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1 Introduction

Many real life applications involve the analysis of high dimensional data. For
example, in bio-medical domains, advanced microarray techniques [1, 2] enables
monitoring the expression levels of hundreds to thousands of genes simultane-
ously. By mapping each gene to a feature, gene expression data can be repre-
sented by points in a high dimensional feature space. To make sense of such
high dimensional data, extensive research has been done in finding the latent
structure among the large number of features. In general, existing approaches
in analyzing high dimensional data can be summarized into 3 categories [3]: fea-
ture selection, feature transformation (or dimension reduction) and projected
clustering.

The goal of feature selection methods [4–7] is to find a single representative
subset of features that are most relevant for the task at hand, such as classifi-
cation. The selected features generally have low correlation with each other but
have strong correlation with the target feature.

Feature transformation methods [24, 9, 26, 8, 41, 43]summarize the dataset by
creating linear/non-linear combinations of features in order to uncover the latent
structure. The insight behind feature transformation methods is that a high
dimensional dataset may exhibit interesting patterns on a lower dimensional
subspace due to correlations among the features. The commonly used linear
feature transformation methods include principal component analysis (PCA) [8],
linear discriminant analysis (LDA), and their variants (see [9] for an overview).
PCA is one of the most widely used feature transformation methods. It seeks
an optimal linear transformation of the original feature space such that most
variance in the data is represented by a small number of orthogonal derived
features in the transformed space. PCA performs one and the same feature
transformation on the entire dataset. It aims to model the global latent structure
of the data and hence does not separate the impact of any original features nor
identify local latent patterns in some feature subspaces.

Recently proposed projected clustering methods, such as [10, 11], can be
viewed as combinations of clustering algorithms and PCA. These methods can
be applied to find clusters of data points that may not exist in the axis parallel
subspaces but only exist in the projected subspaces. The projected subspaces
are usually found by applying the standard PCA in the full dimensional space.
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Like other clustering methods, projected clustering algorithms find the clusters
of points that are spatially close to each other in the projected space. However,
a subset of features can be strongly correlated even though the data points do
not form any clustering structure.

Fig. 1. A strongly correlated gene subset
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(b) (Arntl, Nrg4&Myh7)
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(c)
(Hist1h2bk,Nrg4&Myh7)

Fig. 2. Pair-wise correlations of a strongly correlated gene subset

1.1 Motivation

In many emerging applications, the datasets usually consist of thousands to hun-
dreds of thousands of features. In such high dimensional dataset, some feature
subsets may be strongly correlated, while others may not have any correlation
at all. In these applications, it is more desirable to find the correlations that are
hidden in feature subspaces. For example, in gene expression data analysis, a
group of genes having strong correlation is of high interests to biologists since it
helps to infer unknown functions of genes [1] and gives rise to hypotheses regard-
ing the mechanism of the transcriptional regulatory network [2]. We refer to such
correlation among a subset of features as a local correlation in comparison with
the global correlation found by the full dimensional feature reduction methods.
Since such local correlations only exist in some subspaces of the full dimensional
space, they are invisible to the full feature transformation methods.
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Recently, many methods [1, 12] have been proposed for finding clusters of
features that are pair-wisely correlated. However, a set of features may have
strong correlation but each pair of features only weakly correlated.

For example, Figure 1 shows 4 genes that are strongly correlated in the mouse
gene expression data collected by the biologists in the School of Public Health
at UNC. All of these 4 genes have same Gene Ontology (GO) [13] annotation
cell part, and three of which, Myh7, Hist1h2bk, and Arntl, share the same GO
annotation intracelluar part. The linear relationship identified by our algorithm
is −0.4(Nrg4) + 0.1(Myh7) + 0.7(Hist1h2bk) − 0.5(Arntl) = 0. As we can see
from the figure, all data points almost perfectly lay on the same hyperplane,
which shows that the 4 genes are strong correlated. (In order to visualize this 3-
dimensional hyperplane, we combine two features, Nrg4 and Myh7, into a single
axis as −0.4(Nrg4) + 0.1(Myh7) to reduce it to a 2-dimensional hyperplane.)
If we project the hyperplane onto 2 dimensional spaces formed by each pair of
genes, we find none of them show strong correlation, as depicted in Figures 2(a)
to 2(c).

Projected clustering algorithms [10] have been proposed to find the clusters
of data points in projected feature spaces. This is driven by the observation
that clusters may exist in arbitrarily oriented subspaces. Like other clustering
methods, these methods tend to find the clusters of points that are spatially
close to each other in the feature space. However, as shown in Figure 1, a subset
of features (genes in this example) can still be strongly correlated even if the
data points are far away from each other. This property makes such strong
correlations invisible to the projected clustering methods. Moreover, to find the
projections of original features, projected clustering methods apply PCA in the
full dimensional space. Therefore they cannot decouple the local correlations
hidden in the high dimensional data.

In [45], an algorithm is proposed to find local linear correlations in high di-
mensional data. However, in real applications, the feature subspace can be either
linearly or nonlinearly correlated. The problem of finding linear and nonlinear
correlations in feature subspaces remains open.

For example, Figure 3 shows a data sets consisting of 12 features, {f1, f2, · · · , f12},
and 1000 data points. Embedded in the full dimensional space, features subspaces
{f1, f2, f3} and {f4, f5, f6} are nonlinearly correlated, {f7, f8, f9} are linearly
correlated. Features {f10, f11, f12} contain random noises.

Performing feature transformation methods to the full dimensional space
cannot uncover these local correlations hidden in the full feature spaces. For
example, Figure 4(a) shows the result of applying Principal Component Analysis
(PCA)[8] to the full dimensional space of the example dataset shown in Figure 3.
In this figure, we plot the point distribution on the first 3 principal components
found by PCA. Clearly, we cannot find any pattern that is similar to the patterns
embedded in the dataset. Similarly, Figure 4(b) shows the results of applying
ISOMAP [43] to reduce the dimensionality of the dataset down to 3. There is
also no desired pattern found in this low dimensional structure.
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Fig. 3. An example dataset
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(a) Result of PCA
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(b) Result of ISOMAP

Fig. 4. Applying dimensionality reduction methods to the full dimensional space of the
example dataset

How can we identify these local correlations hidden in the full dimensional
space?

This question is two-fold. First, we need to identify the strongly correlated
feature subspaces, i.e., a subset of features that are strongly correlated and
actually have low dimensional structures. Then, after these locally correlated
feature subsets are found, we can apply the existing dimensionality reduction
methods to identify the low dimensional structures embedded in them.

Many methods have been proposed to address the second aspect of the ques-
tion, i.e., given a correlated feature space, finding the low dimensional embedding
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in it. The first aspect of the question, however, is largely untouched. In this chap-
ter, we investigate the first aspect of the question, i.e., identifying the strongly
correlated feature subspaces.

1.2 Challenges and Contributions

(1) In this paper, we investigate the problem of finding correlations hidden in
the feature subspaces of high dimensional data. The correlations can be either
linear or nonlinear. To our best knowledge, our work is the first attempt to find
local linear and nonlinear correlations hidden in feature subspaces.

