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Abstract As a promising tool for dissecting the genetic basis of common diseases,
expression quantitative trait loci (eQTL) study has attracted increasing research in-
terest. The traditional eQTL methods focus on testing the associations between indi-
vidual single-nucleotide polymorphisms (SNPs) and gene expression traits. A major
drawback of this approach is that it cannot model the joint effect of a set of SNPs
on a set of genes, which may correspond to biological pathways. In this chapter, we
study the problem of identifying group-wise associations in eQTL mapping. Based
on the intuition of group-wise association, we examine how the integration of hetero-
geneous prior knowledge on the correlation structures between SNPs, and between
genes can improve the robustness and the interpretability of eQTL mapping.

1 introduction

The most abundant sources of genetic variations in modern organisms are single
nucleotide polymorphisms (SNPs). A SNP is a DNA sequence variation occur-
ring when a single nucleotide (A, T, G, or C) in the genome differs between in-
dividuals of a species. For inbred diploid organisms, such as inbred mice, a SNP
usually shows variation between only two of the four possible nucleotide types
[Ideraabdullah et al., 2004], which allows us to represent it by a binary variable. The
binary representation of a SNP is also referred to as the genotype of the SNP. The
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genotype of an organism is the genetic code in its cells. This genetic constitution
of an individual influences, but is not solely responsible for, many of its traits. A
phenotype is an observable trait or characteristic of an individual. The phenotype is
the visible, or expressed trait, such as hair color. The phenotype depends upon the
genotype but can also be influenced by environmental factors. Phenotypes can be
either quantitative or binary.

Driven by the advancement of cost-effective and high-throughput genotyping
technologies, genome-wide association studies (GWAS) have revolutionized the
field of genetics by providing new ways to identify genetic factors that influence
phenotypic traits. Typically, GWAS focus on associations between SNPs and trait-
s like major diseases. As an important subsequent analysis, quantitative trait lo-
cus (QTL) analysis is aiming at to detect the associations between two types of
information–quantitative phenotypic data (trait measurements) and genotypic data
(usually SNPs)–in an attempt to explain the genetic basis of variation in complex
traits. QTL analysis allows researchers in fields as diverse as agriculture, evolution,
and medicine to link certain complex phenotypes to specific regions of chromo-
somes.

Gene expression is the process by which information from a gene is used in the
synthesis of a functional gene product, such as proteins. It is the most fundamental
level at which the genotype gives rise to the phenotype. Gene expression profile is
the quantitative measurement of the activity of thousands of genes at once. The gene
expression levels can be represented by continuous variables. Figure 1 shows an
example dataset consisting of 1000 SNPs {x1,x2, · · · ,x1000} and a gene expression
level z1 for 12 individuals.

Fig. 1: An example dataset in eQTL mapping



Robust Methods for Expression Quantitative Trait Loci Mapping 3

2 eQTL Mapping

For a QTL analysis, if the phenotype to be analyzed is the gene expression level data,
then the analysis is referred to as the expression quantitative trait loci (eQTL) map-
ping. It aims to identify SNPs that influence the expression level of genes. It has been
widely applied to dissect the genetic basis of gene expression and molecular mech-
anisms underlying complex traits [Bochner, 2003, Rockman and Kruglyak, 2006,
Michaelson et al., 2009a]. More formally, let X = {xd |1 ≤ d ≤ D} ∈ RK×D be the
SNP matrix denoting genotypes of K SNPs of D individuals and Z = {zd |1 ≤ d ≤
D} ∈ RN×D be the gene expression matrix denoting phenotypes of N gene expres-
sion levels of the same set of D individuals. Each column of X and Z stands for
one individual. The goal of eQTL mapping is to find SNPs in X, that are highly
associated with genes in Z.

Various statistics, such as the ANOVA (analysis of variance) test and the chi-
square test, can be applied to measure the association between SNPs and the
gene expression level of interest. Sparse feature selection methods, e.g., Lasso
[Tibshirani, 1996], are also widely used for eQTL mapping problems. Here, we take
Lasso as an example. Lasso is a method for estimating the regression coefficients W
using ℓ1 penalty. The objective function of Lasso is

min
W

1
2
||Z−WX||2F +η ||W||1 (1)

where || · ||F denotes the Frobenius norm, || · ||1 is the ℓ1-norm. η is the empirical
parameter for the ℓ1 penalty. W is the parameter (also called weight) matrix setting
the limits for the space of linear functions mapping from X to Z. Each element of
W is the effect size of corresponding SNP and expression level. Lasso uses the least
squares method with ℓ1 penalty. ℓ1-norm sets many non-significant elements of W
to be exactly zero, since many SNPs have no associations to a given gene. Lasso
works even when the number of SNPs is significantly larger than the sample size
(K≫ D) under the sparsity assumption.

(a) Strong association (b) No association

Fig. 2: Examples of associations between a gene expression level and two different
SNPs
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Fig. 3: Association weights estimated by Lasso on the example data

Using the dataset shown in Figure 1, Figure 2 (a) shows an example of strong
association between gene expression z1 and SNP x1. 0 and 1 on the y-axis represent
the binary SNP genotype and the x-axis represents the gene expression level. Each
point in the figure represents an individual. It is clear from the figure that the gene
expression level values are partitioned into two groups with distinct means, hence
indicating a strong association between the gene expression and the SNP. On the
other hand, if the genotype of a SNP partitions the gene expression level values into
groups as shown in Figure 2 (b), the gene expression and the SNP are not associated
with each other. An illustration result of Lasso is shown in Figure 3. Wi j = 0 means
no association between j-th SNP and i-th gene expression. Wi j ̸= 0 means there
exists an association between the j-th SNP and the i-th gene expression.

2.1 Group-Wise eQTL Mapping and Challenges

In a typical eQTL study, the association between each expression trait and each SNP
is assessed separately [Cheung et al., 2005, Zhu et al., 2008, Tibshirani, 1996]. This
approach does not consider the interactions among SNPs and among genes. Howev-
er, multiple SNPs may jointly influence the phenotypes [Lander, 2011], and genes
in the same biological pathway are often co-regulated and may share a common
genetic basis [Musani et al., 2007b, Pujana et al., 2007].

To better elucidate the genetic basis of gene expression, it is highly desirable
to develop efficient methods that can automatically infer associations between a
group of SNPs and a group of genes. We refer to the process of identifying such
associations as group-wise eQTL mapping. In contrast, we refer to those associa-
tions between individual SNPs and individual genes as individual eQTL mapping.
An example is shown in Figure 4. Note that an ideal model should allow overlaps
between SNP sets and between gene sets; that is, a SNP or gene may participate
in multiple individual and group-wise associations. This is because genes and the
SNPs influencing them may play different roles in multiple biological pathways
[Lander, 2011].

Besides, advanced bio-techniques are generating a large volume of heteroge-
neous datasets, such as protein-protein interaction (PPI) networks [Asur et al., 2007],
and genetic interaction networks [Cordell, 2009]. These datasets describe the par-
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Fig. 4: An illustration of individual and group-wise associations.

tial relationships between SNPs and relationships between genes. Because SNPs
and genes are not independent of each other, and there exist group-wise asso-
ciations, the integration of these multi-domain heterogeneous data sets is able
to improve the accuracy of eQTL mapping since more domain knowledge can
be integrated. In literature, several methods based on Lasso have been proposed
[Biganzoli et al., 2006, Kim and Xing, 2012, Lee and Xing, 2012, Lee et al., 2010]
to leverage the network prior knowledge [Kim and Xing, 2012, Lee et al., 2010,
Lee and Xing, 2012, Jenatton et al., 2011]. However, these methods suffer from
poor quality or incompleteness of this prior knowledge.

In summary, there are several issues that greatly limit the applicability of current
eQTL mapping approaches.

1. It is a crucial challenge to understand how multiple, modestly-associated SNPs
interact to influence the phenotypes [Lander, 2011]. However, little prior work
has studied the group-wise eQTL mapping problem.

2. The prior knowledge about the relationships between SNPs and between genes
is often partial and usually includes noise.

3. Confounding factors such as expression heterogeneity may result in spurious
associations and mask real signals [Michaelson et al., 2009b, Stegle et al., 2008,
Gilad et al., 2008].

2.2 Overview of the Developed Algorithms

This book chapter proposes and studies the problem of group-wise eQTL mapping.
We can decouple the problem into the following sub-problems.

• How can we detect group-wise eQTL associations with eQTL data only, i.e., with
SNPs and gene expression profile data?

• How can we incorporate the prior interaction structures between SNPs and be-
tween genes into eQTL mapping to improve the robustness of the model and the
interpretability of the results?
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To address the first sub-problem, the book chapter proposes three approaches
based on sparse linear-Gaussian graphical models to infer novel associations be-
tween SNP sets and gene sets. In literature, many efforts have focused on single-
locus eQTL mapping. However, a multi-locus study dramatically increases the com-
putation burden. The existing algorithms cannot be applied on a genome-wide scale.
In order to accurately capture possible interactions between multiple genetic factors
and their joint contribution to a group of phenotypic variations, we propose three
algorithms. The first algorithm, SET-eQTL, makes use of a three-layer sparse linear-
Gaussian model. The upper layer nodes correspond to the set of SNPs in the study.
The middle layer consists of a set of hidden variables. The hidden variables are used
to model both the joint effect of a set of SNPs and the effect of confounding factors.
The lower layer nodes correspond to the genes in the study. The nodes in different
layers are connected via arcs. SET-eQTL can help unravel true functional compo-
nents in existing pathways. The results could provide new insights on how genes
act and coordinate with each other to achieve certain biological functions. We fur-
ther extend the approach to be able to consider confounding factors and decouple
individual associations and group-wise associations for eQTL mapping.

To address the second sub-problem, this chapter presents an algorithm, Graph-
regularized Dual Lasso (GDL), to simultaneously learn the association between S-
NPs and genes and refine the prior networks. Traditional sparse regression problems
in data mining and machine learning consider both predictor variables and response
variables individually, such as sparse feature selection using Lasso. In the eQTL
mapping application, both predictor variables and response variables are not inde-
pendent of each other, and we may be interested in the joint effects of multiple
predictors to a group of response variables. In some cases, we may have partial pri-
or knowledge, such as the correlation structures between predictors, and correlation
structures between response variables. This chapter shows how prior graph infor-
mation would help improve eQTL mapping accuracy and how refinement of prior
knowledge would further improve the mapping accuracy. In addition, other different
types of prior knowledge, e.g., location information of SNPs and genes, as well as
pathway information, can also be integrated for the graph refinement.

2.3 Chapter Outline

The book chapter is organized as follows:

• The algorithms to detect group-wise eQTL associations with eQTL data only
(SET-eQTL, etc.) are presented in Section 3.

• The algorithm (GDL) to incorporate the prior interaction structures or grouping
information of SNPs or genes into eQTL mapping is presented in Section 4.

• Section 5 concludes the chapter work.
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3 Group-Wise eQTL Mapping

3.1 Introduction

To better elucidate the genetic basis of gene expression and understand the underly-
ing biology pathways, it is desirable to develop methods that can automatically infer
associations between a group of SNPs and a group of genes. We refer to the process
of identifying such associations as group-wise eQTL mapping. In contrast, we re-
fer to the process of identifying associations between individual SNPs and genes as
individual eQTL mapping. In this chapter, we propose several algorithms to detect
group-wise associations. The first algorithm, SET-eQTL, makes use of a three-layer
sparse linear-Gaussian model. It is able to identify novel associations between sets
of SNPs and sets of genes. The results could provide new insights on how genes
act and coordinate with each other to achieve certain biological functions. We fur-
ther propose a fast and robust approach that is able to consider confounding factors
and decouple individual associations and group-wise associations for eQTL map-
ping. The model is a multi-layer linear-Gaussian model and uses two different types
of hidden variables: one capturing group-wise associations and the other captur-
ing confounding factors [Gao et al., 2013, Leek and Storey, 2007, Joo et al., 2014,
Fusi et al., 2012, Listgarten et al., 2013, Carlos M. Carvalhoa and West, 2008]. We
apply an ℓ1-norm on the parameters [Lee et al., 2009, Tibshirani, 1996], which
yields a sparse network with a large number of association weights being zero
[Ng, 2004]. We develop an efficient optimization procedure that makes this ap-
proach suitable for large-scale studies.

3.2 Related Work

Recently, various analytic methods have been developed to address the limitation-
s of the traditional single-locus approach. Epistasis detection methods aim to find
the interaction between SNP-pairs [Hoh and Ott, 2003, Hirschhorn and Daly, 2005,
Balding, 2006, Musani et al., 2007a]. The computational burden of epistasis detec-
tion is usually very high due to the large number of interactions that need to
be examined [Nelson et al., 2001, Ritchie et al., 2001]. Filtering-based approaches
[Evans et al., 2006, Hoh et al., 2000, Yang et al., 2009], which reduce the search s-
pace by selecting a small subset of SNPs for interaction study, may miss important
interactions in the SNPs that have been filtered out.

Statistical graphical models and Lasso-based methods [Tibshirani, 1996] have
been applied to eQTL study. A tree-guided group lasso has been proposed in
[Kim and Xing, 2012]. This method directly combines statistical strength across
multiple related genes in gene expression data to identify SNPs with pleiotropic
effects by leveraging the hierarchical clustering tree over genes. Bayesian methods
have also been developed [Leopold Parts1, 2011, Stegle et al., 2010]. Confounding
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factors may greatly affect the results of the eQTL study. To model confounders, a
two-step approach can be applied [Stegle et al., 2010, Jeffrey T. Leek, 2007]. These
methods first learn the confounders that may exhibit broad effects to the gene ex-
pression traits. The learned confounders are then used as covariates in the subse-
quent analysis. Statistical models that incorporate confounders have been proposed
[Nicolo Fusi and Lawrence, 2012]. However, none of these methods are specifically
designed to find novel associations between SNP sets and gene sets.

Pathway analysis methods have been developed to aggregate the association sig-
nals by considering a set of SNPs together [Cantor et al., 2010, Elbers et al., 2009,
Torkamani et al., 2008, Perry et al., 2009]. A pathway consists of a set of genes
that coordinate to achieve a specific cell function. This approach studies a set of
known pathways to find the ones that are highly associated with the phenotype
[Wang et al., 2010]. Although appealing, this approach is limited to the priori knowl-
edge on the predefined gene sets/pathways. On the other hand, the current knowl-
edgebase on the biological pathways is still far from being complete.

A method is proposed to identify eQTL association cliques that expose the hid-
den structure of genotype and expression data [Huang et al., 2009b]. By using the
cliques identified, this method can filter out SNP-gene pairs that are unlikely to have
significant associations. It models the SNP, progeny and gene expression data as an
eQTL association graph, and thus depends on the availability of the progeny strain
data as a bridge for modeling the eQTL association graph.

