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CGC: A Flexible and Robust Approach to Integrating Co-Regularized
Multi-Domain Graph for Clustering
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Multi-view graph clustering aims to enhance clustering performance by integrating heterogeneous informa-
tion collected in different domains. Each domain provides a different view of the data instances. Leveraging
cross-domain information has been demonstrated an effective way to achieve better clustering results. De-
spite the previous success, existing multi-view graph clustering methods usually assume that different views
are available for the same set of instances. Thus, instances in different domains can be treated as having
strict one-to-one relationship. In many real-life applications, however, data instances in one domain may
correspond to multiple instances in another domain. Moreover, relationships between instances in different
domains may be associated with weights based on prior (partial) knowledge. In this article, we propose a
flexible and robust framework, Co-regularized Graph Clustering (CGC), based on non-negative matrix fac-
torization (NMF), to tackle these challenges. CGC has several advantages over the existing methods. First, it
supports many-to-many cross-domain instance relationship. Second, it incorporates weight on cross-domain
relationship. Third, it allows partial cross-domain mapping so that graphs in different domains may have
different sizes. Finally, it provides users with the extent to which the cross-domain instance relationship
violates the in-domain clustering structure, and thus enables users to re-evaluate the consistency of the
relationship. We develop an efficient optimization method that guarantees to find the global optimal solu-
tion with a given confidence requirement. The proposed method can automatically identify noisy domains
and assign smaller weights to them. This helps to obtain optimal graph partition for the focused domain.
Extensive experimental results on UCI benchmark datasets, newsgroup datasets, and biological interaction
networks demonstrate the effectiveness of our approach.
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1. INTRODUCTION

Graphs are ubiquitous in real-life applications. A large volume of graph data have been
generated, such as social networks [Leskovec et al. 2007], biology interaction networks
[Fenyo 2010], and literature citation networks [Sun and Han 2012]. Graph clustering
has attracted increasing research interest recently. Several effective approaches have
been proposed in the literature, such as spectral clustering [Ng et al. 2001], symmetric
Non-negative Matrix Factorization (symNMF) [Kuang et al. 2012], Markov clustering
(MCL) [van Dongen 2000].

In many applications, graph data may be collected from heterogeneous domains
(sources) [Gao et al. 2009]. For example, the gene expression levels may be reported by
different techniques or on different sample sets, thus the gene co-expression networks
built on them are heterogeneous; the proximity networks between researchers such
as co-citation network and co-author network are also heterogeneous. By exploiting
multi-domain information to refine clustering and resolve ambiguity, multi-view graph
clustering methods have the potential to dramatically increase the accuracy of the final
results [Bickel and Scheffer 2004; Kumar et al. 2011; Chaudhuri et al. 2009]. The key
assumption of these methods is that the same set of data instances may have multiple
representations, and different views are generated from the same underlying distri-
bution [Chaudhuri et al. 2009]. These views should agree on a consensus partition
of the instances that reflects the hidden ground truth [Long et al. 2008]. The learn-
ing objective is thus to find the most consensus clustering structure across different
domains.

Existing multi-view graph clustering methods usually assume that information col-
lected in different domains is for the same set of instances. Thus, the cross-domain
instance relationships are strictly one-to-one. This also implies that different views are
of the same size. For example, Figure 1(a) shows a typical scenario of multi-view graph
clustering, where the same set of 12 data instances has three different views. Each
view gives a different graph representation of the instances.

In many real-life applications, it is common to have cross-domain relationship as
shown in Figure 1(b). This example illustrates several key properties that are different
from the traditional multi-view graph clustering scenario.

—An instance in one domain may be mapped to multiple instances in another domain.
For example, in Figure 1(b), instance ©A in domain 1 is mapped to two instances
©1 and ©2 in domain 2. The cross-domain relationship is many-to-many rather than
one-to-one.

—Mapping between cross-domain instances may be associated with weights, which is
a generalization of a binary relationship. As shown in Figure 1(b), each cross-domain
mapping is coupled with a weight. Users may specify these weights based on their
prior knowledge.

—The cross-domain instance relationship may be a partial mapping. Graphs in dif-
ferent domains may have different sizes. Some instance in one domain may not
have corresponding instance in another. As shown in Figure 1(b), mapping between
instances in different domains is not complete.

One important problem in bioinformatics research is protein functional module de-
tection [Hub and de Groot 2009]. A widely used approach is to cluster protein–protein
interaction (PPI) networks [Asur et al. 2007]. In a PPI network, each instance (node)
is a protein and an edge represents the strength of the interaction between two con-
nected proteins. To improve the accuracy of the clustering results, we may explore the
data collected in multiple domains, such as gene co-expression networks [Horvath and
Dong 2008] and genetic interaction networks [Cordell 2009]. The relationship across
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Fig. 1. Multi-view graph clustering vs. co-regularized multi-domain graph clustering (CGC).

gene, protein, and genetic variant domains can be many-to-many. For example, multi-
ple proteins may be synthesized from one gene and one gene may contain many genetic
variants. Consider another application of text clustering, where we want to cluster
journal paper corps (domain 1) and conference paper corps (domain 2). We may con-
struct two affinity (similarity) graphs for domains 1 and 2, respectively, in which each
instance (node) is a paper and an edge represents the similarity between two papers
(e.g., cosine similarity between term-frequency vectors of the two papers). Some jour-
nal papers may be extended versions of one or multiple conference papers. Thus, the
mappings between papers in two domains may be many-to-many.

These emerging applications call for novel cross-domain graph clustering methods. In
this article, we propose CGC,1 a flexible and robust approach to integrate heterogenous
graph data. Our contributions are summarized as follows.

(1) We propose and investigate the problem of clustering multiple heterogenous graph
data, where the cross-domain instance relationship is many-to-many. This problem
has a wide range of applications and poses new technical challenges that cannot
be directly tackled by traditional multi-view graph clustering methods.

(2) We develop a method, CGC, based on collective symNMF with co-regularized
penalty to manipulate cross-domain relationships. CGC allows weighted cross-
domain relationships. It also allows partial mapping and can handle graphs with
different sizes. Such flexibility is crucial for many real-life applications. We also
provide rigid theoretical analysis of the performance of the proposed method.

1The software is implemented in matlab and publicly available at http://cs.unc.edu/∼weicheng/code_data.zip.
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Table I. Summary of symbols and their meanings

Symbols Description

d The number of domains
Dπ The πth domain
nπ The number of instances in the graph from Dπ

kπ The number of clusters in Dπ

A(π ) The affinity matrix of graph in Dπ

I The set of cross-domain relationships
S(i, j) The relationship matrix between instances in Di and D j

W(i, j) The confidence matrix of relationship matrix S(i, j)

H(π ) The clustering indicator matrix of Dπ

α Confidence threshold of finding the global
cφ Termination threshold for tabu search
λ Weights vector on the R regularizers for related domains
μ Clustering inconsistency vector

(3) We develop an efficient optimization method for CGC by population-based Tabu
Search. It guarantees to find the global optimum with a given confidence
requirement.