For both linear and non-linea cases, we formalize the problem as finding
reducible subspaces in the full dimensional space. We adopt the concept of PCA
[8] to model the linear correlations. The PCA analysis is repeated applied on
subsets of features. In the non-linear cases, we utilize intrinsic dimensionality
[30] to detect reducible subspaces. Informally, a set of features are correlated if
the intrinsic dimensionality of the set is smaller than the number of features.
Various intrinsic dimensionality estimators have been developed [27, 31, 36]. Our
problem formalization does not depend on any particular method for estimating
the intrinsic dimensionality.

(2) We develop an efficient algorithm, CARE1, for finding local linear correla-
tions. CARE utilizes spectrum properties about the eigenvalues of the covariance
matrix, and incorporates effective heuristic to improve the efficiency.

(3) We develop an effective algorithm REDUS2 to detect non-linearly corre-
lated feature subsets. REDUS consists of the following two steps.

It first finds the union of all reducible subspaces, i.e., the overall reducible
subspace. The second step is to uncover the individual reducible subspaces in the
overall reducible subspace. The key component of this step is to examine if a
feature is strongly correlated with a feature subspace. We develop a method uti-
lizing point distributions to distinguish the features that are strongly correlated
with a feature subspace and those that are not. Our method achieves similar
accuracy to that of directly using intrinsic dimensionality estimators, but with
much less computational cost.

Extensive experiments on synthetic and real life datasets demonstrate the
effectiveness of CARE and REDUS.

2 Related Work

Feature Transformation Feature transformation methods can be categorized
into linear methods, such as Multi-Dimensional Scaling (MDS) [26] and Principal
Component Analysis (PCA)[8], and non-linear methods, such as Local Linear
Embedding (LLE) [41], ISOMAP [43], and Laplacian eigenmaps [24]. For high

1 CARE stands for finding loCAl lineaR corrElations.
2 REDUS stands for REDUcible Subspaces.
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dimensional datasets, if there exist low dimensional subspaces or manifolds em-
bedded in the full dimensional spaces, these methods are successful in identifying
these low dimensional embeddings.

Feature transformation methods are usually applied on the full dimensional
space to capture the independent components among all the features. They are
not designed to address the problem of identifying correlation in feature sub-
spaces. It is reasonable to apply them to the feature spaces that are indeed
correlated. However, in very high dimensional datasets, different feature sub-
spaces may have different correlations, and some feature subspace may not have
any correlation at all. In this case, dimensionality reduction methods should be
applied after such strongly correlated feature subspaces have been identified.

Feature selection Feature selection methods [4–7] try to find a subset of
features that are most relevant for certain data mining task, such as classifi-
cation. The selected feature subset usually contains the features that have low
correlation with each other but have strong correlation with the target feature.
In order to find the relevant feature subset, these methods search through vari-
ous subsets of features and evaluate these subsets according to certain criteria.
Feature selection methods can be further divided into two groups based on their
evaluation criteria: wrapper and filter. Wrapper models evaluate feature subsets
by their predictive accuracy using statistical re-sampling or cross-validation. In
filter techniques, the feature subsets are evaluated by their information content,
typically statistical dependence or information-theoretic measures. Similar to
feature transformation, feature selection finds one feature subset for the entire
dataset.

Subspace clustering Subspace clustering is based on the observation that
clusters of points may exist in different subspaces. Many methods [18–20] have
been developed to find clusters in axes paralleling subspaces. Recently, the pro-
jected clustering was studied in [10], inspired by the observation that clusters
may exist in arbitrarily oriented subspaces. These methods can be treated as
combinations of clustering algorithms and PCA. Similar to other clustering
methods, these methods tend to find the clusters of points that are close to
each other in the projected space. However, as shown in Figure 1, a subset of
features still can be strongly correlated even if the data points are far away from
each other. Pattern based bi-clustering algorithms have been studied in [1, 12].
These algorithms find the clusters in which the data points share pair-wise linear
correlations, which is only a special case of linear correlation.

Intrinsic Dimensionality Due to correlations among features, a high di-
mensional dataset may lie in a subspace with dimensionality smaller than the
number of features [27, 31, 36]. The intrinsic dimensionality can be treated as
the minimum number of free variables required to define the data without any
significant information loss [30]. For example, as shown in Figure 3, in the 3-
dimensional space of {f1, f2, f3}, the data points lie on a Swiss roll, which is
actually a 2-dimensional manifold. Therefore, its intrinsic dimensionality is 2.

The concept of intrinsic dimensionality has many applications in the database
and data mining communities, such as clustering [23, 32], outlier detection [38],
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nearest neighbor queries [37], and spatial query selectivity estimation [25, 29].
Different definitions of intrinsic dimensionality can be found in the literature.
For example, in linear cases, matrix rank [33] and PCA [8] can be used to esti-
mate intrinsic dimensionality. For nonlinear cases, estimators such as box count-
ing dimension, information dimension, and correlation dimension have been
developed. These intrinsic dimensionality estimators are sometimes collectively
referred to as fractal dimension. Please see [39, 42] for good coverage of the topics
of intrinsic dimensionality estimation and its applications.

3 Problem Formalization

In this section, we utilize PCA and intrinsic dimensionality to formalize the
problem of finding strongly correlated feature subspaces in linear and non-linear
cases respectively .

Suppose that the dataset Ω consists of N data points and M features. Let
ΩP = {p1, p2, · · · , pN} denote the point set, and ΩF = {f1, f2, · · · , fM} denote
the feature set in Ω respectively. In the following sections, we define the linear
and non-linear reducible subspaces.

3.1 Linear Reducible Subspace

A strongly linear-correlated feature subset is a subset of features that show
strong linear correlation in a large portion of data points.

Definition 1. Strongly Linear-correlated Feature Subset
Let Ω′ = {fi1

, · · · , fim
} × {pj1

, · · · ,pjn
} be a submatrix of Ω, where 1 ≤ i1 <

i2 < · · · < im ≤ M and 1 ≤ j1 < j2 < · · · < jn ≤ N . CF is the covari-
ance matrix of Ω′. Let {λl} (1 ≤ l ≤ n) be the eigenvalues of CF and arranged
in increasing order3, i.e., λ1 ≤ λ2, · · · ,≤ λn. The features {fi1

, · · · , fim
} is a

strongly linear-correlated feature subset if the value of the objective func-

tion f(Ω′, k) =
Σk

t=1λt

Σm
t=1λt

≤ η and n/N ≥ δ, where k, η and δ are user specified

parameters.

Eigenvalue λl is the variance on eigenvector vl [8]. The set of eigenvalues
{λl} of matrix CΩ′ is also called the spectrum of CΩ′ [21].

Geometrically, each n×m submatrix of Ω represents an m-dimensional space
with n points in it. This m-dimensional space can be partitioned into two sub-
spaces, S1 and S2, which are orthogonal to each other. S1 is spanned by the k
eigenvectors with smallest eigenvalues and S2 is spanned by the remaining m−k
eigenvectors. Intuitively, if the variance in subspace S1 is small (equivalently the
variance in S2 is large), then the feature subset is strongly linear-correlated. The

input parameters k and threshold η for the objective function f(Ω ′, k) =
Σk

t=1λt

Σm
t=1λt

3 In this chapter, we assume that the eigenvalues are always arranged in increasing
order. Their corresponding eigenvectors are {v1,v2, · · · ,vn}.
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Fig. 5. An example dataset containing linear-correlated feature subsets

Feature subset {f2, f7, f9}
Eigenvalues of CΩ′ λ1 = 0.001, λ2 = 0.931, λ3 = 2.067

Input parameters k = 1, η = 0.004 and δ = 60%

Objective function value f(Ω′, k) = 0.0003
Table 1. An example of strongly linear-correlated feature subset

are used to control the strength of the correlation among the feature subset. The
default value of k is 1. The larger the value of k, the stronger the linear correla-
tion.

