
The Pennsylvania State University
The Graduate School

College of Information Sciences and Technology

PROGRAM ANALYSIS BASED BLOATWARE MITIGATION AND

SOFTWARE CUSTOMIZATION

A Dissertation in
Information Sciences and Technology

by
Yufei Jiang

© 2017 Yufei Jiang

Submitted in Partial Fulfillment
of the Requirements
for the Degree of

Doctor of Philosophy

August 2017

The dissertation of Yufei Jiang was reviewed and approved∗ by the following:

Dinghao Wu
Associate Professor of Information Sciences and Technology
Dissertation Advisor
Chair of Committee

Peng Liu
Professor of Information Sciences and Technology

Anna Squicciarini
Associate Professor of Information Sciences and Technology

Sencun Zhu
Associate Professor of Computer Science and Engineering

Andrea Tapia
Associate Professor of Information Sciences and Technology
Director of Graduate Programs

∗Signatures are on file in the Graduate School.

ii

Abstract

Modern software engineering allows us to build more complex software than ever
before. On the other hand, it increasingly brings different types of redundancy
into software products. The community uses the term “bloatware” to describe
software that contains much bloat. Bloatware causes many negative consequences
including larger disk footprint, higher memory consumption, longer loading and
downloading time, higher software complexity and maintenance cost, and many
security problems.

In this thesis, we review, investigate, and develop techniques to mitigate the
problem of bloatware from a holistic point of view from software engineering, soft-
ware security, and programming language perspectives. Specifically, we customize
the bloatware to remove the software bloat from the following three aspects.

First, in current software engineering practice, even if only one method of a class
is possibly used in a software, the complete class, the whole library package, and
the entire runtime environment are still included as a whole in the software product
delivery. The unused code in applications, libraries and the running environment
has become one of the important sources of software bloat. Our study targets on
these three different parts and takes advantage of the iterative hybrid static and
dynamic analysis to identify and remove the unused code from the them.

Second, smartphones, as a platform that has more limited resources than other
computation bases, are more subjected to the bloatware problem. We investigate
software bloat that would lead to the rapid size increase of Android applications.
We categorize the sources of Android application software bloat into two types,
compile-time redundancy and install-time redundancy. In addition, we propose
a fully automated approach to trimming off both types of software bloat. Our
approach is mainly based on static analysis and program transformation.

Last but not least, due to various reasons for marketing, developers are keeping
adding features into their software products in an ad-hoc and unsystematic way.
According to some surveys, many of these features are useless to many end users.
Such a phenomenon is also known as “feature creep” which is a special type of

iii

software bloat. To reverse this unstoppable feature creep process, we propose a
novel bloatware mitigation approach called feature-based software customization.
We apply static dataflow analysis and an enhanced program slicing technique to
customize software features from tangled code.

Our research makes substantial contributions in all of these three aspects. Our
experimental results show that Java application sizes can be reduced by 44.5% on
average and the JRE code can be reduced by more than 82.5% on average. By
trimming redundant code, 48.6% of the known security vulnerabilities in a specific
version of JRE has been removed. In the Android domain, by removing different
types of redundancy together, we can reduce the size of an Android application
by 40.4% on average. As for features customization, our case studies validate the
potential of our approach for practical use.

iv

Table of Contents

List of Figures ix

List of Tables x

Acknowledgments xii

Chapter 1
Introduction 1
1.1 Bloatware . 1
1.2 Unused Code in Java . 4
1.3 Software Bloat in Mobile Applications 5
1.4 Software Feature Bloat . 7
1.5 Dissertation Structure . 9

Chapter 2
Related Work 10
2.1 Bloatware . 10

2.1.1 Code Size Bloat . 10
2.1.2 Memory Bloat . 11
2.1.3 Dependency Bloat . 12
2.1.4 Software Diversity . 12

2.2 Others . 13
2.2.1 Handling Reflections . 13
2.2.2 Call Graph Construction . 14
2.2.3 Program Slicing . 14
2.2.4 Static Analysis on Android 15

Chapter 3
Program Customization Using Iterative Hybrid Static and Dy-

namic Analysis 17

v

3.1 Introduction . 17
3.2 Example . 19
3.3 Approach . 21

3.3.1 Overview . 21
3.3.2 Analyzer . 22
3.3.3 Reducer . 23
3.3.4 Reinstater . 24
3.3.5 Other Issues in Implementation 24

3.3.5.1 Resource Files . 25
3.3.5.2 Customized Exception Information 25

3.4 Evaluation . 25
3.4.1 Code Size . 27

3.4.1.1 Java Application Code Size 27
3.4.1.2 Java Runtime JRE Code Size 28
3.4.1.3 Java App+JRE All Together 29

3.4.2 Code Complexity . 32
3.4.3 Memory Footprint and Execution Time 35
3.4.4 Security . 36
3.4.5 Performance . 37
3.4.6 Experimental Result Summary 38

3.5 Discussion . 39
3.5.1 Code Trimming on Java Core Library 39
3.5.2 Soundness and Limitation of Dynamic Reflection Resolving

Method . 39

Chapter 4
Android Application Customization and Redundancy Removal

Based on Static Analysis 41
4.1 Introduction . 41

4.1.1 Two Types of Redundancy 41
4.1.1.1 Compile-time Redundancy 41
4.1.1.2 Install-time Redundancy 42

4.1.2 The Focus of This Chapter 43
4.1.2.1 Compile-Time Redundancy from Java Libraries . . 43
4.1.2.2 Install-time Redundancy from Application Binary

Interface and SDKs 43
4.1.3 Our Contributions . 45

4.2 Design and Implementation . 46
4.2.1 Architecture . 46
4.2.2 Call Graph . 47

vi

4.2.3 Android Standard Lifecycle and Dummy Main 48
4.2.4 Callbacks . 49
4.2.5 String Analysis and Reflections 51
4.2.6 Obfuscation . 52
4.2.7 Install Time Redundancy Removal 53
4.2.8 Sign the Customized Application 54
4.2.9 Implementation . 54

4.3 Evaluation . 56
4.3.1 Code Size . 57

4.3.1.1 Results of Tested Android Applications 57
4.3.1.2 Detailed Data of Selected Android Applications . . 57

4.3.2 Code Complexity . 59
4.3.3 Reflection Call Sites . 61
4.3.4 Installation Time Redundancy 62

4.3.4.1 Install-Time Redundancy from Android Wear Ap-
plications . 62

4.3.4.2 Install-Time Redundancy from Android Applica-
tion embedded ABIs 62

4.4 Discussion and Future Work . 64
4.4.1 Install-time Redundancy to Support legacy APIs 64
4.4.2 Feature based Customization 65
4.4.3 Relationship with Other Android Application Compaction

Approaches . 65
4.4.4 The Relationship Between Our Approach and Dead Code

Elimination . 65
4.4.5 The Universality of Our Unused Code Removing Implemen-

tation and Approach . 66
4.4.6 Security Impacts . 67
4.4.7 Soundness of Static Reflection Resolving Method 69

Chapter 5
Feature-based Software Customization: Preliminary Analysis,

Formalization, and Methods 70
5.1 Introduction . 70

5.1.1 Software Engineering Pragmatic Issues 70
5.1.1.1 Why Customizing a Feature is Difficult? 71

5.1.2 Security Concerns . 72
5.1.3 Our Approach . 74

5.2 Problem Definition . 75
5.3 Approach . 76

vii

5.3.1 Overview . 76
5.3.2 First Step: Forward Slicing 79
5.3.3 Second and Third Step: Call Site Delete and Solo-slicing . . 80

5.3.3.1 Program Dependence Graphs and Solo-slicing . . . 82
5.3.3.2 System Dependence Graphs and Solo-slicing 84
5.3.3.3 Extending Solo-slicing Algorithm to OO Program . 85