3.3 The Problem

Symbols Description
K number of SNPs
N number of genes
D number of samples
M number of group-wise associations
H number of confounding factors
x random variables of K SNPs
z random variables of N genes
y latent variables to model group-wise associaiton

X ∈ RK×H SNP matrix data
Z ∈ RN×H gene expression matrix data
A ∈ RM×K group-wise association coefficient matrix between x and y
B ∈ RN×M group-wise association coefficient matrix between y and z
C ∈ RN×K individual association coefficient matrix between x and y
P ∈ RN×H coefficient matrix of confounding factors

λ ,γ regularization parameters

Table 1: Summary of Notations
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Important notations used in this section are listed in Table 1. Throughout the
section, we assume that, for each sample, the SNPs and genes are represented by
column vectors. Let x = [x1,x2, . . . ,xK ]

T represent the K SNPs in the study, where
xi ∈ {0,1,2} is a random variable corresponding to the i-th SNP. For example, 0, 1,
2 may encode the homozygous major allele, heterozygous allele, and homozygous
minor allele, respectively. Let z = [z1,z2, . . . ,zN ]

T represent the N genes in the study,
where z j is a continuous random variable corresponding to the j-th gene.

The traditional linear regression model for association mapping between x and z
is

z = Wx+µµµ + εεε, (2)

where z is a linear function of x with coefficient matrix W. µµµ is an N×1 translation
factor vector. εεε is the additive noise of Gaussian distribution with zero-mean and
variance ψI, where ψ is a scalar. That is, εεε ∼ N(0,ψI).

The question now is how to define an appropriate objective function to decom-
pose W which (1) can effectively detect both individual and group-wise eQTL asso-
ciations, and (2) is efficient to compute so that it is suitable for large-scale studies.
In the next, we will propose a group-wise eQTL detection method first, and then
improve it to capture both individual and group-wise associations. Finally, we will
discuss how to boost the computational efficiency.

3.4 Detecting Group-Wise Associations

3.4.1 SET-eQTL Model

To infer associations between SNP sets and gene sets, we propose a graphical model
as shown in Figure 5, which is able to capture any potential confounding factors in a
natural way. This model is a two-layer linear Gaussian model. The hidden variables
in the middle layer are used to capture the group-wise association between SNP sets
and gene sets. These latent variables are presented as y = [y1,y2, . . . ,yM]T, where M
is the total number of latent variables bridging SNP sets and gene sets. Each hidden
variable may represent a latent factor regulating a set of genes, and its associated
genes may correspond to a set of genes in the same pathway or participating in
certain biological function. Note that this model allows a SNP or gene to participate
in multiple (SNP set, gene set) pairs. This is reasonable because SNPs and genes
may play different roles in multiple biology pathways. Since the model bridges SNP
sets and gene sets, we refer this method as SET-eQTL.

The exact role of these latent factors can be inferred from the network topology of
the resulting sparse graphical model learned from the data (by imposing ℓ1-norm on
the likelihood function, which will be discussed later in this section). Figure 6 shows
an example of the resulting graphical model. There are two types of hidden variables.
One type consists of hidden variables with zero in-degree (i.e., no connections with
the SNPs). These hidden variables correspond to the confounding factors. Other
types of hidden variables serve as bridges connecting SNP sets and gene sets. In
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Fig. 5: The proposed graphical model with hidden variables

Figure 6, yk is a hidden variable modeling confounding effects. yi and y j are bridge
nodes connecting the SNPs and genes associated with them. Note that this model
allows overlaps between different (SNP set, gene set) pairs. It is reasonable because
SNPs and genes may play multiple roles in different biology pathways.

Fig. 6: An example of the inferred sparse graphical model

3.4.2 Objective Function

From the probability theory, we have that the joint probability of x and z is

p(x,z) =
∫

y
p(x,y,z)dy. (3)

From the factorization properties of the joint distribution for a directed graphical
model, we have

p(x,y,z) = p(y|x)p(z|y)p(x). (4)

Thus, we have

p(z|x) = p(x,z)
p(x)

=
∫

y
p(y|x)p(z|y)dy. (5)
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We assume that the two conditional probabilities follow normal distributions:

y|x∼N (y|Ax+µµµA,σ
2
1 IM),

and

z|y∼N (z|By+µµµB,σ
2
2 IN),

where A ∈ RM×K is the coefficient matrix between x and y, B ∈ RN×M is the coeffi-
cient matrix between y and z. µµµA ∈ RM×1 and µµµB ∈RN×1 are the translation factor
vectors, of which σ2

1 IM and σ2
2 IN are their variances respectively (σ1 and σ2 are

constant scalars and IM and IN are identity matrices).
To impose sparsity, we assume that entries of A and B follow Laplace distribu-

tions:

A∼ Laplace(0,1/λ ),

and

B∼ Laplace(0,1/γ).

λ and γ are parameters of the ℓ1-regularization penalty on the objective function.
This model is a two-layer linear model and p(y|x) serves as the conjugate prior of
p(z|y). Thus we have

βββ ·N (y|µµµy,ΣΣΣ y) = N (y|Ax+µµµA,σ
2
1 IM) ·N (z|By+µµµB,σ

2
2 IN) (6)

where βββ is a scalar, µµµy and ΣΣΣ y are the mean and variance of a new normal distribu-
tion respectively.

From Equations 5 and 6, we have that

p(z|x) =
∫

y
βββ ·N (y|µµµy,ΣΣΣ y)dy = βββ (7)

Thus, maximizing p(z|x) is equivalent to maximizing βββ . Next, we show the deriva-
tion of βββ . We first derive the value of µµµy and ΣΣΣ−1

y by comparing the exponential
terms on both sides of Equation 6.

N (y|Ax+µµµA,σ2
1 IM) ·N (z|By+µµµB,σ2

2 IN)
= 1

(2π)
M+N

2 σM
1 σN

2

exp{− 1
2 [

1
σ2

1
(y−Ax−µµµA)

T(y−Ax−µµµA)

+ 1
σ2

2
(z−By−µµµB)

T(z−By−µµµB)]}
(8)

The exponential term in Equation 8 can be expanded as
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ΨΨΨ =− 1
2 [

1
σ2

1
(y−Ax−µµµA)

T(y−Ax)
+σ2

2 (z−By−µµµB)
T(z−By)]

=− 1
2 [

1
σ2

1
(yTy−yTAx−yTµµµA−xTATy+xTATAx

+xTATµµµA−µµµT
Ay+µµµT

AAX +µµµT
AµµµA)+

1
σ2

2
(zTz− zTBy

−zTµµµB−yTBTz+yTBTBy+yTBTµµµB−µµµT
Bz+µµµT

BBy
+µµµT

BµµµB)]

=− 1
2 [y

T( 1
σ2

1
IM + 1

σ2
2

BTB)y− 2
σ2

1
(xTATy+µµµT

Ay)

− 2
σ2

2
(zTBy−µµµT

BBy)+ 1
σ2

1
(xTATAx+2µµµT

AAx+µµµT
AµµµA)

+ 1
σ2

2
(zTz−2µµµT

Bz+µµµT
BµµµB)]

(9)

Thus, by comparing the exponential terms on both sides of Equation 6, we get

ΣΣΣ−1
y =

1
σ2

1
IM +

1
σ2

2
BTB, (10)

µµµT
y ΣΣΣ−1

y =
1

σ2
1
(xTAT +µµµT

A)+
1

σ2
2
(zTB−µµµT

BB). (11)

Further, we have

µµµy = ΣΣΣ y[
1

σ2
1
(Ax+µµµA)+

1
σ2

2
(BTz−BTµµµB)]. (12)

With ΣΣΣ−1
y and µµµy, we can derive the explicit form of βββ easily by setting y = 0,

which leads to the equation below:

βββ · 1

(2π)
M
2 |ΣΣΣy|

1
2

exp{− 1
2 µµµT

y ΣΣΣ−1
y µµµy}

= 1

(2π)
M+N

2 σM
1 σN

2

exp{ΨΨΨ y=0},
(13)

where ΨΨΨ y=0 is the value of ΨΨΨ when y = 0, and thereby

ΨΨΨ y=0 =− 1
2 [

1
σ2

1
(xTATAx+2µµµT

AAx+µµµT
AµµµA)

+ 1
σ2

2
(zTz−2µµµT

Bz+µµµT
BµµµB)]

(14)

Thus, we get the explicit form of βββ as

βββ =
|ΣΣΣy|

1
2

(2π)
N
2 σM

1 σN
2

exp{ΨΨΨ y=0 +
1
2 (µµµ

T
y ΣΣΣ−1

y µµµy)}. (15)

Here, βββ = p(z|x,A,B,µµµA,µµµB,σ1,σ2) is the likelihood function for one data
point x. Let X = {xd} and Z = {zd} be the sets of D observed data points (genotype
and the gene expression profiles for the samples in the study). To maximize βββ d , we
can minimize the negative log-likelihood of βββ d . Thus, our loss function is
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J = − log∏D
d=1 p(zd |xd)

= −∑D
d=1 log p(zd |xd)

= −∑D
d=1 logβββ d

(16)

Substituting Equation 15 into Equation 16, the expanded form of the loss function
is

J (A,B,µµµA,µµµB,σ1,σ2)

= D·N
2 ln(2π)+D ·M ln(σ1)+D ·N ln(σ2)+

D
2 ln |ΣΣΣ−1

y |
+ 1

2 ∑D
d=1{ 1

σ2
1
(xT

d ATAxd +2µµµT
AAxd +µµµT

AµµµA)

+ 1
σ2

2
(zT

d zd−2µµµT
Bzd +µµµT

BµµµB)− [ 1
σ2

1
(xT

d AT +µµµT
A)

+ 1
σ2

2
(zT

d B−µµµT
BB)]ΣΣΣ y[

1
σ2

1
(Axd +µµµA)+

1
σ2

2
(BTzd−BTµµµB)]}

(17)

Taking into account the prior distributions of A and B, we have that

p(z,A,B|x,µµµA,µµµB,σ1,σ2)
= βββ ·Laplace(A|0,1/λ ) ·Laplace(B|0,1/γ) (18)

Thus, we can have the ℓ1-regularized objective function

max
A,B,µµµA,µµµB,σ1,σ2

log
D

∏
d=1

p(zd ,A,B|xd ,µµµA,µµµB,σ1,σ2),

which is identical to

min
A,B,µµµA,µµµB,σ1,σ2

[J +D · (λ ||A||1 + γ||B||1)], (19)

where || · ||1 is the ℓ1-norm. λ and γ are the precision of the prior Laplace distribu-
tions of A and B respectively, serving as the regularization parameters which can be
determined by cross or holdout validation.

The gradient of the loss function J with respect to A, B, µµµA, µµµB, σ1, and σ2
are:

∇AJ = ∑D
d=1(

1
σ2

1
AxdxT

d −
1

σ4
1

ΣΣΣ yAxdxT
d −

1
σ2

1 σ2
2

ΣΣΣ yBTzdxT
d

+ 1
σ2

1
µµµAxT

d −
1

σ4
1

ΣΣΣ yµµµAxT
d +

1
σ2

1 σ2
2

ΣΣΣ yBTµµµBxT
d )

(20)

∇BJ = D
σ2

2
BΣΣΣ y +

1
σ4

2
( 1

σ2
2

BΣΣΣ yBT− IN)∑D
d=1[(zd−µµµB)

·(zd−µµµB)
T]BΣΣΣ y +

1
σ2

1 σ4
2

∑D
d=1{BΣΣΣ y[(Axd +µµµA)(zd−µµµB)

TB
+BT(zd−µµµB)(Axd +µµµA)

T]ΣΣΣ y−σ2
2 (zd−µµµB)(Axd +µµµA)

TΣΣΣ y}
+ 1

σ4
1 σ2

2
BΣΣΣ y ∑D

d=1[(Axd +µµµA)(xT
d AT +µµµT

A)]ΣΣΣ y

(21)

∇µµµAJ = 1
2 ∑D

d=1[
2

σ2
1
(Axd +µµµA)− 2

σ4
1

ΣΣΣ y(µµµA +Axd)− 2
σ2

1 σ2
2

ΣΣΣ y(BTzd−BTµµµB)]

(22)
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∇µµµBJ = 1
2 ∑D

d=1[
2

σ2
1
(−zd +µµµB)+

2
σ4

1
BΣΣΣ yBT(zd−µµµB)+

2
σ2

1 σ2
2

BΣΣΣ y(Axd +µµµA)]

(23)

∇σ1J = D·M
σ1
− D·tr(ΣΣΣy)

σ3
1

+∑D
d=1[−

xT
d ATAxd+2µµµT

AAxd+µµµT
AµµµA

σ3
1

+
2(xT

d AT+µµµT
A)ΣΣΣy(Axd+µµµA)

σ5
1

− (xT
d AT+µµµT

A)ΣΣΣ
2
y(Axd+µµµA)

σ7
1

+
2(xT

d AT+µµµT
A)ΣΣΣy(BTzd−BTµµµB)

σ3
1 σ2

2
− 2(xT

d AT+µµµT
A)ΣΣΣ

2
y(BTzd−BTµµµB)

σ5
1 σ2

2

− (zT
d B−µµµT

BB)ΣΣΣ2
y(BTzd−BTµµµB)

σ3
1 σ4

2
]

(24)

∇σ2J = D·N
σ2
− D·tr(ΣΣΣyBTB)

σ3
2

+∑D
d=1[−

zT
d zd−2µµµT

Bzd+µµµT
BµµµB

σ3
2

+
2(zT

d B−µµµT
BB)ΣΣΣy(BTzd−BTµµµB)

σ5
2

− (zT
d B−µµµT

BB)ΣΣΣyBTBΣΣΣy(BTzd−BTµµµB)

σ7
2

+
2(zT

d B−µµµT
BB)ΣΣΣy(Axd+µµµA)

σ2
1 σ3

2
− 2(zT

d B−µµµT
BB)ΣΣΣyBTBΣΣΣy(Axd+µµµA)

σ2
1 σ5

2

− (xT
d AT+µµµT

A)ΣΣΣyBTBΣΣΣy(Axd+µµµA)

σ4
1 σ3

2
]

(25)

3.5 Considering Confounding Factors

To infer associations between SNP sets and gene sets while taking into consideration
confounding factors, we further propose a graphical model as shown in Figure 7. D-
ifferent from the previous model, a new type of hidden variable, s = [s1,s2, . . . ,sH ]

T,
is used to model confounding factors. For simplicity, we refer to this model as Mod-
el 1. The objective function of this model can be derivated using similar strategy as
SET-eQTL.