The reason for requiring n/N ≥ δ is because a feature subset can be strongly
linear-correlated only in a subset of data points. In our definition, we allow the
strongly linear-correlated feature subsets to exist in a large portion of the data
points in order to handle this situation. Note that it is possible that a data point
may participate in multiple local correlations held by different feature subsets.
This makes the local correlations more difficult to detect. Please also note that
for a given strongly linear-correlated feature subset, it is possible that there
exist multiple linear correlations on different subsets of points. In this chapter,
we focus on the scenario where there exists only one linear correlation for a
strongly linear-correlated feature subset.

For example, in the dataset shown in Figure 5, the features in submatrix
Ω′ = {f2, f7, f9} × {p1,p2, · · · ,p9} is a strongly linear-correlated feature subset
when k = 1, η = 0.004 and δ = 60%. The eigenvalues of the covariance matrix,
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Point subset P1 = {p
1
, · · · ,p

15
}

Feature subset V1 f(Ω1, k) = 0.1698

Feature subset V1 ∪ {f9} f(Ω′

1, k) = 0.0707

Feature subset V1 ∪ {f4, f9} f(Ω
′′

1 , k) = 0.0463
Table 2. Monotonicity with respect to feature subsets

CΩ′ , the input parameters and the value of the objective function are shown in
Table 1.

The spectrum of covariance matrix has a well-known theorem which is often
called the interlacing eigenvalues theorem4 [21].

Theorem 1. Let Ω′ = {fi1
, · · · , fim

}×{pj1
, · · · ,pjn

} and Ω
′′

= {fi1
, · · · , fim

, fi(m+1)
}×

{pj1
, · · · ,pjn

} be two submatrices of Ω. COmega′ and CΩ
′′ are their covariance

matrices with eigenvalues {λl} and {λ
′

l}. We have

λ
′

1 ≤ λ1 ≤ λ
′

2 ≤ λ2 ≤ · · · ≤ λm−1 ≤ λ
′

m ≤ λm ≤ λ
′

m+1.

Theorem 1 tells us that the spectra of CΩ′ and CΩ
′′ interleave each other,

with the eigenvalues of the larger matrix bracketing those of the smaller one.
By applying the interlacing eigenvalues theorem, we have the following prop-

erty for the strongly linear-correlated feature subsets.

Property 1. (Upward closure property of strongly linear-correlated feature sub-
sets) Let Ω′ = V ′×P and Ω

′′

= V
′′

×P be two submatrices of Ω with V ′ ⊆ V
′′

.
If V ′ is a strongly linear-correlated feature subset, then V

′′

is also a strongly
linear-correlated feature subset.

Proof. We show the proof for the case where |V
′′

| = |V ′|+ 1, i.e., V ′ is a subset
of V

′′

by deleting one feature from V ′. Let CΩ′ and CΩ
′′ be the covariance

matrices of Ω′ and Ω
′′

with eigenvalues {λl} and {λ
′

l}. Since V ′ is a strongly

linear-correlated feature subset, we have f(Ω′, k) =
Σk

t=1λt

Σm
t=1λt

≤ η. By applying

the interlacing eigenvalues theorem, we have Σk
t=1λt ≥ Σk

t=1λ
′

t and Σm
t=1λt ≤

Σm+1
t=1 λ

′

t. Thus f(Ω
′′

, k) =
Σk

t=1λ
′

t

Σm+1
t=1 λ

′

t

≤ η. Therefore, V
′′

is also a strongly linear-

correlated feature subset. By induction we can prove for the cases where V ′ is a
subset of V

′′

by deleting more than one feature.

The following example shows the monotonicity of the objective function with
respect to the feature subsets. Using the dataset shown in Figure 5, let Ω1 = V1×
P1 = {f2, f7}×{p1, · · · ,p15}, Ω′

1 = (V1∪{f9})×P1, and Ω
′′

1 = (V1∪{f4, f9})×P1.
The values of the objective function, when k = 1, are shown in Table 2. It can

4 This theorem also applies to Hermitian matrix [21]. Here we focus on the covariance
matrix, which is semi-positive definite and symmetric.
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Feature subset V2 = {f2, f7, f9}
Point subset P2 f(Ω2, k) = 0.0041

Point subset P2 ∪ {p10
} f(Ω′

2, k) = 0.0111

Point subset P2 ∪ {p14
} f(Ω

′′

2 , k) = 0.0038
Table 3. No monotonicity with respect to point subsets

be seen from the table that the value of the objective function monotonically
decreases when adding new features.

On the other hand, adding (or deleting) data points to a fixed feature subset
may cause the correlation of the features to either increase or decrease. That
is, the objective function is non-monotonic with respect to the point subsets.
We use the following example to show the non-monotonicity of the objective
function with respect to the point subsets. Using the dataset shown in Figure 5,
let Ω2 = V2 × P2 = {f2, f7, f9} × {p1, · · · ,p9,p11}, Ω′

2 = V2 × (P2 ∪ {p10}), and
Ω

′′

2 = V2 × (P2 ∪{p14}). The values of their objective functions, when k = 1, are
shown in Table 3. It can be seen from the table that the value of the objective
function f can either increase or decrease when adding more points.

We define the linear reducible subspace.

Definition 2. Linear Reducible Subspace
A submatrix Ω′ = V × P is a linear reducible subspace iff: 1) Feature set V is
strongly linear-correlated; 2) None of the feature subsets of V is strongly linear-
correlated.

3.2 Non-linear Reducible Subspace

PCA can only measure linear correlations. In this section, we extend the problem
to non-linear correlations and non-linear reducible subspaces. In stead of specif-
ically using “non-linear”, we use the general terms, “correlation” and “reducible
subspace”, for both linear and non-linear cases.

We use intrinsic dimensionality to define correlated features (linear and non-
linear). Given a submatrix Ω′ = V ×P , we use ID(V ) to represent the intrinsic
dimensionality of the feature subspace V ∈ ΩF . Intrinsic dimensionality provides
a natural way to examine whether a feature is correlated with some feature
subspace: if a feature fa ∈ ΩF is strongly correlated with a feature subspace
V ⊆ ΩF , then adding fa to V should not cause much change of the intrinsic
dimensionality of V . The following definition formalizes this intuition.

Definition 3. (Strong Correlation)
A feature subspace V ⊆ ΩF and a feature fa ∈ ΩF have strong correlation, if

∆ID(V, fa) = ID(V ∪ {fa}) − ID(V ) ≤ ε.

In this definition, ε is a user specified threshold. Smaller ε value implies
stronger correlation, and larger ε value implies weaker correlation. If V and fa

have strong correlation, we also say that they are strongly correlated.
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Definition 4. (Redundancy)
Let V = {fv1

, fv2
, · · · , fvm

} ⊆ ΩF . fvi
∈ V is a redundant feature of V , if fvi

has
strong correlation with the feature subspace consisting of the remaining features
of V , i.e.,

∆ID({fv1
, · · · , fvi−1

, fvi+1
, · · · , fvm

}, fvi
) ≤ ε.