(4) We develop effective and efficient techniques to handle the situation when the cross-
domain relationship contains noise. Our method supports users to evaluate the
accuracy of the specified relationships based on single-domain clustering structure.
For example, in Figure 1(b), mapping between (©B –©3 ) in domains 1 and 2, and
(©5 –©a ) in domains 2 and 3, may not be accurate, as they are inconsistent with
in-domain clustering structure. (Note that each domain contains two clusters, one
on the top and one at the bottom.)

(5) We provide effective techniques to automatically identify noisy domains. By as-
signing smaller weights to noisy domains, the CGC algorithm can obtain optimal
graph partition for the focused domain.

(6) We evaluate the proposed method on benchmark UCI datasets, newsgroup datasets,
and various biological interaction networks. The experimental results demonstrate
the effectiveness of our method.

2. PROBLEM FORMULATION

Suppose that we have d graphs, each from a domain in {D1,D2, . . . ,Dd}. We use nπ to
denote the number of instances (nodes) in the graph from domain Dπ (1 ≤ π ≤ d). Each
graph is represented by an affinity (similarity) matrix. The affinity matrix of the graph
in domain Dπ is denoted as A(π) ∈ R

nπ ×nπ+ . In this article, we follow the convention and
assume that A(π) is a symmetric and non-negative matrix [Ng et al. 2001; Kuang et al.
2012]. We denote the set of pairwise cross-domain relationships as I = {(i, j)} where
i and j are domain indices. For example, I = {(1, 3), (2, 5)} contains two cross-domain
relationships (mappings): the relationship between instances in D1 and D3, and the
relationship between instances in D2 and D5. Each relationship (i, j) ∈ I is coupled
with a matrix S(i, j) ∈ R

nj×ni
+ , indicating the (weighted) mapping between instances in Di

and D j , where ni and nj represent the number of instances in Di and D j, respectively.
We use S(i, j)

a,b to denote the weight between the ath instance in D j and the bth instance
in Di, which can be either binary (0 or 1) or quantitative (any value between [0,1]).
Important notations are listed in Table I.

Our goal is to partition each A(π) into kπ clusters while considering the co-regularizing
constraints implicitly represented by the cross-domain relationships in I.
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3. CO-REGULARIZED MULTI-DOMAIN GRAPH CLUSTERING

In this section, we present the CGC method. We model cross-domain graph clustering
as a joint matrix optimization problem. The proposed CGC method simultaneously
optimizes the empirical likelihood in multiple domains and takes into account the
cross-domain relationships.

3.1. Objective Function

3.1.1. Single-Domain Clustering. Graph clustering in a single domain has been exten-
sively studied. We adopt the widely used NMF approach [Lee and Seung 2000]. In
particular, we use the symmetric version of NMF [Kuang et al. 2012; Ding et al. 2006]
to formulate the objective of clustering on A(π) as minimizing the objective function:

L(π) = ||A(π) − H(π)(H(π))T||2F, (1)

where || · ||F denotes the Frobenius norm, H(π) is a non-negative matrix of size nπ × kπ ,
and kπ is the number of clusters requested. We have H(π) = [h(π)

1∗ , h(π)
2∗ , . . . , h(π)

nπ ∗]T ∈
R

nπ ×kπ+ , where each h(π)
a∗ (1 ≤ a ≤ nπ ) represents the cluster assignment (distribution) of

the ath instance in domain Dπ . For hard clustering, argmax j h(π)
aj is often used as the

cluster assignment.

3.1.2. Cross-Domain Co-Regularization. To incorporate the cross-domain relationship, the
key idea is to add pairwise co-regularizers to the single-domain clustering objective
function. We develop two loss functions to regularize the cross-domain clustering struc-
ture. Both loss functions are designed to penalize cluster assignment inconsistency with
the given cross-domain relationships. The residual sum of squares (RSS) loss requires
that graphs in different domains are partitioned into the same number of clusters. The
clustering disagreement loss has no such restriction.

(A) Residual sum of squares (RSS) loss function
We first consider the case where the number of clusters is the same in different domains,
i.e., k1 = k2 = · · · = kd = k. For simplicity, we denote the instances in domain Dπ

as {x(π)
1 , x(π)

2 , . . . , x(π)
nπ

}. If an instance x(i)
a in Di is mapped to an instance x( j)

b in D j ,

then the clustering assignments h(i)
a∗ and h( j)

b∗ should be similar. We now generalize the
relationship to many-to-many. We use N (i, j)(x( j)

b ) to denote the set of indices of instances
in Di that are mapped to x( j)

b with positive weights, and |N (i, j)(x( j)
b )| represents its

cardinality. To penalize the inconsistency of cross-domain cluster partitions, for the lth
cluster in Di, the loss function (residual) for the bth instance is

J (i, j)
b,l = (M(i, j)(x( j)

b , l) − h( j)
b,l)

2, (2)

where

M
(i, j)(x( j)

b , l) = 1

|N (i, j)(x( j)
b )|

∑
a∈N (i, j)(x( j)

b )

S(i, j)
b,a h(i)

a,l (3)

is the weighted mean of cluster assignment of instances mapped to x( j)
b , for the lth

cluster.
We assume every non-zero row of S(i, j) is normalized. By summing up Equation (2)

over all instances in D j and k clusters, we have the following residual of sum of squares
loss function

J (i, j)
RSS =

k∑
l=1

nj∑
b=1

J (i, j)
b,l = ||S(i, j)H(i) − H( j)||2F . (4)
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(B) Clustering disagreement (CD) loss function
When the number of clusters in different domains varies, we can no longer use the
RSS loss to quantify the inconsistency of cross-domain partitions. From the previous
discussion, we observe that S(i, j)H(i) in fact serves as a weighted projection of instances
in domain Di to instances in domain D j . For simplicity, we denote the matrix H̃(i→ j) =
S(i, j)H(i). Recall that h( j)

a∗ represents a cluster assignment over kj clusters for the ath
instance in D j . Then H̃(i→ j)

a∗ corresponds to H( j)
a∗ for the a-th instance in domain D j .

The previous RSS loss compares them directly to measure the clustering inconsistency.
However, it is inapplicable to the case where different domains have different numbers
of clusters. To tackle this problem, we first measure the similarity between H̃(i→ j)

a∗
and H̃(i→ j)

b∗ , and the similarity between H( j)
a∗ and H( j)

b∗ . Then we measure the difference
between these two similarity values. Taking Figure 1(b) as an example. Note that ©A
and ©B in domain 1 are mapped to ©2 in domain 2, and ©C is mapped to ©4 . Intuitively, if
the similarity between clustering assignments for ©2 and ©4 is small, the similarity of
clustering assignments between ©A and ©C and the similarity between ©B and ©C should
also be small. Note that symmetric NMF can handle both linearity and nonlinearity
[Kuang et al. 2012]. Thus, in this article, we choose a linear kernel to measure the in-
domain cluster assignment similarity, i.e., K(h( j)

a∗ , h( j)
b∗ ) = h( j)

a∗ (h( j)
b∗ )T. The cross-domain

clustering disagreement loss function is thus defined as

J (i, j)
CD =

nj∑
a=1

nj∑
b=1

(
K(H̃(i→ j)

a∗ , H̃(i→ j)
b∗ ) − K(h( j)

a∗ , h( j)
b∗ )

)2

= ||S(i, j)H(i)(S(i, j)H(i))T − H( j)(H( j))T||2F .