Fig. 7: Graphical model with two types of hidden variables
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3.6 Incorporating Individual Effect

In the graphical model shown in Figure 7, we use a hidden variable y as a bridge
between a SNP set and a gene set to capture the group-wise effect. In addition, in-
dividual effects may exist as well [Listgarten et al., 2013]. An example is shown in
Figure 4. Note that an ideal model should allow overlaps between SNP sets and
between gene sets; that is, a SNP or gene may participate in multiple individual
and group-wise associations. To incorporate both individual and group-wise effects,
we extend the model in Figure 7 and add one edge between x and z to capture in-
dividual associations as shown in Figure 8. We will show that this refinement will
significantly improve the accuracy of model and enhance its computational efficien-
cy. For simplicity, we refer to the new model that considers both individual and
group-wise associations as Model 2.

Fig. 8: Refined graphical model to capture both individual and group-wise associa-
tions.

3.6.1 Objective Function

Next, we give the derivation of the objective function for the model in Figure 8. We
assume that the two conditional probabilities follow normal distributions:

y|x∼ N(y|Ax+µµµA,σ
2
1 IM), (26)

and
z|y,x∼ N(z|By+Cx+Ps+µµµB,σ

2
2 IN), (27)

where A ∈ RM×K is the coefficient matrix between x and y, B ∈ RN×M is the coeffi-
cient matrix between y and z, C∈RN×K is the coefficient matrix between x and z to
capture the individual associations, P ∈RN×H is the coefficient matrix of confound-
ing factors. µµµA ∈RM×1 and µµµB ∈RN×1 are the translation factor vectors, σ2

1 IM and
σ2

2 IN are the variances of the two conditional probabilities respectively (σ1 and σ2
are constant scalars and IM and IN are identity matrices).
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Since the expression level of a gene is usually affected by a small fraction of
SNPs, we impose sparsity on A, B and C. We assume that the entries of these matri-
ces follow Laplace distributions: Ai, j ∼ Laplace(0,1/λ ), Bi, j ∼ Laplace(0,1/γ),
and Ci, j ∼ Laplace(0,1/α). λ , γ and α will be used as parameters in the ob-
jective function. The probability density function of Laplace(µ,b) distribution is
f (x|µ ,b) = 1

2b exp(− |x−µ|
b ).

Thus, we have
y = Ax+µµµA + εεε1, (28)

z = By+Cx+Ps+µµµB + εεε2, (29)

where εεε1 ∼ N(0,σ2
1 IM),εεε2 ∼ N(0,σ2

2 IN). From Eq. (26) we have

By|x∼ N(BAx+BµµµA,σ
2
1 BBT), (30)

Assuming that the confounding factors follow normal distribution [Listgarten et al., 2013],
s∼ N(0,IH), then we have

Ps∼ N(0,PPT). (31)

We substitute Eq. (30), (31) into Eq. (29), and get

z|x∼ N(BAx+BµµµA +Cx+µµµB,σ
2
1 BBT +PPT +σ2

2 IN).

From the formula above, we observe that the summand BµµµA can also be integrat-
ed in µµµB. Thus to simplify the model, we set µµµA = 0 and obtain

z|x∼ N(BAx+Cx+µµµB,σ
2
1 BBT +PPT +σ2

2 IN).

To learn the parameters, we can use MLE (Maximize Likelihood Estimation) or
MAP (Maximum a posteriori). Then, we get the likelihood function as p(z|x) =
∏D

d=1 p(zd |xd). Maximizing the likelihood function is identical to minimizing the
negative log-likelihood. Here, the negative log-likelihood (loss function) is

J =
D

∑
d=1

Jd

=−1 · log
D

∏
d=1

p(zd |xd)

=
D

∑
d=1

(−1) · log p(zd |xd)

=
D ·N

2
log(2π)+

D
2

log |ΣΣΣ |+ 1
2

D

∑
d=1

[(zd −µµµd)
TΣΣΣ−1(zd −µµµd)],

(32)

where
µµµd = BAxd +Cxd +µµµB,

ΣΣΣ = σ2
1 BBT +WWT +σ2

2 IN .

Moreover, taking into account the prior distributions of A, B and C, we have
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p(zd ,A,B,C|xd ,P,σ1,σ2) =

exp(−Jd) · λ
2 ∏i, j exp(−λ |Ai, j|) · γ

2 ∏i, j exp(−γ|Bi, j|) · α
2 ∏i, j exp(−α|Ci, j|).

(33)

Thus, we have the ℓ1-regularized objective function

max
A,B,C,P,σ1,σ2

log
D

∏
d=1

p(zd ,A,B,C|xd ,P,σ1,σ2),

which is identical to

min
A,B,C,P,σ1,σ2

[J +D · (λ ||A||1 + γ||B||1 +α||C||1)], (34)

where || · ||1 is the ℓ1-norm. λ , γ and α are the precision of the prior Laplace distri-
butions of A, B, and C respectively. They serve as the regularization parameters and
can be determined by cross or holdout validation.

The explicit expression of µµµB can be derived as follows. When A, B, and C
are fixed, we have J = D·N

2 log(2π) + D
2 log |ΣΣΣ |+ 1

2 ∑D
d=1[(zd − BAxd −Cxd −

µµµB)
TΣΣΣ−1(zd−BAxd−Cxd−µµµB)]. When D = 1, this is a classic maximum likeli-

hood estimation problem, and we have µµµB = zd−BAxd−Cxd . When D > 1, lever-
aging the fact that ΣΣΣ−1 is symmetric, we convert the problem into a least-square
problem, which leads to

µµµB =
1
D

D

∑
d=1

(zd−BAxd−Cxd).

Substituting it into Eq. (32), we have

J = D·N
2 log(2π)+ D

2 log |ΣΣΣ |+ 1
2 ∑D

d=1{[(zd − z̄)
−(BA+C)(xd − x̄)]TΣΣΣ−1[(zd − z̄)− (BA+C)(xd − x̄)]}, (35)

where

x̄ =
1
D

D

∑
d=1

xd , z̄ =
1
D

D

∑
d=1

zd .

The gradient of the loss function, which (without detailed derivation) is given in
the below. For notational simplicity, we denote

td = (zd− z̄)− (BA+C)(xd− x̄),

ΨΨΨ d =
1
2
(ΣΣΣ−1−ΣΣΣ−1tdtd

TΣΣΣ−1).

1). Derivative with respect to σ1

∇σ1O = 2σ1

D

∑
d=1
{tr[ΨΨΨ d ]BBT}. (36)
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2). Derivative with respect to σ2

∇σ2O = 2σ2

D

∑
d=1
{tr[ΨΨΨ d ]}. (37)

3). Derivative with respect to A

∇AO =−
D

∑
d=1

[BTΣΣΣ−1td(xd − x̄)T]. (38)

4). Derivative with respect to B

∇BO = ΞΞΞ 1 +ΞΞΞ 2, (39)

where

ΞΞΞ 1 =−
D

∑
d=1

[ΣΣΣ−1td(xd − x̄)TAT], (40)

(ΞΞΞ 2)i j = σ2
1

D

∑
d=1
{tr[ΨΨΨ d(Ei jBT +BE ji)]}. (41)

(tr[·] stands for trace; Ei j is the single-entry matrix: 1 at (i, j) and 0 elsewhere.)
We speed up this calculation by exploiting sparsity of EEE i j and tr[·]. (The following

equation uses Einstein summation convention to better illustrate the idea.)

(ΞΞΞ 2)i j = σ2
1

D

∑
d=1
{tr[ΨΨΨ d(EEE i jBBBT +BBBEEE ji)]}

= σ2
1

D

∑
d=1
{tr[ΨΨΨ dEEE i jBBBT +ΨΨΨ dBBBEEE ji]}

= σ2
1

D

∑
d=1
{

N

∑
k=1

[(BBBT ) j,k(ΨΨΨ d)k,i]+
N

∑
l=1

[(ΨΨΨ d)i,l(BBB)l, j]}.

(42)

Therefore,

ΞΞΞ 2 = σ2
1

D

∑
d=1

[(BBBTΨΨΨ d)
T +ΨΨΨ dBBB]

= σ2
1

D

∑
d=1

[ΨΨΨ T
d BBB+ΨΨΨ dBBB]

= 2σ2
1

D

∑
d=1

ΨΨΨ dBBB.

(43)

5). Derivative with respect to C

∇CO =−
D

∑
d=1

[ΣΣΣ−1td(xd − x̄)T]. (44)

6). Derivative with respect to P

∇PO =
D

∑
d=1
{tr[ΨΨΨ d(Ei jPT +PE ji)]}= 2

D

∑
d=1

ΨΨΨ dP. (45)
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3.6.2 Increasing Computational Speed

In this section, we discuss how to increase the speed of the optimization process for
the proposed model. In the previous section, we have shown that A, B, C, P, σ1,
and σ2 are the parameters to be solved. Here, we first derive an updating scheme for
σ2 when other parameters are fixed by following a similar technique as discussed
in [Kang et al., 2008]. For other parameters, we develop an efficient method for cal-
culating the inverse of the covariance matrix which is the main bottleneck of the
optimization process.

Updating σ2 When all other parameters are fixed, using spectral decomposition
on (σ2

1 BBT +WWT), we have

ΣΣΣ = (σ2
1 BBT +WWT)+σ2

2 IN

= [U,V]diag(λ1 +σ2
2 , ...,λN−q +σ2

2 ,0, ...,0)[U,V]T

= Udiag(λ1 +σ2
2 , ...,λN−q +σ2

2 )U
T,

(46)

where U is an N× (N− q) eigenvector matrix corresponding to the nonzero eigen-
values; V is an N× q eigenvector matrix corresponding to the zero eigenvalues. A
reasonable solution should have no zero eigenvalues in ΣΣΣ , otherwise the loss func-
tion would be infinitely big. Therefore, q = 0.

Thus
ΣΣΣ−1 = Udiag(

1
λ1 +σ2

2
, ...,

1
λN +σ2

2
)UT.

Let UT(zd −BAxd −Cxd − µµµB) =: [ηd,1,ηd,2, ...,ηd,N ]
T. Then solving σ2 is e-

quivalent to minimizing

l(σ2
2 ) =

D ·N
2

log(2π)+
D
2

N

∑
s=1

log(λs +σ2
2 )+

1
2

D

∑
d=1

N

∑
s=1

η2
d,s

λs +σ2
2
, (47)

whose derivative is

l′(σ2
2 ) =

D
2

N

∑
s=1

1
λs +σ2

2
− 1

2

D

∑
d=1

N

∑
s=1

η2
d,s

(λs +σ2
2 )

2 .

This is a 1-dimensional optimization problem that can be solved very efficiently.
Efficiently Inverting the Covariance Matrix From objective function Eq. 35

and the gradient of the parameters, the time complexity of each iteration in the
optimization procedure is O(DN2M+DN2H +DN3 +DNMK). Since M≪ N and
H ≪ N, the third term of the time complexity (O(DN3)) is the bottleneck of the
overall performance. This is for computing the inverse of the covariance matrix

ΣΣΣ = σ2
1 BBBBBBT +PPPPPPT +σ2

2 IIIN ,

which is much more time-consuming than other matrix multiplication operations.
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We devise an acceleration strategy that calculates ΣΣΣ−1 using formula (48) in the
following theorem. The complexity of computing the inverse reduces to O(M3 +
H3).

Theorem 1 Given BBB ∈ RN×M , PPP ∈ RN×H , and

ΣΣΣ = σ2
2 IIIN +σ2

1 BBBBBBT +PPPPPPT.

Then
ΣΣΣ−1 = TTT −TTT PPPSSS−1PPPTTTT , (48)

where
SSS = IIIH +PPPTTTT PPP, (49)

TTT = σ−2
2 (IIIN−σ2

1 BBB(σ2
2 IIIM +σ2

1 BBBTBBB)−1BBBT). (50)

The proof of Theorem 1 is provided in the following.
Proof of Theorem 1 Before giving the formal proof for Theorem 1, we first

introduce Lemma 1, which follows from the definition of matrix inverse.

Lemma 1 For all UUU ∈ RN×M , if IIIM +UUUTUUU is invertible, then

(IIIN +UUUUUUT)−1 = IIIN−UUU(IIIM +UUUTUUU)−1UUUT.

Here we provide a more general proof, which can be modified to derive more
involved cases.

Proof. We denote
QQQ = σ2

2 IIIN +σ2
1 BBBBBBT, (51)

that is,
ΣΣΣ = σ2

2 IIIN +σ2
1 BBBBBBT +PPPPPPT = QQQ+PPPPPPT. (52)

By Lemma 1, we have

QQQ−1 = TTT = σ−2
2 (IIIN−σ2

1 BBB(σ2
2 IIIM +σ2

1 BBBTBBB)−1BBBT).

QQQ is symmetric positive definite, hence its inverse, TTT , is symmetric positive defi-
nite. Since every symmetric positive definite matrix has exactly one symmetric pos-
itive definite square root, we can write

TTT = RRRRRR,

where RRR is an N×N symmetric positive definite matrix.
It is clear that, QQQ=TTT−1 =(RRRRRR)−1 =RRR−1RRR−1, which leads to RRRQQQRRR=RRRRRR−1RRR−1RRR=

IIIN , and therefore

RRRΣΣΣRRR = IIIN +RRRPPPPPPTRRR = IIIN +RRRPPPPPPTRRRT.

Note that the above and the following formulas follow the fact that RRR is symmetric.
Once again, by Lemma 1, we have
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(RRRΣΣΣRRR)−1 = IIIN −RRRPPPSSS−1PPPTRRRT,

where
SSS = IIIH +PPPTRRRTRRRPPP = IIIH +PPPTTTT PPP.

Therefore,
ΣΣΣ−1 = RRR(RRRΣΣΣRRR)−1RRR = RRRRRR−RRRRRRPPPSSS−1PPPTRRRTRRR,

and thus
ΣΣΣ−1 = TTT −TTT PPPSSS−1PPPTTTT

3.7 Optimization

To optimize the objective function, there are many off-the-shelf ℓ1-penalized op-
timization tools. We use the Orthant-Wise Limited-memory Quasi-Newton (OWL-
QN) algorithm described in [Andrew and Gao, 2007]. The OWL-QN algorithm min-
imizes functions of the form

f (w) = loss(w)+ c||w||1,

where loss(·) is an arbitrary differentiable loss function, and ||w||1 is the ℓ1-norm
of the parameter vector. It is based on the L-BFGS Quasi-Newton algorithm,
with modifications to deal with the fact that the ℓ1-norm is not differentiable
[Nocedal and Wright, 2006]. The algorithm is proven to converge to a local opti-
mum of the parameter vector. The algorithm is very fast, and capable of scaling
efficiently to problems with millions of parameters. Thus it is a good option for our
problem where the parameter space is large when dealing with large scale eQTL
data.