We say V is a redundant feature subspace if it has at least one redundant
feature. Otherwise, V is a non-redundant feature subspace.

Note that in Definitions 3 and 4, ID(V ) does not depend on a particular
intrinsic dimensionality estimator. Any existing estimator can be applied when
calculating ID(V ). Moreover, we do not require that the intrinsic dimensionality
estimator reflects the exact dimensionality of the dataset. However, in general,
a good intrinsic dimensionality estimator should satisfy two basic properties.

First, if a feature is redundant in some feature subspace, then it is also
redundant in the supersets of the feature subspace. We formalize this intuition
as the following property.

Property 2. For V ∈ ΩF , if ∆ID(V, fa) ≤ ε, then ∀U (V ⊆ U ⊆ ΩF ), ∆ID(U, fa) ≤
ε.

This is a reasonable requirement, since if fa is strongly correlated with V ⊆
U , then adding fa to U will not greatly alter its intrinsic dimensionality.

From this property, it is easy to see that, if feature subspace U is non-
redundant, then all of its subsets are non-redundant, which is clearly a desirable
property for the feature subspaces.

Corollary 1. If U ⊆ ΩF is non-redundant, then for ∀V ⊆ U , V is also non-
redundant.

The following property extend the concept of basis [35] in a linear space to
nonlinear space using intrinsic dimensionality. In linear space, suppose that V
and U contain the same number of vectors, and the vectors in V and U are
all linearly independent. If the vectors of U are in the subspace spanned by the
vectors of V , then the vectors in V and the vectors in U span the same subspace.
(A span of a set of vectors consists of all linear combinations of the vectors.)
Similarly, in Property 3, for two non-redundant feature subspaces, V and U , we
require that if the features in U are strongly correlated with V , then U and V
are strongly correlated with the same subset of features.

Property 3. Let V = {fv1
, fv2

, · · · , fvm
} ⊆ ΩF and U = {fu1

, fu2
, · · · , fum

} ⊆
ΩF be two non-redundant feature subspaces. If ∀fui

∈ U , ∆ID(V, fui
) ≤ ε, then

for ∀fa ∈ ΩF , ∆ID(U, fa) ≤ ε iff ∆ID(V, fa) ≤ ε.

Intuitively, if a feature subspace Y (Y ⊆ ΩF ) is redundant, then Y should be
reducible to some subspace, say V (V ⊂ Y ). Concerning the possible choices of
V , we are most interested in the smallest one that Y can be reduced to, since it
represents the intrinsic dimensionality of Y . We now give the formal definitions
of reducible subspace and its core space.
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Definition 5. (Reducible Subspace and Core Space)
Y ⊆ ΩF is a reducible subspace (linear or non-linear) if there exists a non-
redundant subspace V (V ⊂ Y ), such that
(1) ∀fa ∈ Y , ∆ID(V, fa) ≤ ε, and
(2) ∀U ⊂ Y (|U | ≤ |V |), U is non-redundant.
We say V is the core space of Y , and Y is reducible to V .

Criterion (1) in Definition 5 says that all features in Y are strongly correlated
with the core space V . The meaning of criterion (2) is that the core space is the
smallest non-redundant subspace of Y with which all other features of Y are
strongly correlated.

Among all reducible subspaces, we are most interested in the maximum ones.
A maximum reducible subspace is a reducible subspace that includes all features
that are strongly correlated with its core space.

Definition 6. (Maximum Reducible Subspace)
Y ⊆ ΩF is a maximum reducible subspace if
(1) Y is a reducible subspace, and
(2)∀fb ∈ ΩF , if fb 6∈ Y , then ∆ID(V, fb) > ε , where V is the core space of Y .

Let {Y1, Y2, · · · , YS} be the set of all maximum reducible subspaces in the

dataset. The union of the maximum reducible subspaces OR =
⋃S

i=1 Yi is re-
ferred to as the overall reducible subspace.

Note that Definition 6 works for the general case where a feature can be in
different maximum reducible subspaces. In this chapter, we focus on the special
case where maximum reducible subspaces are non-overlapping, i.e., each feature
can be in at most one maximum reducible feature subspace.

In the following sections, we present the CARE and REDUS algorithms which
efficiently detect linear reducible subspaces and maximum (non-linear) reducible
subspaces in high dimensional data.

4 The CARE Algorithm

In this section, we present the algorithm CARE for finding the linear reducible
subspace (Definition 2). CARE enumerates the combinations of features to gen-
erate candidate feature subsets. To examine if a candidate is a linear reducible
subspace, CARE adopts a 2-step approach. It first checks if the feature sub-
set is strongly correlated on all data points. If not, CARE then apply point
deletion heuristic to find the appropriate subset of points on which the current
feature subset may become strongly correlated. In Section 4.1, we first discuss
the overall procedure of enumerating candidate feature subsets. In Section 4.2,
we present the heuristics for choosing the point subsets for the candidates that
are not strongly correlated on all data points.
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4.1 Feature Subsets Selection

For any submatrix Ω′ = V × {p1, · · · ,pM} of Ω, in order to check whether
feature subset V ′ is strongly correlated, we can perform PCA on Ω ′ to see if its

objective function value is lower than the threshold, i.e., if f(Ω ′, k) =
Σk

t=1λt

Σm
t=1λt

≤

η.
Starting from feature subsets containing a single feature, CARE adopts depth

first search to enumerate combinations of features to generate candidate feature
subsets. In the enumeration process, if we find that a candidate feature subset
is strongly correlated by evaluating its objective function value, then all its
supersets can be pruned according to Property 1.

Next, we present an upper bound on the value of the objective function,
which can help to speed up the evaluation process. The following theorem shows
the relationship between the diagonal entries of a covariance matrix and its
eigenvalues [21].

Property 4. Let Ω′ be a submatrix of Ω and CΩ′ be the m × m covariance
matrix of Ω′. Let {ai} be the diagonal entries of CΩ′ arranged in increasing
order, and {λi} be the eigenvalues of CΩ′ arranged in increasing order. Then
Σs

t=1at ≥ Σs
t=1λt for all s = 1, 2, · · · , n, with equality held for s = m.

Applying Property 4, we can get the following proposition.

Proposition 1. Let Ω′ be a submatrix of Ω and CΩ′ be the m × m covariance
matrix of Ω′. Let {ai} be the diagonal entries of CΩ′ and arranged in increasing

order. If
Σk

t=1at

Σm
t=1at

≤ η, then we have f(Ω′, k) ≤ η, i.e., the feature subset of Ω′

is a strongly correlated feature subset.

The proof of Proposition 1 is straightforward and omitted here. This proposi-
tion gives us an upper bound of the objective function value for a given submatrix
of Ω. For any submatrix Ω′ = V × {p1, · · · ,pN} of Ω, we can examine the di-
agonal entries of the covariance matrix CΩ′ of Ω′ to get the upper bound of the
objective function. The computational cost of calculating of this upper bound is
much less than that of evaluating the objective function value directly by PCA.
Therefore, before evaluating the objective function value of a candidate feature
subset, we can check the upper bound in Proposition 1. If the upper bound is
no greater than the threshold η, then we know that the candidate is a strongly
correlated feature subset without performing PCA on its covariance matrix.