5.3.4 Fourth Step: Method Definition Delete 86
5.4 Evaluation and Case Studies . 87

5.4.1 The Complexity of Our Approach 87
5.4.2 The Pervasiveness of Cross Cutting Features in Real World

Java Program . 87
5.4.2.1 Presence of Network Connection Call Sites 88
5.4.2.2 Presence of Database Connection 88
5.4.2.3 Presence of Logging 88

5.4.3 Case Studies . 89
5.4.3.1 DrJava: Network Connection 89
5.4.3.2 Hadoop: Database Connection 90
5.4.3.3 Maven: Logging 91

5.5 Discussion . 92
5.5.1 Solo-slicing . 92
5.5.2 Definitions of Feature . 94
5.5.3 Future Work . 94

Chapter 6
Conclusion 95

Bibliography 97

viii

List of Figures

3.1 JRed Architecture . 21
3.2 The Java Runtime JRE Structure 26
3.3 Reduced-Original Size Ratios of the DaCapo Benchmark Applications 30
3.4 Reduced-Original rt.jar Ratios of DaCapo Benchmark Applications 30
3.5 Java App+JRE Overall Ratios . 30
3.6 Reduced-Original Application CK Java Metrics Ratios 30
3.7 Reduced-Original Application LCOM and Ca Ratios 32
3.8 Reduced-Original rt.jar CK Java Metrics Ratios 33
3.9 Reduced-Original rt.jar LCOM and Ca Ratios 33

4.1 Motivation of RedDroid . 42
4.2 RedDroid Architecture . 46
4.3 Android Application Build Process 55
4.4 Reduced Size Distributions . 58
4.5 Code Complexity Results . 60
4.6 ABI details . 64

5.1 Interprocedural Control Flow Graph of Code Listing 5.4 76
5.2 Delete Overview . 79
5.3 Forward Slicing on Return Value and Side Effect 81
5.4 Traditional Slicing Fails to Identify the Redundancy Caused by Call

Site Removal . 82
5.5 The PDG of the Example Code in Listing 5.7 83
5.6 Solo-slicing Algorithm Illustration 85

ix

List of Tables

1.1 The Sizes of Unix/Linux Shell . 2
1.2 The Sizes of Shell Command true 2

3.1 Case study on library and application class and methods actually
used by Catalina . 19

3.2 DaCapo benchmark applications code size before and after unused
code trimming comparison . 31

3.3 Customized rt.jar of DaCapo benchmark applications code size
before and after unused code trimming comparison 31

3.4 Java Application Code Complexity Measurements 31
3.5 The Java Runtime Rt.jar Code Complexity Measurements 32
3.6 Avrora Memory Footprint . 35
3.7 Avrora Execution and Garbage Collection Time 35
3.8 Vulnerabilities Removed from the Customized JREs 36
3.9 JRed Performance . 37
3.10 Number of reflection call sites of selected benchmarks in DaCapo

discovered by test suites of different sizes, cited from Eric Bodden
et al. [1] . 40

4.1 Android supported CPU architectures and embedded ABIs 44
4.2 10 Selected Android Application Code Size Before and After Unused

Code Trimming Comparison . 58
4.3 Reflection Call Sites . 61
4.4 Size and Percentage of Installation Redundency in Wear Applications 62
4.5 Proportions of applications that contain redundant ABIs by different

size groups . 63
4.6 reflection patterns and our strategies 69

5.1 Network, Database, and Logging Features 88
5.2 Call Sites of method openConnection and openStream in DrJava . . 89

x

5.3 Logger.log Call Sites in Apache Maven project 93

xi

Acknowledgments

First and foremost, I would like to express my sincere gratitude to my Ph.D. advisor
Dr. Dinghao Wu, who has been guiding me on research, teaching, and long-term
career development. He has inspired me in many ways. I would like to thank him
for his wisdom, enthusiasm, and patience. I feel fortunate to be mentored by him
and work in his team. His great insights and supportive comments are priceless
for me. His hard-working and persistence will always encourage me continuously.
I truly appreciate everything I have obtained from him during this impressive
journey.

I would also like to thank all my committee members, Dr. Peng Liu, Dr. Anna
Squicciarini, and Dr. Sencun Zhu. I am lucky to work on multiple projects with
Dr. Liu. I really appreciate his invaluable advices. Dr. Anna Squicciarini gave me
constructive suggestions to help me improve my proposal, dissertation, and the
research. I also want to thank Dr. Sencun Zhu for his guidance during my teaching
assistant experience.

I want to give many thanks to all my research collaborators, especially my
labmates. I have learned a lot from them. We have established great relationship
which will endure.

This dissertation is supported in part by the Office of Naval Research (ONR)
under grants No. N00014-13-1-0175, N00014-16-1-2265, and N00014-16-1-2912.

xii

Dedication

I dedicate my Ph.D. dissertation to my family and many friends. A special feeling
of gratitude to my parents, Wei Jiang and Min Yang who give birth to me and
support me throughout my life.

xiii

Chapter 1 |
Introduction

1.1 Bloatware
With the rapid development of modern software engineering, the scale of the
software products keep expanding on all measurements, which leads to the problem
of software bloat [2]. The scientific community use the term “bloatware” to describe
the software that has much bloat.

Both academia and industry have paid attention on the bloatware and removing
software bloat for some time. When talking about the software bloat, though
all existing works roughly refer to the redundant, unnecessary, unwanted, and
undesired “things” in the software, the definitions given by them are still varied
and vague [2–5]. Before we go any further, we define the term “software bloat” first.
In this dissertation, we adopt the definition given by McGrenere [3]. The software
bloat is “the result of adding new features to a program or system to the point
where the benefit of the new features is outweighed by the impact on the technical
resources (e.g., RAM, disk space or performance) and complexity of use” [3].

The problem of bloatware is severe. The most intuitive negative consequence
caused by software bloat is the bulk sizes of modern software. Table 1.1 shows
the sizes of Unix and Linux shells over last several decades, which is collected by
Holzmann [6]. From the table we can see that the size of Ubantu shell is 191 times
larger than the size of Unix V5 shell. Table 1.2 shows how the size of a single
shell command true increased over the years [6]. In the year of 1979, its size is
zero. According to the definition of true, its function is to “exit with a status code
indicating success”. An empty script can exactly fulfill this function. Interestingly,

1

Table 1.1: The Sizes of Unix/Linux Shell

Version Year Size (Bytes)
Unix V5 1974 11135
Unix V6 1975 11594
Unix V7 1979 67799
Unix V8 1984 116514
Plan9 rc 2008 195850
Ubantu bash 2014 2131992

Table 1.2: The Sizes of Shell Command true

Year Size (Bytes)
1979 0
1983 18
1984 276
2010 8377
2012 22896
2014 27168

in present, the size of true is 27168 bytes. The data gives us rough idea about how
software is inflating over the years.

Besides bulky sizes, software bloat also imports unnecessary complexity into the
software, which increases difficulties to both development and maintenance. The
complex logic included in the software makes some comprehensive analyses, detailed
inspection, and formal verification too expensive to be conducted, which may make
the software less trustworthy. High complexity also makes a software harder to be
used, understood, and extended. A famous example is Windows Vista. Windows
Vista is designed as a minor update after Windows XP originally. However, its
complexity is out of control. After several times of delay, at last, it took 6 years to
release, which is the longest time among the whole Windows series. It has 50M
lines of code , which is much larger than its successor Windows7. However, it is
more confused to users than other Windows releases.

Also, software bloat causes security problems. An apparent reason is that
larger code base implies more exploitable bugs. Beyond that, if we consider some
advanced attacks like Return Oriented Programming (ROP) and Property Oriented
Programming (POP), a larger code base eases attackers to find a gadget or chain
properties. If we consider the Android system, an Android application that contains

2

software bloat caused by those unnecessary features may obtain more-than-enough
permissions from the system. In the end, it may become a path where user privacy
leaks.

