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Abstract. Two dimensional contingency tables or co-occurrence matrices arise fre-
quently in various important applications such as text analysis and web-log mining. As
a fundamental research topic, co-clustering aims to generate a meaningful partition of
the contingency table to reveal hidden relationships between rows and columns. Tra-
ditional co-clustering algorithms usually produce a predefined number of flat partition
of both rows and columns, which do not reveal relationship among clusters. To address
this limitation, hierarchical co-clustering algorithms have attracted a lot of research
interests recently. Although successful in various applications, the existing hierarchical
co-clustering algorithms are usually based on certain heuristics and do not have solid
theoretical background. In this paper, we present a new co-clustering algorithm, HICC,
with solid theoretical background. It simultaneously constructs a hierarchical structure
of both row and column clusters which retains sufficient mutual information between
rows and columns of the contingency table. An efficient and effective greedy algorithm
is developed which grows a co-cluster hierarchy by successively performing row-wise
or column-wise splits that lead to the maximal mutual information gain. Extensive
experiments on both synthetic and real datasets demonstrate that our algorithm can
reveal essential relationships of row (and column) clusters and has better clustering
precision than existing algorithms. Moreover, the experiments on real dataset show
that HICC can effectively reveal hidden relationships between rows and columns in the
contingency table.
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1. Introduction.

Two dimensional contingency table arises frequently in various applications such
as text analysis and web-log mining. Co-clustering algorithms have been devel-
oped to perform two-way clustering on both rows and columns of the contingency
table. Traditional co-clustering algorithms usually generate a strict partition of
the table [12, 14, 22]. This flat structure is insufficient to describe relationship-
s between clusters. Such relationships are essential for data exploring in many
applications related to document analysis.

To combine the advantages of both co-clustering and hierarchical cluster-
ing, various hierarchical co-clustering algorithms have been recently proposed
[10, 17, 21, 34, 40]. However, existing hierarchical co-clustering algorithms are
usually based on certain heuristic criteria or measurements for agglomerating or
dividing clusters of rows and columns. Such criteria may be domain-specific and
lack of generality. Another limitation of many existing hierarchical co-clustering
algorithms is that they often require the number of clusters (for both rows and
columns) as an input. However, accurate estimation of the number of clusters
may be a trivial task in many applications.

To overcome these limitations, we propose a hierarchical co-clustering algo-
rithm with solid information theoretic background. Our approach aims to gen-
erate the simplest co-cluster hierarchy that retains sufficient mutual information
between rows and columns in the contingency table. More specifically, the mutual
information between resulting row clusters and column clusters should not differ
from the mutual information between the original rows and columns by more
than a small fraction (specified by the user). Finding the optimal solution for
this criterion however would take exponential time. Thus, we devise an efficient
greedy algorithm that grows a co-cluster hierarchy by successively performing
row-wise or column-wise splits that lead to the maximal mutual information gain
at each step. This procedure starts with a single row cluster and a single column
cluster and terminates when the mutual information reaches a threshold (defined
as a certain percentage of the mutual information between the original rows and
columns). Other termination criteria (such as the desired number of row/column
clusters) can be easily incorporated.

In principle, we can construct a co-cluster hierarchy in either agglomera-
tive (i.e., recursive grouping) or divisive (i.e., recursive splitting) manner. The
rationale of having a divisive clustering algorithm is that a simple hierarchy
with a small number of clusters is usually able to effectively retain most mutual
information in the original contingency table in practice (as confirmed in our
experiments). Thus it is much more efficient to generate such hierarchy through
recursive divisions.

The proposed hierarchical co-clustering algorithm has several desired prop-
erties.

– It builds cluster hierarchies on both rows and columns simultaneously. The
relationships between clusters are explicitly revealed by the hierarchies. The
hierarchical structures inferred by our approach are useful for indexing and
visualizing data, exploring the parent-child relationships, and deriving gener-
ation/specialization concepts.

– It uses an uniform framework to model the hierarchical co-clustering problem.
The optimality of splitting the clusters is guaranteed by rigorous proofs.

– It does not require the prior knowledge of the number of row and column
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clusters. Instead, it uses a single input, the minimum percentage of mutual
information retained, and automatically derives a co-cluster hierarchy. On the
other hand, the proposed method can also incorporate optional constraints
such as the desired number of clusters.

– It can explore the inherent hierarchy for both features and objects which is
very helpful for users to understand the inner, existing relationships among
objects and features.

Experiments on both synthetic and real datasets show that our algorithm
performs better than the existing co-clustering algorithms: (1) the leaf clusters
of our hierarchies have better precision than co-clusters produced by previous al-
gorithms; (2) our co-cluster hierarchies can effectively reveal hidden relationships
between rows and columns in the contingency table, which can not be achieved
by any previous co-clustering algorithm.

2. Related Work.

Co-clustering methods aim to cluster both rows and columns of a data matrix
simultaneously [1, 3, 6, 9, 11, 16, 23, 27, 29, 33, 36, 38, 39]. It has been studied
extensively in recent years. These clustering algorithms usually generate flat
partitions of rows and columns. However, a taxonomy structure can be more
beneficial than a flat partition for many applications. In this section, we present
a brief discussion of the recent co-clustering algorithms.

A pioneering co-clustering algorithm based on information theory was pro-
posed in [14]. Taking the numbers of row and column clusters as input, the
algorithm generates a flat partition of data matrix into row clusters and column
clusters which maximizes the mutual information between row and column clus-
ters. In each iteration, the row clusters are adjusted to maximize the mutual
information between row and column clusters followed by adjusting the column
clusters in a similar fashion. It continues until there is no significant improvemen-
t in mutual information. The idea is further generalized into a meta algorithm
[5]. It can be proven that any Bregman divergence can be used in the objec-
tive function and the two-step iteration algorithm can always find a co-cluster
by converging the objective function to a local minimum. A key difference be-
tween these methods and our method is that our method generates hierarchical
cluster structures, which entails different objective functions and optimization
techniques.

Linear algebra methods have also been applied to derive co-clusters. In [12],
a co-clustering algorithm based on bipartite spectral graph partitioning was de-
veloped. Co-clustering is performed by singular value decomposition. A k-means
algorithm is then applied on the calculated singular vectors to form k clusters,
where k is pre-specified by the user. A co-clustering algorithm based on block
value decomposition was proposed in [22]. It factorizes the data matrix into three
components: row-coefficient matrix, column-coefficient matrix, and block value
matrix. The final co-cluster is established according to the decomposed matrices.

Although these methods are different in the criteria employed in decomposing
matrices, they all need the number of clusters as input. The conjunctive cluster-
ing method proposed in [24] does not require the number of clusters as input.
However, the minimum size of the co-clusters are required, which is also hard
to set. Moreover, when there are too many qualified co-clusters, only the best
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k of them are reported. These k best co-clusters cover the remaining qualified
co-clusters but have little overlap with each other.