(5)

3.1.3. Joint Matrix Optimization. We can integrate the domain-specific objective and the
loss function quantifying the inconsistency of cross-domain partitions into a unified
objective function

min
H(π)≥0(1≤π≤d)

O =
d∑

i=1

L(i) +
∑

(i, j)∈I
λ(i, j)J (i, j), (6)

where J (i, j) can be either J (i, j)
RSS or J (i, j)

CD . λ(i, j) ≥ 0 is a tuning parameter balancing
between in-domain clustering objective and cross-domain regularizer. When all λ(i, j) =
0, Equation (6) degenerates to d independent graph clusterings. Intuitively, the more
reliable the prior cross-domain relationship, the larger the value of λ(i, j).

3.2. Learning Algorithm

In this section, we present an alternating scheme to optimize the objective function
in Equation (6), that is, we optimize the objective with respect to one variable while
fixing others. This procedure continues until convergence. The objective function is
invariant under these updates if and only if H(π)’s are at a stationary point [Lee and
Seung 2000]. Specifically, the solution to the optimization problem in Equation (6) is
based on the following two theorems, which is derived from the Karush–Kuhn–Tucker
(KKT) complementarity condition [Boyd and Vandenberghe 2004]. Detailed theoretical
analysis of the optimization procedure will be presented in the next section.

THEOREM 3.1. For RSS loss, updating H(π) according to Equation (7) will monotoni-
cally decrease the objective function in Equation (6) until convergence.

H(π) ← H(π) ◦
(

� ′(H(π))
�′(H(π))

) 1
4

, (7)
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where

� ′(H(π)) = A(π)H(π) +
∑

(i,π)∈I

λ(i,π)

2
S(i,π)H(i)

+
∑

(π, j)∈I

λ(π, j)

2
(S(π, j))TH( j)

(8)

and

�′(H(π)) = H(π)(H(π))TH(π) +
∑

(i,π)∈I

λ(i,π)

2
H(π)

+
∑

(π, j)∈I

λ(π, j)

2
(S(π, j))TS(π, j)H(π).

(9)

THEOREM 3.2. For CD loss, updating H(π) according to Equation (10) will monotoni-
cally decrease the objective function in Equation (6) until convergence.

H(π) ← H(π) ◦
(

�(H(π))
�(H(π))

) 1
4

, (10)

where

�(H(π)) = A(π)H(π)

+
∑

(i,π)∈I
λ(i,π)S(i,π)H(i)(H(i))T(S(i,π))TH(π)

+
∑

(π, j)∈I
λ(π, j)(S(π, j))TH( j)(H( j))TS(π, j)H(π)

(11)

and

�(H(π)) = H(π)(H(π))TH(π)

+
∑

(i,π)∈I
λ(i,π)H(π)(H(π))TH(π)

+
∑

(π, j)∈I
λ(π, j)(S(π, j))TS(π, j)H(π)(H(π))T(S(π, j))TS(π, j)H(π)

(12)

where ◦, [·]
[·] and (·) 1

4 are element-wise operators.

Based on Theorems 3.1 and 3.2, we develop the iterative multiplicative updating
algorithm for optimization and summarize it in Algorithm 1.

3.3. Theoretical Analysis

3.3.1. Derivation. We derive the solution to Equation (6) following the constrained op-
timization theory [Boyd and Vandenberghe 2004]. Since the objective function is not
jointly convex, we adopt an effective alternating minimization algorithm to find a
locally optimal solution. We prove Theorem 3.2 in the following. The proof of Theo-
rem 3.1 is similar and hence omitted.
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ALGORITHM 1: Co-Regularized Graph Clustering (CGC)

Input: graphs from d domains, each of which is represented by an affinity matrix A(π ),
kπ (number of clusters in domain Dπ ), a set of pairwise relationships I and the
corresponding matrices {S(i, j)}, parameters {λ(i, j)}

Output: clustering results for each domain (inferred from H(π ))

1 begin
2 Normalize all graph affinity matrices by Frobenius norm;
3 foreach (i, j) ∈ I do
4 Normalize non-zero rows of S(i, j);
5 end
6 for π ← 1 to d do
7 Initialize H(π ) with random values between (0,1];
8 end
9 repeat

10 for π ← 1 to d do
11 Update H(π ) by Equations (7) or (10);
12 end
13 until convergence;
14 end

We formulate the Lagrange function for optimization

L(H(1), H(2), . . . , H(d)) =
d∑

i=1

||A(i) − H(i)(H(i))T||2F

+
∑

(i, j)∈I
λ(i, j)||S(i, j)H(i)(S(i, j)H(i))T − H( j)(H( j))T||2F .

(13)

Without loss of generality, we only show the derivation of the updating rule for one
domain π (π ∈ [1, d]). The partial derivative of Lagrange function with respect to H(π)

is:
∇H(π) L = −A(π)H(π) + H(π)(H(π))TH(π)

+
∑

(π, j)∈I
λ(π, j)(S(π, j))TS(π, j)H(π)(H(π))T(S(π, j))TS(π, j)H(π)

−
∑

(π, j)∈I
λ(π, j)(S(π, j))TH( j)(H( j))TS(π, j)H(π)

−
∑

(i,π)∈I
λ(i,π)S(i,π)H(i)(H(i))T(S(i,π))TH(π)

+
∑

(i,π)∈I
λ(i,π)H(π)(H(π))TH(π).

(14)

Using the KKT complementarity condition [Boyd and Vandenberghe 2004] for the non-
negative constraint on H(π), we have

∇H(π) L ◦ H(π) = 0. (15)

The above formula leads to the updating rule for H(π) in Equation (10).

3.3.2. Convergence. We use the auxiliary function approach [Lee and Seung 2000] to
prove the convergence of Equation (10) in Theorem 3.2. We first introduce the definition
of auxiliary function as follows.

ACM Transactions on Knowledge Discovery from Data, Vol. 10, No. 4, Article 46, Publication date: May 2016.
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Definition 3.1. Z(h, h̃) is an auxiliary function for L(h) if the conditions

Z(h, h̃) ≥ L(h) and Z(h, h) = L(h), (16)

are satisfied for any given h, h̃ [Lee and Seung 2000].