After entering the era of big data, mobile computing, cloud computing, and
Internet of things, the ways that people acquire, update, and use the software
have been completely changed. These new computing paradigm are amplifying
the negative consequences mentioned above. For example, the inappropriate data
structure design and ineffective Garbage Collection (GC) strategies in a large-scale
data-intensive application will cause enormous software bloat in memory [7]. The
example in mobile computing is about iPhone. According to the data released by
Apple Inc, the CPU of iPhone 6 is 50 times faster than first generation iPhone. The
GPU of iPhone 6 is 84 times faster than first generation iPhone. Those powerful
hardwares enable developers to develop much larger and much complex applications.
There are quite a few mobile apps whose sizes are larger than 2G bytes. However,
the iPhone 6 hard disk size is just 2 times larger than first generation iPhone, which
cannot match the increasement of other capabilities. This mismatch is the root
cause of the situation that many users cannot install apps on their mobile phones
due to out of storage space. Another example is that cloud computing capability
acquisition is on demand. Software bloat will directly relate to higher cost on IT
spending, which will weaken the competition of a company. What is worse, wireless
networks, widely deployed sensors, and wearable computing devices are forming up
new hard constrains to the limited resources.

Most previous works focus on the bloat in the memory, especially the bloat
caused by the inappropriate usage of the variables, arrays, and other memory
allocations. The research on this direction has already yielded great results and
impressive achievements. However, software bloat is not just caused by incautious
programmers. There are more fundamental reasons behind that. In this dissertation,
we are going to review, investigate, and solve this problem from a holistic point of
view including software engineering, software security, and programming language
perspectives. Specifically, we discuss following three topics in this dissertation.
They are

• the unused code in software and runtime environment as the side effect of
modern software engineering and high level programming language,

3

• the multiple types of software bloat in mobile applications, and

• the redundant software features that are caused by agile development, market
pressure, and software reuse.

1.2 Unused Code in Java
The modern programming paradigm heavily relies on big generic libraries, reusable
components, and frameworks. Even in the situation where only a few classes or
methods of those libraries, components, and frameworks are invoked by the applica-
tion, the every piece of code of the whole libraries, components, and frameworks are
still being included in the software product. Beyond a direct consequence that these
unused code is making the program size larger, code size has profound impacts
on many aspects of a system, including software download and installation time,
program loading time, disk and memory storage, software testing and maintenance
cost, battery or in general energy consumption, code complexity, software and
system reliability, and security attack surface, to name a few.

As an example, a Java 7 zero-day exploit is based on bugs in the Java Runtime
JRE library classes to disable the SecurityManager of Java Applet [8]. By exploiting
method findClass in Class java.lang.ClassLoader and method methodFinder in
Class com.beans.Finder, attackers can reflectively call method getField, which can
get any private field in class sun.awt.SunToolkit. Thus, attackers can get and
modify some sensitive private fields in sun.awt.SunToolkit such as AccessControl-
Context. Originally, the Java security policies have already banned the use of
sun.awt.SunToolkit in the Java Applet scenario to prevent privilege escalation.
However, knowing that sun.awt.SunToolkit is dangerous but still leaving it there
finally gives attackers chances to find a path to walk around security policies and
abuse it [8]. If we cut the JRE libraries for the Applet usage scenario, many similar
security problems will go away.

Previous research on bloatware code size mitigation has different scopes with
our research or incurs a number of limitations. Pugh [9] and Bradley et al. [10]
propose packing and encoding methods to reduce the size of jar files, but they
do not reduce the actual code size. Tip et al. [11] develop Jax, a tool to extract
used Java code. Jax differs from ours on the handling of reflections. Jax relies

4

on information annotated by users, while our approach automates this process
using iterative dynamic analysis. Tip et al. mainly focus on code size reduction.
Our evaluation not only measures the code size reduction, but also demonstrates
the impact on code complexity, memory footprint, execution time, and security.
Additionally, our approach and evaluation takes JRE into consideration.

We propose a new hybrid iterative static and dynamic approach to trimming
unused code from both Java Runtime Environment (JRE) and Java applications
automatically. We have built a tool called JRed on top of the Soot framework.
We have conducted a fairly comprehensive evaluation of JRed based on a set
of criteria: code size, code complexity, memory footprint, execution and garbage
collection time, and security. Our experimental results show that, Java application
size can be reduced by 44.5% on average and the JRE code can be reduced by more
than 82.5% on average. The code complexity is significantly reduced according to
a set of well-known metrics. Furthermore, we report that by trimming redundant
code, 48.6% of the known security vulnerabilities in the Java Runtime Environment
JRE 6 update 45 has been removed.

1.3 Software Bloat in Mobile Applications
Smartphones are widely used in our daily life. A large number of Android applica-
tions that provide versatile functionalities, as well as CPUs with more computation
powers allow and encourage users to install more and larger Android applications
in their smart phones. At the meanwhile, as a considerable amount of software
bloat in the apk file of each installed Android application, the resources of a smart
phone, such as the storage and network bandwidth, has become more and more
insufficient than before. Furthermore, software bloat in Android applications may
also bring in other security concerns which are challenging to foresee.

Compared with general software running on a server or a desktop, mitigating
software bloat issue in mobile applications is a brand new problem. Its uniqueness is,
in part, due to its specialized operating systems, the different application execution
model and life cycle, diverse usage contexts, the fragmented ecosystem, and more
hard limits on resources. Here are some examples. An Android application has
multiple execution entries instead of a single main method, which makes the
traditional software analysis framework cannot be directly applied. The way that

5

a user interacts with a mobile device makes mobile applications use callbacks
intensively. Mapping call backs and their registrations becomes another challenge
to overcome. Coexisting different versions of operating systems, various CPU
architectures, diverse display settings force mobile applications to include numerous
files to achieve compatibility. The redundancy caused by this fact is also rare in
other types of software. Hence, it is worthy to pay attention to Android application
software bloat, which not only requires new perspective to classify and identify
different types of bloat, but also new technical solutions to trim them off.

In this study, we investigate software bloat that would lead to the rapid size
increase of Android applications. We categorize the sources of Android application
software bloat into two types, compile-time redundancy and install-time redundancy.
We further propose a fully automated approach to trimming off both types of
software bloat. Our approach is mainly based on static analysis and program
transformation.

For the compile-time redundancy, we statically construct an overapproximate
call graph for the Android application being analyzed. Based on this call graph,
we can remove the methods and classes that are never used in this call graph. Our
approach overcomes several unique challenges in Android application static analysis
and call graph construction, including multiple entries of an Android application,
intensive usage of call backs, and Android component life cycles. Our approach
processes reflections based on static string value analysis without the aid of other
information besides the application code. As for the install-time redundancy, we
discuss the presences and solutions towards two pervasive redundancy sources,
which are multiple Software Development Kits (SDKs), and embedded Application
Binary Interfaces (ABIs).

We have implemented our approach in a prototype called RedDroid and eval-
uated RedDroid on 4,779 Android applications from Google Play. We measured
the impact on code sizes, code complexity, reflection call sites, the size of redundant
SDKs, and the size of redundant embedded ABIs.

Our experimental results show that, by removing compile-time redundancy
solely, on average, around 15% of the original application code can be trimmed off.
For the applications that have install-time redundancy caused by redundant SDKs,
another 20% of its original size can be trimmed off on average. For applications
that have install-time redundancy caused by redundant embedded ABIs, we can

6

trim off additional 7% on average. If an application has all types of redundancy
mentioned above, then on average we can expect to reduce its size by 42%. We
report that each Android application in our test set has on average 14.8 reflection
call sites, and our evaluation also shows that the distribution of usage frequency of
each reflective method is quite biased. Furthermore, we report that code complexity,
measured by a set of well-known metrics, is also notably reduced.