4.2 Choosing the Subsets of Points

In the previous subsection, we discussed the procedure of generating candidate
feature subsets. A feature subset may be strongly correlated only on a subset
of the data points. As discussed in Section 3.1, the monotonicity property does
not hold for the point subsets. Therefore, some heuristic must be used in order
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(a) Successive point deletion (b) Distance-based point deletion

Fig. 6. Points deleted using different heuristics

to avoid performing PCA on all possible subsets of points for each candidate
feature subset. In this subsection, we discuss the heuristics that can be used for
choosing the subset of points.

A successive point deletion heuristic For a given candidate feature sub-
set, if it is not strongly correlated on all data points, we can delete the points
successively in the following way.

Suppose that Ω′ = {fi1 , · · · , fim
} × {p1, · · · ,pN} is a submatrix of Ω and

f(Ω′, k) > η, i.e., the features of Ω′ is not strongly correlated on all data points.
Let Ω′

\pa
be the submatrix of Ω′ by deleting point pa (pa ∈ {p1, · · · ,pN}) from

Ω′. This heuristic deletes the point pa from Ω′ such that f(Ω′
\pa

, k) has the

smallest value comparing to deleting any other point. We keep deleting points
until the number of points in the submatrix reaches the ratio n/N = δ or the
feature subset of Ω′ turns out to be strongly correlated on the current point
subset.

This is a successive greedy point deletion heuristic. In each iteration, it deletes
the point that leads to the most reduction in the objective function value. This
heuristic is time consuming, since in order to delete one point from a submatrix
containing n points, we need to calculate the objective function value n times in
order to find the smallest value.

A distance-based point deletion heuristic In this subsection, we discuss
the heuristic used by CARE. It avoids calculating objective function value n
times for deleting a single point from a submatrix containing n points.

Suppose that Ω′ = {fi1 , · · · , fim
} × {p1, · · · ,pN} is a submatrix of Ω and

f(Ω′, k) > η, i.e., the features of Ω′ is not strongly correlated on all data points.
Let S1 be the subspace spanned by the k eigenvectors with the smallest eigen-
values and the S2 be the subspace spanned by the remaining m−k eigenvectors.
For each point pa (pa ∈ {p1, · · · ,pN}), we calculate two distances: da1

and da2
.

da1
is the distance between pa and the origin in sub-eigenspace S1 and da2

is
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the distance between pa and the origin in sub-eigenspace S2. Let the distance
ratio rpa

= da1
/da2

. We sort the points according to their distance ratios and
delete (1 − δ)N points that have the largest distance ratios.

The intuition behind this heuristic is that we try to reduce the variance in
subspace S1 as much as possible while retaining the variance in S2.

Using the running dataset shown in Figure 5, for feature subset {f2, f7, f9},
the deleted points are shown as red stars in Figures 6(a) and 6(b) using the
two different heuristics described above. The reestablished linear correlations
are 2f2 + 5.9f7 + 3.8f9 = 0 (successive), and 2f2 + 6.5f7 + 2.9f9 = 0 (distance-
based). Note that the embedded linear correlation is 2f2 + 6f7 + 3f9 = 0. As we
can see from the figures, both methods choose almost the same point subsets
and correctly reestablish the embedded linear correlation.

The distance-based heuristic is more efficient than the successive approach
since it does not have to evaluate the value of the objective function many times
for each deleted point.

As a summary of Section 4, CARE adopts the depth-first search strategy
to enumerate the candidate feature subsets. If a candidate feature subset is not
strongly correlated on all data points, then CARE applies the distance-based
point deletion heuristic to find the subset of points on which the candidate
feature subset may have stronger correlation. If a candidate turns out to be a
linear reducible subspace, then all its supersets can be pruned.

5 The REDUS Algorithm

In this section, we present REDUS algorithm which detects the (non-linar) maxi-
mum reducible subspaces (Definition 6). We first give a short introduction to the
intrinsic dimensionality estimator. Then we present the algorithms for finding
the overall reducible subspace and the maximum reducible subspace respectively
.

5.1 Intrinsic Dimensionality Estimator

To find the overall reducible subspace in the dataset, we adopt correlation di-
mension [39, 42], which can measure both linear and nonlinear intrinsic dimen-
sionality, as our intrinsic dimensionality estimator since it is computationally
more efficient than other estimators while its quality of estimation is similar to
others. In practice, we observe that correlation dimension satisfies Properties 2
and 3, although we do not provide the proof here. In what follows, we give a
brief introduction of correlation dimension.

Let Y be a feature subspace of the dataset, i.e., Y ⊆ ΩF . Suppose that
the number of points N in the dataset approaches infinity. Let dis(pi, pj , Y )
represent the distance between two data points pi and pj in feature subspace Y .
Let BY (pi, r) be the subset of points contained in a ball of radius r centered at
point pi in subspace Y , i.e.,

BY (pi, r) = {pj |pj ∈ ΩP , dis(pi, pj , Y ) ≤ r}.
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The average fraction of pairs of data points within distance r is

CY (r) = lim
N→∞

1

N2

∑

pi∈ΩP

|BY (pi, r)|.

The correlation dimension of Y is then defined as

ID(Y ) = lim
r,r′→0

log[CY (r)/CY (r′)]

log[r/r′]
.

In practice, N is a finite number. CY is estimated using
1

N2

∑

pi∈YP

|B(pi, r)|.

The correlation dimension is the growth rate of the function CY (r) in log-log

scale, since
log[CY (r)/CY (r′)]

log[r/r′]
=

log[CY (r)] − log[CY (r′)]

log r − log r′
. The correlation di-

mension is estimated using the slope of the line that best fits the function in
least squares sense.

The intuition behind the correlation dimension is following. For points that
are arranged on a line, one expects to find twice as many points when doubling
the radius. For the points scattered on 2-dimensional plane, when doubling the
radius, we expect the number of points to increase quadratically. Generalizing
this idea to m-dimensional space, we have CY (r)/CY (r′) = (r/r′)m. Therefore,
the intrinsic dimensionality of feature subspace Y can be simply treated as the
growth rate of the function CY (r) in log-log scale.

5.2 Finding Overall Reducible Subspace

The following theorem sets the foundation for the efficient algorithm to find the
overall reducible subspace.

Theorem 2. Suppose that Y ⊆ ΩF is a maximum reducible subspace and V ⊂
Y is its core space. We have ∀U ⊂ Y (|U | = |V |), U is also a core space of Y .

Proof. We need to show that U satisfies the criteria in Definition 6. Let V =
{fv1

, fv2
, · · · , fvm

} and U = {fu1
, fu2

, · · · , fum
}.

Since U ⊂ Y , from the definition of reducible subspace, U is non-redundant,
and for every fui

∈ U , ∆ID(V, fui
) ≤ ε. For every fa ∈ Y , we have ∆ID(V, fa) ≤

ε. Thus from Property 3, we have ∆ID(U, fa) ≤ ε. Similarly, for every fb 6∈ Y ,
∆ID(V, fb) > ε. Thus ∆ID(U, fa) > ε.