LEMMA 3.1. If Z is an auxiliary function for L, then L is non-increasing under the
update [Lee and Seung 2000].

h(t+1) = argmin
h

Z(h, h(t)). (17)

THEOREM 3.3. Let L(H(π)) denote the sum of all terms in L containing H(π). The
following function

Z(H(π), H̃(π)) = − 2
∑
klm

A(π)
ml P(k, l, m)

+
⎛⎝1 +

∑
(i,π)∈I

λ(i,π)

⎞⎠ ∑
kl

(
H̃(π)(H̃(π))TH̃(π))

kl · (H(π)
kl )4

(H̃(π)
kl )3

− 2
∑

(i,π)∈I
λ(i,π)

∑
klm

(
S(i,π)H(i)(H(i))T(S(i,π))T)

lmP(k, l, m)

+
∑

(π, j)∈I
λ(π, j)

∑
kl

(Q( j))kl · (H(π)
lk )4

(H̃(π)
lk )3

− 2
∑

(π, j)∈I
λ(π, j)

∑
klm

(
(S(π, j))TH( j)(H( j))TS(π, j))

lmP(k, l, m)

(18)

is an auxiliary function for L(H(π)), where P(k, l, m) = H̃(π)
lk H̃(π)

mk(1 + log H(π)
lk H(π)

mk

H̃(π)
lk H̃(π)

mk
) and

Q( j) = (H̃(π))T(S(π, j))TS(π, j)H̃(π)(H̃(π))T(S(π, j))TS(π, j). Furthermore, it is a convex function
in H(π) and has a global minimum.

Theorem 3.3 can be proved using a similar idea to that in Ding et al. [2006] by
validating Z(H(π), H̃(π)) ≥ L(H(π)), Z(H(π), H(π)) = L(H(π)), and the Hessian matrix
∇∇H(π) Z(H(π), H̃(π))  0. Due to space limitation, we omit the details.

Based on Theorem 3.3, we can minimize Z(H(π), H̃(π)) with respect to H(π) with H̃(π)

fixed. We set ∇H(π) Z(H(π), H̃(π)) = 0, and get the following updating formula

H(π) ← H̃(π) ◦
(

�(H̃(π))

�(H̃(π))

) 1
4

,

which is consistent with the updating formula derived from the KKT condition
aforementioned.

From Lemma 3.1 and Theorem 3.3, for each subsequent iteration of updating H(π),
we have L((H(π))0) = Z((H(π))0, (H(π))0) ≥ Z((H(π))1, (H(π))0) ≥ Z((H(π))1, (H(π))1) =
L((H(π))1) ≥ · · · ≥ L((H(π))Iter). Thus, L(H(π)) monotonically decreases. This is also true
for the other variables. Since the objective function Equation (6) is lower bounded by
0, the correctness of Theorem 3.2 is proved. Theorem 3.1 can be proven with a similar
strategy.

3.3.3. Complexity Analysis. The time complexity of Algorithm 1 (for both loss functions)
is O(Iter · d|I|(ñ3 + ñ2k̃)), where ñ is the largest nπ (1 ≤ π ≤ d), k̃ is the largest kπ and
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Iter is the number of iterations needed before convergence. In practice, |I| and d are
usually small constants. Moreover, from Equations (10) and (7), we observe that the
ñ3 term is from the matrix multiplication (S(π, j))TS(π, j). Since S(π, j) is the input matrix
and often very sparse, we can compute (S(π, j))TS(π, j) in advance in sparse form. In this
way, the complexity of Algorithm 1 is reduced to O(Iter · ñ2k̃).

3.4. Finding Global Optimum

The objective function Equation (6) is a fourth-order non-convex function with respect
to H(π). The achieved stationary points (satisfying KKT condition in Equation (15))
may not be the global optimum. Many methods have been proposed in the literature to
avoid local optima, such as Tabu search [Glover and McMillan 1986], particle swarm
optimization (PSO) [Dorigo et al. 2008], and estimation of distribution algorithm (EDA)
[Larraanaga and Lozano 2001]. Since our objective function is continuously differen-
tiable over the entire parameter space, we develop a learning algorithm for global
optimization by population-based Tabu Search.

3.4.1. Tabu Search Based Algorithm for Finding Global Optimum. In Algorithm 1, we find a
local optima for H(π)(0 ≤ π ≤ d) from the starting point initialized in lines 6 to 8. Here,
we treat all H(π)’s as one point H (e.g., converting them into one vector). Then, the
iterations for finding global optimum are summarized below.

(1) Given the probability φ that a random point converges to the global minimum
and a confidence level α, set termination threshold cφ according to Equation (21).
Initialize counter c := 0, and randomly chose one initial point; then use Algorithm 1
to find the corresponding local optima.

(2) Mark this local optima point as a Tabu point Tc, and keep track of the “global
optimum” found so far in H∗, set counter c := c + 1.

(3) If c ≥ cφ , return.
(4) Randomly choose another point far from the Tabu points, and use Algorithm 1 to

find the corresponding local optima, go to Step 2.

In the above steps, we try to avoid converging to any known local minimums by
applying the dropping and re-selecting scheme. The nearer a point lies to a Tabu point,
the less likely it get selected as a new initial state. As more iterations are taken, the risk
that all iterations converge to local optima drops substantially. Our method not only
keeps track of local information (KKT points), but also does global search so that the
probability of finding the optimal minima significantly increases. Such Markov chain
process ensures that the algorithm converges to the global minimum with probability 1
when cφ is large enough.

3.4.2. Lower Bound of Termination Threshold cφ. To find the global optimum with confidence
at least α, the probability of all searched cφ points in local minimum should be less
than 1 − α, i.e.,

cφ∏
i=1

p(point i converge to local minima) ≤ 1 − α. (19)

Given φ, the probability of a random point that converges to global minimum, we
know that the first point has probability 1 − φ to converge to a local2 one. If the
system is lack of memory and never keeps records of existing points, all points would
have the same converging probability to the global minimum. However, we mark each

2Although the global minimum is also a local one, we refer to local as non-global in this section.
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Table II. Population Size and Termination Threshold for the Population-Based Tabu Search Algorithm

φ 0.5 0.1 0.01 0.001 0.5 0.1 0.01 0.001 0.0001
α 0.99 0.99 0.99 0.99 0.999 0.999 0.999 0.999 0.999
cφ 4 9 30 96 4 11 37 118 372

local optima point as a Tabu point, and try to locate further chosen ones far from
existing local minima. Such operation decreases the probability of getting into the
same local minimum. It results in an increasing of the global converging probability
by a factor of 1 − φ in each step, i.e., p(point i converges to local minima) = (1 − φ)
p(point i − 1 converges to local minima). Substituting this and p( f irst point converges
to local minima) = 1 − φ into Equation (19), we have

cφ∏
i=1

(1 − φ)i ≤ 1 − α. (20)

Thus, we have

cφ ≥
√

2 log1−φ(1 − α) + 1
4

− 1
2

. (21)

Table II shows the value of cφ for some typical choices of φ and α. We can see that
the proposed CGC algorithm converges to the global optimum with a small number of
steps.

3.5. Re-Evaluating Cross-Domain Relationship

In real applications, the cross-domain instance relationship based on prior knowledge
may contain noise. Thus, it is crucial to allow users to evaluate whether the provided
relationships violate any single-domain clustering structures. In this section, we de-
velop a principled way to archive this goal. In fact, we only need to slightly modify
the co-regularization loss functions in Section 3.1.2 by multiplying a confidence matrix
W(i, j) to each S(i, j). Each element in the confidence matrix W(i, j) is initialized to 1. For
RSS loss, we give the modified loss function below (the case for CD loss is similar).