The clustering scheme of fully crossed association proposed in [8] adopts a
data compression technique and does not require any input parameters. Because
it favors lossy compression, the algorithm usually terminates with considerably
more row (column) clusters than the actual number of clusters. Although they use
a similar splitting procedure in order to approach the optimal number of clusters,
the clusters are formed by reassignment of each individual row and column,
which is analogous to the reassignment step in k-means clustering (rather than
hierarchical clustering). A similar approach is also used in divisive information
theoretic clustering [13]. However, this method cannot be applied to cluster rows
and columns simultaneously.

Hierarchical clustering [2, 4, 15, 18, 25, 26, 31, 32, 37] on one side of the matrix
has been studied extensively and become a popular data analysis technique in
many applications. In the following, we review several hierarchical clustering
techniques that are closely related to our work.

The Double Clustering method in [35] is an agglomerative method. It con-
siders the word-document dataset as a joint probability distribution. In the first
stage, it clusters the columns into k clusters by an agglomerative information
bottleneck algorithm. Then in the second stage, it clusters the rows while con-
sidering each generated column cluster as a single column. This method has
been shown to be able to increase clustering accuracy in a number of challeng-
ing cases such as the noisy datasets. However, it has high computation cost due
to the bottom-up approach in constructing the hierarchy. In [30], an extended
algorithm, Iterative Double Clustering (IDC), was presented, which performs it-
erations of Double Clustering. The first iteration of IDC is just a DC procedure.
And starting from the second iteration, when columns are being clustered, the
row clusters generated in the previous iteration are used as new rows. Both DC
and IDC do not generate the row and column clusters simultaneously and rely
on heuristic procedures with no guarantee on approximation ratio. Even though
DC and IDC generate clusters using hierarchical method, the final clusters are
still presented as flat partitions. It has been shown that co-clustering algorithms
outperformed DC and IDC on word-document datasets [14, 22].

By integrating hierarchical clustering and co-clustering, hierarchical co-clustering
aims at simultaneously constructing hierarchical structures for two or more da-
ta types [10, 17, 28]. A hierarchical divisive co-clustering algorithm is proposed
in [40] to simultaneously find document clusters and the associated word clus-
ters. Another hierarchical divisive co-clustering using n-Ary splits is proposed in
[10, 28]. It has been incorporated into a novel artist similarity quantifying frame-
work for the purpose of assisting artist similarity quantification by utilizing the
style and mood clusters information [34]. Both hierarchical agglomerative and
divisive co-clustering methods have been applied to organize the music data [21].

3. Preliminary.

We denote the two-dimensional contingency table as T . R = {r1, r2, ..., rn} rep-
resents the set of rows of T , where ri is the i

th row. C = {c1, c2, ..., cm} represents
the set of columns, where cj is the jth column. The element at the ith row and
jth column is denoted by Tij . For instance, in a word-document table, each doc-
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c1 c2 c3 c4 c1 c2 c3 c4

r1 1 0 2 0 r1 0.1 0 0.2 0

r2 0 1 1 0 r2 0 0.1 0.1 0

r3 2 1 1 0 r3 0.2 0.1 0.1 0

r4 0 0 0 1 r4 0 0 0 0.1

Table 1. Left: Example Table. Right: Normalized Example Table

ument is represented by a row and each word maps to a column. Each element
stores the frequency of a word in a document. An example table consisting of 4
rows and 4 columns is shown in Table 1 on the left.

We can compute a joint probability distribution by normalizing elements in
the table. Let X and Y be two discrete random variables that take values in R
and C respectively. The normalized table can be considered as a joint probability
distribution of X and Y . The table on the right in Fig. 1 shows the result of
normalizing the example table on the left. We denote p(X = ri, Y = cj) by
p(ri, cj) for convenience in the remainder of this paper.

A co-cluster consists of a set of row clusters and a set of column clusters. We
denote the set of row clusters as R̂,

R̂ = {r̂1, r̂2, ..., r̂l|r̂i ⊆ R, r̂i ∩ r̂j = ∅, i ̸= j}

where r̂i represents the ith row cluster.
Similarly, we denote the set of column clusters as Ĉ,

Ĉ = {ĉ1, ĉ2, ..., ĉk|ĉj ⊆ C, ĉj ∩ ĉi = ∅, j ̸= i}

where ĉj represents the jth row cluster.

We denote the number of clusters in R̂ as LR̂ = |R̂|, and the number of

clusters in Ĉ as LĈ = |Ĉ|.
Given the sets of row and column clusters, a co-cluster can be considered as

a “reduced” table T̂ from T . Each row (column) in T̂ represents a row (column)

cluster. Each element in T̂ is the aggregation of the corresponding elements in
T ,

T̂ij =
∑
{Tuv|ru ∈ r̂i, cu ∈ ĉj}

Let X̂ and Ŷ be two discrete random variables that take values in R̂ and Ĉ
respectively. A normalized reduced table can be considered as a joint probability
distribution of X̂ and Ŷ . We will denote p(X̂ = r̂i, Ŷ = ĉj) by p(r̂i, ĉj) for
convenience. Using the above example (shown in Fig. 1), Table 2 shows the
reduced table and normalized reduced table for the following co-cluster.

R̂ = {r̂1, r̂2, r̂3}, where r̂1 = {r1}, r̂2 = {r2, r3}, r̂3 = {r4}

Ĉ = {ĉ1, ĉ2, ĉ3}, where ĉ1 = {c1}, ĉ2 = {c2, c3}, ĉ3 = {c4}

Note that the original contingency table can be viewed as a co-cluster by
regarding each single row (column) as a row (column) cluster. Given any co-
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ĉ1 ĉ2 ĉ3 ĉ1 ĉ2 ĉ3

r̂1 1 2 0 r̂1 0.1 0.2 0

r̂2 2 4 0 r̂2 0.2 0.4 0

r̂3 0 0 1 r̂3 0 0 0.1

Table 2. Left: Reduced Table of a Co-cluster. Right: Normalized Reduced
Table

cluster (R̂, Ĉ) on a contingency table, we employ the mutual information between

X̂ and Ŷ to measure the relationship between row clusters and column clusters.

I(X̂, Ŷ ) =
∑
r̂∈R̂

∑
ĉ∈Ĉ

p(r̂, ĉ) log2
p(r̂, ĉ)

p(r̂)p(ĉ)

As we may observe, the mutual information of the original table I(X,Y ) is

larger than the mutual information of the aggregated table I(X̂, Ŷ ), due to clus-
tering. This is in fact a property held by co-clustering described in Theorem 3.1.

In order to prove Theorem 3.1, we first prove the following lemmas based on
the theorems proven by Dhillon et.al. [14].

Lemma 3.1. Given two co-clusters, {R̂(1), Ĉ(1)} and {R̂(2), Ĉ(1)}, where R̂(2) is

generated by splitting a row cluster in R̂(1). Then I(X̂(1), Ŷ (1)) ≤ I(X̂(2), Ŷ (1))

Proof : Assume that R̂(2) is generated by splitting r̂
(1)
1 ∈ R̂(1) into r̂

(2)
1 and r̂

(2)
2 .