Therefore, U is also a core space of Y .

Theorem 2 tells us that any subset U ⊂ Y of size |V | is also a core space of
Y .

Suppose that {Y1, Y2, · · · , YS} is the set of all maximum reducible subspaces

in the dataset and the overall reducible subspace is OR =
⋃S

i=1 Yi. To find
OR, we can apply the following method. For every fa ∈ ΩF , let RFfa

=
{fb|fb ∈ ΩF , b 6= a} be the remaining features in the dataset. We calculate
∆ID(RFfa

, fa). The overall reducible subspace OR = {fa|∆ID(RFfa
, fa) ≤

ε}.We now prove the correctness of this method.
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Algorithm 1: REDUS

Input: Dataset Ω, input parameters ε, n, and τ ,
Output: Y : the set of all maximum reducible subspaces

OR = ∅;1

for each fa ∈ ΩF do2

RFfa = {fb|fb ∈ ΩF , b 6= a};3

if ∆ID(RFfa , fa) ≤ ε then4

OR = OR ∪ {fa};5

end6

end7

sample n points P = {ps1 , ps2 , · · · , psn} from Ω.8

for d = 1 to |OR| do9

for each candidate core space C ⊂ OR (|C| = d) do10

T = {fa|fa is strongly correlated with C, fa ∈ OR, fa 6∈ C};11

if T 6= ∅ then12

Y ← T ;13

update OR by removing from OR the features in T ;14

end15

end16

end17

return Y.18

Corollary 2. OR = {fa|∆ID(RFfa
, fa) ≤ ε}.

Proof. Let fy be an arbitrary feature in the overall reducible subspace. From
Theorem 2, we have ∀fy ∈ Yi ⊆ OR, ∃Vi ⊂ Yi (fy 6∈ Vi), such that Vi is the core
space of Yi. Thus ∆ID(Vi, fy) ≤ ε. Since fy 6∈ Vi, we have Vi ⊆ RFfy

. From
Property 2, we have ∆ID(RFfy

, fy) ≤ ε.

Similarly, if fy 6∈ OR, then ∆ID(RFfy
, fy) > ε.

Therefore, we have OR = {fy|∆ID(RFfy
, fy) ≤ ε}.

The algorithm for finding the overall reducible subspace is shown in Algo-
rithm 1 from Line 1 to Line 7. Note that the procedure of finding overall reducible
subspace is linear to the number of features in the dataset.

5.3 Maximum Reducible Subspace

In this section, we present the second component of REDUS, i.e., identifying the
maximum reducible subspaces from the overall reducible subspace found in the
previous section.

Intrinsic Dimensionality Based Method From Definition 6 and Theorem
2, we have the following property concerning the reducible subspaces.
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Corollary 3. Let Yi ⊆ OR be a maximum reducible subspace, and Vi ⊂ Yi be
any core space of Yi. We have

Yi = {fa|∆ID(Vi, fa) ≤ ε, fa ∈ OR}.

Therefore, to find the individual maximum reducible subspaces Yi ⊆ OR
(1 ≤ i ≤ S), we can use any core space Vi ⊂ Yi to find the other features
in Yi. More specifically, a candidate core space of size d is a feature subset
C ⊂ OR (|C| = d). From size d = 1 to |OR|, for each candidate core space, let
T = {fa|∆ID(C, fa) ≤ ε, fa ∈ OR, fa 6∈ C}. If T 6= ∅, then T is a maximum
reducible subspace with core space of size d. The overall reducible subspace
OR is then updated by removing the features in T . Note that the size of |OR|
decreases whenever some maximum reducible subspace is identified. We now
prove the correctness of this method.

Corollary 4. Any candidate core space is non-redundant.

Proof. It is easy to see any candidate core space of size 1 is non-redundant.
Now, assume that all candidate core spaces of size d − 1 are non-redundant, we
show all candidate core spaces of size d are non-redundant. We prove this by
contradiction.

Let V = {fv1
, fv2

, · · · , fvd
} be an arbitrary candidate core space of size

d. Without loss of generality, assume that fd is the redundant feature in V .
Let V ′ = {f1, f2 · · · , fvd−1

}. We have ∆ID(V ′, fvd
) ≤ ε. Since |V ′| = d − 1,

V ′ is non-redundant according to the assumption. Moreover, we have T =
{fa|∆ID(V ′, fa) ≤ ε, fa ∈ OR, fa 6∈ V ′} 6= ∅, since fvd

∈ T . Therefore, fvd
∈ T

would have been removed from OR before the size of the candidate core spaces
reaches d. This contradicts the assumption of fvd

being in the candidate core
space V . Therefore, we have that any candidate core space is non-redundant.

Corollary 5. Let C be a candidate core space. If ∃fa ∈ OR such that ∆ID(C, fa) ≤
ε, then C is a true core space of some maximum reducible subspace in OR.

Proof. Let Y = {fy|∆ID(C, fy) ≤ ε, fy ∈ OR}. Following the process of finding
OR, we know that Y includes all and only the features in ΩF that are strongly
correlated with C. Thus ∃C ⊂ Y , such that C satisfies Criterion (1) in Definition
5, and Criterion (2) in Definition 6. Moreover, according to Corollary 4, C is
non-redundant. Hence C also satisfies Criterion (2) of Definition 5. Thus Y is a
maximum reducible subspace with core space C.

In this method, for each candidate core space, we need to calculate ∆ID(C)
and ∆ID(C ∪ {fa}) for every fa ∈ OR in order to get the value of ∆ID(C, fa).
However, the intrinsic dimensionality calculation is computationally expensive.
Since the intrinsic dimensionality estimation is inherently approximate, we pro-
pose in the following section a method utilizing the point distribution in feature
subspaces to distinguish whether a feature is strongly correlated with a core
space.
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(a) strongly correlated features (b) uncorrelated features

Fig. 7. Point distributions in correlated feature subspace and uncorrelated feature
subspace

Point Distribution Based Method After finding the overall reducible sub-
space OR, we can apply the following heuristic to examine if a feature is strongly
correlated with a feature subspace. The intuition behind our heuristic is similar
to the one behind the correlation dimension.

Assume that the number of data points N in the dataset approaches infinity,
and the features in the dataset are normalized so that the points are distributed
from 0 to 1 in each dimension. Let ps ∈ ΩP be an arbitrary point in the dataset,
and 0 < l < 1 be a natural number. Let ξsy represent the interval of length l
on feature fy centered at ps. The expected number of points within the interval
ξsy is lN . For d features C = {fc1

, fc2
, · · · , fcd

}, let QsC be the d-dimensional
hypercube formed by the intervals ξsci

(fci
∈ C). If the d features in C are to-

tally uncorrelated, then the expected number of points in QsC is ldN . Let fm be
another feature in the dataset, and C ′ = {fc1

, fc2
, · · · , fcd

, fm}. If fm is deter-
mined by {fc1

, fc2
, · · · , fcd

}, i.e., fm is strongly correlated with C, then C ′ has
intrinsic dimensionality d. The expected number of points in the d-dimensional
hypercube, QsC′ , which is embedded in the (d + 1)-dimensional space of C ′, is
still ldN . If, on the other hand, fm is uncorrelated with any feature subspace of
{fc1

, fc2
, · · · , fcd

}, then C ′ has dimensionality d + 1, and the expected number
of points in the (d + 1)-dimensional hypercube QsC′ is l(d+1)N . The difference
between the number of points in the cubes of these two cases is ld(1 − l)N .