3.8 Experimental Results

We apply our methods (SET-eQTL, Model1, and Model2) to both simulation
datasets and yeast eQTL datasets [Rachel B. Brem and Kruglyak, 2005] to eval-
uate its performance. For comparison, we select several recent eQTL methods,
including LORS [Yang et al., 2013], MTLasso2G [Chen et al., 2012], FaST-LMM
[Listgarten et al., 2013] and Lasso [Tibshirani, 1996]. The tuning parameters in the
selected methods are learned using cross-validation. All experiments are performed
on a PC with 2.20 GHz Intel i7 eight-core CPU and 8 GB memory.
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3.8.1 Simulation Study

We first evaluate whether Model 2 can identify both individual and group-wise asso-
ciations. We adopt a similar setup for simulation study to that in [Lee and Xing, 2012,
Yang et al., 2013] and generate synthetic datasets as follows. 100 SNPs are random-
ly selected from the yeast eQTL dataset [Rachel B. Brem and Kruglyak, 2005]. N
gene expression profiles are generated by Z j∗ = β j∗X + Ξ j∗ + E j∗ (1 ≤ j ≤ N),
where E j∗ ∼N (0,ηI) (η = 0.1) denotes Gaussian noise. Ξ j∗ is used to model non-
genetic effects, which is drawn from N(0,ρΛ), where ρ = 0.1. Λ is generated by
FFT, where F ∈RD×U and Fi j ∼N (0,1). U is the number of hidden factors and is
set to 10 by default. The association matrix β is shown in the top-left plot in Figure
9. The association strength is 1 for all selected SNPs. There are four group-wise
associations of different scales in total. The associations on the diagonal are used to
represent individual association signals in cis-regulation.

β (true)
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Fig. 9: Ground truth of β and linkage weights estimated by Model2 on simulated
data.

The remaining three plots in Figure 9 show associations estimated by Model2.
From the figure, we can see that Model2 well captures both individual and group-
wise signals. For comparison, Figure 10 visualizes the association weights estimated
by Model1 and Model2 when varying the number of hidden variables (M). We
observe that for Model1, when M = 20, most of the individual association signals on
the diagonal are not captured. As M increases, more individual association signals
are detected by Model1. In contrast, Model2 recovers both individual and group-
wise linkage signals with small M.

Next, we generate 50 simulated datasets with different signal-to-noise ratios (de-

fined as SNR =
√

Var(βX)
Var(Ξ+E) ) in the eQTL datasets [Yang et al., 2013] to compare

the performance of the selected methods. Here, we fix H = 10,ρ = 0.1, and use
different η’s to control SNR. For each setting, we report the average result from the
50 datasets. For the proposed methods, we use BA+C as the overall associations.
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Model1 B×A (M=80)
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Fig. 10: Association weights estimated by Model1 and Model2.

Since FaST-LMM needs extra information (e.g., the genetic similarities between in-
dividuals) and uses PLINK format, we do not list it here and will compare it on the
real data set.
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Fig. 11: The ROC curve of FPR-TPR on simulated data.

Figure 11 shows the ROC curves of TPR-FPR for performance comparison. The
corresponding areas under the TPR-FPR curve and the areas under the precision-
recall curve (AUCs) [Chen et al., 2012] are shown in Figure 12. It can be seen that
Model2 outperforms all alternative methods by a large margin. Model2 outperforms
Model1 because it considers both group-wise and individual associations. Model1
outperforms SET-eQTL because it considers confounding factors that is not consid-
ered by SET-eQTL. SET-eQTL considers all associations as group-wise, thus it may
miss some individual associations. MTLasso2G is comparable to LORS because
MTLasso2G considers the group-wise associations while neglecting confounding
factors. LORS considers the confounding factors, but does not distinguish individu-
al and group-wise associations. LORS outperforms Lasso since confounding factors
are not considered in Lasso.
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Fig. 12: The areas under the precision-recall/FPR-TPR curve (AUCs).
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Fig. 13: Model 2 shrinkage of coefficients for B×A and C respectively.

As discussed in the previous section, the group-wise associations are encoded
in B×A and individual associations are encoded in C. To enforce sparsity on A, B
and C, we use Laplace prior on the elements of these matrices. Thus, it is interesting
to study the overall shrinkage of B×A and C. We randomly generate 7 predictors
({x1,x2, ...,x7}) and 1 response (z) with sample size 100. xi ∼ N (0,0.6 · I)(i ∈
[1,7]). The response vector was generated with the formula: z = 5 · (x1 + x2)− 3 ·
(x3 + x4) + 2 · x5 + ε̃ and ε̃ ∈ N (0,I). Thus, there are two groups of predictors
({x1,x2} and {x3,x4}) and one individual predictor x5. Figure 13 shows the Model
2 shrinkage of coefficients for B×A and C respectively. Each curve represents a
coefficient as a function of the scaled parameter s = |B×A|

max |B×A| or s = |C|
max |C| . We

can see that the two groups of predictors can be identified by B×A as the most
important variables, and the individual predictor can be identified by C.

Computational Efficiency Evaluation
Scalability is an important issue for eQTL study. To evaluate the techniques for

speeding up the computational efficiency, we compare the running time with/with-
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(b) N=100
Fig. 14: Running time performance on simulated data when varying N and M.

out these techniques. Figure 14 shows the running time when varying the number of
hidden variables (M) and number of traits (N). The results are consistent with the the-
oretical analysis in previous part that the time complexity is reduced to O(M3+H3)
from O(N3) when using the improved method for inverting the covariance matrix.
We also observe that Model2 uses slightly more time than Model1, since it has
more parameters to optimize. However, to get similar performance, Model1 needs
a significantly larger number of hidden variables M. As shown in Figure 14 (b), a
larger M results in a longer running time. In some cases, Model2 is actually faster
than Model1. As an example, to obtain the same performance (i.e., AUC), Model1
needs 60 hidden variables (M), while Model2 only needs M = 20. In this case, from
Figure 14 (a), we can observe that Model2 needs less time than Model1 to obtain
the same results.

3.8.2 Yeast eQTL Study

We apply the proposed methods to a yeast (Saccharomyces cerevisiae) eQTL dataset
of 112 yeast segregants [Rachel B. Brem and Kruglyak, 2005] generated from a
cross of two inbred strains. The dataset originally includes expression profiles of
6229 gene expression traits and genotype profiles of 2956 SNP markers. After re-
moving SNPs with more than 10% missing values and merging consecutive SNPS
with high linkage disequilibrium, we obtain 1017 SNPs with distinct genotypes
[Huang et al., 2009a]. In total, 4474 expression profiles are selected after remov-
ing the ones with missing values. It takes about 5 hours for Model1, and 3 hours for
Model2 to run to completion. The regularization parameters are set by grid search
in {0.1, 1, 10, 50, 100, 500, 1000, 2000}. Specifically, grid search trains the model
with each combination of three regularization parameters in the grid and evaluates
their performance (by measuring out-of-sample loss function value) for a two-fold
cross validation. Finally, the grid search algorithm outputs the settings that achieved
the smallest loss in the validation procedure.

We use hold-out validation to find the optimal number of hidden variables M
and H for each model. Specifically, we partition the samples into 2 subsets of equal
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size. We use one subset as training data and test the learned model using the other
subset of samples. By measuring out-of-sample predictions, we can find optimal
combination of M and H that avoids over-fitting. For each combination, optimal
values for regularization parameters were determined with two-fold cross validation.
The loss function values for different {M, H} combinations of Model2 are shown
in Figure 15. We find that M=30 and H=10 for Model2 delivers the best overall
performance. Similarly, we find that the optimal M and H values for Model1 are
150 and 10 respectively. The significant associations given by Model1, Model2,
LORS, MTLasso2G and Lasso are shown in Figure 16. For Model2, we can clearly
see that the estimated matrices C and B×A well capture the non group-wise and
group-wise signals respectively. C + B×A and C of Model2 have stronger cis-
regulatory signals and weaker trans-regulatory bands than that of Model1, LORS,
and Lasso. C of Model2 has the weakest trans-regulatory bands. LORS has weaker
trans-regulatory bands than Lasso since it considers confounding factors. With more
hidden variables (larger M), Model1 obtains stronger cis-regulatory signals.

cis- and trans- Enrichment Analysis
In total, the proposed two methods detect about 6000 associations with non-zero

weight values (B×A for Model1 and C+B×A for Model2). We estimate their
FDR values by following the method proposed in [Yang et al., 2013]. With FDR ≤
0.01, both models obtain about 4500 associations. The visualization of significant
associations detected by different methods is provided in Figure 16.

We apply cis- and trans-enrichment analysis on the discovered associations. In
particular, we follow the standard cis-enrichment analysis [Listgarten et al., 2010,
McClurg et al., 2007] to compare the performance of two competing models. The
intuition behind cis-enrichment analysis is that more cis-acting SNPs are expected
than trans-acting SNPs. A two-step procedure is used in the cis-enrichment analysis
[Listgarten et al., 2010]: (1) for each model, we apply a one-tailed Mann-Whitney
test on each SNP to test the null hypothesis that the model ranks its cis hypotheses
(we use <500bp for yeast) no better than its trans hypotheses, (2) for each pair of
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(a) Model 2 C+B×A(M=30, top
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(b) Model 2 C(M=30, top 3000)
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(c) Model 2 B × A(M=30, top

1500)
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(d) Model 1 B×A(M=120)
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(e) Model 1 B×A(M=150)
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(f) Model 1 B×A(M=200)
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Fig. 16: Significant associations discovered by different methods in yeast.

models compared, we perform a two-tailed paired Wilcoxon sign-rank test on the
p-values obtained from the previous step. The null hypothesis is that the median
difference of the p-values in the Mann-Whitney test for each SNP is zero. The tran-
s-enrichment is implemented using a similar strategy as in [Yvert et al., 2003], in
which genes regulated by transcription factors are used as trans-acting signals.

The results of pairwise comparison of selected models are shown in Table 2. A
p-value shows how significant a method on the left column outperforms a method
in the top row in terms of cis-enrichment or trans-enrichment. We observe that the
proposed Model2 has significantly better cis-enrichment scores than other methods.
For trans-enrichment, Model2 is the best, and FaST-LMM comes in second. This
is because both Model2 and FaST-LMM consider confounding factors (FaST-LMM
considers confounders from population structure) and joint effects of SNPs, but on-
ly Model2 considers grouping of genes. Model1 has poor performance because a
larger M may be needed for Model1 to capture those individual associations.

Reproducibility of trans Regulatory Hotspots between Studies
We also evaluate the consistency of calling eQTL hotspots between two indepen-

dent glucose yeast datasets [Smith and Kruglyak, 2008]. The glucose environment
from Smith et al. [Smith and Kruglyak, 2008] shares a common set of segregants. It
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cis-enrichment

FaST-LMM C of Model2 SET-eQTL MTLasso2G
B×A

of Model1 LORS Lasso
C+B×A of Model2 0.4351 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

FaST-LMM - 0.2351 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001
C of Model2 - - 0.0253 0.0221 < 0.0001 < 0.0001 < 0.0001
SET-eQTL - - - 0.0117 < 0.0001 < 0.0001 < 0.0001

MTLasso2G - - - - < 0.0001 < 0.0001 < 0.0001
B×A of Model1 - - - - - < 0.0001 < 0.0001

LORS - - - - - - 0.0052

trans-enrichment

B×A
of Model2 FaST-LMM MTLasso2G LORS

B×A
of Model1 SET-eQTL Lasso

C+B×A of Model2 0.4245 0.3123 0.0034 0.0029 0.0027 0.0025 0.0023
B×A of Model2 - 0.3213 0.0132 0.0031 0.0028 0.0027 0.0026

FaST-LMM - - 0.0148 0.0033 0.0031 0.003 0.0029
MTLasso2G - - - 0.0038 0.0037 0.0036 0.0032

LORS - - - - 0.0974 0.0387 0.0151
B×A of Model1 - - - - - 0.0411 0.0563

SET-eQTL - - - - - - 0.0578

Table 2: Pairwise comparison of different models using cis- and trans- enrichment.

includes 5493 probes measured in 109 segregates. Since our algorithm aims at find-
ing group-wise associations, we focus on the consistency of regulatory hotspots.

We examine the reproducibility of trans regulatory hotspots based on the fol-
lowing criteria [Fusi et al., 2012, Yang et al., 2013, Joo et al., 2014]. For each SNP,
we count the number of associated genes from the detected SNP-gene associations.
We use this number as the regulatory degree of each SNP. For Model2, LORS, and
Lasso, all SNP-Gene pairs with non-zero association weights are defined as associ-
ations. Note that Model2 uses BA+C as the overall associations. For FaST-LMM,
SNP-Gene pairs with a q-value < 0.001 are defined as associations. Note that we
also tried different cutoffs for FaST-LMM (from 0.01 to 0.001), the results are sim-
ilar. SNPs with large regulatory degrees are often referred to as hotspots. We sort
SNPs by the extent of trans regulation (regulatory degrees) in a descending order.
We denote the sorted SNPs lists as S1 and S2 for the two yeast datasets. Let ST

1
and ST

2 be the top T SNPs in the sorted SNP lists. The trans calling consistency of

detected hotspots is defined as |S
T
1
∩

ST
2 |

T . Figure 17 compares the reproducibility of
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Fig. 17: Consistency of detected eQTL hotspots

trans regulatory hotspots given by different studies. It can be seen that the proposed
Model2 gives much higher consistency than any other competitors do. In particular,
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aGroup ID bSNPs set size cgene set size d GO category
1 63 294 oxidation-reduction process∗
2 78 153 thiamine biosynthetic process∗
3 94 871 rRNA processing∗∗∗
4 64 204 nucleosome assembly∗∗
5 70 288 ATP synthesis coupled proton transport∗∗∗
6 43 151 branched chain family amino acid biosynthetic...∗∗
7 76 479 mitochondrial translation∗∗∗
8 47 349 transmembrane transport∗∗
9 64 253 cytoplasmic translation∗∗∗

10 72 415 response to stress∗∗
11 64 225 mitochondrial translation∗
12 62 301 oxidation-reduction process∗∗
13 83 661 oxidation-reduction process∗
14 69 326 cytoplasmic translation∗
15 71 216 oxidation-reduction process∗
16 66 364 methionine metabolic process∗
17 74 243 cellular amino acid biosynthetic process∗∗∗
18 63 224 transmembrane transport∗∗
19 23 50 de novo’ pyrimidine base biosynthetic process∗
20 66 205 cellular amino acid biosynthetic process∗∗∗
21 81 372 oxidation-reduction process∗∗
22 33 126 oxidation-reduction process∗∗∗
23 81 288 pheromone-dependent signal transduction...∗∗
24 53 190 pheromone-dependent signal transduction...∗∗
25 91 572 oxidation-reduction process∗∗∗
26 66 46 cellular cell wall organization∗
27 111 1091 translation∗∗∗
28 89 362 cellular amino acid biosynthetic process∗∗
29 62 217 transmembrane transport∗∗
30 71 151 cellular aldehyde metabolic process∗∗

Table 3: Summary of all detected groups of genes from Model2 on yeast data.

the consistency of trans hotspots suggests the superiority of Model2 in identifying
hotspots that are likely to have a true genetic underpinning.