1.4 Software Feature Bloat
Another type of bloatware is caused by the feature creep phenomenon. The
requirements of removing and customizing one or some of the bundled features
from software products are raised from both developers and users, for both software
engineering reasons and software security reasons.

From software engineering perspective, multiple reasons are accounted for
feature creep. First, software products need to satisfy the various requirements of
different groups of users at the same time. For a specific user in his or her specific
work settings, many features offered by that software become redundant. Some
software products have limited feature customization such as individual version
and enterprise version which are coarse-grained. Second, when developers build
new system based on legacy projects or third-party library, they tend not to modify
or delete unnecessary features from those tangled code which is not written by
themselves because making any change costs a lot and is prone to error. Third, the
pressure of keeping updating and pushing new product to the market may drive
developers to add gaudy features to the software which might be undesired by all
groups of users.

Taking Microsoft Word as an example. Besides the function of text editing,
users actually can use MS Word to read and send email. However, people seldom
use MS Word in this way. Many other software products encounter the similar
situations. According to a survey, on average, more than 45% functions of a software
product are never used by most users [12].

Apparently, feature-creep bloatware causes many negative consequences. It
has larger size, higher code complexity, and potentially is less reliable and secure.
Developers are difficult to change, maintain, and manage the code. It also means
longer testing time, more bug reports, and releasing patches in a higher frequency.

7

From software security perspective, a feature-based software customization is
required to respond to several different threat models. First, it is not rare that
some software vendors deliberately collect users’ data via the backdoors which
reside in some features of the software. Second, developers might need to reply
on third-party libraries to build their own applications. The malicious third-party
libraries will hurt both developers and users. In current trust model, to respond
to these two scenarios, users or developers can use related analysis tools to scan
the applications or libraries. Such a scanning helps improve our confidence on the
integrity of the applications or libraries but cannot give a guarantee. Once the
decision of using a specific application or library is made, we have to 100% trust
the behavior of those code as a whole. If a feature-based customization solution
is available, we do not need to fully trust the application or the library even if
we choose to use them. By removing some user-identified unnecessary features
which might have sensitive behavior such as writing data to Internet or logging user’
profile, we can achieving active defense. In the third threat model, the adversary is
the outside attacker. More features offer them a larger attack surface. Removing
unnecessary features according to different requirements not only reduces the attack
surface, but also achieves moving target defense by increasing software diversity.

Existing technologies and previous research cannot solve this problem very
well. Code review can help mitigate these issues to some degree in some scenarios.
However, in many cases code review is not a feasible solution. First, the cost of
conducting comprehensive code review is high regarding to both time and expenses.
Second, in many cases source code is not available for the code review. The effort
of automatically removing bloat from bloatware has been made by some researchers.
However, they did not touch the bloatware that caused by feature creep.

We propose an approach to customizing Java bytecode by applying static
dataflow analysis and enhanced programming slicing technique. This approach
allows developers to customize Java programs based on various users’ requirements
or remove unnecessary features from tangled code in the legacy projects. We
evaluate our approach by estimating its algorithm complexity and conducting case
studies on removing cross cutting features from real world Java program. The
results show that our approach has the potential for practical use. Additionally, we
find out that, by increasing the diversity of the software, our approach helps on
achieving moving target defense.

8

1.5 Dissertation Structure
The dissertation is organized as follows. We present the related work in Chapter 2.
We introduce our research on Java applications and the JRE unused code removal in
Chapter 3. We report our efforts on Android application software bloat mitigation
in Chapter 4. Chapter 3 and Chapter 4 share some similar insights. Therefore some
interesting topics, open problems, and limitations shared by these two chapters
are discussed at the end of Chapter 4 altogether. The feature-based software
customization is reported in Chapter 5. We conclude in Chapter 6.

9

Chapter 2 |
Related Work

In this chapter, we first review the related work on bloatware. Then we discuss the
work that supports, inspires, or is related to our approach and implementation.

2.1 Bloatware

2.1.1 Code Size Bloat

On Java program size reduction, Pugh [9] proposes a method to more efficiently
pack class files into smaller jar files. Bradley et al. [10] introduce a new Java
archive file format called Jazz, which has better compression ratio than the jar
file format. Tip et al. [11] develop a tool called Jax to reduce Java archive size,
especially applets, to shorten the download and transmission time over the Internet
by removing redundant code. Jax takes advantage of manual annotations to handle
reflections. Their measurements of interest in evaluation are also different with ours.
These works do not consider the Java Runtime JRE customization as well. On
the direction of user-input facilitated application extraction, Sweeney and Tip [13]
further present a small, modular specification language MEL. Wagner et al. [14]
takes a more aggressive step to remove code from those “always-connected” devices.
They split code into a frequently used part known as hot code, and an infrequently
used part known as cold code. A running device will only receive the hot code
at the very beginning, while the cold code still remains on a remote server. The
specific part of cold code will be transmitted to a running device only when it is
necessary. Lint [15] is a tool to remove redundant registered resources from an
Android project. Registered resources are located in “Res” directory of an Android

10

project. Each registered resource has a global unique ID, which can be directly
referred by a static field of class R. However, a large number of resources, such
as music, sprite-sheet-based images, animations, and movies that are located in
directory “Asset”, cannot be optimized by this tool, since they are referred in the
program by using their relative path which is a string literal.

There is also research on program optimization and size reduction for other
programming languages such as C++ and JavaScript. In practice, JavaScript
code is usually optimized, compressed, and minified using compression [16] and
minification [17] tools. Souders [18] suggests websites simply gzip all JavaScript
components to save the loading time. However, transmitting compressed JavaScript
may have some security problems because malicious JavaScript can be obfuscated
by being compressed. Likarish et al. [19] raise a methodology to detect obfuscated
malicious JavaScript by using classification techniques. Oberlander [20] discusses
a method to analyze C++ source code to collapse class hierarchies. Sweeney
and Tip [21] developed an approach to remove unused data members in C++
applications. De Sutter et al. [22] apply aggressive whole-program optimization
and extensive code reuse on C++ binary to avoid bloat brought by templates and
inheritance.

2.1.2 Memory Bloat

Regarding to the memory, Bu et al. [7] have pointed out that the negative impact
on memory and performance caused by bloatware is being amplified by today’s big-
data software usage nature. Xu [23] proposes a method to reuse those redundant
objects. Xu [24] also presents a tool called CoCo to soundly and adaptively
replace Java collections to remove memory bloat from Java software. Hosking et
al. [25] mitigate the problem of memory bloat by eliminating partial redundancy
for access path expressions. Whitlock and Hosking [26] proposes a framework for
persistence-enabled optimization of Java objects stores based on Bytecode-Level
Optimizer and Analysis Tool (BLOAT). Xu et al. [27] presents a method to detect
runtime bloat by applying abstract dynamic slicing technique. Nguyen and Xu [28]
introduce Cachetor, a tool to detect cacheable data to remove bloat. In contrast,
our tool JRed focuses on static unused code reduction, but takes a hybrid approach
combining static reachability analysis and dynamic testing.

11

2.1.3 Dependency Bloat

A type of bloatware depends on too many libraries, contains cyclic dependency, or
requires several incompatible at the same time which increases the cost of building,
changing, and dependency management sharply . Morgenthaler et al. try to
lower the difficulty of dependency management and target building caused by huge
monolithic code base [29]. By removing the build files associated with dead code,
identifying “unbuildable targets” and unnecessary command line flags, developers
could ease the process of target building and pay down so-called “technical debt”.
They try to mitigate the problem without changing the code base. Wang et
al. follow the similar approach and additionally includes code base itself into
consideration [30]. They implement a tool to find out intra- and inter-module
dependencies on both symbol level and module level. Developers can use those
information to conduct large-scale refactoring on their huge code base. Vakilian
et al. propose an approach to decomposing large build targets into smaller ones
to avoid frequently triggering build and test tasks [31]. Ryder and Tip propose
change impact analysis to precisely identify affected regression testing cases due to
the change to the large code base [32].

