ratio.

Figure 16(b) shows the running time of each step in DC-
S RDS. We also run the parametric maximum flow method
on the original graph (PMF-Ori) to see the performance
improvement of our method. From the results, we can see
that the RLDN and RDS steps run efficiently. The most time
consuming part is to use parametric maximum flow to find the
densest subgraph. Because of the pruning effect of RLDN,
finding the densest subgraph after the RLDN step is about
2 orders of magnitude faster than directly finding it in the
original graph.

Figure 17(a) shows the running time of the basic and
fast DCS GND methods. We can see that the fast DC-
S GND method runs about 1 order of magnitude faster
than the basic method, even though they have the same
theoretical complexity. This demonstrates the effectiveness of
simultaneously deleting independent non-articulation nodes.
The running time of DCS RDS is also shown in the figure
for comparison. We can observe that DCS GND runs faster
on smaller graphs and DCS RDS runs faster on larger graphs.



TABLE IV
APPROXIMATION RATIOS ON REAL NETWORKS

Dataset DB DM Bio EP FX
DCS RDS 1.48 1.42 1.94 1.23 2.25

Basic DCS GND 1.53 1.44 2.11 1.26 2.34
Fast DCS GND 2.21 2.10 2.35 1.87 2.62

(a) Running time (b) Approx. ratio

Fig. 18. Effects of γ in fast DCS GND

The reason is that when the graph becomes larger, the depth
first search procedure in DCS GND will take longer time. On
the other hand, more nodes will be removed by DCS RDS for
larger graphs as demonstrated in Figure 16(a).

Figure 17(b) shows the ratio of the density of the subgraphs
identified by DCS RDS and DCS GND. It can be seen that
the densities of the subgraphs identified by these two methods
are very similar. The DCS GND method always results slight-
ly larger density value. The reason is that the densest subgraph
in the conceptual network may not have large overlap with
the DCS. The exact DCS solution may contain other dense
components instead of the densest subgraph because of the
connectivity constraint in the physical network.

Table IV shows the estimated approximation ratio of the
proposed methods on different datasets. In the fast DCS GND
method, we set γ = 2.0. From the table, we can see
that the approximation ratio of DCS RDS is tighter than
that of DCS GND. The reason is that DCS RDS uses the
exact densest subgraph in its first step. We can also ob-
serve that the approximation ratio of the basic DCS GND
method is always smaller than that of the fast DCS GND
method. This is because the fast DCS GND method is
greedier, which deletes a set of low degree nodes in each
iteration. The basic DCS GND method only deletes the
node with the minimum degree. From the table, we can also
see that the approximation ratio of both methods is around
2, which is the theoretical approximation ratio of the greedy
node deletion algorithm for finding the densest subgraph in a
single graph.

Figure 18(a) shows the running time of the fast DC-
S GND method on the Flixster dataset when varying γ. When
γ = 0, it degrades to the basic DCS GND method. When
increasing γ, the fast DCS GND method will delete more
nodes in each iteration. Thus the running time decreases.
Figure 18(b) shows the approximation ratio when varying γ.
We can see that the approximation ratio slightly increases
when increasing γ. This indicates that the approximation ratio
of the fast DCS GND method is not very sensitive to γ.

(a) Varying the size k (b) Varying the number of seeds

Fig. 19. Running time of fast DCS GND

TABLE V
STATISTICS OF SYNTHETIC DUAL NETWORKS

#nodes 1× 220 2× 220 4× 220 8× 220

#edges in Ga, Gb 1× 107 2× 107 4× 107 8× 107

(a) Pruning ratio (b) Running time

Fig. 20. Results on synthetic dual networks

Figure 19(a) and Figure 19(b) show the running time of
the fast DCS GND method when varying the output size k in
DCS k problem and varying the number of seeds in DCS seed
problem respectively. From the results, we can see that fast
DCS GND has almost constant running time when varying
k and the number of seeds. This is because the DCS GND
method keeps deleting nodes from the dual networks and is
not sensitive to k and the number of seeds.

D. Efficiency Evaluation on Large Synthetic Networks

To further evaluate the scalability of the proposed methods,
we generate a series of synthetic dual networks. Both the
physical and conceptual networks are scale-free graphs based
on the R-MAT model [37]. We use the graph generator from
http://www.cse.psu.edu/∼madduri/software/GTgraph/. The sta-
tistics of the generated graphs are shown in Table V.

Figure 20(a) shows the pruning ratio of the OPP and RLDN
steps in the DCS RDS method. The OPP step can prune
about 50% nodes, while the RLDN step can further reduce
the number of nodes by 1∼2 orders of magnitude.

Figure 20(b) shows the running time of the DCS RDS and
DCS GND methods. DCS RDS has slower increasing rate.
The reason is that the RLDN step has larger pruning ratio on
larger graphs. The fast DCS GND method runs about 1 order
of magnitude faster than the basic DCS GND method. This
figure also shows the running time of the PMF method on the
original conceptual network. PMF cannot be applied to large
networks because of its long running time.



TABLE VI
APPROXIMATION RATIOS ON SYNTHETIC NETWORKS

#nodes 1× 220 2× 220 4× 220 8× 220

DCS RDS 1.53 1.48 1.44 1.41
Basic DCS GND 1.58 1.54 1.51 –
Fast DCS GND 1.72 1.69 1.67 1.63

Table VI shows the approximation ratio of the DCS RDS
and DCS GND methods. The approximation ratio becomes
tighter when the size of the graph increases.

VIII. CONCLUSION

Dual networks exist in many real-life applications, where
the physical and conceptual networks encode complementary
information. In this paper, we study the problem of finding
the densest connected subgraph in dual networks. A dense
subgraph in the conceptual network that is also connected
in the physical network can unravel interesting patterns that
are invisible to the existing methods. We formulate the DCS
problem and prove it is NP-hard. To find the DCS, we first
introduce an effective optimality pruning strategy to remove
the nodes that are not in the optimal solution. Then, we
develop two efficient greedy algorithms to find the DCS.
Extensive experimental results on real and synthetic datasets
demonstrate the interestingness of the identified patterns and
the efficiency of the proposed algorithms.
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