J (i, j)
W = ||(W(i, j) ◦ S(i, j))H(i) − H( j)||2F . (22)

Here, ◦ is element-wise product. By optimizing the following objective function, we can
learn the optimal confidence matrix

min
W≥0,H(π)≥0(1≤π≤d)

O =
d∑

i=1

L(i) +
∑

(i, j)∈I
λ(i, j)J (i, j)

W . (23)

Equation (23) can be optimized by iteratively implementing following two steps until
convergence: (1) replace S(π, j) and S(i,π) in Equation (7) with (W(π, j) ◦ S(π, j)) and (W(i,π) ◦
S(i,π)), respectively, and use the replaced formula to update each H(π); (2) use the
following formula to update each W(i, j)

W(i, j) ← W(i, j) ◦
√

(H( j)(H(i))T) ◦ S(i, j)

((W(i, j) ◦ S(i, j))H(i)(H(i))T) ◦ S(i, j)
. (24)

Here,
√· is element-wise square root. Note that many elements in S(i, j) are 0. We only

update the elements in W(i, j) whose corresponding elements in S(i, j) are positive. In the
following, we only focus on such elements. The learned confidence matrix minimizes
the inconsistency between the original single-domain clustering structure and the
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Fig. 2. Focused domain π and 5 domains related to it.

prior cross-domain relationship. Thus for any element W(i, j)
a,b , the smaller the value, the

stronger the inconsistency between S(i, j)
a,b and single-domain clustering structures in Di

and D j . Therefore, we can sort the values of W(i, j) and report to users the smallest
elements and their corresponding cross-domain relationships. Accurate relationship
can help to improve the overall results. On the other hand, inaccurate relationship
may provide wrong guidance of the clustering process. Our method allows the users to
examine these critical relationships and improve the accuracy of the results.

3.6. Assigning Optimal Weights Associated with Focused Domain

In Section 3.1.3, we use parameter λ(i, j) ≥ 0 to balance between in-domain clustering
objective and cross-domain regularizer. Typically, the parameter is given based on the
prior knowledge of the cross-domain relationship. Therefore, the more reliable the
prior cross-domain relationship, the larger the value of λ(i, j). In real applications, such
prior knowledge may not be available. In this case, we need an effective approach to
automatically balance different cross-domain regularizers. This problem, however, is
hard to solve due to the arbitrary topologies of relationships among domains. To make
it feasible, we simplify the problem to the case where the user focuses on the clustering
accuracy of only one domain at a time.

As illustrated in Figure 2, domain π is the focused domain. There are five other
domains related to it. These related domains serve as side information. As such, we
can do a single domain clustering for all related domains to obtain each H(i), (1 ≤ i ≤ 5),
then use these auxiliary domains to improve the accuracy of graph partition for domain
π . We make a reasonable assumption that the associated weights sum up to 1, i.e.,∑5

j=1 λ(π, j) = 1. Formally, if domain π is the focused domain, then the following objective
function can be used to automatically assign optimal weights

min
H(π),λ

O = L(π) +
∑

(π, kj ) ∈ I
1 ≤ j ≤ R

λ(π,tj )J (π,tj ) + γ ||λ||22

s.t. H(π) ≥ 0,λ ≥ 0,λT1 = 1,

(25)

where λ = [λ(π,t1), λ(π,t2), . . . , λ(π,tR)]T are the weights on the R regularizers for related
domains, 1 ∈ R

R×1 is a vector of all ones, γ > 0 is used to control the complexity of
λ. By adding the 	2-norm, Equation (25) avoids the trivial solution. Equation (25) can
selectively integrate auxiliary domains and assign smaller weights to noisy domains.
This will be beneficial to the graph partition performance of the focused domain π .
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Equation (25) can be solved using an alternating scheme similar as Algorithm 1, in
which H(π) and λ are iteratively considered as constants. Specifically, in the first step,
we fix λ and update H(π) using similar strategy as in Algorithm 1, then we fix H(π) and
optimize λ. For simplicity, we denote μ = [μt1 , μt2 , . . . , μtR]T, where μr = J (π,tr ). Since
we fix H(π) at this step, the first term in Equation (25) is a constant and can be ignored,
then we can rewrite Equation (25) as follows:

min
λ

Õ = λTμ + γλTλ

s.t. λ ≥ 0,λT1 = 1.
(26)

Equation (26) is a quadratic optimization problem with respect to λ, and can be formu-
lated as a minimization problem

Ô(λ,β, θ ) = λTμ + γλTλ − λTβ − θ (λT1 − 1), (27)

where β = [β1, β2, . . . , βR]T ≥ 0 and θ ≥ 0 are the KKT multipliers [Boyd and Vanden-
berghe 2004]. The optimal λ∗ should satisfy the following four conditions:

(1) Stationary condition: ∇λ∗Ô(λ∗,β, θ ) = μ + 2γλ∗ − β − θ1 = 0
(2) Feasible condition: λ∗

r ≥ 0,
∑R

r=1 λ∗
r − 1 = 0

(3) Dual feasibility: βr ≥ 0, 1 ≤ r ≤ R
(4) Complementary slackness: βrλ

∗
r = 0, 1 ≤ r ≤ R.

From the stationary condition, λr can be computed as

λr = βr + θ − μr

2γ
. (28)

We observed that λr depends on the specification of βr and γ , similar as in Yu et al.
[2013], we can divide the problem into three cases:

(1) When θ − μr > 0, since βr ≥ 0, we get λr > 0. From the complementary slackness,
we know that βrλr = 0, then we have βr = 0, and therefore, λr = θ−λr

2γ
.

(2) When θ − μr < 0, since λr ≥ 0, then we have βr > 0. Since βrλr = 0, we have λr = 0.
(3) When θ − μr = 0, since βrλr = 0 and λr = βr

2γ
, then we have βr = 0 and λr = 0.

Therefore, if we sort μr by ascending order, μ1 ≤ μ2 ≤ · · · ≤ μR, then there exists
θ̃ > 0 such that θ̃ − μp > 0 and θ̃ − μp+1 ≤ 0. Then, λr can be calculated with following
formula:

λr =
{ θ−μr

2γ
, i f r ≤ p

0. else
. (29)

Equation (29) implies the intuition of the optimal weights assignment. That is when
μr is large, which means the clustering inconsistency is high between domain π and
tr. The inconsistency may come from either the noisy data in domain kr or noise in
cross-domain relationship matrix S(π,tr ). At this time, Equation (29) will assign a small
weight λr so that the model is less likely suffered from those noisy domains and get the
most consensus clustering result.

Considering that
∑p

r=1 = 1, we can calculate θ as follows

θ = 2γ + ∑p
r=1 μr

p
. (30)

Thus, we can search the value of p from R to 1 decreasingly [Yu et al. 2013]. Once
θ − μp > 0, then we find the value of p. After we obtain the value of p, we can assign
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ALGORITHM 2: Assigning Optimal Weights Associated with Focused Domain π

Input: graphs from R domains that are associated with the focused domain π , each of
which is represented by an affinity matrix A(tr ), (1 ≤ r ≤ R), kr(number of clusters
in domain Dr), a set of pairwise relationships I and the corresponding matrices
{S(π,kr )}, γ .