We have

I(X̂(2), Ŷ (1))− I(X̂(1), Ŷ (1))

= H(Ŷ (1)|X̂(1))−H(Ŷ (1)|X̂(2))

= −
∑

ĉ(1)∈Ŷ (1)

p(r̂
(1)
1 , ĉ(1)) log p(ĉ(1)|r̂(1)1 ) +

∑
ĉ(1)∈Ŷ (1)

p(r̂
(2)
1 , ĉ(1)) log p(ĉ(1)|r̂(2)1 )

+
∑

ĉ(1)∈Ŷ (1)

p(r̂
(2)
2 , ĉ(1)) log p(ĉ(1)|r̂(2)2 )

Because r̂
(2)
1 ∪ r̂

(2)
2 = r̂

(1)
1 , we have

p(r̂
(1)
1 , ĉ(1)) = p(r̂

(2)
1 , ĉ(1)) + p(r̂

(2)
2 , ĉ(1)), ∀ĉ(1) ∈ Ŷ (1)

Therefore,

I(X̂(2), Ŷ (1))− I(X̂(1), Ŷ (1))

=
∑

ĉ(1)∈Ŷ (1)

p(r̂
(2)
1 , ĉ(1)) log

p(ĉ(1)|r̂(2)1 )

p(ĉ(1)|r̂(1)1 )
+

∑
ĉ(1)∈Ŷ (1)

p(r̂
(2)
2 , ĉ(1)) log

p(ĉ(1)|r̂(2)2 )

p(ĉ(1)|r̂(1)1 )

=p(r̂
(2)
1 )D(p(ĉ(1)|r̂(2)1 )||p(ĉ(1)|r̂(1)1 )) + p(r̂

(2)
2 )D(p(ĉ(1)|r̂(2)2 )||p(ĉ(1)|r̂(1)1 ))

(1)

where D(p(r̂
(2)
1 , ĉ(1))||p(r̂(1)1 , ĉ(1))) is the relative entropy (KL-divergence) be-
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tween p(ĉ(1)|r̂(2)1 ) and p(ĉ(1)|r̂(1)1 ), which is always non-negative (by definition).
Therefore

I(X̂(2), Ŷ (1))− I(X̂(1), Ŷ (1)) ≥ 0

Similarly, we have the following lemma.

Lemma 3.2. Given two co-clusters, {R̂(1), Ĉ(1)} and {R̂(1), Ĉ(2)}, and Ĉ(2) is

generated by splitting one column cluster in Ĉ(1). Then

I(X̂(1), Ŷ (1)) ≤ I(X̂(1), Ŷ (2))

The above two lemmas state that splitting either row or column-wise clus-
ters increases the mutual information between the two sets of clusters. Hence,
we can obtain the original contingency table (i.e., each row/column itself is a
row/column cluster) by performing a sequence of row-wise splits or column-wise
splits on a co-cluster. By Lemmas 3.1 and 3.2, the mutual information monoton-
ically increases after each split, which leads to the following theorem.

Theorem 3.1. The mutual information of a co-clustering, I(X̂, Ŷ ), always in-
creases when any one of its row or column clusters is split, until the mutual
information reaches its maximal value, I(X,Y ), where each row and column is
considered as a single cluster.

Based on the previous results, we design a greedy algorithm which starts by
considering the rows and columns as two clusters. In each iteration, the cluster

that can increase I(X̂, Ŷ ) most is split until I(X̂,Ŷ )
I(X,Y ) is larger than a user defined

threshold or there are enough (row or column) clusters generated as user required.
The monotonicity property of mutual information leads to the following problem
definition.

Problem Definition.

Given a normalized two-dimensional contingency table, T , and a threshold θ(0 <
θ < 1), find a hierarchical co-clustering containing a minimum number of the

leaf row clusters R̂ and leaf column clusters Ĉ, such that the mutual information

corresponding to co-clustering {R̂, Ĉ} satisfies I(X̂,Ŷ )
I(X,Y ) ≥ θ. Optionally, a user can

specify desired number of row or column clusters (LR̂ = maxr or LĈ = maxc)
and ask for a co-cluster with maximal mutual information.

4. The Co-Clustering Algorithm.

In this section, we present the details of our co-clustering algorithm. The mono-
tonicity property of mutual information stated in Lemmas 3.1 and 3.2 inspires
us to develop a greedy divisive algorithm that optimizes the objective function
I(X̂, Ŷ ) at each step. Our algorithm starts from a single row cluster (containing
all rows) and a single column cluster (containing all columns). At each subse-

quent step, we perform the split that maximizes the mutual information I(X̂, Ŷ ).
Our algorithm takes local greedy partitioning strategy. The algorithm finds a
co-cluster {R̂, Ĉ} by splitting one row or column cluster which maximizes the
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c1 c2 c3 c4

r1 0.1 0 0 0

r2 0 0.2 0.2 0

r3 0 0.2 0.2 0

r4 0 0 0 0.1

Table 3. Normalized Table T

increase of objective function in each iteration. The main routine is presented in
Section 4.1. The method of finding a proper split of a cluster to maximize gain
in I(X̂, Ŷ ) will be discussed in Section 4.3.

Our co-clustering algorithm starts by considering all rows and all columns as
two clusters. In each iteration, one of the clusters gets split into two sub-clusters.
The method of splitting one cluster will be discussed in Section 4.3.

4.1. The Main Algorithm.

The pseudocode of the algorithm is shown in Algorithm 1. In Step 1 of the main
function Co-Clustering(), function InitialSplit() is called to generate the initial

co-cluster {R̂(0), Ĉ(0)} with two row clusters and two column clusters. In Step

2, the joint distribution p(X̂, Ŷ ) of this initial co-cluster is calculated. Then the
algorithm goes through iterations. During each iteration, a split is performed
to maximize the mutual information of the co-cluster. In Steps 5 and 6, each
row or column cluster si is examined by function SplitCluster() to determine the

highest gain in mutual information, δI
(k)
i , which can be brought by an optimal

split on si. (si1 and si2 denote the resulting clusters after split.) Steps 7 to

9 select the row or column cluster whose split gives the highest gain δI
(k)
i , and

perform the split. In Step 10, the joint distribution p(X̂, Ŷ ) is updated according

to the new co-cluster {R̂(k+1), Ĉ(k+1)}. The algorithm continues until the mutual

information ratio I(X̂,Ŷ )
I(X,Y ) reaches the threshold, θ, and/or the number of clusters

(row or column) reaches the number of desired clusters, denoted by maxc and
maxr. Note that the termination condition can be easily modified to suit users’
needs.