Figure 7(a) and 7(b) show two examples on 2-dimensional spaces. In both
examples, d = 1 and C = {fa}. In Figure 7(a), feature fb is strongly correlated
with fa. Feature fc is uncorrelated with fa, as shown in Figure 7(b). The ran-
domly sampled point ps is at the center of the cubes Qs{fa,fb} and Qs{fa,fc}. The
point density in cube Qs{fa,fb} is clearly much higher than the point density in
cube Qs{fa,fc} due to the strong correlation between fa and fb.

Therefore, for each candidate core space, we can check if a feature is corre-
lated with it in the following way. We randomly sample n points P = {ps1

, ps2
, · · · , psn

}
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from the dataset. Suppose that C = {fc1
, fc2

, · · · , fcd
} is the current candidate

core space. For feature fa ∈ OR (fa 6∈ C), let C ′ = {fc1
, fc2

, · · · , fcd
, fa}.

Let δsiC′ represent the number of points in the cube QsiC′ . P ′ = {psi
|δsiC′ ≥

l(d+1)N} is the subset of the sampled points such that the cube centered at
them have more points than expected if fa is uncorrelated with C. We say fa is

strongly correlated with C if |P ′|
|P | ≥ τ , where τ is a threshold close to 1.

Concerning the choice of l, we can apply the following reasoning. If we let

l = ( 1
N

)
1

d+1 , then the expected number of points in the cube QsiC′ is 1, if fa

is uncorrelated with C. If fa is correlated with C, then the expected number of
points in the cube QsiC′ is greater than 1. In this way, we can set l according to
the size of the candidate core space.

The second step of REDUS is shown in Algorithm 1 from Line 8 to Line
18. Note that in the worst case, the algorithm needs to enumerate all possible
feature subspaces. However, in practice, the algorithm is very efficient since once
an individual reducible subspace is found, all its features are removed. Only the
remaining features need to be further examined.

6 Experiments

In this section, we present the experimental results of CARE and REDUS on
both synthetic and real datasets. Both algorithms are implemented using Matlab
7.0.4. The experiments are performed on a 2.4 GHz PC with 1G memory running
WindowsXP system.

6.1 Synthetic Data

We evaluate CARE and REDUS on different synthetic datasets.

CARE .

To evaluate the effectiveness of the CARE, we generate a synthetic dataset
of 100 features and 120 points in the following way. The dataset is first pop-
ulated with randomly generated points for each one of the 100 features. Then
we embedded three local linear correlations into the dataset as described in Ta-
ble 4. For example, on points {p1, · · · ,p60} we create local linear correlation
f50 − f20 + 0.5f60 = 0. Gaussian noise with mean 0 and variance 0.01 is added
into the dataset.

Point subsets Local linear correlations

{p
1
, · · · ,p

60
} f50 − f20 + 0.5f60 = 0

{p
30

, · · · ,p
90
} f40 − f30 + 0.8f80 − 0.5f10 = 0

{p
50

, · · · ,p
110
} f15 − f25 + 1.5f45 − 0.3f95 = 0

Table 4. Local linear correlations embedded in the dataset
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We first show the comparison of CARE and full dimensional PCA. We per-
form PCA on the synthetic dataset described above. To present the linear cor-
relation discovered by PCA, we show the resulting hyperplanes determined by
the three eigenvectors with the smallest eigenvalues. Each such hyperplane rep-
resents a linear correlation of all the features in the dataset. Due to the large
number of features, we only show the features with coefficients with absolute
values greater than 0.2. The linear correlations reestablished by full dimensional
PCA are shown in Table 5. Clearly, these are not the local linear correlations
embedded in the dataset.

Table 6 shows the local linear correlations reestablished by CARE, with k =
1, η = 0.006, δ = 50%, and maxs = 4. As can be seen from the table, CARE
correctly identifies the correlations embedded in the dataset.

Eigenvectors Linear correlations reestablished

v1 (λ1 = 0.0077) 0.23f22 − 0.25f32 − 0.26f59 ≈ 0

v2 (λ2 = 0.0116) 0.21f34 − 0.26f52 ≈ 0

v3 (λ3 = 0.0174) −0.22f6 − 0.29f8 + 0.22f39
−0.23f72 + 0.26f93 ≈ 0

Table 5. Linear correlations identified by full dimensional PCA

f50 − 0.99f20 + 0.42f60 = 0

f40 − 0.97f30 + 0.83f80 − 0.47f10 = 0

f15 − 0.9f25 + 1.49f45 − 0.33f95 = 0
Table 6. Local linear correlations identified by CARE

Figure 8 shows the hyperplane representation of the local linear correlation,
f40 − 0.97f30 + 0.83f80 − 0.47f10 = 0, reestablished by CARE. Since this is a 3-
dimensional hyperplane in 4-dimensional space, we visualize it as a 2-dimensional
hyperplane in 3-dimensional space by creating a new feature (−0.83f80+0.47f10).
As we can see from the figure, the data points are not clustered on the hyperplane
even though the feature subsets are strongly correlated. The existing projected
clustering algorithms [10, 11] try to find the points that are close to each other in
the projected space. Therefore, they can not find the strongly correlated feature
subset as shown in this figure.

To evaluate the efficiency of CARE, we generate synthetic datasets as follows.
Each synthetic dataset has up to 500K points and 60 features, in which 40 linear
correlations are embedded. Gaussian noise with mean 0 and variance 0.01 is
added into the dataset. The default dataset for efficiency evaluation contains
5000 points and 60 features if not specified otherwise. The default values for the
parameters are: k = 1, η = 0.006, δ = 50%, and maxs = 4.
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Fig. 8. The hyperplane representation of a local linear correlation reestablished by
CARE
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Fig. 9. CARE Efficiency evaluation

Figures 9(a) to 9(f) show the efficiency evaluation results. Figure 9(a) shows
that the running time of CARE is roughly quadratic to the number of features in
the dataset. Note that the theoretical worst case should be exponential when the
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algorithm has to check every subset of the features and data points. Figure 9(b)
shows the scalability of CARE with respect to the number of points when the
dataset contains 30 features. The running time of CARE is linear to the number
of data points in the dataset as shown in the figure. This is due to the distance-
based point deletion heuristic. As we can see from the figure, CARE finishes
within reasonable amount of time for large datasets. However, since CARE scales
roughly quadratically to the number of features, the actual runtime of CARE
mostly depends on the number of features in the dataset.

Figure 9(c) shows that the runtime of CARE increases steadily until η reaches
certain threshold. This is because the higher the value of η, the weaker the
correlations identified. After certain point, too many weak correlations meet the
criteria will be identified. Figure 9(d) demonstrates that CARE’s runtime when
varying δ. Figure 9(e) shows CARE’s runtime with respect to different maxs

when the datasets contain 20 features.

Figure 9(f) shows the number of patterns evaluated by CARE before and
after applying the upper bound of the objective function value discussed in
Section 4.

REDUS .