Gene Ontology Enrichment Analysis
As discussed in previous section, hidden variables y in the middle layer may

model the joint effect of SNPs that have influence on a group of genes. To better
understand the learned model, we look for correlations between a set of genes as-
sociated with a hidden variable and GO categories (Biological Process Ontology)
[The Gene Ontology Consortium, 2000]. In particular, for each gene set G, we iden-
tify the GO category whose set of genes is most correlated with G. We measure the
correlation by a p-value determined by the Fisher’s exact test. Since multiple gene
sets G need to be examined, the raw p-values need to be calibrated because of the
multiple testing problem [Westfall and Young, 1993]. To compute the calibrated p-
values for each gene set G, we perform a randomization test, wherein we apply the
same test to randomly created gene sets that have the same number of genes as G.
Specifically, the enrichment test is performed using DAVID [Huang et al., 2009a].
And gene sets with calibrated p-values less than 0.01 are considered as significantly
enriched. The results from Model2 are reported in Table 3. Each row of Table 3 rep-
resents the gene set associated with a hidden variable. All of these detected gene sets
are significantly enriched in certain GO categories. In total, 77 out of 90 gene sets
detected by SET-eQTL are significant. For SET-eQTL, Figure 18 shows the number
of genes and SNPs within each group-wise association and the corresponding cali-
brated p-value (Fisher’s exact test) of each discovered gene set. The hidden variable
IDs are used as the cluster IDs. We can observe that for SET-eQTL, the gene sets
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with large calibrated p-values tend to have a very small SNP set associated with
them. Those clusters are labeled in both figures. This is a strong indicator that these
hidden variables may correspond to confounding factors.
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Fig. 18: Number of nodes and calibrated p-values in each group-wise association

(a) Model1(150 groups)

(b) Model2(30 groups)

Fig. 19: Number of SNPs and genes in each group-wise association.

For comparison, we visualize the number of SNPs and genes in each group-
wise association in Figure 19. We observe that 90 out of 150 gene sets reported by
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Model1 are significantly enriched, and all 30 gene sets reported by Model2 are sig-
nificantly enriched. This indicates that Model2 is able to detect group-wise linkages
more precisely than Model1. We also study the hotspots detected by LORS, which
affect > 10 gene traits [Lee and Xing, 2012]. Specifically, we delve into the top 15
hotspots detected by LORS (ranking by number of associated genes for each SNP).
We can see that only 9 out of 15 top ranked hotspots are significantly enriched.

3.9 Conclusion

A crucial challenge in eQTL study is to understand how multiple SNPs interact with
each other to jointly affect the expression level of genes. In this section, we propose
three sparse graphical model based approaches to identify novel group-wise eQTL
associations. ℓ1-regularization is applied to learn the sparse structure of the graph-
ical model. The three models incrementally take into consideration more aspects,
such as group-wise association, potential confounding factors and the existence of
individual associations. We illustrate how each aspect would benefit the eQTL map-
ping. We also introduce computational techniques to make this approach suitable
for large scale studies. Extensive experimental evaluations using both simulated and
real datasets demonstrate that the proposed methods can effectively capture both
individual and group-wise signals and significantly outperform the state-of-the-art
eQTL mapping methods.

4 Incorporating Prior Knowledge for Robust eQTL Mapping

4.1 Introduction

Several important issues need to be considered in eQTL mapping. First, the number
of SNPs is usually much larger than the number of samples [Tibshirani, 1996]. Sec-
ond, the existence of confounding factors, such as expression heterogeneity, may re-
sult in spurious associations [Listgarten et al., 2010]. Third, SNPs (and genes) usual-
ly work together to cause variation in complex traits [Michaelson et al., 2009a]. The
interplay among SNPs and the interplay among genes can be represented as network-
s and used as prior knowledge [Pujana et al., 2007, Musani et al., 2007b]. However,
such prior knowledge is far from being complete and may contain a lot of noise.
Developing effective models to address these issues in eQTL studies has recently
attracted increasing research interests [Biganzoli et al., 2006, Kim and Xing, 2012,
Lee et al., 2010, Lee and Xing, 2012].

In eQTL studies, two types of networks can be utilized. One is the genetic in-
teraction network [Charles Boone and Andrews, 2007]. Modeling genetic interac-
tion (e.g., epistatic effect between SNPs) is essential to understanding the genetic
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basis of common diseases, since many diseases are complex traits [Lander, 2011].
Another type of network is the network among traits, such as the PPI network or
the gene co-expression network. Interacting proteins or genes in a PPI network
are likely to be functionally related, i.e., part of a protein complex or in the same
biological pathway [von Mering et al., 2002]. Effectively utilizing such prior net-
work information can significantly improve the performance of eQTL mapping
[Lee and Xing, 2012, Lee et al., 2010].

Figure 20 shows an example of eQTL mapping with prior network knowledge.
The interactions among SNPs and genes are represented by matrices S and G respec-
tively. The goal of eQTL mapping is to infer associations between SNPs and genes
represented by the coefficient matrix W. Suppose that SNP 2⃝ is strongly associated
with gene C⃝. Using the network prior, the moderate association between SNP 1⃝
and gene A⃝ may be identified since 1⃝ and 2⃝, A⃝ and C⃝ have interactions.

To leverage the network prior knowledge, several methods based on Lasso have
been proposed [Kim and Xing, 2012, Lee and Xing, 2012, Lee et al., 2010]. The
group-lasso penalty is applied to model the genetic interaction network. Xing et al.
consider groupings of genes and apply a multi-task lasso penalty [Kim and Xing, 2012,
Lee et al., 2010]. They further extend the model to consider grouping information of
both SNPs and genes [Lee and Xing, 2012]. These methods apply a “hard” cluster-
ing of SNPs (genes) so that a SNP (gene) cannot belong to multiple groups. Howev-
er, a SNP may affect multiple genes and a gene may function in multiple pathways.
To address this limitation, Jenatton et al. develop a model allowing overlap between
different groups [Jenatton et al., 2011].

Despite their success, there are three common limitations of these group penalty
based approaches. First, a clustering step is usually needed to obtain the grouping
information. To address this limitation, Xing et al. introduce a network-based fusion
penalty on the genes [Kim and Xing, 2009, Li and Li, 2008]. However, this method
does not consider the genetic interaction network. A two-graph-guided multi-task
Lasso approach is developed by Chen et al. [Chen et al., 2012] to make use of gene
co-expression network and SNP correlation network. However, this method does
not consider the network prior knowledge. The second limitation of the existing
methods is that they do not take into consideration the incompleteness of the net-
works and the noise in them [von Mering et al., 2002]. For example, PPI networks
may contain false interactions and miss true interactions [von Mering et al., 2002].
Directly using the grouping penalty inferred from the noisy and partial prior net-
works may introduce new bias and thus impair the performance. Third, in addition
to the network information, other prior knowledge, such as location of genetic mark-
ers and gene pathway information, are also available. The existing methods cannot
incorporate such information.

To address the limitations of the existing methods, this section proposes a novel
approach, Graph-regularized Dual Lasso (GDL), which simultaneously learns the
association between SNPs and genes and refines the prior networks. To support
“soft” clustering (allowing genes and SNPs to be members of multiple clusters), we
adopt the graph regularizer to encode structured penalties from the prior networks.
The penalties encourage the connected nodes (SNPs/genes) to have similar coeffi-
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cients. This enables us to find multiple-correlated genetic markers with pleiotropic
effects that affect multiple-correlated genes jointly. To tackle the problem of noisy
and incomplete prior networks, we exploit the duality between learning the associ-
ations and refining the prior networks to achieve smoother regularization. That is,
learning regression coefficients can help to refine the prior networks, and vice versa.
For example, in Figure 20, if SNPs 3⃝ and 4⃝ have strong associations with the same
group of genes, they are likely to have interaction, which is not captured in the prior
network. An ideal model should allow an update to the prior network according to
the learned regression coefficients. GDL can also incorporate other available prior
knowledge such as the physical location of SNPs and biology pathways to which the
genes belong. The resultant optimization problem is convex and can be efficiently
solved by using an alternating minimization procedure. We perform extensive empir-
ical evaluation of the proposed method using both simulated and real eQTL datasets.
The results demonstrate that GDL is robust to the incomplete and noisy prior knowl-
edge and can significantly improve the accuracy of eQTL mapping compared to the
state-of-the-art methods.

4.2 Background: Linear Regression with Graph Regularizer

Throughout the section, we assume that, for each sample, the SNPs and genes
are represented by column vectors. Important notations are listed in Table 4. Let
x = [x1,x2, . . . ,xK ]

T represent the K SNPs in the study, where xi ∈ {0,1,2} is a ran-
dom variable corresponding to the i-th SNP. For example, 0, 1, 2 may encode the
homozygous major allele, heterozygous allele, and homozygous minor allele, re-
spectively. Let z = [z1,z2, . . . ,zN ]

T represent expression levels of the N genes in the
study, where z j is a continuous random variable corresponding to the j-th gene. The
traditional linear regression model for association mapping between x and z is
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Symbols Description
K Number of SNPs
N Number of genes
D Number of samples

X ∈ RK×D The SNP matrix data
Z ∈ RN×D The gene matrix data
L ∈ RN×D A low-rank matrix
S0 ∈ RK×K The input affinity matrices of the genetic interaction network
G0 ∈ RN×N The input affinity matrices of the network of traits
S ∈ RK×K The refined affinity matrices of the genetic interaction network
G ∈ RN×N The refined affinity matrices of the network of traits
W ∈ RN×K The coefficient matrix to be inferred

R(S) The graph regularizer from the genetic interaction network
R(G) The graph regularizer from the PPI network
D(·, ·) A nonnegative distance measure

Table 4: Summary of Notations

z = Wx+µµµ + ε, (53)

where z is a linear function of x with coefficient matrix W. µµµ is an N×1 translation
factor vector. ε is the additive noise of Gaussian distribution with zero-mean and
variance γI, where γ is a scalar. That is, ε ∼N (0,γI).

The question now is how to define an appropriate objective function over W that
1) can effectively incorporate the prior network knowledge, and 2) is robust to the
noise and incompleteness in the prior knowledge. Next, we first briefly review Lasso
and its variations and then introduce the proposed GD-Lasso method.

4.2.1 Lasso and LORS

Lasso [Tibshirani, 1996] is a method for estimating the regression coefficients W
using ℓ1 penalty for sparsity. It has been widely used for association mapping prob-
lems. Let X = {xd |1 ≤ d ≤ D} ∈ RK×D be the SNP matrix and Z = {zd |1 ≤ d ≤
D} ∈ RN×D be the gene expression matrix. Each column of X and Z stands for one
sample. The objective function of Lasso is

min
W

1
2
||Z−WX−µµµ1||2F +η ||W||1 (54)

where || · ||F denotes the Frobenius norm, || · ||1 is the ℓ1-norm. 1 is an 1×D vector
of all 1’s. η is the empirical parameter for the ℓ1 penalty. W is the parameter (also
called weight) matrix parameterizing the space of linear functions mapping from X
to Z.

Confounding factors, such as unobserved covariates, experimental artifacts, and
unknown environmental perturbations, may mask real signals and lead to spurious
findings. LORS [Yang et al., 2013] uses a low-rank matrix L ∈RN×D to account for
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the variations caused by hidden factors. The objective function of LORS is

min
W,µµµ,L

1
2
||Z−WX−µµµ1−L||2F +η ||W||1 +λ ||L||∗ (55)

where || · ||∗ is the nuclear norm. η is the empirical parameter for the ℓ1 penalty to
control the sparsity of W, and λ is the regularization parameter to control the rank
of L. L is a low-rank matrix assuming that there are only a small number of hidden
factors influencing the gene expression levels.

4.2.2 Graph-regularized Lasso

To incorporate the network prior knowledge, group sparse Lasso [Biganzoli et al., 2006],
multi-task Lasso [Obozinski and Taskar, 2006] and SIOL [Lee and Xing, 2012] have
been proposed. Group sparse Lasso makes use of grouping information of SNPs;
multi-task Lasso makes use of grouping information of genes, while SIOL uses in-
formation from both networks. A common drawback of these methods is that the
number of groups (SNP and gene clusters) has to be predetermined. To overcome
this drawback, we propose to use two graph regularizers to encode the prior network
information. Compared with the previous group penalty based methods, our method
does not need to pre-cluster the networks and thus may obtain smoother regulariza-
tion. Moreover, these methods do not consider confounding factors that may mask
real signals and lead to spurious findings. In this section, we further incorporate the
idea in LORS [Yang et al., 2013] to tackle the confounding factors simultaneously.

Let S0 ∈ RK×K and G0 ∈ RN×N be the affinity matrices of the genetic interac-
tion network (e.g., epistatic effect between SNPs) and network of traits (e.g., PPI
network or gene co-expression network), and DS0 and DG0 be their degree matri-
ces. Given the two networks, we can employ a pairwise comparison between w∗i
and w∗ j (1≤ i < j ≤ K): if SNPs i and j are closely related, ||w∗i−w∗ j||22 is small.
The pairwise comparison can be naturally encoded in the weighted fusion penal-
ty ∑i j ||w∗i−w∗ j||22(S0)i, j. This penalty will enforce ||w∗i−w∗ j||22 = 0 for closely
related SNP pairs (with large (S0)i, j value). Then, the graph regularizer from the
genetic interaction network takes the following form

R(S) =
1
2 ∑

i j
||w∗i−w∗ j||22(S0)i, j

= tr(W(DS0 −S0)WT)

(56)

Similarly, the graph regularizer for the network of traits is

R(G) = tr(WT(DG0 −G0)W) (57)

These two regularizers encourage the connected nodes in a graph to have similar
coefficients. A heavy penalty occurs if the learned regression coefficients for neigh-
boring SNPs (genes) are disparate. (DS0−S0) and (DG0−G0) are known as the com-
binatorial graph Laplacian, which are positive semi-definite [Chung, 1997]. Graph-
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regularized Lasso (G-Lasso) solves the following optimization problem

min
W,µµµ,L

1
2
||Z−WX−µ1−L||2F

+η ||W||1 +λ ||L||∗+αR(S)+βR(G)

(58)

where α,β > 0 are regularization parameters.