Before we discuss InitialSplit() and SplitCluster() in detail, we first illus-
trate the general procedure by an example. Given the normalized table in Table
3, InitialSplit() splits it into two row clusters and two column clusters:

R̂(0) = {r̂(0)1 , r̂
(0)
2 }, r̂

(0)
1 = {r1, r4}, r̂(0)2 = {r2, r3}

Ĉ(0) = {ĉ(0)1 , ĉ
(0)
2 }, ĉ

(0)
1 = {c1, c4}, ĉ(0)2 = {c2, c3}

I(0)(X̂(0), Ŷ (0)) = 0.722

During the first iteration, row cluster r̂
(0)
1 is split

R̂(1) = {r̂(1)1 , r̂
(1)
2 , r̂

(1)
3 }

r̂
(1)
1 = {r1}, r̂(1)2 = {r4}, r̂(1)3 = {r2, r3}
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Algorithm 1 Co-Clustering()

INPUT: Normalized table, T , minimal threshold of I(X̂,Ŷ )
I(X,Y ) , θ.

OPTIONAL INPUT: Maximal number of row clusters, maxr, maximal num-
ber of column clusters, maxc.
OUTPUT: Co-cluster {R̂, Ĉ}.
1: {R̂(0), Ĉ(0), I(0)} ← InitialSplit(T )

2: Calculate distribution p(X̂, Ŷ ) according to {R̂(0), Ĉ(0)}
3: k ← 0
4: repeat
5: for all si ∈ R̂(k)

∪
Ĉ(k) do

6: {si1 , si2 , δI
(k)
i } ← SplitCluster(si, p(X̂, Ŷ ))

7: j ← argmax1≤i≤|R̂(k)
∪

Ĉ(k)|δI
(k)
i

8: I(k+1) ← I(k) + δI
(k)
j

9: {R̂(k+1), Ĉ(k+1)} = (R̂(k)
∪

Ĉ(k) − sj)
∪
{sj1 , sj2}

10: Update p(X̂, Ŷ ) according to {R̂(k+1), Ĉ(k+1)}
11: k ← k + 1

12: until I(X̂,Ŷ )
I(X,Y ) < θ and/or |R̂(k)| < maxr and/or |Ĉ(k)| < maxc

13: return {R̂(k), Ĉ(k)}

Algorithm 2 InitialSplit(T)

INPUT: Normalized table, T .
OUTPUT: {R̂(0), Ĉ(0), I(0)}.
1: p(X,Y )← T
2: s1 ← R
3: s2 ← C
4: {s11 , s12 , δI1} ← SplitCluster(s1, p(X,Y ))
5: {s21 , s22 , δI2} ← SplitCluster(s2, p(X,Y ))

6: R̂(0) ← {s11 , s12}
7: Ĉ(0) ← {s21 , s22}
8: I(0) = I(X̂(0), Ŷ (0))

9: return {R̂(0), Ĉ(0), I(0)}

Ĉ(1) = Ĉ(0)

I(1)(X̂(1), Ŷ (1)) = 0.722

Note that I(X̂, Ŷ ) remains the same. This is because it happens to be the case

where no splits can increase I(X̂, Ŷ ). During the second iteration, column cluster

ĉ
(1)
1 is split

R̂(2) = R̂(1)

Ĉ(2) = {ĉ(2)1 , ĉ
(2)
2 , ĉ

(2)
3 }

ĉ
(2)
1 = {c1}, ĉ(2)2 = {c4}, ĉ(2)3 = {c2, c3}
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Fig. 1. Left: Synthetic contingency table Right:I(X̂, Ŷ ) for each splitting step

I(2)(X̂(2), Ŷ (2)) = 0.923

The mutual information of the original table (Table 3) is I(X,Y ) = 0.923 which

is equal to I(2)(X̂(2), Ŷ (2)). Therefore co-cluster {R̂(2), Ĉ(2)} retains 100% of
mutual information in the original table. The algorithm terminates.

Convergence of Mutual Information.

A larger example may better demonstrate the trend of mutual information after
each iteration. A synthetic contingency table is shown on the left side of Fig. 1.
We plot I(X̂, Ŷ ) after each step on its right side. I(X,Y ) of the original table
(plotted with a dashed line) has the maximal value and serves as the upper bound

of I(X̂, Ŷ ) (plotted in solid line). As shown in Fig. 1, the mutual information

I(X̂, Ŷ ) approaches I(X,Y ) after our algorithm splits both rows and columns
into 4 clusters. Note that in Step 1, the InitialSplit() function splits both rows
and columns into two clusters as we will discuss in the next section.

4.2. Initial Split.

Function InitialSplit() splits the contingency table into two row clusters and two
column clusters. In Step 1, the joint distribution is set to the normalized table
T . In Step 2, all rows are considered as in a single row cluster s1 and all columns
are considered as in a single column cluster s2. They are then split in Steps 3
and 4 by calling the function SplitCluster(). The initial co-cluster {R̂(0), Ĉ(0)}
and the corresponding mutual information I(0) = I(X̂(0), Ŷ (0)) are calculated
accordingly in Steps 5 and 6.

Note that we split both row clusters and column clusters in this initial step.
To ensure a good initial split, when the function SplitCluster() is called, we
tentatively treat each row as an individual cluster so that the initial column
clusters are created by taking into account the row distribution. By the same
token, we also tentatively treat each column as an individual cluster when we
create the initial row clusters.

The algorithm starts with one row cluster and one column cluster and in the
first iteration, one of the clusters gets split. However, it is easy to see that at
the end of the first iteration, with a single cluster on one side and two clusters
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on the other side, objective function I(X̂, Ŷ ) is always 0. Therefore, in order to
get a proper initial splitting, in the initial step, when splitting the row cluster,
each column is considered as a cluster itself and vice versa. In the algorithm, the
initial splitting is separated from others and it splits both columns and rows into
two clusters to form the initial four clusters.

4.3. Cluster Splitting.

According to Lemmas 3.1 and 3.2, a split will never cause I(X̂, Ŷ ) decrease.

In addition, only the split cluster may contribute to the increase of I(X̂, Ŷ ).
Therefore, in each iteration in the main algorithm, all current clusters are tried
to be properly split to maximize the increase of I(X̂, Ŷ ) and the cluster which

can achieve the maximal increase of I(X̂, Ŷ ) by splitting is finally split. We
will explain the details of function SplitCluster() in this section. As we proved

in Theorem 3.1, the increase in I(X̂, Ŷ ) only relates to the cluster being split.

Suppose that a row cluster r̂(1) is split into r̂
(2)
1 and r̂

(2)
2 , the increase in I(X̂, Ŷ )

is

δI = I(X̂(2), Ŷ (1))− I(X̂(1), Ŷ (1))

= p(r̂
(2)
1 )D(p(ĉ(1)|r̂(2)1 )||p(ĉ(1)|r̂(1)1 )) + p(r̂

(2)
2 )D(p(ĉ(1)|r̂(2)2 )||p(ĉ(1)|r̂(1)1 ))

Therefore, SplitCluster() can calculate the maximal value of δI by examin-
ing each cluster to be split separately. However, it may still take exponential
time (with respect to the cluster size) to find the optimal split. Therefore, S-
plitCluster() adopts a greedy algorithm that can effectively produce a good split
achieving a local maximum in δI. Elements in the cluster are initially randomly
grouped into two sub-clusters. For each sub-cluster, a weighted-mean distribution
is calculated to represent it by aggregating the distributions in the sub-cluster
in an weighted way. A sequence of iterations are taken to re-assign each element
to its closer sub-cluster according to KL-divergence until δI converges.