2.1.4 Software Diversity

One of our research’s security impacts is improving the software diversity. Software
diversity enhances the software security from multiple aspects. Software diversity
offers a probabilistic protection mechanism [33]. Additionally, it is a kind of active
defense which can defend a wide range of types of attack, including unknown attack
methods. Software could be diversified in different levels by different approaches.
It offers a large design space to software diversity researchers. Our research offers
one way to diversify software via feature-based customization. Other research in
this area diversifies software by different granularities. Snow et al. diversify the
software on instruction level [34]. Their approaches include equivalent instructions
and equivalent instruction sequences substitution. Some other works diversify the
software on basic block level [35]. Their technologies include opaque predicate
insertion and branch function insertion. On the program level, approach instruction
set randomization [36] and virtualization-based obfuscation are proposed. They
are efficient on defending code injection attacks.

12

2.2 Others

2.2.1 Handling Reflections

Dynamic language features such as reflection pose a challenge to program analysis
and optimization. Bodden et al. [1] use a dynamic approach to log the reflection
usage information and then transform the reflection into a form that can be statically
analyzed. Thies and Bodden [37] implement this technology on Eclipse to improve
its code refactoring function. Livshits, Whaley and Lam [38] present a method to
statically analyze Java reflection. An interesting point of their work is that they
utilize the Java type casting information to better determine the type of the object
that is just dynamically created. Braux and Noye [39] introduce a method to resolve
reflections at compile time, even though their motivation is not to facilitate static
analysis but to improve the performance. Christensen et al. [40] develop a general
framework to analyze string expressions and applies the method to resolve Java
reflections. Our tool JRed uses a hybrid static and dynamic approach, similar to
that of Bodden et al. [1], to resolving Java reflections. Another approach to solving
reflections in Java programs is to extract the string values in call sites of reflective
calls. Several previous works proposed some methods to conduct string analysis.
Java String Analyzer (JSA) [40] is a static analyzer to find the upper approximation
values of given string variables in a program. Its first step is to transform Java
program into a flow graph. An edge of this flow graph is a “def-use” chain in
the program. In second step, JSA works on the flow graph to generate a regular
expression to over approximate the values of a given string. Li et al. [41] proposed
a new general framework to analyze string values in Java and Android program and
implement a tool called Violist. They introduced a new IR which can be used to
model string operations. By performing context-sensitive interprocedural analysis,
Violist better solves the challenges, including scalability and string operations across
procedures. Shannon et al. [42] introduces an approach to using symbolic execution
to conduct string analysis. They take advantage of automaton to represent abstract
string symbols in the symbolic execution.

13

2.2.2 Call Graph Construction

Call graph construction has a profound impact on the precision and effectiveness
of program analysis and optimization. Lhoták [43] proposes a flexible points-
to analysis framework for Java. Grove et al. [44, 45] find that context-sensitive
call graph construction method does not gain much improvement on the results
compared with context-insensitive methods. Agrawal et al. [46] develop a demand-
driven technique for call graph construction. Tip and Palsberg [47] discuss several
propagation-based call graph construction algorithms, and conclude that RTA costs
less but yields similar results compared to other more expensive algorithms. The
call graph construction method used by the analyzer of JRed is customizable. In
our current implementation, we use points-to analysis, but it can be easily replaced
by others.

2.2.3 Program Slicing

There has been a substantial amount of research on program slicing. Mark Weiser
first raises the idea of program slicing, which could be applied to regression testing,
program parallelization and automatic debugging [48]. Along with this idea, he
also presents a static program-slicing algorithm. However, this algorithm could
only be applied to a program that has a monolithic procedure. Arvind and Shankar
presented a methodology to use program-slicing technology to facilitate regression
testing [49]. Specifically, their methodology is based on alias analysis and an
interprocedural program slicing algorithm proposed by Horwitz et al. K.J. Otten-
stein and L.M. Ottenstein developed the program dependence graph (PDG) [50].
This data structure provides an infrastructure to develop a new more effeicent
program slicing algorightm. But PDG only facilitates intraprocedural program
slicing analysis. Horwitz et al. solved the problem of interprocedural program
slicing. They introduce a new form, system dependence graph (SDG), to represent
the program [51]. The challenge of conducting interprocedural slicing is analyzing
calling context of procedures. Compared with PDG, this approach overcomes the
difficulty by importing transitive dependences relationship. Some other researchers
make efforts on dynamic slicing techniques. Wang and Roychoudhury implement a
Java dynamic tool called JSlice [52]. The strength of this tool is that huge bytecode
traces could be represented in an very effective manner. Hammacher implements

14

a tool called JavaSlicer [53], which is easy to set up and use. To make this tool
Java virtual machine implementation independent, the author takes advantage of
Java agent technology. Treffer and Uflacker also implement Java dynamic slicing
on soot framework [54].

2.2.4 Static Analysis on Android

Cao et al. [55] proposed a comprehensive approach to analyzing all implicit control
flow transitions (a.k.a callbacks) through the Android framework. More specifically,
by performing backward data flow analysis starting from all methods that can be
overridden in user space on an overapproximated call graph, a superset of all call
backs and their registrations can be reached. They implement this method into
a tool called EdgeMiner to augment the precision of existing static analysis tools.
FlowDroid [56] is a state-of-the-art static taint analysis tool on Android applications.
The on-demand analysis algorithm allows their approach to achieve high precision
(context, flow, field, and object sensitive) with relatively low cost. Octeau et al. [57]
implemented Dare, a tool to retarget Android Dalvik bytecode to Java bytecode.
They present an inference algorithm to investigate the lost information (e.g., type
information) during the process of transforming Java bytecode to Dalvik code. Their
approach is based on the Tyde IR and 9 basic transformation rules. Dex2jar [58] is
the other widely used open-source tool to transform Dalvik code into Java bytecode.
Nimbledroid is a online tool to quickly profile an Android application. It is capable
of being integrated with Continuous Integration (CI) process of an industry-strength
Android application development. PScout [59] and Stowaway [60] are two static
analyzers that map Android framework APIs to Android permissions. PScout first
checks permission check points. Then it performs backward reachability analysis to
the Android framework APIs that triggered those permissions checking. Intents
sending and content providers accessing are considered as two types of implicit
permission checking points. Undocumented Android framework APIs are also
included in their results. Apktool [61] is a tool to conduct reverse engineering
on Android applications. It can transform the Dalvik code to classes in smali
representation. In addition, it can decode binary-based resource files back to its
original human-readable form. FernFlower [62] is a state-of-the-art Java decompiler.
It has rich command line options which makes it easy to be embedded into scripts

15

and existing tool chains. FernFlower is the default Java decompiler of IntelliJ
integrated development environment.

16

Chapter 3 |
Program Customization Using
Iterative Hybrid Static and Dy-
namic Analysis

3.1 Introduction
Modern software engineering practice increasingly brings redundant unused code
into software products, which has caused the problem of unused code bloat, leading
to software system maintenance, performance and reliability issues as well as
security problems. With the rapid advances of smart devices and a more connected
world, it is never more important to trim bloatware to improve the leanness, agility,
reliability, performance, and security of the interconnected software and network
systems. Previous methods have limited scopes and are usually not fully automated.