Output: clustering result for domain π (inferred from H(π )), optimal weights λr ,
(1 ≤ r ≤ R).

1 begin
2 Do single domain clustering for all associated domains tr to get H(tr ), (1 ≤ r ≤ R);
3 for r ← 1 to R do
4 λr ← 1/R;
5 end
6 repeat
7 Use Algorithm 1 to infer H(π );
8 for r ← 1 to R do
9 μr ← J (π,tr );

10 end
11 Sort μr(1 ≤ r ≤ R) in increasing order;
12 p ← R + 1;
13 do
14 p ← p − 1;

15 θ ← 2γ+∑p
r=1 μr

p ;
16 while θ − μp ≤ 0;
17 for r ← 1 to p do
18 λr ← θ−μr

2γ
;

19 end
20 for r ← p + 1 to R do
21 λr ← 0;
22 end
23 until convergence;
24 end

values for each λr(1 ≤ r ≤ R) according to Equation (29). We observe that when γ is
very large, θ will be large, and all domains will be selected, i.e., each λr will be a small
but non-zero value. In contrast, when γ is very small, at least one domain (domain t1)
will be selected, and other λr ’s (r �= 1) will be 0. Hence, we can use γ to control how many
auxiliary domains will be integrated for graph partition for domain π . Specifically, the
detailed algorithm for assigning optimal weights associated with focused domain π is
shown in Algorithm 2.

Algorithm 2 alternatively optimizes Hπ (line 7) and λ (lines 8–22). Since both steps
decrease the value of the objective function (25) and the objective function is lower
bounded by 0, the convergence of the algorithm is guaranteed.

4. EMPIRICAL STUDY

In this section, we present extensive experimental results on evaluating the perfor-
mance of our method.

4.1. Effectiveness Evaluation

We evaluate the proposed method by clustering benchmark datasets from the UCI
Archive [Asuncion and Newman. 2007]. We use four datasets with class label infor-
mation, namely Iris, Wine, Ionosphere, and Breast Cancer Wisconsin (Diagnostic)

ACM Transactions on Knowledge Discovery from Data, Vol. 10, No. 4, Article 46, Publication date: May 2016.



CGC: Integrating Co-Regularized Multi-Domain Graph for Clustering 46:15

Table III. The UCI Benchmarks

Identifier #Instances #Attributes
Iris 100 4

Wine 119 13
Ionosphere 351 34

WDBC 569 30

Fig. 3. Clustering results on UCI datasets (Wine vs. Iris, Ionosphere vs. WDBC).

datasets. They are from four different domains. To make each dataset contain the
same number of (e.g., two) clusters, we follow the preprocessing step in Wang and
Davidson [2010] to remove the SETOSA class from the Iris dataset and Class 1 from
the Wine dataset. The statistics of the resulting datasets are shown in Table III.

For each dataset, we compute the affinity matrix using the RBF kernel [Boyd
and Vandenberghe 2004]. Our goal is to examine whether cross-domain relationship
can help to enhance the accuracy of the clustering results. We construct two cross-
domain relationships: Wine–Iris and Ionosphere–WDBC. The relationships are gen-
erated based on the class labels, i.e., positive (negative) instances in one domain can
only be mapped to positive (negative) instances in another domain. We use the widely
used Clustering Accuracy [Xu et al. 2003] to measure the quality of the clustering
results. Parameter λ is set to 1 throughout the experiments. Since no existing method
can handle the multi-domain CGC problem, we compare our CGC method with three
representative single-domain methods: symmetric NMF [Kuang et al. 2012], K-means
[Späth 1985], and spectral clustering [Ng et al. 2001]. We report the accuracy when
varying the available cross-domain instance relationships (from 0 to 1 with 10% incre-
ment). The accuracy shown in Figure 3 is averaged over 100 sets of randomly generated
relationships.

We have several key observations from Figure 3. First, CGC significantly outperforms
all single-domain graph clustering methods, even though single-domain methods may
perform differently on different datasets. For example, symmetric NMF works better on
Wine and Iris datasets, while K-means works better on Ionosphere and WDBC datasets.
Note that when the percentage of available relationships is 0, CGC degrades to symmet-
ric NMF. CGC outperforms all alternative methods when cross-domain relationships
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Fig. 4. Clustering with inconsistent cross-domain relationship.

are available. This demonstrates the effectiveness of the cross-domain relationship
co-regularized method. We also notice that the performance of CGC dramatically im-
proves when the available relationships increase from 0 to 30%, suggesting that our
method can effectively improve the clustering result even with limited information on
cross-domain relationship. This is crucial for many real-life applications. Finally, we
can see that RSS loss is more effective than CD loss. This is because RSS loss directly
measures the weights of clustering assignment, while the CD loss does this indirectly
by using linear kernel similarity first (see Section 3.1). Thus, for a given percentage of
cross-domain relationships, the method using RSS loss gains more improvements over
the single-domain clustering than that using CD loss.

4.2. Robustness Evaluation

In real-life applications, both graph data and cross-domain instance relationship may
contain noise. In this section, we (1) evaluate whether CGC is sensitive to the incon-
sistent relationships, and (2) study the effectiveness of the relationship re-evaluation
strategy proposed in Section 3.5. Due to space limitation, we only report the results
on Wine–Iris dataset used in the previous section. Similar results can be observed in
other datasets.

We add inconsistency into matrix S with ratio r. The results are shown in Figure 4.
The percentage of available cross-domain relationships is fixed at 20%. Single-domain
symmetric NMF is used as a reference method. We observe that, even when the in-
consistency ratio r is close to 50%, CGC still outperforms the single-domain symmetric
NMF method. This indicates that our method is robust to noisy relationships. We also
observe that, when r is very large, CD loss works better than RSS loss, although when
r is small, RSS loss outperforms the CD loss (as discussed in Section 4.1). When r
reaches 1, the relationship is full of noise. From the figure, we can see that CD loss is
immune to noise.

In Section 3.5, we provide a method to report the cross-domain relationships that
violate the single-domain clustering structure. We still use the Wine–Iris dataset to
evaluate its effectiveness. As shown in Figure 5, in the relationship matrix S, each black
point represents a cross-domain relationship (all with value 1) mapping classes between
the two domains. We leave the bottom right part of the matrix blank intentionally so
that the inconsistent relationships only appear between instances in cluster 1 of domain
1 and cluster 2 of domain 2. The learned confidence matrix W is shown in the figure
(entries normalized to [0,1]). The smaller the value is, the stronger the evidence that
the cross-domain relationship violates the original single-domain clustering structure.
Reporting these suspicious relationships to users will allow them to examine the cross-
domain relationships that are likely resulting from inaccurate prior knowledge.
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Fig. 5. Relationship matrix S and confidence matrix W on Wine-Iris dataset.