The details of function SplitCluster() are shown in Algorithm 3. In Step 1,

the joint probability distribution p(X̂, Ŷ ) is transposed if the input cluster s
is a column cluster so that column clusters can be split in the same way as
row clusters. In Step 2, cluster s is randomly split into two clusters. In Step
3, δI is calculated according to Equation 1, and the weighted mean conditional
distributions of Ŷ for both clusters s1 and s2 (p(Ŷ |s1) and p(Ŷ |s2)) are calculated
according to Equation 2.

p(X̂ = si) =
∑
xj∈si

p(X = xj)

p(Ŷ |si) =
∑
xj∈si

p(X = xj)

p(X̂ = si)
· p(Ŷ |xj) (2)

From Step 5 to Step 7, each element xi in cluster s is re-assigned to the
cluster (s1 or s2) which can minimize the KL-Divergence between p(Ŷ |xi) and

p(Ŷ |sj). p(Ŷ |s1), p(Ŷ |s2) and δI are updated at the end of each iteration. The
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Algorithm 3 SplitCluster(s, p(X̂, Ŷ ))

INPUT: Cluster s, s ∈ R̂
∪
Ĉ, current joint distribution p(X̂, Ŷ ).

OUTPUT: Two sub-clusters of s, s1 and s2, s.t. s1
∪
s2 = s, s1

∩
s2 = ∅, δI,

the increase in I(X̂, Ŷ ) achieved by splitting s.

1: if s is a column cluster then
2: p(X̂, Ŷ ) = p(X̂, Ŷ )T

3: Randomly split s into two clusters, s1 and s2
4: Calculate p(Ŷ |s1), p(Ŷ |s2) and δI accordingly
5: repeat
6: for all xi ∈ s do
7: Assign xi to cluster s′,

where s′ = argminj=1,2D(p(Ŷ |xi)||p(Ŷ |sj))
8: Update p(Ŷ |s1), p(Ŷ |s2) and δI accordingly
9: until δI converges

10: return s1, s2 and δI

procedure repeats until δI converges. In Step 9, the two sub-clusters s1 and s2,
and δI are returned.

In order to prove that function SplitCluster() can find a split that achieves
local maximum in δI, we need to prove that the re-assignment of element xi in
Steps 4-8 can monotonically increase δI. Since the same principle is used to split
row clusters and column clusters, without loss of generality, we only prove the
case of splitting row clusters.

A similar cluster split algorithm was used in [13] which re-assigns elements
among k clusters. It is proven that such re-assignment can monotonically decrease
the sum of within-cluster JS-divergence of all clusters which is

Q({s1, s2, ..sk}) =
k∑

i=1

∑
xj∈si

p(X = xj) ∗D(p(Ŷ |xj)||p(Ŷ |si))

In our function SplitCluster(), we only need to split the cluster into two sub-
clusters. Therefore, we show the proof for a special case where k = 2. The
following lemma was proven in [13].

Lemma 4.1. Given cluster s containing n elements ((Ŷ |xi)), the weighted mean

distribution of the cluster ((Ŷ |s)) has the lowest weighted sum of KL-divergence

of p(Ŷ |s) and p(Ŷ |xi). That is, ∀q(Ŷ ), we have

n∑
i=1

p(xi) ·D(p(Ŷ |xi)||q(Ŷ )) ≥
n∑

i=1

p(xi) ·D(p(Ŷ |xi)||p(Ŷ |s))

Theorem 4.1. When splitting cluster s into two subclusters, s1 and s2, the
re-assignment of elements in s as shown in Steps 5-7 of function SplitCluster()
can monotonically decrease the sum of within-cluster JS-divergence of the two
sub-clusters s1 and s2.

Proof : LetQl{s1, s2} andQl+1{s1, s2} be the sum of within-cluster JS-divergence
of the two clusters before and after the lth re-assignment of elements, respectively.
And let pl(Ŷ |si) and pl+1(Ŷ |si) be the corresponding weighted mean conditional
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ŷ1 ŷ2 ŷ3 ŷ4

x1 0.1 0 0 0

x2 0 0.2 0.2 0

x3 0 0.2 0.2 0

x4 0.1 0 0 0

Table 4. A row cluster to be split

distributions of sub-clusters before and after the lth re-assignment. We will prove
that Ql+1{s1, s2} ≤ Ql{s1, s2}. Assume that the two clusters after reassignment
are s∗1 and s∗2.

Ql{s1, s2} =
2∑

i=1

∑
xj∈si

p(X = xj) ·D(p(Ŷ |xj)||pl(Ŷ |si))

≥
2∑

i=1

∑
xj∈si

p(X = xj) ·D(p(Ŷ |xj)||pl(Ŷ |s∗i ))

=
2∑

i=1

∑
xj∈s∗i

p(X = xj) ·D(p(Ŷ |xj)||pl(Ŷ |s∗i ))

≥
2∑

i=1

∑
xj∈s∗i

p(X = xj) ·D(p(Ŷ |xj)||pl+1(Ŷ |s∗i ))

= Ql+1{s1, s2}
The first inequality is a result of Step 6 in SplitCluster() and the second in-
equality is due to Step 7 in SplitCluster() and Lemma 4.1. Therefore, we prove
that the re-assignment of elements in s can monotonically decrease Q({s1, s2}).

Note that the sum of δI and Q({s1, s2}) is a constant, which is shown in
Equation 3.∑

xj∈s

p(xj)D(p(Ŷ |xj)||p(Ŷ |s)) (3)

=

2∑
i=1

∑
xj∈si

p(xj)D(p(Ŷ |xj)||p(Ŷ |si)) +
2∑

i=1

p(s1)D(p(Ŷ |si)||p(Ŷ |s))

= Q({s1, s2}) + δI

Since the re-assignment process monotonically decreases Q({s1, s2}), it will
monotonically increase δI as a result. Thus function SplitCluster() can find a
split that achieves local maximum in δI.

We now illustrate the function SplitCluster() with an example. The table in
Fig. 4 represents a row cluster to be split. Assume that the initial random split
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creates sub-clusters s1 = {x1} and s2 = {x2, x3, x4}, then the weighted mean
distributions of these two sub-clusters are

p(Ŷ |s1) = [1, 0, 0, 0], p(Ŷ |s2) = [0.1, 0.45, 0.45, 0]

Then for each element xi, we calculate its KL-divergence with these two weighted
mean distributions and re-assign it to the sub-cluster having the smaller value
of KL-divergence.