In this chapter, we propose a fully automated hybrid static and dynamic
approach to trimming unused redundant bytecode from both Java application and
Runtime JRE library code. We first construct a call graph for the target Java
application or library code, using static program analysis. Based on the call graph,
we perform a conservative reachability analysis for used methods and classes to
identify unused ones. Those unused methods and classes are marked for potential
trimming. Due to the reflection and heterogeneous development interface such
as Java Native Interface for using native code, purely static program analysis
sometimes cannot precisely determine method invocations or path feasibility. We
resort to dynamic methods for help. To this end, we design a reinstater which

17

drives a test suite on the tentatively trimmed lean Java code to catch an missing
method or class exceptions until it regresses. This hybrid static program analysis
and dynamic testing combination has enabled quick prototyping of our tool and
resulted good performance. Our approach is not intended to be a general approach
that can be applied anywhere in any scenario. Instead, we believe our approach
could be very useful and effective in certain applications and scenarios. For
example, part of our contribution is the JRE customization. For those computing
environments that only run one Java program such as sensors, wearable devices,
GPS navigator, some embedded systems, and certain security surveillance systems,
this JRE customization could be a desired feature.

We have implemented our approach in a prototype tool called JRed on top
of Soot [63]. We have evaluated JRed on the DaCapo benchmark on code size,
code complexity, memory footprint, execution and garbage collection time, and
security attack surface. Our experimental results show that JRed is quite effective
for practical use.

JRed reduces the size of the Java application code on average by 44.5%. JRed
reduces the size of the Java Runtime JRE core library rt.jar by as much as 94.9%.
JRed, from the end user point of view, reduces the device disk footprint by roughly
50%. Based on the 8 code complexity metrics including CK Java Metrics, JRed
reduces the code complexity of both Java application and Java Runtime JRE
core library rt.jar significantly. JRed trims nearly half of the known security
vulnerabilities in the specialized Java Runtime JREs for each benchmark programs.
Since unknown vulnerabilities are trimmed as well, this roughly leads to reduced
attack surface by 50%. By specializing Java Runtime JRE for different applications,
we can achieve more diversity, resulting enhanced moving target defense [64].

In summary, we make the following contributions:

• We propose an automated iterative hybrid static and dynamic approach to
trimming unused code.

• We have implemented this method in a tool called JRed. Our experimental
results show that JRed can significantly reduce code size, code complexity,
and attack surfaces.

• Our results also quantitatively unveil the proportion of bloat existing in Java
applications and JRE.

18

Table 3.1: Case study on library and application class and methods actually used
by Catalina

Methods Lines
java.lang.String

All Methods of Class 78 1,099
Methods Ever Called by Catalina 62 890
Called Methods/All Methods 79.5% 81.0%

java.lang.Integer
All Methods of Class 36 473
Methods Ever Called by Catalina 14 156
Called Methods/All Methods 38.9% 33.0%

catalina.connector.Request
All Methods of Class 143 2,872
Methods Ever Called by Catalina 102 1,961
Called Methods/All Methods 71.3% 68.3%

catalina.core.ApplicationContextFacade
All Methods of Class 25 402
Methods Ever Called by Catalina 2 29
Called Methods/All Methods 8.0% 7.2%

• We build specialized Java Runtime JREs for different Java applications,
enabling more software diversity and enhanced moving target defense.

The rest of this Chapter is organized as follows. We present a case study in
Section 3.2. We introduce our approach and implementation in Section 3.3. The
experimental results are reported in Section 3.4. We discuss a few related issues
and limitations in Section 3.5.

3.2 Example
To investigate how many methods of a class are actually invoked by a large real-
world Java application. we conduct a small case study1 on Catalina, a Servlet
container, which is a core sub-project of the Tomcat web server. We select two
JRE core library classes, java.lang.String and java.lang.Integer, and two application

1We initially built a tool based on Joeq [65] to conduct this case study. Our current prototype
implementation JRed is based on Soot [63]. We utilize the type parsing capability of Joeq to run
our conservative analysis. The case study is run on a machine with Intel Core2 Duo 3.16 GHz
CPU and 4G RAM.

19

classes, org.apache.catalina.connector.Request and org.apache.catalina.core.Applic-
ationContextFacade. The String class is frequently used by almost every Java
program. In addition, its class hierarchy is quite simple, which only has one super
class, java.lang.Object. Developers cannot extend the String class because it is final.
The data of String class represents an rough upper bound of JRE class methods
usage. The class java.lang.Integer is also widely used by many projects. However,
most projects usually only use a few methods of Integer (e.g., Integer.parseInt).
We expect that even a big project may only call a small portion of Integer methods,
which represents roughly normal cases of most library classes. Based on the same
principles, a frequently used application class (Request) and a less frequently used
class (ApplicationContextFacade) are chosen.

The results of the String class are shown in the first row of Table 3.1. There
are about 79.5% of String methods are actually called in Catalina. The results of
the Integer class are shown in the second row of Table 3.1. Among all 36 methods
of class Integer, 14 methods are actually called by Catalina, which means only
38.9% of Integer methods are used. Class Integer is a representative of most typical
library classes that are instantiated in Catalina project. Therefore, we can roughly
conclude that typically there are only about 40–80% of methods of library classes
that are actually used, which points to large rooms for software customization and
specialization.

We repeat the same experiment on the two application classes, Request and
ApplicationContextFacade. The class Request is frequently and comprehensively
used in Catalina. Thus it may represent a rough upper bound of method usage
in application classes. The analysis result is shown in the third row of Table 3.1.
There are 143 methods in total, among which 102, or 71.3%, are actually used
in the project. For the less frequently used class AppliationContextFacade, there
are 25 methods in total, among which only 2 methods are called. More than 90%
methods of this class could be deleted.

The data on lines of source code show similar experimental results, on both
library and application classes. The preliminary study results confirm that, for both
library and application classes, there are the opportunities of software customization
and specialization through trimming redundant unused code.

20

 Java
Bytecode Parser Analyzer Reducer

Code
Generator

Java
Bytecode

ReinstaterTest Suite

Figure 3.1: JRed Architecture

3.3 Approach
We first present the overall architecture of JRed, and then describe the details of
the individual components.

3.3.1 Overview

Figure 3.1 shows the architecture of JRed. JRed transforms a Java application
and the entire JRE into a redundant-code-free version. The input of JRed is a
runnable Java program in bytecode. The first component, the parser, reads the
bytecode of the Java program. It transforms the Java bytecode into the Soot
intermediate representation (IR), Jimple [66]. The analyzer then conducts the
analysis based on the Jimple IR. Taking the Java main method as the root node,
the analyzer builds a call graph statically through the interprocedural points-to
analysis. Call graph contains the information of the used methods and the classes
that include those methods. As the output of the analyzer, the call graph is passed
to next component Reducer. By iterating all the classes in the IR, the reducer
checks if the methods of each class are nodes of the call graph. If a method is not
presented in the call graph, the reducer rewrites the IR of the class to delete this
method. If a class has no methods being used and no static field being accessed,
then the entire class is removed. In the next step, the code generator transforms
the customized IR back into the Java bytecode.

However, due to the reflections, some method invocations cannot be determined
statically. We use dynamic testing to remedy the problem. The reinstater compo-
nent of JRed takes advantage of dynamic testing to overcome static uncertainty.
It drives the lean Java program and customized JRE to run on the test suites
to check if the program can pass the tests. If the program fails, it will throw an
exception, NoSuchMethod or AbstractMethod. Reinstater first catches and parses
the exception message, and then wakes up the component Reducer by sending the

21

error information to it. The Reducer then adds the missing method back to the
reduced IR, and the process repeats until the entire test suite passes. This hybrid
static and dynamic approach has ensured our tool work correctly in practice.

3.3.2 Analyzer

Methods in object-oriented (OO) languages usually are encapsulated by classes. To
build call graph for an OO language, we need to additionally collect class hierarchy
and class instance reference information to determine methods override.