As shown in Algorithm 1, REDUS generally requires three input parameters:
ε, n, and τ . In the first step of finding the overall reducible subspace, ε is the
threshold to filter out the irrelevant features. Since features strongly correlated
with some core space can only change intrinsic dimensionality a small amount,
the value of ε should be close to 0. According to our experience, a good start-
ing point is 0.1. After finding the reducible subspaces, the user can apply the
standard dimensionality reduction methods to see if the are really correlated,
and the adjust ε value accordingly to find stronger or weaker correlations in the
subspaces. In all our experiments, we set ε between 0.002 to 0.25. In the second
step, n is the point sampling size and τ is the threshold to determine if a feature
is strongly correlated with a candidate core space. In our experiments, n is set
to be 10% of the total number of data points in the dataset, and τ is set to be
90%.

We generate two synthetic datasets.

REDUS Synthetic dataset 1: The first synthetic dataset is as shown in
Figure 3. There are 12 features, {f1, f2, · · · , f12}, and 1000 data points in the
dataset. 3 reducible subspaces: a 2-dimensional Swiss roll, a 1-dimensional helix-
shaped line, and a 2-dimensional plane, are embedded in different 3-dimensional
spaces respectively. The overall reducible subspace is {f1, f2, · · · , f9}. Let ci

(1 ≤ i ≤ 4) represent constants and rj (1 ≤ j ≤ 3) represent random vectors. The
generating function of the Swiss roll is: t = 3

2π(1 + 2r1), s = 21r2, f1 = t cos(t),
f2 = s, f3 = t sin(t). The roll is then rotated 45◦ counter clockwise on feature
space {f2, f3}. The helix-shaped line is generated by: f4 = c1r3, f5 = c2 sin(r3),
f6 = c2 cos(r3). The 2-dimensional plane is generated by f9 = c3f7 + c4f8. The
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remaining 3 features {f10, f11, f12} are random vectors consisting of noise data
points.

In the first step, with ε = 0.25, REDUS successfully uncovers the overall
reducible space. The parameter setting for the second step is τ = 90%, and point
sampling size 10%. We run REDUS 10 times. In all 10 runs, REDUS successfully
identifies the individual maximum reducible subspaces from the overall reducible
subspace.

REDUS Synthetic dataset 2: We generate another larger synthetic dataset
as follows. There are 50 features, {f1, f2, · · · , f50} and 1000 data points in the
dataset. There are 3 reducible subspaces: Y1 = {f1, f2, · · · , f10} reducible to a
2-dimensional space, Y2 = {f11, f12, · · · , f20} reducible to a 1-dimensional space,
and Y3 = {f21, f22, · · · , f30} reducible to a 2-dimensional space. The remaining
features contain random noises. Figures 10(a) and 10(b) show two examples of
the embedded correlations in 3-dimensional subspaces. Figure 10(a) plots the
point distribution on feature subspace {f1, f2, f9} of Y1, and Figure 10(b) plots
the point distribution on feature subspace {f11, f12, f13} of Y2.
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Fig. 10. Examples of embedded correlations in synthetic dataset 2

We apply REDUS on this synthetic dataset using various parameter settings.
Table 7 shows the accuracy of finding the overall reducible subspace when ε
taking different values. The recall is defined as TP/(TP +FN), and the precision
is defined as TP/(TP + FP ), where TP represents the number of true positive,
FP represents the number of false positive, and FN represents the number of
false negative. As we can see, REDUS is very accurate and robust to ε.

To evaluate the efficiency and scalability of REDUS, we apply it to synthetic
dataset 2. The default dataset for efficiency evaluation contains 1000 points and
50 features if not specified otherwise. The default values for the parameters are
the same as before.

Figure 11(a) shows the runtime of finding the overall reducible subspace when
varying the number of data points. The runtime scales roughly quadratically.
This is because when computing the correlation dimensions, we need to calculate
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ε Precision Recall

0.06 83% 100%

0.05 91% 100%

0.04 96% 100%

0.03 100% 100%

0.02 100% 100%

0.01 100% 100%

0 100% 90%
Table 7. Accuracy of finding the overall reducible subspace when varying ε
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Fig. 11. REDUS Efficiency evaluation of finding the overall reducible subspace

all pairwise distances between the data points, which is clearly quadratic to the
number of points.

Figure 11(b) shows that the runtime of finding the overall reducible subspace
is linear to the number of features. This is because REDUS only scans every
feature once to examine if it is strongly correlated with the subspace of the
remaining features. This linear scalability is desirable for the datasets containing
a large number of features.

Figures 12(a) and 12(b) show the runtime comparisons between using the
correlation dimension as intrinsic dimensionality estimator and the point distri-
bution heuristic to identify the individual maximum reducible subspaces from
the overall reducible subspaces. Since the calculation of intrinsic dimensionality
is relatively expensive, the program often cannot finish in a reasonable amount
of time. Using the point distribution heuristics, on the other hand, is much more
efficient and scales linearly to the number of points and features in the dataset.

6.2 Real Data

We apply CARE on the mouse gene expression data provided by the School
of Public Health at UNC. The dataset contains the expression values of 220
genes in 42 mouse strains. CARE find 8 strongly correlated gene subsets with
parameter setting: k = 1, η = 0.002, δ = 50%, and maxs = 4. Due to the
space limit, we show 4 of these 8 gene subsets in Table 8 with their symbols
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Fig. 12. REDUS Efficiency evaluation of identifying maximum reducible subspaces
from the overall reducible subspace

Subsets Gene IDs GO annotations

1 Nrg4 cell part
Myh7 cell part; intracelluar part
Hist1h2bk cell part; intracelluar part
Arntl cell part; intracelluar part

2 Nrg4 integral to membrane
Olfr281 integral to membrane
Slco1a1 integral to membrane
P196867 N/A

3 Oazin catalytic activity
Ctse catalytic activity
Mgst3 catalytic activity

4 Hspb2 cellular physiological process
2810453L12Rik cellular physiological process
1010001D01Rik cellular physiological process
P213651 N/A

Table 8. Strongly correlated gene subsets

and the corresponding GO annotations. As shown in the table, genes in each
gene subset have consistent annotations. We also plot the hyperplanes of these
strongly correlated gene subsets in 3-dimensional space in Figures 13(a) to 13(d).
As we can see from the figures, the data points are sparsely distributed in the
hyperplanes, which again demonstrates CARE can find the groups of highly
similar genes which cannot be identified by the existing projected clustering
algorithms.

7 Conclusion

In this chapter, we investigate the problem of finding strongly correlated feature
subspaces in high dimensional datasets. The correlation can be linear or nonlin-
ear. Such correlations hidden in feature subspace may be invisible to the global
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(a) Gene subset 1 (b) Gene subset 2

(c) Gene subset 3 (d) Gene subset 4

Fig. 13. Hyperplane representations of strongly correlated gene subsets

feature transformation methods. Utilizing the concepts of PCA and intrinsic di-
mensionality, we formalize this problem as the discovery of maximum reducible
subspaces in the dataset. Two effective algorithms, CARE and REDUS, are
presented to find the reducible subspaces in linear and non-linear cases respec-
tively. The experimental results show that both algorithms can effectively and
efficiently find these interesting local correlations. These methods are powerful
tools for identifying potential transcriptional modules and thus play an impor-
tant role in many modeling biological networks.
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