D(p(Ŷ |x1)||p(Ŷ |s1)) = 0, D(p(Ŷ |x1)||p(Ŷ |s2)) = 3.3

D(p(Ŷ |x2)||p(Ŷ |s1)) = 28, D(p(Ŷ |x2)||p(Ŷ |s2)) = 0.15

D(p(Ŷ |x3)||p(Ŷ |s1)) = 28, D(p(Ŷ |x3)||p(Ŷ |s2)) = 0.15

D(p(Ŷ |x4)||p(Ŷ |s1)) = 0, D(p(Ŷ |x4)||p(Ŷ |s2)) = 3.3

Only element x4 is re-assigned to cluster s1. The new sub-clusters are s1 =
{x1, x4} and s2 = {x2, x3}. If we repeat the process, the sub-clusters will not
change any more.

4.4. Finding Optimal θ.

Basically, the setting of θ is a nontrivial problem. A mechanism by which an
appropriate value of θ can be determined within the capability of a clustering
algorithm can be very useful. In this section, we provide a model selection method
to determine an appropriate value of θ in the data set due to Brunet et al. [7].
We emphasize that the consistency of the clustering algorithm with respect to
random initial splitting is critical in successful application of this model selection
method. In order to measure the consistency, a connectivity matrix is defined as
follows. The connectivity matrix, Cθ ∈ Rn×n for n data points, is constructed
from each execution of a clustering algorithm. Cθ(i, j) = 1 if i-th data point
and j-th data point are assigned to the same cluster, and 0 otherwise. Then, for
given θ we can run the co-clustering algorithm several times and calculate the
average connectivity matrix Ĉθ. Ideally, if each run obtains similar clustering
assignments, elements of Ĉθ should be close to either 0 or 1. Thus, we can define
a general quality of the consistency by

ρθ =
1

n2

n∑
i=1

n∑
j=1

4(Ĉθ(i, j)−
1

2
)2 (4)

where 0 ≤ ρθ ≤ 1, ρθ=1 represents the perfectly consistent assignment. Hence,
we can get value of ρθ for various θ’s. Then the approperiate value of θ could be
determined by the value θ where ρθ drops.

5. Experimental Study

In this section, we perform extensive experiments on both synthetic and real
data to evaluate the effectiveness of our co-clustering algorithm. In Section 5.1,
we run our co-clustering algorithm on a synthetic dataset with a hidden cluster
structure to see whether our algorithm is able to reveal the clusters. In Sections
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5.3 and 5.4, we use real datasets for to evaluate our method. We compare the
quality of the clusters generated by our method with those generated by previous
co-clustering algorithms in Section 5.3. We use micro-averaged precision [14, 22]
as the quality measurement. Besides the precision of the clusters, we also show
the hierarchical structure of the discovered clusters in Section 5.4. Since we use
a document-word dataset consisting of documents from different newsgroups, we
demonstrate how the hierarchical structure reveals the relationships in document
clusters and word clusters.

5.1. Experimental Evaluation on Synthetic Data.

We generated a 1000 × 1000 matrix which has value 1 for three matrices along
the diagonal, each of which contains a sub-matrix of value 1.4, and 0 for the rest
elements as shown in Fig. 2(a). Then we add noise into the matrix by flipping
the value of each element with probability p = 0.3 as shown in Fig. 2(b). Before
we run our algorithm, we permute the rows and columns randomly to hide the
cluster structure and the final synthetic data is shown in Fig. 2(c). We run our
co-clustering algorithm on the data with θ = 0.7 and get 7 row clusters and
8 column clusters as shown in Fig. 2(d), which resemble the original co-cluster
structure. The dendrogram of row and column clusters are shown along the axis.

5.2. Experimental Settings on Real Dataset.

In this section, we describe the experimental settings which include the structure
of the real data and the quality measurement.

Real Dataset.

We downloaded the 20 Newsgroup dataset from UCI website 1. The package
consists of 20000 documents from 20 major newsgroups. Each document is la-
belled by the major newsgroup in which it is involved. However, according to
the detailed labels in the head section of each document, a document can also
be involved in several minor newsgroups which are not described in the 20 ma-
jor newsgroups. Therefore, even for documents labelled by one newsgroup, they
can be further divided by their minor newsgroups. These relationships can not
be revealed by previous co-clustering algorithms that generate clusters in flat
structure. We will see in Section 5.4 that, with the hierarchical co-clustering,
documents in the same major newsgroup are further clustered into meaningful
sub-groups which turn out to be consistent with their minor newsgroup labels.

We preprocess the 20 Newsgroup dataset to build the corresponding two
dimensional contingency table. Each document is represented by a row in the
table and 2000 distinct words are selected to form 2000 columns. Words are
selected using the same method as in [35].

In order to compare the quality of clusters generated by our method with
those of previous algorithms, we generate several subsets of the 20 Newsgroup

1 http://kdd.ics.uci.edu/databases/20newsgroups/20newsgroups.html
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Fig. 2. Experiment on Synthetic Data

dataset using the method in [14, 22, 35]. Each subset consists of several major
newsgroups and a subset of the documents in each selected newsgroups. The
details are listed in Table 5. As in [14, 22, 35], each of these subsets has two
versions, one includes the subject lines of all documents and the other does not.
We use datasets and dataset to denote these two versions respectively.

In order to illustrate the effectiveness of the hierarchical structure of our
clusters, we use two subsets of the 20 Newsgroup dataset in Section 5.4. The
details are reported in Table 6. Subset Multi51 consists of the same newsgroups
as in Multi5. However, Multi51 contains all documents in each newsgroup so
that documents involved in different minor newsgroups can be included. All
experiments are performed on a PC with 2.20 GHz Intel i7 eight-core CPU and
8 GB memory. The running time of the proposed algorithm is 2.16 and 4.72
seconds on data set Multi5 and Multi5 respectively.

Quality Measurement.

To compare our algorithm with previous algorithms in [14, 22], we use the same
quality measurement, micro-averaged precision, used by those algorithms.

For each generated row (document) cluster, its cluster label is decided by
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Dataset Newsgroups
#documents Total

per #documents
group

Multi5

comp.graphics

100 500
rec.motorcycles
rec.sports.baseball
sci.space
talk.politics.mideast

Multi10

alt.atheism

50 500

comp.sys.mac.hardware
misc.forsale
rec.autos
rec.sport.hockey
sci.crypt
sci.electronics
sci.med
sci.space
talk.politics.guns

Table 5. Subsets of 20 Newsgroups used in Section 5.3

Dataset Newsgroups
#documents Total

per #documents
group

Multi51

comp.graphics

1000 5000
rec.motorcycles
rec.sports.baseball
sci.space
talk.politics.mideast

Multi41

rec.motorcycles

1000 4000rec.sports.hockey
rec.sports.baseball
talk.politics.mideast

Table 6. Subsets of 20 Newsgroups used in Section 5.4

the majority documents in the cluster from the same major newsgroup. And a
document is correctly clustered if it has the same label as the cluster. Assume
that the total number of rows (documents) is N and the total number of correctly
clustered rows (documents) is M . The value of micro-averaged precision is M

N .