Due to the class hierarchy, there are cases where we cannot determine that the
callee information hierarchy statically. A straightforward solution is to add the
methods of all classes in the same class hierarchy into the used method worklist. But
even with this conservative approach, we still need basic class hierarchy information.

We use SPARK, a flexible points-to analysis framework for Java [43], to facilitate
call graph construction. Points-to analysis builds the call graph on the fly [67].
Compared with some other popular call graph construction techniques, such as
Class Hierarchy Analysis (CHA) [68] and Rapid Type Analysis (RTA) [69], points-to
analysis builds a more precise call graph. Points-to analysis for Java is different
than for C [43]. SPARK points-to analysis takes advantages of the Java language
features such as type-safety to collect more information for building call graph.
Then we take a conservative approach to code trimming based on the call graph.
Our analysis is not context or path sensitive. In the evaluation section, we will
show that even with this conservative analysis, we can achieve considerable rate of
code trimming.

To remove unused classes, it is unnecessary to conduct a complete class usage
analysis since the basic loading unit of Java is a class and the methods reside in
classes. If a method of a class is determined to be actually used, then the class that
encapsulates this method must be retained as well. When an object is initiated,
the constructor of the corresponding class must be called. In addition to methods,
static class fields may prevent a class from being trimmed as well. Static class fields
of a class can be accessed through the class name directly without object instances
initialization.

22

3.3.3 Reducer

The Reducer deletes unused methods and classes from IR based on the analysis
results. It takes two steps. First, the reducer deletes unused methods. We iterate
through each loaded class and the methods in those classes. If a method is used, as
a node of the call graph, it is kept untouched. If a method is not in our used method
set, we mark it as a potential candidate for trimming. To ensure the correctness of
trimming, we cannot delete the method right away since some method invocations
cannot be determined statically. Although precisely determining all reflection
method invocations statically is undecidable, it is possible to over-approximate the
problem and trim the code conservatively. We thus ensure the correctness of the
resulted lean Java code.

To this end, we adopt a set of “make-it-sounder” rules. The first rule is to
keep all the constructors for those used classes. Reflections allow developers to
dynamically create an instance of a class or invoke a method. However, in practice,
the cases of dynamically creating an class instance are much more than the cases
of dynamic normal methods invocation. This fact indicates that constructors
have much higher chance to be used in reflections than other normal methods.
Considering the fact that constructors are small proportion of all methods and
each class only has a few usually, we make JRed keep all of these constructors to
reduce the incorrectness caused by reflections.

The second rule is not to delete native methods. Native methods offer an
interface to call those functions written in C via Java Native Interface (JNI).
Reserving the native methods and setting the analysis boundary at the native
methods avoids making our tool analyze native code and reduces the complexity of
the analysis. This is a tradeoff for our prototype implementation. In the future, it
would be interesting to investigate the whole system including native code. The
third rule is not to delete any methods of classes that are loaded before the start of
the Java main method. JVM executes a routine program to bootstrap necessary
running environment before executing the main method of the program. The entry
of our static analysis is the main method of the program. The number of classes
that are loaded before the main method are only 315. Compared with more than
18,000 classes in the Java runtime rt.jar, keeping these 315 classes does not affect
the overall results much.

23

If a method is neither a node of the call graph nor qualified for any of these
“make-it-sounder” rules, it is then trimmed. The next step is to trim unused classes.
If a class has no method or static field being actually used, then the entire class is
trimmed.

3.3.4 Reinstater

Due to the reflections, some method invocations and class initializations cannot be
determined by static analysis. We design a reinstater to mitigate this issue. The
reinstater uses a dynamic approach to discovering the methods and classes that are
incorrectly trimmed by our tentative results from the static analysis. Specifically,
the reinstater is a driver to run the lean Java program based on a test suite. This
is in spirit similar to regression testing. A similar hybrid approach has been used
to solve problems such as reflection analysis [1]. We adopt it to make our approach
sounder.

Missing classes and methods will cause three kinds of exceptions: Class-
NotFoundException, MethodNotFoundException, or AbstractMethodException.
Whenever the program running halts due to one of these exceptions, the reinstater
will catch and parse the exception information. If the exception is caused by
method missing, then the trace, class, and method information will be logged.
The call graph will then be updated according to the logs. If the exception is
ClassNotFoundException, then the full name of the class will be logged. After the
missing code information is collected, the reinstater will wake up the reducer and
pass these messages to it. Then the component reducer and the code generator
together will generate a new lean Java bytecode program based on new information.
The reinstater corrects one method or one class per run, and keeps driving the
output of code generator until no exception is caught during running.

3.3.5 Other Issues in Implementation

Our implementation is based on Soot [63], which is a framework to annotate,
optimize and analyze Java bytecode. Here we elaborate a few implementation
challenges that are particular to our research.

24

3.3.5.1 Resource Files

Good software engineering practice should separate resource files and programs
(e.g., in the “bin” and “resource” folder, respectively). However, some programs in
real world mix them together in the “bin” folder. The existence of these resource
files raise challenge for our analysis. In these cases, JRed has to extract the
resources files first before analysis, and at the end of the analysis, merge them with
the transformed class files.

3.3.5.2 Customized Exception Information

In normal cases, class missing or method missing should cause the throwing of
either ClassNotFoundException, MethodNotFoundException, or AbstractMeth-
odException. The limited number of the types of exceptions makes it easy to
implement reinstater because we can simply design some routines to handle these
expected exceptions. However, some programs do not directly throw these stan-
dard exceptions but handle them internally in a customized way or throw some
customized exceptions. For example, in the benchmark program Batik, because
of reflection, the first round analysis did not transform the class WriterAdapter.
Rather than throwing this exception in a standard way, it prints out “Could not
write PNG file because no WriterAdapter is available”. Such a specialized exception
handling method usually provides more information than those standard excep-
tions and can better help users and programmers to debug. However, in our case,
those customized information and exceptions bring challenges to the automation of
reinstater. The reinstater has to handle more types of exceptions, some of which
are rather ad-hoc. In some extreme cases, iterative manual intervention is needed.

3.4 Evaluation
In this section, we evaluate JRed by applying it to 9 Java programs selected
from DaCapo 9.12-bach benchmark [70]. Our experiments were conducted on HP
SL390S G7 servers high performance computing cluster with 12 Intel X5670 2.93
GHz processors and 48G Memory. The operating system is Red Hat Enterprise
Linux Server release 5.10 (Tikanga). The Linux kernel version is 2.6.18. We use
JRE 6 Update 45 as our Java running environment.

25

1.06%

45.64%

53.3%

rt.jar in lib

other libs

1.06%,

others in JRE

Figure 3.2: The Java Runtime JRE Structure

First we clarify the scope of our evaluation. A mobile device, desktop, or
server that runs Java program is composed by three software entities; the OS, the
Java Runtime JRE, and the Java application. Our goal is to evaluate the impact
of our redundant code trimming technology on the Java application, JRE core
libraries, and Java app+JRE. We define the Java app+JRE as the combination of
Java applications and the whole JRE which consists of JRE core libraries, Java
executable, and other supported files. The OS is out of the scope.

To evaluate JRed, we would like to answer the following research questions.

Q1: What is the impact of our redundant code trimming technique on the size of
the Java application, the JRE core libraries, and Java-app+JRE together?

Q2: What is the impact of our redundant code trimming technique on the code
complexity of the Java application and the JRE core libraries?

Q3: What is the impact of our redundant code trimming technique on the memory
footprint?

Q4: What is the impact of our redundant code trimming technique on the Java
application execution and the garbage collection time?

Q5: What is the impact of our redundant code trimming technique on the software
reliability and security?