4.3 Graph-regularized Dual Lasso

In eQTL studies, the prior knowledge is usually incomplete and contains noise. It
is desirable to refine the prior networks according to the learned regression coeffi-
cients. There is a duality between the prior networks and the regression coefficients:
learning coefficients can help to refine the prior networks, and vice versa. This leads
to mutual reinforcement when learning the two parts simultaneously.

Next, we introduce the Graph-regularized Dual Lasso (GD-Lasso). We further
relax the constraints from the prior networks (two graph regularizers) introduced in
Section 4.2.2, and integrate the graph-regularized Lasso and the dual refinement of
graphs into a unified objective function

min
W,µµµ,L,S≥0,G≥0

1
2
||Z−WX−µ1−L||2F +η ||W||1 +λ ||L||∗

+αtr(W(DS−S)WT)+β tr(WT(DG−G)W)

+ γ||S−S0||2F +ρ||G−G0||2F

(59)

where γ,ρ > 0 are positive parameters controlling the extent to which the refined
networks should be consistent with the original prior networks. DS and DG are the
degree matrices of S and G. Note that the objective function considers the non-
negativity of S and G. As an extension, the model can be extended easily to incor-
porate prior knowledge from multiple sources. We only need to revise the last two
terms in Eq. 59 to γ ∑ f

i=1 ||S−Si||2F +ρ ∑e
i=1 ||G−Gi||2F , where f and e are the num-

ber of sources for genetic interaction networks and gene trait networks respectively.

4.3.1 Optimization: An Alternating Minimization Approach

In this section, we present an alternating scheme to optimize the objective function
in Eq. (59) based on block coordinate techniques. We divide the variables into three
sets: {L},{S,G}, and {W,µµµ}. We iteratively update one set of variables while fixing
the other two sets. This procedure continues until convergence. Since the objective
function is convex, the algorithm will converge to a global optima. The optimization
process is as follows. The detailed algorithm is included in Algorithm 1.

(1). While fixing {W,µµµ}, {S,G}, optimize {L} using singular value decomposi-
tion (SVD).
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Algorithm 1: Graph-regularized Dual Lasso (GD-Lasso)
Input: X = {xd} ∈ RK×D, Z = {zd} ∈ RN×D, S0 ∈ RK×K , G0 ∈ RN×N , η ,α ,β ,γ ,ρ
Output: W,µµµ ,S,G,L

1 begin
2 Initialize W using Eq. (54), µ ← 0, S← rand(K,K), G← rand(N,N);
3 repeat
4 Update L by Eq. (61);
5 repeat
6 Update S by Eq. (62);
7 Update G by Eq. (63);
8 until convergence;
9 Update W by the coordinate descent algorithm (67);

10 Update µµµ by Eq. (69);
11 until convergence;
12 end

Lemma 1. [Mazumder et al., 2010] Suppose that matrix A has rank r. The solution
to the optimization problem

min
B

1
2
||A−B||2F +λ ||B||∗ (60)

is given by B̂ = Hλ (A), where Hλ (A) = UDλ VT with Dλ = diag[(d1−λ )+, ...,(dr−λ )+],
UDVTis the Singular Value Decomposition (SVD) of A, D = diag[d1, ...,dr], and (di−
λ )+ = max((di−λ ),0),(1≤ i≤ r).

Thus, for fixed W,µµµ ,S,G, the formula for updating L is

L←Hλ (Z−WX−µ1) (61)

(2). While fixing {W,µµµ}, {L}, optimize {S,G} using semi-nonnegative matrix
factorization (semi-NMF) multiplicative updating on S and G iteratively. For the op-
timization with non-negative constraints, our updating rule is based on the following
two theorems. The proofs of the theorems are given in Section 4.3.2.

Theorem 1. For fixed L,µµµ , W, and G, updating S according to Eq. (62) monotoni-
cally decreases the value of the objective function in Eq. (59) until convergence.

S← S◦ α(WTW)++2γS0

2γS+α(WTW)−+α diag(WTW)JK
(62)

where JK is a K×K matrix of all 1’s. ◦, [·]
[·] are element-wise operators. Since WTW

may take mixed signs, we denote WTW = (WTW)+ − (WTW)−, where (WTW)+i, j =

(|(WTW)i, j|+(WTW)i, j)/2 and (WTW)−i, j = (|(WTW)i, j|− (WTW)i, j)/2.

Theorem 2. For fixed L,µµµ , W, and S, updating G according to Eq. (63) monotoni-
cally decreases the value of the objective function in Eq. (59) until convergence.

G←G◦ β (WWT)++2ρG0

2ρG+β (WWT)−+β diag(WWT)JN
(63)
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where JN is an N×N matrix of all 1’s.

The above two theorems are derived from the KKT complementarity condition
[Boyd and Vandenberghe, 2004]. We show the updating rule for S below. The anal-
ysis for G is similar and omitted. We first formulate the Lagrange function of S for
optimization

L(S) = α tr(W(DS−S)WT)+ γ||S−S0||2F (64)

The partial derivative of the Lagrange function with respect to S is

∇SL =−αWTW−2γS0 +2γS+α diag(WTW)JK (65)

Using the KKT complementarity condition for the non-negative constraint on S, we
have

∇SL◦S = 0 (66)

The above formula leads to the updating rule for S in Eq. (62). It has been
shown that the multiplicative updating algorithm has first order convergence rate
[Ding et al., 2010].

(3). While fixing {L}, {S,G}, optimize {W,µµµ} using the coordinate descent
algorithm.
Because we use the ℓ1 penalty on W, we can use the coordinate descent algorithm
for the optimization of W, which gives the following updating formula:

Wi, j =
F(m(i, j),η)

(XXT) j, j +2α(DS−S) j, j +2β (DG−G)i,i
(67)

where F(m(i, j),η) = sign(m(i, j))max(|m(i, j)|−η ,0), and

m(i, j) = (ZXT)i, j−
K

∑
k=1
k ̸= j

Wi,k(XXT)k, j

−2α
K

∑
k=1
k ̸= j

Wi,k(DS−S)k, j−2β
N

∑
k=1
k ̸=i

(DG−G)i,kWk, j

(68)

The solution of updating µµµ can be derived by setting ▽µµµ L(µµµ) = 0, which gives

µµµ =
(Z−WX)1T

D
(69)

4.3.2 Convergence Analysis

In the following, we investigate the convergence of the algorithm. First, we s-
tudy the convergence for the second step. We use the auxiliary function approach
[Lee and Seung, 2000] to analyze the convergence of the multiplicative updating
formulas. Here we first introduce the definition of auxiliary function.

Definition 1. Given a function L(h) of any parameter h, a function Z(h, h̃) is an
auxiliary function for L(h) if the conditions
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Z(h, h̃)≥ L(h) and Z(h,h) = L(h), (70)

are satisfied for any given h, h̃ [Lee and Seung, 2000].

Lemma 2. If Z is an auxiliary function for function L(h), then L(h) is non-increasing
under the update [Lee and Seung, 2000].

h(t+1) = argmin
h

Z(h,h(t)) (71)

Theorem 3. Let L(S) denote the Lagrange function of S for optimization. The fol-
lowing function

Z(S, S̃) = α ∑
i jk

W2
i, j

S2
j,k + S̃2

j,k

2S̃ j,k
+α ∑

i jk
(Wi, jWi,k)

− S2
j,k + S̃2

j,k

2S̃ j,k

−α ∑
i jk
(Wi, jWi,k)

+S̃ j,k(1+ log
S j,k

S̃ j,k
)+ γ ∑

jk
S2

j,k

−2γ ∑
jk
(S0) j,kS̃ j,k(1+ log

S j,k

S̃ j,k
)+ γ ∑

jk
(S0)

2
j,k.

(72)

is an auxiliary function for L(S). Furthermore, it is a convex function in S and its
global minimum is

S = S̃◦ α(WT W)++2γS0

2γS̃+α(WT W)−+α diag(WT W)JK
. (73)

Theorem 3 can be proved using a similar idea to that in [Ding et al., 2006] by vali-
dating three Properties: 1) L(S)≤ Z(S, S̃); 2) L(S) = Z(S,S); 3) Z(S, S̃) is convex
with respect to S. The formal proof is provided below.
Proof: We will prove the three properties respectively. The Lagrange function of S
for optimization is

L(S) = α tr(W(DS−S)WT )+ γ||S−S0||2F . (74)

To prove Properties 1 and 2, we first deduce the following identities:

tr(WDSWT ) = ∑
i jk

W2
i, jS j,k. (75)

Similarly,
tr(WSWT) = ∑

i jk
Wi, jWi,kS j,k. (76)

And,
||S−S0||2F =tr(SST)−2tr(S0ST)+ tr(S0ST

0 )

=∑
jk

S2
j,k−2∑

jk
(S0) j,kS j,k +∑

jk
(S0)

2
j,k.

(77)

Using identities (75), (76), and (77), and substituting S̃ with S in function (72),
we get the identity for Property 2.

Further, note that a≤ a2+b2

2b and a≥ b(1+ log a
b ) for all positive a and b, and we

have:
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• for (75),

∑
i jk

W2
i, jS j,k ≤∑

i jk
W2

i, j
S2

j,k + S̃2
j,k

2S̃ j,k
;

• for (76),
∑
i jk

Wi, jWi,kS j,k

=∑
i jk
(Wi, jWi,k)

+S j,k−∑
i jk
(Wi, jWi,k)

−S j,k

≥∑
i jk
(Wi, jWi,k)

+S̃ j,k(1+ log
S j,k

S̃ j,k
)

−∑
i jk
(Wi, jWi,k)

− S2
j,k + S̃2

j,k

2S̃ j,k
;

(78)

• for the second term in (77),

∑
jk
(S0) j,kS j,k ≥ 2∑

jk
(S0) j,kS̃ j,k(1+ log

S j,k

S̃ j,k
)

These inequalities together prove Property 1.
For Property 3, we instead prove the Hessian matrix ∇∇SZ(S, S̃)≽ 0

∂Z(S, S̃)
∂Sm,n

=α ∑
i

W2
i,m

Sm,n

S̃m,n
+α ∑

i
(Wi,mWi,n)

− Sm,n

S̃m,n

−α ∑
i
(Wi,mWi,n)

+ S̃m,n

SSSm,n
+2γSm,n−2γ(S0)m,n

S̃m,n

Sm,n
.

(79)

Hence,
∂ 2Z(S, S̃)
∂Ss,t∂Sm,n

=α ∑
i

δmsδntW2
i,m

1

S̃m,n
+α ∑

i
δmsδnt(Wi,mWi,n)

− 1

S̃m,n

+α ∑
i

δmsδnt(Wi,mWi,n)
+ S̃m,n

S2
m,n

+2γδmsδnt +2γδmsδnt(S0)m,n
S̃m,n

S2
m,n

≥0.

(80)

Therefore, ∇2
SZ(S, S̃) is diagonal with positive entries. Thus ∇2

SZ(S, S̃) is positively
defined, namely, Z(S, S̃) is convex, which concludes Property 3.

To solve for S, we set ∇SZ(S, S̃) = 0, and get the following formula for all m and n.
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∂
∂Sm,n

Z(S, S̃)

= α ∑
i

W2
i,m

Sm,n

S̃m,n
+α ∑

i
(Wi,mWi,n)

− Sm,n

S̃m,n

−α ∑
i
(Wi,mWi,n)

+ S̃m,n

Sm,n
+2γSm,n−2γ(S0)m,n

S̃m,n

Sm,n

= 0.

(81)

After sorting the equation, we have

Sm,n = S̃m,n ·
α ∑i(Wi,mWi,n)

++2γ(S0)m,n

2γ S̃m,n +α ∑i(Wi,mWi,n)−+α ∑i W2
i,m

. (82)

That is equivalent to the formula (73), which is consistent with the updating
formula derived from the KKT condition aforementioned. ⊓⊔

Theorem 4. Updating S using Eq. (62) will monotonically decrease the value of the
objective in Eq. (59), the objective is invariant if and only if S is at a stationary
point.

Proof: By Lemma 2 and Theorem 3, for each subsequent iteration of updating S, we
have L((S)0) = Z((S)0,(S)0)≥ Z((S)1,(S)0)≥ Z((S)1,(S)1) = L((S)1)≥ ...≥ L((S)Iter). Thus
L(S) monotonically decreases. Since the objective function Eq. (59) is obviously
bounded below, the correctness of Theorem 1 is proved. Theorem 2 can be proved
similarly. ⊓⊔

In addition to Theorem 4, since the computation of L in the first step decreases
the value of the objective in Eq. (59), and the coordinate descent algorithm for up-
dating W in the third step also monotonically decreases the value of the objective,
the algorithm is guaranteed to converge.

4.4 Generalized Graph-regularized Dual Lasso

In this section, we extend our model to incorporate additional prior knowledge such
as SNP locations and biological pathways. If the physical locations of two SNPs are
close or two genes belong to the same pathway, they are likely to have interactions.
Such information can be integrated to help refine the prior networks.

Continue with our example in Figure 20. If SNPs 3⃝ and 4⃝ affect the same set
of genes ( B⃝ and D⃝ ), and at the same time, they are close to each other, then it is
likely there exists interaction between 3⃝ and 4⃝.

Formally, we would like to solve the following optimization problem

min
W,µµµ,L,S≥0,G≥0

1
2
||WX−Z−µ1−L||2F +η ||W||1 +λ ||L||∗

+α ∑
i, j

D(w∗i,w∗ j)Si, j +β ∑
i, j

D(wi∗,w j∗)Gi, j
(83)
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Here D(·, ·) is a non-negative distance measure. Note that the Euclidean distance
is used in previous sections. S and G are initially given by inputs S0 and G0. We refer
to this generalized model as the Generalized Graph-regularized Dual Lasso (GGD-
Lasso). GGD-Lasso executes the following two steps iteratively until the termina-
tion condition is met: 1) update W while fixing S and G; 2) update S and G accord-
ing to W, while guarantee that both ∑i, j D(w∗i,w∗ j)Si, j and ∑i, j D(wi∗,w j∗)Gi, j
decrease.