5.3. Comparison with Previous Algorithms.

In this section, we compare our co-clustering algorithm with several previous al-
gorithms. We use micro-averaged precision on the document clusters to measure
the cluster quality since only documents are properly labeled in the dataset. For
all the datasets, we set θ = 0.7 in our algorithm. Using Multi51 data set, we
compare the results of different θ’s in Fig. 3. We observed θ = 0.7 obtains the
best clustering result.

The state of the art hierarchical co-clustering algorithms used for comparison
are:

– NBVD [22]: Co-clustering by block value decomposition. This algorithm solves
the co-clustering problem by matrix decomposition. It sets the number of row
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Fig. 3. Comparison of the clustering results using different θ’s on Multi51

clusters to be the number of major newsgroups in datasets. The resulting
clusters form a strict partition.

– ICC [14]: Information-theoretic co-clustering. This algorithm is also based on
information theoretic measurements and considers the contingency table as a
joint probability distribution. It is a k-means clustering algorithm that gen-
erates exact k disjoint row clusters and l disjoint column clusters for given
parameters k and l.

– HCC [20]: a hierarchical co-clustering algorithm. HCC brings together two
interrelated but distinct themes from clustering: hierarchical clustering and co-
clustering. The former theme organizes clusters into a hierarchy that facilitates
browsing and navigation, and the latter theme clusters different types of data
simultaneously by making use of the relationship information between two
heterogenous data.

– HiCC [10]: a hierarchical co-clustering algorithm produce compact hierarchies
because it produces n-ary splits in the hierarchy instead of the usual binary
splits. Thus, it is able to simultaneously produces two hierarchies of clusters:
one on the objects and the other one on the features.

– Linkage [25]: a set of agglomerative hierarchical clustering algorithms based on
linkage metrics. Four different linkage metrics were used in our experiments,
i.e., Single-Link, Complete-link, UPGMA (average), WPGMA (weighted aver-
age). We used its build-in version in MatLab 7 to conduct the experiments.

There are other existing co-clustering/clustering algorithms, such as [19, 30,
35], which conducted experiments on the same subsets in Table 5. Since NVBD
and ICC outperform these algorithms in terms of micro-averaged precision, we
will not furnish a direct comparison with them. The fully crossed association co-
clustering algorithm in [8] is not used in the comparison because its experiments
were conducted on other datasets.

Both NVBD and ICC set the number of document clusters as the number of
major newsgroups in the dataset, while our algorithm terminates when I{X̂, Ŷ }
is big enough (I{X̂, Ŷ }/I{X,Y } ≥ θ), which may generate slightly more clusters.
Therefore, in addition to measuring the quality of the original clusters output
by our algorithm, we also merge the document clusters into the same number of
clusters as that from NVBD and ICC so that they can also be compared directly
with each other. We consider each document cluster as a probability distribution
over the word clusters. And we merge the clusters by calculating the relative
entropy (KL-divergence) between them. In each step, we merge two document
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Table 7. micro-averaged precision on subsets of 20 Newsgroup.

Mehtod HICC NVBD ICC HCC HiCC
(merged)

#clusters m-pre m-pre m-pre m-pre m-pre

Multi5s 5 0.95 0.93 0.89 0.72 0.81

Multi5 5 0.93 N/A 0.87 0.71 0.80

Multi10s 10 0.69 0.67 0.54 0.44 0.69

Multi10 10 0.67 N/A 0.56 0.61 0.65

Mehtod HICC Single-Link Complete-Link

#clusters m-pre m-pre m-pre

Multi5s 30 0.96 0.27 0.89

Multi5 30 0.96 0.29 0.85

Multi10s 60 0.74 0.24 0.67

Multi10 60 0.74 0.24 0.60

Mehtod UPGMA WPGMA HCC HiCC

#clusters m-pre m-pre m-pre m-pre

Multi5s 30 0.73 0.65 0.57 0.59

Multi5 30 0.59 0.71 0.53 0.60

Multi10s 60 0.60 0.58 0.41 0.53

Multi10 60 0.61 0.62 0.51 0.50

clusters which have the minimal relative entropy of their distributions over word
clusters. It is repeated until the remaining number of document clusters is equal
to that in NVBD and ICC. For the Linkage algorithms, we set their number of
clusters as same as the number of document clusters generated by our algorithm
since both of them are hierarchical clustering algorithms.

For convenience, we use HICC to represent our algorithm and use m-pre to
represent micro-averaged precision. For the number of word clusters, ICC gener-
ates about 60− 100 word clusters as reported in [14] while our algorithm HICC
generates about 50 − 80 word clusters. The number of word clusters generated
by NVBD is not reported in [22]. While in the Linkage algorithms, since they
only cluster the rows, each column can be considered as a column cluster.

The comparison of micro-averaged precision on all datasets in Table 5 is
shown in Table 7. The average value of micro-averaged precision is computed
based on 10 repeatedly runs of each experiment. In the table, the micro-averaged
precision decrease slightly after we merge our original clusters into the same
number of clusters as NVBD and ICC. This is because cluster merge may over-
penalize the incorrectly labelled documents. Nevertheless, our algorithm is still
the winner in all cases.

The Single-linkage metric has a very low precision comparing with all other
algorithms. The reason may be that using the shortest distance between two
clusters as the inter-cluster distance suffers from the high dimensionality and
the noise in the dataset. Note that we so far only examine the leaf clusters of



20 W. Cheng et al

the rich hierarchy that our algorithm is able to generate. In the next section,
we will show that, besides the cluster quality, our hierarchical structure reveals
more information which previous algorithms cannot find.

5.4. Analyzing Hierarchical Structure of Clusters.

In this section, we show that the hierarchical structure built by our algorithm
provides more information than previous algorithms. Generally, there are two
kinds of extra information in the hierarchical structure of document clusters.

– The relationship between major newsgroups. The major newsgroups of the
20 Newsgroup dataset can be organized in a tree structure according to their
naming convention. The flat cluster structure in [14, 22] cannot reveal the
information about the tree structure of newsgroups while our algorithm can
capture these relationships.

– The relationship between documents in the same major newsgroup. As we
mentioned, besides the major newsgroup label, each document can have sev-
eral minor newsgroup labels. Therefore, documents in a major newsgroup can
be further divided into several sub-groups according to their minor labels. Our
algorithm can partition the documents in one major newsgroup into meaning-
ful sub-groups.

In addition to the hierarchical structure of document clusters, our algorithm
builds a hierarchical structure of word clusters at the same time. The relation-
ships between word clusters, which were not found by previous co-clustering
algorithms, are also provided in the hierarchical structure. We will use the two
datasets in Table 6 for experiments in this section. Note that, although Link-
age algorithms also generate a hierarchy of the row clusters, the structure is
much larger and does not reveal the relationships correctly. Therefore, we do not
present the hierarchy from Linkage algorithms in this section.