Table IV. The Newsgroup Data

Group Id Label
3 comp.os.ms-windows.misc
4 comp.sys.ibm.pc.hardware
5 comp.sys.mac.hardware
9 rec.motorcycles
10 rec.sport.baseball
11 rec.sport.hockey

4.3. Binary vs. Weighted Relationship

In this section, we demonstrate that CGC can effectively incorporate weighted cross-
domain relationship, which may carry richer information than binary relationship. The
20 Newsgroup dataset3 contains documents organized by a hierarchy of topic classes.
We choose six groups as shown in Table IV. For example, at the top level, the six
groups belong to two topics, computer (groups {3,4,5}) or recreation (groups {9,10,11}).
The computer related datasets can be further partitioned into two subcategories, os
(group 3) and sys (groups {4, 5}). Similarly, the recreation related datasets consist of
subcategories motocycles (group 9) and sport (groups 10 and 11).

We generate two domains, each contains randomly sampled 300 documents from
the six groups (50 documents from each group). To generate binary relationships,
two articles are related if they are from the same high-level topic, i.e., computer or
recreation, as shown in Figure 6(a). Weighted relationships are generated based on
the topic hierarchy. Given two group labels, we compute the longest common prefix.
The weight is assigned to be the ratio of the length of the common prefix over the
length of the shorter of the two labels. The weighted relationship matrix is shown
in Figure 6(b). For example, if two documents come from the same group, we set the
corresponding entry to 1; if one document is from rec.sport.baseball and the other from
rec.sport.hockey, we set the corresponding entry to 0.67; if they do not share any label
term at all, we set the entry to 0.

We perform experiments using binary and weighted relationships, respectively. The
affinity matrix of documents is computed based on cosine similarity. We cluster the
dataset into either two or six clusters and results are shown in Figure 7. We ob-
serve that when each domain is partitioned into two clusters, the binary relationship
outperforms the weighted one. This is because the binary relationship better repre-
sents the top-level topics, computer and recreation. On the other hand, for the domain

3http://qwone.com/jason/20Newsgroups/.
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Fig. 6. Binary and weighted relationship matrices.

Fig. 7. Clustering results on the newsgroup dataset with binary or weighted relationships.

partitioned into six clusters, the weighted relationship performs significantly better
than the binary one. This is because weights provide more detailed information on
cross-domain relationships than the binary relationships.

4.4. Evaluation of Assigning Optimal λ’s Associated with Focused Domain π

In this section, we evaluate the effectiveness of the algorithm proposed in Section 3.6
to automatically balance different cross-domain regularizers. We perform evaluation
using the same setting as in Figure 2. We have six different domains, each contains
randomly sampled 300 documents from the six groups (50 documents from each group).
Domain π is the one that the user focuses on. There are five other domains related to
it. Each has randomly selected 20% available cross-domain instance relationships.

Figure 8 shows the clustering accuracy of the five auxiliary domains and the focused
domain π using different methods (γ = 0.05). We observed that for the focused domain
π , the CGC algorithm with equal weights (λr = 1/5) for regularizers outperforms the
single domain clustering (NMF). The CGC algorithm with optimal weights inferred by
the algorithm in Section 3.6 outperforms the equal weights setting. This demonstrates
the effectiveness of the proposed algorithm. In Figure 10, we show the clustering
accuracy of the case that γ = 0.1. Similar observation can be made.

ACM Transactions on Knowledge Discovery from Data, Vol. 10, No. 4, Article 46, Publication date: May 2016.



CGC: Integrating Co-Regularized Multi-Domain Graph for Clustering 46:19

Fig. 8. Clustering accuracy of auxiliary domains 1–5 and the focused domain π with different methods
(γ = 0.05).

Fig. 9. Optimal weights (λr) and the corresponding clustering inconsistency μr of auxiliary domain 1–5
(γ = 0.05).

Figure 9 reports the optimal weights (λr) and the corresponding clustering incon-
sistency μr of each auxiliary domain when γ = 0.05. Clearly, the higher clustering
inconsistency between domains r and π , the smaller weight will be assigned to r.
These auxiliary domains with large μr are treated as noisy domains. In Figure 9, only
domain 1 and 4 are left when γ is 0.05.

We can further use γ to control how many auxiliary domains will be integrated for
graph partition for domain π . Figure 11 shows the optimal weights assignments when
γ = 0.1 and γ = 0.15, respectively. We observed that when γ is large, all domains will
be selected, i.e., each λr will be a small but non-zero value. In contrast, when γ is small,
less domains will be selected such as shown in Figure 9. This is consistent with what
has been discussed in Section 3.6.

4.5. Protein Module Detection by Integrating Multi-Domain Heterogenous Data

In this section, we apply the proposed method to detect protein functional modules
[Hub and de Groot 2009]. The goal is to identify clusters of proteins that have strong
interconnection with each other. A common approach is to cluster the PPI networks
[Asur et al. 2007]. We show that, by integrating multi-domain heterogeneous infor-
mation, such as gene co-expression network [Horvath and Dong 2008] and genetic
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Fig. 10. Clustering accuracy of auxiliary domains 1–5 and the focused domain π with different methods
(γ = 0.1).

Fig. 11. Optimal weights (λr) of auxiliary domains 1–5 with different γ .

interaction network [Cordell 2009], the performance of the detection algorithm can be
dramatically improved.

We download the widely used human PPI network from BioGrid.4 Three Hyperten-
sion related gene expression datasets are downloaded from Gene Expression Ominbus5

with ids GSE2559, GSE703, and GSE4737. In total, 5,412 genes included in all three
datasets are used to construct gene co-expression network. Pearson correlation coeffi-
cients(normalized between [0 1]) are used as the weights on edges between genes. The
genetic interaction network is constructed using a large-scale Hypertension genetic
data [Feng and Zhu 2010], which contains 490,032 genetic markers across 4890 (1952
disease and 2938 healthy) samples. We use 1 million top-ranked genetic marker-pairs
to construct the network and the test statistics are used as the weights on the edges be-
tween markers [Zhang et al. 2010]. The constructed heterogenous networks are shown
in Figure 12. The relationship between genes and genetic markers is many-to-many,
since multiple genetic markers may be covered by a gene and each marker may be cov-
ered by multiple genes due to the overlapping between genes. The relationship between
proteins and genes is one-to-one.

4http://thebiogrid.org/download.php.
5http://www.ncbi.nlm.nih.gov/gds.
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Fig. 12. Protein–protein interaction network, gene co-expression network, genetic interaction network, and
cross-domain relationships.

Fig. 13. Two star networks for inferring optimal weights.

We apply CGC (with RSS loss) to cluster the generated multi-domain graphs with
two different settings: (1) equal weights for each cross-domain regularizer; (2) optimal
weights for each cross-domain relationship. For the first setting, we simply set weights
for each cross-domain regularizer to 1. For the second setting, we consider Figure 12 as
the combination of the two star networks. They have been shown in Figure 13. In the
first star network, genetic interaction network is the focused domain. In the second star
network, PPI network is the focused domain. Then, we execute the algorithm proposed
in Section 3.6 on the two star networks, respectively, to assign optimal λ’s. Finally, we
use these optimal λ’s for clustering.