Algorithm 2: Generalized Graph-regularized Dual Lasso (GGD-Lasso)
Input: X = {xd} ∈ RK×D, Z = {zd} ∈ RN×D, S0 ∈ RK×K , G0 ∈ RN×N , Pathway

information, SNPs location information, η ,α ,β ,κ1,κ2
Output: W,µµµ ,S,G,L

1 begin
2 S← S0,G←G0;
3 updateS← 0,updateG← 0;
4 repeat
5 Update W, µµµ and L that minimize the objective function (58) using S and G ;
6 Put all pairs (i, j) of columns of W in order of distance;
7 P0← /0;
8 P1← /0;
9 Select κ1 pairs (iS, jS) with smallest D(W∗iS ,W∗ jS ) to the set P0;

10 P0← pairs in P0 that satisfy SiS , jS = 0 and the distance between the iS-th SNP
and jS-th SNP is less than 500bp;

11 Select κ1 pairs (i′S, j′S) with largest D(W∗i′S ,W∗ j′S
) to the set P1;

12 P1← pairs in P1 that satisfy Si′S , j
′
S
= 1 and the distance between the i′S-th SNP

and j′S-th SNP is larger than 500bp;
13 updateS←min(|P0|, |P1|);
14 Choose updateS pairs (iS, jS) in P0 and set SiS , jS to 1;
15 Choose updateS pairs (i′S, j′S) in P1 and set Si′S , j

′
S

to 0;
16 Put all pairs (i, j) of rows of W in order of distance;
17 Q1← /0;
18 Q2← /0;
19 Select κ2 pairs (iG, jG) with smallest D(WiG∗,W jG∗) to the set Q0;
20 Q0← pairs in Q0 that satisfy GiG, jG = 0 and the iG-th gene and jG-th gene belong

to the same pathway;
21 Select κ2 pairs (i′G, j′G) with largest D(Wi′G∗,W j′G∗) to the set Q1;
22 Q1← pairs in Q1 that satisfy Gi′G, j

′
G
= 1 and the i′G-th gene and j′G-th gene do not

belong to the same pathway;
23 updateG←min(|Q0|, |Q1|);
24 Choose updateG pairs (iG, jG) in Q0 and set GiG, jG to 1;
25 Choose updateG pairs (i′G, j′G) in Q1 and set Gi′G, j

′
G

to 0;
26 until updateS = 0 and updateG = 0;
27 end

These two steps are based on the aforementioned duality between learning W
and refining S and G. The detailed algorithm is provided in Algorithm 2. Next, we
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illustrate the updating process assuming that S and G are unweighted graphs. It can
be easily extended to weighted graphs.

Step 1 can be done by using the coordinate descent algorithm. In Step 2, to guar-
antee that both ∑i, j D(w∗i,w∗ j)Si, j and ∑i, j D(wi∗,w j∗)Gi, j decrease, we can main-
tain a fixed number of 1’s in S and G. Taking G as an example, once Gi, j is select-
ed to change from 0 to 1, another element Gi′, j′ with D(wi∗,w j∗) < D(wi′∗,w j′∗)
should be changed from 1 to 0.

The selection of (i, j) and (i′, j′) is based on the ranking of D(wi∗,w j∗) (1≤ i <
j ≤ N). Specifically, we examine κ pairs with the smallest distances. Among them,
we pick those having no edges in G. Let P0 be this set of pairs. Accordingly, we
examine κ pairs with the largest distances. Among these pairs, we pick up only those
having an edge in G. Let P1 be this set of pairs. The elements of G corresponding
to pairs in P0 are candidates for updating from 0 to 1, since these pairs of genes
are associated with similar SNPs. Similarly, elements of G corresponding to pairs
in P1 are candidates for updating from 1 to 0.

In this process, the prior knowledge of gene pathways can be easily incorporated
to better refine G. For instance, we can further require that only the gene pairs in
P0 belonging to the same pathway are eligible for updating, and only the gene pairs
in P1 belonging to different pathways are eligible for updating. We denote the set
of gene pairs eligible for updating by P ′

0 and P ′
1 respectively. Then, we choose

min(|P ′
0|, |P ′

1|) pairs in set P ′
0 with smallest D(wi∗,w j∗) ((i, j)∈P ′

0) and update
Gi, j from 0 to 1. Similarly, we choose min(|P ′

0|, |P ′
1|) pairs in set P ′

1 with largest
D(wi′∗,w j′∗) ((i′, j′) ∈P ′

1) and update Gi′, j′ from 1 to 0.
Obviously, all D(wi∗,w j∗)’s are smaller than D(wi′∗,w j′∗) if κ < N(N−1)

4 . There-
fore, ∑i, j D(wi∗,w j∗)Gi, j is guaranteed to decrease. The updating process for S is
similar except that we compare columns rather than rows of W and use SNP lo-
cations rather than pathway information for evaluating the eligibility for updating.
The updating process ends when no such pairs can be found so that switching their
values will result in a decrease of the objective function.

The convergence of GGD-Lasso can be observed as follows. The decrease of
the objective function value in the first step is straightforward since we minimize it
using coordinate descent. In the second step, the change of the objective function
value is given by

−αD(w∗iS ,w∗ jS )+αD(w∗i′S ,w∗ j′S
)−βD(wiG∗,w jG∗)+βD(wi′G∗,w j′G∗) (84)

which is always negative. Thus, in each iteration, the objective function value de-
creases. Since the objective function is non-negative, the process eventually con-
verges.

Theorem 5. GGD-Lasso converges to the global optimum if both ∑i, j D(wi∗,w j∗)
and ∑i, j D(w∗i,w∗ j) are convex to W.

Proof: The last two terms in Eq. (83) are linear with respect to S and G, and convex
to W according to the conditions listed. Thus the objective function is convex over
all variables. A convergent result to the global optimum can be guaranteed. ⊓⊔
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Fig. 21: Ground truth of W and that estimated by different methods.

4.5 Experimental Results

In this section, we perform extensive experiments to evaluate the performance of
the proposed methods. We use both simulated datasets and real yeast eQTL dataset
[Rachel B. Brem and Kruglyak, 2005]. For comparison, we select several state-of-
the-art methods, including SIOL [Lee and Xing, 2012], two graph guided multi-task
lasso (mtlasso2G) [Chen et al., 2012], sparse group Lasso [Biganzoli et al., 2006],
sparse multi-task Lasso [Biganzoli et al., 2006], LORS [Yang et al., 2013] and Las-
so [Tibshirani, 1996]. For all the methods, the tuning parameters were learned using
cross validation.

4.5.1 Simulation Study

We first evaluate the performance of the selected methods using simulation study.
Note that GGD-Lasso requires additional prior knowledge and will be evaluated
using real dataset.

We adopt the same setup for the simulation study as that in [Lee and Xing, 2012,
Yang et al., 2013] and generate synthetic datasets as follows. 100 SNPs are random-
ly selected from the yeast eQTL dataset[Rachel B. Brem and Kruglyak, 2005] (112
samples). 10 gene expression profiles are generated by Z j∗ = W j∗X+Ξ j∗+E j∗
(1≤ j ≤ 10), where E j∗ ∼N (0,σ2I) (σ = 1) denotes Gaussian noise. Ξ j∗ is used
to model non-genetic effects, which are drawn from N (0,τΣ), where τ = 0.1. Σ
is generated by MMT, where M ∈ RD×C and Mi j ∼N (0,1). C is the number of
hidden factors and is set to 10 by default. The association matrix W is generated as
follows. Three sets of randomly selected four SNPs are associated with three gene
clusters (1-3), (4-6), (7-10) respectively. In addition, one SNP is associated with two
gene clusters (1-3) and (4-6), and one SNP is associated with all genes. The associa-
tion strength is set to 1 for all selected SNPs. The clustering structures among SNPs
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Fig. 22: The ground truth networks, prior partial networks, and the refined networks

and genes serve as the ground truth of the prior network knowledge. Only two of the
three SNP (gene) clusters are used in W to simulate incomplete prior knowledge.

Figure 21 shows the estimated W matrix by various methods. The x-axis repre-
sents traits (1-10) and y-axis represents SNPs (1-100). From the figure, we can see
that GD-Lasso is more effective than G-Lasso. This is because the dual refinement
enables a more robust model. G-Lasso outperforms SIOL and mtlasso2G, indicating
that the graph regularizer provides a smoother regularization than the hard cluster-
ing based penalty. In addition, SIOL and mtlasso2G do not consider confounding
factors. SIOL and mtlasso2G outperform multi-task Lasso and sparse group Lasso
since it uses both SNP and gene grouping information, while multi-task Lasso and
sparse group Lasso only use one of them. We also observe that all methods utilizing
prior grouping knowledge outperform LORS and Lasso which cannot incorporate
prior knowledge. LORS outperforms Lasso since it considers the confounding fac-
tors.

The ground truth networks, prior networks, and GD-Lasso refined networks are
shown in Figure 22. Note that only a portion of the ground truth networks are used
as prior networks. In particular, the information related to gene cluster (7-10) is
missing in the prior networks. We observe that the refined matrix G well captures
the missing grouping information of gene cluster (7-10). Similarly, many missing
pairwise relationships in S are recovered in the refined matrix (points in red ellipses).

Using 50 simulated datasets with different gaussian noise (σ2 = 1 and σ2 = 5),
we compare the proposed methods with alternative state-of-the-art approaches. For
each setting, we use 30 samples for test and 82 samples for training. We report the av-
erage result from 50 realizations. Figure 23 shows the ROC curves of TPR-FPR for
performance comparison, together with the areas under the precision-recall curve
(AUCs) [Chen et al., 2012]. The association strengths between SNPs and genes are
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Fig. 23: The ROC curve and AUCs of different methods.
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set to be 0.1, 1 and 3 respectively. It is clear that GD-Lasso outperforms all alter-
native methods by effectively using and refining the prior network knowledge. We
also computed test errors. On average, GD-Lasso achieved the best test error rate of
0.9122, and the order of the other methods in terms of the test errors is: G-Lasso
(0.9276), SIOL (0.9485), Mtlasso2G (0.9521), Multi-task Lasso (0.9723), Sparse
group Lasso (0.9814), LORS (1.0429) and Lasso (1.2153).

To evaluate the effectiveness of dual refinement, we compare GD-Lasso and G-
Lasso since the only difference between these two methods is whether the prior
networks are refined during the optimization process. We add noises to the prior net-
works by randomly shuffling the elements in them. Furthermore, we use the signal-

to-noise ratio defined as SNR =
√

Var(WX)
Var(Ξ+E) [Yang et al., 2013] to measure the noise

ratio in the eQTL datasets. Here, we fix C = 10,τ = 0.1, and use different σ ’s to
control SNR.

Figure 24 shows the results for different SNRs. For a fixed SNR, we vary the
percentage of noises in the prior networks and compare the performance of selected
methods. From the results, we can see that G-Lasso is more sensitive to noises in
the prior networks than GD-Lasso is. Moreover, when the SNR is low, the advantage
of GD-Lasso is more prominent. These results indicate using dual refinement can
dramatically improve the accuracy of the identified associations.

4.5.2 Yeast eQTL Study

We apply the proposed methods to a yeast (Saccharomyces cerevisiae) eQTL dataset
of 112 yeast segregants [Rachel B. Brem and Kruglyak, 2005] generated from a
cross of two inbred strains. The dataset originally includes expression profiles of
6229 gene expression traits and genotype profiles of 2956 SNPs. After removing
SNPs with more than 10% missing values and merging consecutive SNPs high link-
age disequilibrium, we get 1017 SNPs with unique genotypes [Huang et al., 2009a].
4474 expression profiles are selected after removing the ones with missing values.
The genetic interaction network is generated as in [Lee and Xing, 2012]. We use
the PPI network downloaded from BioGRID (http://thebiogrid.org/) to represent the
prior network among genes. It takes around 1 day for GGD-Lasso, and around 10
hours for GD-Lasso to run into completion.

4.5.3 cis and trans Enrichment Analysis

We follow the standard cis-enrichment analysis [Listgarten et al., 2010] to compare
the performance of two competing models. The intuition behind cis-enrichment
analysis is that more cis-acting SNPs are expected than trans-acting SNPs. A two-
step procedure is used in the cis-enrichment analysis [Listgarten et al., 2010]: (1)
for each model, we apply a one-tailed Mann-Whitney test on each SNP to test the
null hypothesis that the model ranks its cis hypotheses no better than its trans hy-
potheses, (2) for each pair of models compared, we perform a two-tailed paired
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Fig. 24: The AUCs of the TPR-FPR curve of different methods.

GD-Lasso G-Lasso SIOL Mtlasso2G Multi-task Sparse group LORS Lasso

cis-enrichment

GGD-Lasso 0.0003 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001
GD-Lasso - 0.0009 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001
G-Lasso - - < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

SIOL - - - 0.1213 0.0331 0.0173 < 0.0001 < 0.0001
Mtlasso2G - - - - 0.0487 0.0132 < 0.0001 < 0.0001
Multi-task - - - - - 0.4563 0.4132 < 0.0001

Sparse group - - - - - - 0.4375 < 0.0001
LORS - - - - - - - < 0.0001

trans-enrichment

GGD-Lasso 0.0881 0.0119 0.0102 0.0063 0.0006 0.0003 < 0.0001 < 0.0001
GD-Lasso - 0.0481 0.0253 0.0211 0.0176 0.0004 < 0.0001 < 0.0001
G-Lasso - - 0.0312 0.0253 0.0183 0.0007 < 0.0001 < 0.0001

SIOL - - - 0.1976 0.1053 0.0044 0.0005 < 0.0001
Mtlasso2G - - - - 0.1785 0.0061 0.0009 < 0.0001
Multi-task - - - - - 0.0235 0.0042 0.0011

Sparse group - - - - - - 0.0075 0.0041
LORS - - - - - - - 0.2059

Table 5: Pairwise comparison of different models using cis- and trans- enrichment.

Wilcoxon sign-rank test on the p-values obtained from the previous step. The null
hypothesis is that the median difference of the p-values in the Mann-Whitney test
for each SNP is zero. The trans-enrichment is implemented using a similar strate-
gy [Yvert et al., 2003], in which genes regulated by transcription factors (obtained
from http://www.yeastract.com/download.php) are used as trans-acting signals.

In addition to the methods evaluated in the simulation study, GGD-Lasso is also
evaluated here (with κ = 100000,η = 5,λ = 8,α = 15,β = 1). For GD-Lasso, η =
5,λ = 8,α = 15,β = 1,γ = 15,ρ = 1. The Euclidean distance is used as the distance
metric. We rank pairs of SNPs and genes according to the learned W. S is refined if
the locations of the two SNPs are less than 500 bp. G is refined if the two genes are
in the same pathway. The pathway information is downloaded from Saccharomyces
Genome Database (SGD (http://www.yeastgenome.org/)).