5.4.1. Hierarchical Structure of Multi51.

The first dataset Multi51 consists of 5 major newsgroups. Our algorithm gener-
ates 30 document clusters and 39 word clusters. We represent the hierarchical
structure in a tree format. Each final cluster corresponds to a leaf node in the
tree while intermediate clusters correspond to intermediate tree nodes. The root
node corresponds to the cluster consisting of all documents. Each final cluster
has an ID ci and the number in the circle underneath the node represents its
label of major newsgroups. For each intermediate node, the newsgroup label is
also given in the circle if majority of the documents in its subtree come from
the same major newsgroup. The hierarchical structure of document clusters for
Multi51 is shown in Fig. 4.

We observe that (1) clusters labelled by 1 (talk.politics.mideast) are con-
tained in two separate subtrees; (2) clusters labelled by 3 and 4 (rec.motocycle
and rec.sports.baseball) are contained in one subtree and are separated further
down the tree; (3) clusters labelled by 2 and 5 (comp.graphics and sci.space)
are contained in one subtree and are also separated later. This cluster separa-
tion makes sense. Newsgroups rec.motocycle and rec.sports.baseball are certainly
close to each other since they share one keyword rec. For the rest newsgroups,
both comp.graphics and sci.space relate to scientific techniques so that they are
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Fig. 4. Hierarchical structure of document clusters on Multi51. Each leaf node
represents a cluster. Intermediate nodes represent the hierarchical structure. The
label below the node represent the newsgroup that the cluster belongs to.

contained in one subtree. The newsgroup talk.politics.mideast is obviously most
distant from the other 4 newsgroups. Fig. 4 clearly demonstrates that the hierar-
chical structure of document clusters reveals relationships between the 5 major
newsgroups.

Furthermore, the structure also reveals relationships of documents within a
major newsgroup. Document clusters belonging to newsgroup talk.politics.mideast
are separated into two subtrees, each of which contains documents with differ-
ent minor newsgroup labels. Note that all documents in this newsgroup share
the same major newsgroup label talk.politics.mideast. Consider the following 3
clusters: c8, c24 and c21. Cluster c21 is far from c8 and c24 while c8 and c24
are more similar to each other. After checking the minor newsgroup labels for
documents in these clusters, labels soc.culture.turkish and soc.culture.greek are
found to play roles in this separation. Table 8 shows the number and the corre-
sponding percentage of documents having these two minor newsgroup labels in
each cluster.

We observed soc.culture.turkish makes cluster c21 separated from c8 and
c24 while soc.culture.greek makes c8 and c24 separated. This indicates that the
hierarchical structure of document clusters reveals the relationship between doc-
uments in one major newsgroup via meaningful sub-clusters.

In addition to document clusters, our algorithm also builds hierarchical struc-
ture for word clusters. Since words don’t have labels, we label each word cluster
manually according to the 5 major newsgroups in the dataset. For those word
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Table 8. Absolute number and percentage of documents having the minor news-
group label in each cluster

cluster soc.culture.turkish soc.culture.greek

c8 89 93% 54 57%

c24 51 85% 22 35%

c21 16 7% 0 0%

Fig. 5. Labelled word clusters of Multi51

clusters containing only general words, they are unlabelled. The table in Fig. 5
lists 9 of the word clusters. The words are sorted according to the scoring func-
tion in [35] and the top 5 words of each of these 9 clusters are shown. The first
row of each column contains word cluster ID and the second row contains the
cluster label which corresponds to the five major newsgroups.

The word clusters appear to be meaningful. Word clusters c6 and c11 also
correlate with the separation of document clusters c8, c24 and c21. Word cluster
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Fig. 6. Left Tree: A truncated hierarchical structure of word clusters on Multi51.
Right Tree:A truncated hierarchical structure of document clusters on Multi41
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c11 has higher occurrence in both document clusters c8 and c24 while word
cluster c6 has higher occurrence only in c8. Word clusters c12 and c20 have label
2&5 because the words in these two clusters are common scientific words which
could be used in both sci.space and comp.graphics newsgroups.

A truncated hierarchical structure of word clusters is shown by the left tree
in Fig. 6 due to space limitation. In this structure, subtrees in which majority of
nodes sharing a single cluster label are represented by its top intermediate node
and labelled by the dominating cluster. Nodes without a label represent subtrees
consisting of un-labelled (general) word clusters. We can make similar observa-
tions on the word cluster hierarchy as we did on document cluster hierarchy: (1)
word clusters labelled by 1 are separated from other clusters, (2) word clusters
labelled by 3 and 4 are in the same subtree, and (3) word clusters labelled by 2
and 5 are in another subtree.

For those word clusters containing general words, their positions in the hi-
erarchical structure are also expected. For example, node 9 of the left tree in
Fig. 6 represents word clusters related to talk.politics.mideast. Its sibling node
contains general words related to politic topics, such as “national”, “human” and
“military”. Node 17 contains some general words which are related to the labels
of its sibling node 25, such as “driver”, “point” and “time”.

5.4.2. Hierarchical Structure of Multi41.

In the Multi51 dataset, two of the newsgroups share one keyword “rec” in the
label. In Multi41, we add one newsgroup rec.sport.hockey so that three of the
newsgroups share one keyword “rec” and furthermore, two of them share two
keywords “rec.sport” in the label. With these more complicated relationships
between newsgroups, the effectiveness of our algorithm can be seen in the hier-
archical structure of clusters.

Because of space limitation, we only show a truncated hierarchical structure
of document clusters by the tree on the right in Fig. 6 which is sufficient to
show the effectiveness of our algorithm. The word clusters are similar to those
of Multi51 and thus are omitted here.

We observe in the right tree in Fig. 6 that, clusters with label 4 are separated
from others, while clusters with labels 1, 2 and 3 are in the same subtree. In the
subtree under node 1, clusters with label 1 are separated from clusters with labels
2 and 3. This hierarchical structure correctly reveals the relationships between
the four newsgroups.

The experiments in this section demonstrate that our hierarchical co-clustering
algorithm reveals much more information including relationships between differ-
ent newsgroups and relationships between documents in one newsgroup. This
information cannot be found by previous algorithms such as NVBD and ICC.
This advantage is in addition to the higher cluster quality than all competing
algorithms.

6. Conclusions.

In this paper, we present a hierarchical co-clustering algorithm based on entropy
splitting to analyze two-dimensional contingency tables. Taking advantage of the
monotonicity of the mutual information of co-cluster, our algorithm uses a greedy
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approach to look for simplest co-cluster hierarchy that retains sufficient mutu-
al information in the original contingency table. The cluster hierarchy captures
rich information on relationships between clusters and relationships between ele-
ments in one cluster. Extensive experiments demonstrate that our algorithm can
generate clusters with better precision quality than previous algorithms and can
effectively reveal hidden relationships between rows and columns in the contin-
gency table.
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