We use the standard Gene Set Enrichment Analysis (GSEA) [Mootha et al. 2003]
to evaluate the significance of the inferred clusters. In particular, for each inferred
cluster (protein/gene set) T , we identify the most significantly enriched Gene Ontol-
ogy categories [The Gene Ontology Consortium 2000; Cheng et al. 2012]. The signifi-
cance (p-value) is determined by the Fisher’s exact test. The raw p-values are further
calibrated to correct for the multiple testing problem [Westfall and Young 1993]. To
compute calibrated p-values for each T , we perform a randomization test, wherein we
apply the same test to 1,000 randomly created gene sets that have the same number
of genes as T .
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Fig. 14. Comparison of CGC and single-domain graph clustering (k = 100).

Table V. Gene Ontology (GO) Enrichment Analysis of the
Gene Sets Identified by Different Methods

Method Number of significant modules

Markov Clustering 21
Spectral Clustering 44

Symmetric NMF 77
CGC (equal weights) 84

CGC(optimal weights) 87

The calibrated p-values of the gene sets learned by CGC and single-domain graph
clustering methods, symmetric NMF [Kuang et al. 2012], MCL [van Dongen 2000], and
spectral clustering, when applied on PPI network, are shown in Figure 14. The clusters
are arranged in ascending order of their p-values. As can be seen from the figure, by
integrating three types of heterogenous networks, CGC achieves better performance
than the single-domain methods. Table V shows the number of significant (calibrated
p-value ≤ 0.05) modules identified by different methods. We find that CGC reports more
significant functional modules than the single-domain methods. The CGC model using
optimal weights reports more significant functional modules than that using equal
weights. We also apply existing state-of-the-arts multi-view graph clustering methods
[Kumar et al. 2011; Tang et al. 2009; Davidson et al. 2013] on the gene co-expression
networks and PPI network. Since these four networks are of the same size, multi-view
method can be applied. LMF [Tang et al. 2009] used a linked matrix factorization
model to do multi-view graph clustering. CSC [Kumar et al. 2011] used a centroid-
based co-regularized model to do multi-view spectral clustering. MO-Pareto [Davidson
et al. 2013] designed a multi-objective optimization model to do multi-view spectral
clustering and solve it using Pareto optimization. As shown in Table VI, less than 20
significant modules are identified by multi-view graph clustering algorithms on gene
co-expression networks and PPI network. This is because the gene expression data
are very noisy on this dataset. Multi-view graph clustering methods forced to find one
common clustering assignment over different datasets and thus are more sensitive to
noise.
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Table VI. Number of Identified Protein Modules by Multi-View
Graph Clustering Methods and CGC (Using Gene

Co-Expression Networks and PPI Network)

Method Number of significant modules

LMF [Tang et al. 2009] 13
CSC [Kumar et al. 2011] 15

MO-Pareto [Davidson et al. 2013] 19

Fig. 15. Number of iterations to converge (CGC).

Fig. 16. Objective function values of 100 runs with random initializations (newsgroup data).

4.6. Performance Evaluation

In this section, we study the performance of the proposed methods: the number of
iterations before converging to a local optima and the number of runs needed to find
the global optima.

Figure 15 shows the value of the objective function with respect to the number of
iterations on different datasets. We observe that the objective function value decreases
steadily with more iterations. Usually, less than 100 iterations are needed before con-
vergence. We next study the proposed population-based Tabu search algorithm for
finding global optima. Using the newsgroup datasets. Figure 16 shows the objective
function values (arranged in ascending order) of 100 runs with randomly selected
starting points. It can be seen that most runs converge to a global minimum. This
observation is consistent with Table II. For example, according to Table II, only four
runs are needed to find the global optima with confidence 0.999. Thus, the possibility
φ that a random point converge to a global minimum is very high. Figure 17 shows the
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Fig. 17. Number of runs used for finding global optima.

Table VII. Running Time on Different Datasets

Data set Number of networks Largest number of nodes Number of processors Time cost

Wine-Iris 2 119 1 0.1 ms
Ionosphere-WDBC 2 569 1 2.1 ms

Newsgroup (4 clusters) 2 300 1 1.3 ms
Protein 5 490,032 1 10 hours

number of runs used for finding global optima on various datasets. We find that only a
few runs are needed to find the global optima.

To further validate the scalability and efficiency of the proposed approach, we report
the running time of CGC on each dataset in Table VII. All experiments are performed
(with matlab) on a PC with 2.80GHz AMD Opteron(tm) 16-core CPU and 32 GB mem-
ory. We can observe that even the largest number of nodes in the graph reaches 490,032,
the time cost of the algorithm is still reasonable.

5. RELATED WORK

To our best knowledge, this is the first work to study co-regularized multi-domain graph
clustering with many-to-many cross-domain relationship. Existing work on multi-view
graph clustering relies on a fundamental assumption that all views are with respect
to the same set of instances. This set of instances have multiple representations and
different views are generated from the same underlying distribution [Chaudhuri et al.
2009]. In multi-view graph clustering, research has been done to explore the most
consensus clustering structure from different views [Kumar and III 2011; Kumar et al.
2011; Tang et al. 2009]. Another common approach in multi-view graph clustering
is a two-step approach, which first combines multiple views into one view, then does
clustering on the resulting view [Tang et al. 2012; Zhou and Burges 2007]. However,
these methods do not address the many-to-many cross-domain relationship. Note that
our work is different from transfer clustering [Dai et al. 2008], multi-way clustering
[Banerjee et al. 2007; Bekkerman and Mccallum 2005] and multi-task clustering [Gu
et al. 2011]. These methods assume that there are some common features shared by
different domains. They are also not designed for graph data.
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Clustering ensemble approaches also aim to find consensus clusters from multiple
data sources. Strehl et al. [2002] proposed instance-based and cluster-based approaches
for combining multiple partitions. Fern and Brodley [2004] developed a hybrid bipartite
graph formulation to infer ensemble clustering result. These approaches try to combine
multiple clustering structures for a set of instances into a single consolidated clustering
structure. Similar to multi-view graph clustering, they cannot handle many-to-many
cross-domain relationships.

There are many clustering approaches based on heterogeneous information networks
[Sun et al. 2009a, 2009b; Zhou and Liu 2013]. The problem setting of these approaches
is different from ours. In our problem, the cross-domain relationships are incomplete
and noisy. The clustering approaches on heterogeneous information networks typically
require the complete relationships between different information networks. In addition,
they cannot evaluate the accuracy of the specified relationships. Moreover, our model
can distinguish noisy domains and assign smaller weights to them so that the focused
domain clustering can obtain optimal clustering performance.

6. CONCLUSION AND DISCUSSION

Integrating multiple data sources for graph clustering is an important problem in data
mining research. Robust and flexible approaches that can incorporate multiple sources
to enhance graph clustering performance are highly desirable. We develop CGC, which
utilizes cross-domain relationship as co-regularizing penalty to guide the search of
consensus clustering structure. By using a population-based Tabu Search, CGC can be
optimized efficiently while guarantee finding the global optimum with given confidence
requirement. CGC is robust even when the cross-domain relationships based on prior
knowledge are noisy. Moreover, it is able to automatically identify noisy domains. By
assigning smaller weights to noisy domains, the CGC algorithm is able to obtain opti-
mal graph partition performance for the focused domain. Using various benchmark and
real-life datasets, we show that the proposed CGC method can dramatically improve
the graph clustering performance compared with single-domain methods.
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