The results of pairwise comparison of selected models are shown in Table 5. In
this table, a p-value shows how significant a method on the left column outperform-
s a method in the top row in terms of cis and trans enrichments. We observe that
the proposed GGD-Lasso and GD-Lasso have significantly better enrichment scores
than the other models. By incorporating genomic location and pathway information,
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GGD-Lasso performs better than GD-Lasso with p-value less than 0.0001. The ef-
fectiveness of the dual refinement on prior graphs is demonstrated by GD-Lasso’s
better performance over G-Lasso. Note that the performance ranking of these mod-
els is consistent with that in the simulation study.

The top-1000 significant associations given by GGD-Lasso, GD-Lasso and G-
Lasso are shown in Figure 26. We can see that GGD-Lasso and GD-Lasso have
stronger cis-regulatory signals than G-Lasso does. In total, these methods each de-
tected about 6000 associations according to non-zero W values. We estimate FDR
using 50 permutations as proposed in [Yang et al., 2013]. With FDR ≤ 0.01, GGD-
Lasso obtains about 4500 significant associations. The plots of all identified signifi-
cant associations for different methods are given in Figure 25.
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Fig. 25: The plot of linkage peaks in the study by different methods.

4.5.4 Refinement of the Prior Networks

To investigate to what extent GGD-Lasso is able to refine the prior networks and
study the effect of different parameter settings on κ , we intentionally change 75%
of the elements in the original prior PPI network and genetic interaction network to
random noises. We feed the new networks to GGD-Lasso and evaluate the refined
networks. The results are shown in Figure 27. We can see that for both PPI and
genetic interaction networks, many elements are recovered by GGD-Lasso. This
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Fig. 26: The top-1000 significant associations identified by different methods.
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Fig. 27: Ratio of correct interactions refined when varying κ .

demonstrates the effectiveness of GGD-Lasso. Moreover, when the number of S-
NP (gene) pairs (κ) examined for updating reaches 100,000, both PPI and genetic
iteration networks are well refined.

Hotspots Analysis

ID sizea Locib GOc Hitsd
GD-Lasso

(all)e
GD-Lasso

(hits) f
G-Lasso

(all)g
G-Lasso
(hits)h

SIOL
(all)i

SIOL
(hits) j

LORS
(all)k

LORS
(hits)l

1 31 XII:1056097 (1)∗∗∗ 7 31 7 32 7 8 6 31 7
2 28 III:81832..92391 (2)∗∗ 5 29 5 28 5 58 5 22 4
3 28 XII:1056103 (1)∗∗∗ 7 29 6 28 6 1 1 2 0

4 27 III:79091 (2)∗∗∗ 6 29 6 28 6 28 7 10 2
5 27 III:175799..177850 (3)∗ 3 26 3 23 3 9 2 18 4
6 27 XII:1059925..1059930 (1)∗∗∗ 7 27 7 27 7 0 0 5 1
7 25 III:105042 (2)∗∗∗ 6 23 6 25 6 5 3 19 4
8 23 III:201166..201167 (3)∗∗∗ 3 23 3 22 3 13 2 23 3
9 22 XII:1054278..1054302 (1)∗∗∗ 7 26 7 24 7 24 5 12 4
10 21 III:100213 (2)∗∗ 5 23 5 23 5 5 3 5 1
11 20 III:209932 (3)∗ 3 21 3 19 3 16 4 15 4
12 20 XII:659357..662627 (4)∗ 4 19 4 3 0 37 9 36 6
13 19 III:210748..210748 (5)∗ 4 24 4 18 4 2 3 11 4
14 19 VIII:111679..111680 (6)∗ 3 20 3 19 3 3 3 12 2
15 19 VIII:111682..111690 (7)∗∗ 5 21 5 20 5 57 6 22 3

Total hits 75 74 70 59 49

Table 6: Summary of the top-15 hotspots detected by GGD-Lasso.
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GGD-Lasso GD-Lasso G-Lasso SIOL LORS
#hotspots significantly enriched 15 14 13 10 9(top 15 hotposts)

#total reported hotspots (size > 10) 65 82 96 89 64
#hotspots significantly enriched 45 56 61 53 41

ratio of significantly enriched hotspots 70% 68% 64% 60% 56%

Table 7: Hotspots detected by different methods

In this subsection, we study whether GGD-Lasso can help detect more bio-
logically relevant associations than the alternatives. Specifically, we examine the
hotspots which affect more than 10 gene traits [Lee and Xing, 2012]. The top
15 hotspots detected by GGD-Lasso are listed in Table 6. The top-15 hotspot-
s detected by other methods are included in Table 8, tab:hotspotscompareGL,
tab:hotspotscompareSIOL, and tab:hotspotscompareLORS. From Table 6, we ob-
serve that for all hotspots, the associated genes are enriched with at least one GO cat-
egory. Note that GGD-Lasso and GD-Lasso detect one hotspot (12), which cannot
be detected by G-Lasso. They also detect one hotspot (6), which cannot be detected
by SIOL. The number of hotspots that are significant enriched is listed in Table 7.
From the table, we can see that GGD-Lasso slightly outperforms GD-Lasso since it
incorporates the location of SNPs and gene pathway information.

chr start end size GO category adjusted p-value
XII 1056097 1056097 31 telomere maintenance via recombination 4.72498E-9
III 79091 79091 29 branched chain family amino acid biosynthetic process 1.59139E-8
III 81832 92391 29 branched chain family amino acid biosynthetic process 2.62475E-05
XII 1056103 1056103 29 telomere maintenance via recombination 1.90447E-4
XII 1059925 1059930 27 telomere maintenance via recombination 2.6379E-8
III 175799 177850 26 regulation of mating-type specific transcription, DNA-dependent 2.07885E-03
XII 1054278 1054302 26 telomere maintenance via recombination 2.30417E-9
III 210748 210748 24 regulation of mating-type specific transcription, DNA-dependent 1.61983E-04
III 100213 100213 23 branched chain family amino acid biosynthetic process 7.4936E-3
III 105042 105042 23 branched chain family amino acid biosynthetic process 3.8412E-8
III 201166 201167 23 regulation of mating-type specific transcription, DNA-dependent 0.001998002
III 209932 209932 21 regulation of mating-type specific transcription, DNA-dependent 1.06592E-03

VIII 111682 111690 21 response to pheromone 7.04262E-04
V 395442 395442 20 SRP-dependent cotranslational protein targeting to membrane... 0.100899101

VIII 111679 111680 20 cytogamy 0.001998002

Table 8: Summary of the top 15 detected hotspots by GD-Lasso

4.6 Conclusion

As a promising tool for dissecting the genetic basis of common diseases, eQTL
study has attracted increasing research interest. The traditional eQTL methods focus
on testing the associations between individual SNPs and gene expression traits. A
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chr start end size GO category adjusted p-value
XII 1056097 1056097 32 telomere maintenance via recombination 5.52E-08
III 79091 79091 28 branched chain family amino acid biosynthetic process 1.28E-07
III 81832 92391 28 branched chain family amino acid biosynthetic process 2.17E-05
XII 1056103 1056103 28 telomere maintenance via recombination 1.52E-06
XII 1059925 1059930 27 telomere maintenance via recombination 2.64E-08
III 105042 105042 25 branched chain family amino acid biosynthetic process 6.35E-08
XII 1054278 1054302 24 telomere maintenance via recombination 1.78E-08
III 100213 100213 23 branched chain family amino acid biosynthetic process 7.49E-06
III 175799 177850 23 regulation of mating-type specific transcription, DNA-dependent 0.001998002
XII 674651 674651 23 sterol biosynthetic process 3.56E-04
III 201166 201167 22 regulation of mating-type specific transcription, DNA-dependent 1.23E-03
V 395442 395442 21 SRP-dependent cotranslational protein targeting to membrane... 0.086913087
I 51324 52943 20 fatty acid metabolic process 0.281718282

VIII 111682 111690 20 response to pheromone 5.39E-04
III 209932 209932 19 regulation of mating-type specific transcription, DNA-dependent 7.77E-03

Table 9: Summary of the top 15 detected hotspots by G-Lasso

chr start end size GO category adjust p-value
XIV 449639 449639 339 mitochondrial translation 2.92E-07

V 109310 117705 240 translation 2.39E-08
V 350744 350744 183 translation 1.32E-07

XV 154177 154309 94 replicative cell aging 0.264735265
XII 899898 927421 81 translation 1.45E-06
XIV 486861 486861 81 mitochondrial translation 1.49E-06
II 548401 548401 78 endonucleolytic cleavage in ITS1 to separate SSU-rRNA from 5.8S... 0.030969031
III 75021 75021 78 cellular amino acid biosynthetic process 1.35E-06

XIV 502316 502496 76 mitochondrial genome maintenance 0.824175824
XII 674651 674651 73 electron transport chain 8.52E-04
III 81832 92391 58 branched chain family amino acid biosynthetic process 9.78E-05

VIII 111682 111690 57 response to pheromone 5.15E-03
XV 202370 210839 49 vesicle-mediated transport 0.592407592
XIII 27644 28334 45 dephosphorylation 0.007992008
XV 170945 180961 44 (1->6)-beta-D-glucan biosynthetic process 0.132867133

Table 10: Summary of the top 15 detected hotspots by SIOL

major drawback of this approach is that it cannot model the joint effect of a set of
SNPs on a set of genes, which may correspond to biological pathways.

Recent advancement in high-throughput biology has made a variety of biologi-
cal interaction networks available. Effectively integrating such prior knowledge is
essential for accurate and robust eQTL mapping. However, the prior networks are
often noisy and incomplete. In this section, we propose novel graph regularized
regression models to take into account the prior networks of SNPs and genes simul-
taneously. Exploiting the duality between the learned coefficients and incomplete
prior networks enables more robust model. We also generalize our model to inte-
grate other types of information, such as SNP locations and gene pathways. The
experimental results on both simulated and real eQTL datasets demonstrate that our
models outperform alternative methods. In particular, the proposed dual refinement
regularization can significantly improve the performance of eQTL mapping.
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5 Discussion

Driven by the advancement of cost-effective and high-throughput genotyping tech-
nologies, eQTL mapping has revolutionized the field of genetics by providing new
ways to identify genetic factors that influence gene expression. Traditional eQTL
mapping approaches consider both SNPs and genes individually, such as sparse fea-
ture selection using Lasso and single-locus statistical tests using t-test or ANOVA
test. However, it is commonly believed that many complex traits are caused by the
joint effect of multiple genetic factors, and genes in the same biological pathway
are often co-regulated and may share a common genetic basis. Thus, it is a crucial
challenge to understand how multiple, modestly-associated SNPs interact to influ-
ence the phenotypes. However, little prior work has studied the grow-wise eQTL
mapping problem. Moreover, many prior correlation structures in the form of either
physical or inferred molecular networks in the genome and phenome are available
in many knowledge bases, such as PPI network, and genetic interaction network.
Developing effective models to incorporate prior knowledge on the relationships be-
tween SNPs and relationships between genes for more robust eQTL mapping has
recently attracted increasing research interests. However, the structures of prior net-
works are often highly noisy and far from complete. More robust models that are less
sensitive to noise and incompleteness of prior knowledge are required to integrate
these prior networks for eQTL mapping.

This book chapter presents a series of algorithms that take advantage of multi-
ple domain knowledge to help with the eQTL mapping and systematically study
the problem of group-wise eQTL mapping. In this section, we come to the conclu-
sions of this book chapter and discuss the future directions of inferring group-wise
associations for eQTL mapping.

5.1 Summary

In this book chapter, we presented our solutions for group-wise eQTL mapping. In
general, we made the following contributions.

• Algorithm to Detect Group-wise eQTL Associations with eQTL Data Only
Three algorithms (Section 3) are proposed to address this problem. The three
approaches incrementally take into consideration more aspects, such as group-
wise association, potential confounding factors and the existence of individual
associations. Besides, we illustrate how each aspect could benefit the eQTL map-
ping. Specifically, in order to accurately capture possible interactions between
multiple genetic factors and their joint contribution to a group of phenotypic vari-
ations, a sparse linear-Gaussian model (SET-eQTL) is proposed to infer novel
associations between multiple SNPs and genes. The proposed method can help
unravel true functional components in existing pathways. The results could pro-
vide new insights on how genes act and coordinate with each other to achieve
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certain biological functions. The book chapter further extends the approach to
consider the confounding factors and also be able to decouple individual associ-
ations and group-wise associations. The results show the superiority over those
eQTL mapping algorithms that do not consider the group-wise associations.

• Robust Algorithm to Incorporate Prior Interaction Structures into eQTL
Mapping
To incorporate the prior SNP-SNP interaction structure and grouping information
of genes into eQTL mapping, the proposed algorithm, GDL (Section 4), signif-
icantly improve the robustness and the interpretability of eQTL mapping. We
study how prior graph information would help improve eQTL mapping accura-
cy and how refinement of prior knowledge would further improve the mapping
accuracy. In addition, other different types of prior knowledge, e.g., location in-
formation of SNPs and genes, and pathway information, can also be integrated
for the graph refinement.

5.2 Future Directions

We envision that the integration of multi-domain knowledge will be the center of
interests for eQTL mapping in the future. In the past decade, many efforts have been
devoted to developing methods for eQTL mapping. In this book chapter, we present
approaches that address the group-wise eQTL mapping problem. To further advance
the field, there are several important research issues that should be explored.

1. Large Scale Data Sets
Scalability is another important issue in eQTL mapping. Especially, for human
genetics, the whole genome eQTL mapping includes analysis of millions of SNPs
and tens of thousands of genes. Traditional eQTL mapping approaches detect
associated SNPs for each gene separately. Thus, mapping algorithm can be de-
ployed in parallel for each gene expression. For each run, many approaches were
proposed to speed up the mapping, such as screening method [Wang et al., 2013].
However, these approaches do not work for the group-wise eQTL mapping since
the SNPs and genes need to be considered jointly. In our algorithm (Section 3),
we have developed an effective approach to speed up the computing. However,
it is still not able to tackle the whole genome eQTL mapping for human data
set. Thus, it is desirable to design new algorithms that are capable of scaling ge-
netic association studies across the whole-genome and support identification of
multi-way interactions.

2. Mining Biological and Medical Data Using Heterogeneous Models
Biological and medical research have been facing big data challenges for a long
time. With the burst of many new technologies, the data are becoming larger and
more complex. Our ability to identify and characterize the effects of genetic fac-
tors that contribute to complex traits depends crucially on the development of new
computational approaches to integrate, analyze, and interpret these data. It is de-
sirable to develop integrative and scalable methods to study how genetic factors
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interact with each other to cause common diseases. The developed techniques
will dissect the relationships among different components and automatically dis-
cover most relevant patterns from the data.
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