26

3.4.1 Code Size

In this subsection, we present the experiments to the answer research question Q1,
the impact on the size of Java application, Java Runtime JRE, and all together
Java App+JRE.

3.4.1.1 Java Application Code Size

The experimental results are shown in Table 3.2 and Figure 3.3. A Java program,
consisting of a group of class files that contain Java bytecode, could be stored in
two different forms. The first form is that all class files are packed into a jar file.
The second form is that all class files are unpacked. For each benchmark program,
Table 3.2 and Figure 3.3 show the reduced-original size ratio in three different
metrics. The first metric, reduced-original jar file size ratio, measures the impact of
code reduction on the program as a jar file. The second and third metrics measure
the unpacked cases. The second metric is the sum of the sizes of all class files. The
third metric is the size of all class files that actually occupy on the disk. The jar file
size metric is the most important metric among all the three metrics, since the jar
file is the most common form as which a Java program exists. The second metric
and the third metric have subtle difference. Sum of the size of all class files equal
to adding every file’s bytes number. The size of all class files that actually occupy
on the disk usually is bigger than the number of bytes they have. The reason is
that the basic unit of hard disk is a “sector” rather than a byte. If the size of a
file is 1 byte, then the size it actually occupies on the disk is the size of a disk
sector. In Table 3.2, the column “original” presents the data of original size of each
benchmark program in these three different metrics. The column “reduced” shows
the size of reduced version benchmark or say the left size after trimming. The
column “Reduced/Original” showcases the number of reduced version size divided
by original size.

In Table 3.2 and Figure 3.3, among the 9 benchmark programs, the lowest
reduced-original jar size ratio is 30.08% (lusearch) and the highest one is 80.14%
(sunflow). The median number is 54.53%. On average, the reduced-original jar
size ratio is 55.52%. 4 out of 9 benchmark programs’ jar files could be trimmed
more than half off, 6 out of 9 could be trimmed more than 40% size off. The lowest
reduced-original sum of all class files size ratio is 21.18% (luindex) and the highest

27

is 77.11% (h2). The median number is 51.46%. The average number is 63.12%.
The lowest reduced-original all class files on-disk size ratio is 46.40% (xalan) and
the highest is 87.53% (avrora). The median number is 65.00%. The average number
is 67.13%. The results show that typically we can trim more than 40% size on
average for the Java applications when they are in packed forms. These results have
a significant impact on, for example, smartphone app download and installation
time.

3.4.1.2 Java Runtime JRE Code Size

The Java Runtime JRE usually contains four folders: bin, javaws, lib, and plugin.
The folder plugin stores plugin files. The folder javaws contains files related to
Java Web Start (JavaWS). The two most important folders are bin and lib. Bin
includes the Java executable (the console command java). Lib contains the JRE
core libraries, extension libraries, and other supported files. Figure 3.2 shows the
structure of a JRE. The lib folder solely occupies nearly 99% of JRE in size. In this
sector, a single jar file, rt.jar, occupies 53.30% in size. Excluding rt.jar, other jar
files, shared object files (.so), and supported files (e.g., property files) comprise the
rest 45.46% in size. In addition, rt.jar contains the most frequently used packages
such as java.lang, java.util, java.io, and java.math. So in the evaluation of JRE
core libraries trimming, we select rt.jar as a representative of the whole JRE core
libraries. Considering that other libraries in the JRE usually are Java extensions
which are designed for specified case rather than general usage like rt.jar, the ratio
of the size that we can trim from those libraries should be higher than that of rt.jar.

The experimental results are presented in Table 3.3 and Figure 3.4. The metrics
we used in Table 3.3 and Figure 3.4 are the same as the metrics we have used in
Java application size measurement. Although all customized rt.jar files are different,
the original rt.jar that we trimmed from is the same. So compared with 3.2, we do
not have a column “original” in Table 3.3, but we list the data of original rt.jar
under the main table.

On rt.jar, the lowest reduced-original jar file size ratio is 5.11% (avrora) and
the highest one is 26.15% (fop). The median number is 17.52%. On average, the
reduced-original rt.jar file size ratio is 17.45%. No one is higher than 30%. The
lowest reduced-original sum of all extracted class files from rt.jar size ratio is 30.72%
(xalan) and the highest one 48.52% (fop). The median number is 34.32%. On

28

average, it is 32.73%. The lowest reduced-original all extracted class files of rt.jar
on disk size ratio is 11.71% (avrora) and the highest one is 58.24% (fop). The
median number is 38.18%. The average number is 38.24%.

The proportion of the size we can trim from both applications and rt.jar is quite
significant. Meanwhile, it is not surprising to see we can trim more on rt.jar as it is
a general runtime library. The cohesion of each component inside an application
is relatively higher than the cohesion between an application and the JRE core
library, and the cohesion of different packages in JRE core libraries. This result
meets our assumption that a more general design and a higher abstract level lead
to the code with more bloat.

3.4.1.3 Java App+JRE All Together

We define the application and JRE (not only the core libraries in JRE) together
as “Java-App+JRE”. Figure 3.5 shows the experimental results on Java-App+JRE
for the 9 benchmark programs. The Y axis is the size (MB) of Java-App+JRE for
each benchmark program. For each benchmark, there is a higher bar and a shorter
bar representing the size of original Java-App+JRE and the reduced lean version,
respectively. In each bar, the dark gray part represents the size of the application
and the light gray part represents the size of JRE. We can see that the left side
light gray bar on each benchmark program has the same height, which means
each application originally invoke the same JRE. The percentage number above
each right-side shorter bar on each benchmark program is the reduced-original
Java-App+JRE ratio. The light gray part of each right side shorter bar consists
of two parts: a reduced rt.jar and other files in lib folder that are not touched in
this experiment. From Figure 3.5, we can see that a big JRE core library (93.9MB)
causes the sizes of all Java-App+JREs are around 100MB.

By comparing two bars of each benchmark program, we can see that after
trimming, all Java-App+JREs roughly have half size of their original versions. If we
additionally analyze and delete other Java bytecode in the lib folder, the percentage
could be lower. The results show that JRed can significantly reduce the whole
Java package Java-App+JRE by half on code size.

29

Avrora Batik Fop H2 LuindexLusearch Pmd Sunflow Xalan
0

20
40
60
80

100
Pe

rc
en
ta
ge
(%

)
Jar File Size Sum of All Extracted Class Files Size All Extracted Class Files Size on Disk

Figure 3.3: Reduced-Original Size Ratios of the DaCapo Benchmark Applications

Avrora Batik Fop H2 LuindexLusearch Pmd Sunflow Xalan
0

20
40
60
80

100

Pe
rc
en
ta
ge
(%

)Jar File Size Sum of All Extracted Class Files Size All Extracted Class Files Size on Disk

Figure 3.4: Reduced-Original rt.jar Ratios of DaCapo Benchmark Applications

Avrora Batik Fop H2 Luindex Lusearch Pmd Sunflow Xalan
0

30

60

90

120

49.73%
57.24% 61.53% 56.27% 55.04% 55.65% 55.59% 57.29% 54.77%

Si
ze

(M
B)

JRE Java Application

Figure 3.5: Java App+JRE Overall Ratios

Avrora Batik Fop H2 LuindexLusearch Pmd Sunflow Xalan
0

20
40
60
80

100

Pe
rc
en
ta
ge
(%

)

WMC DIT NOC CBO RFC LCOM

Figure 3.6: Reduced-Original Application CK Java Metrics Ratios

30

Table 3.2: DaCapo benchmark applications code size before and after unused code
trimming comparison

Benchmark
Size of Jar Files (MB) Size of All Files (MB) Size of All Files on Disk (MB)

Original Reduced Reduced/Original Original Reduced Reduced/Original Original Reduced Reduced/Original
(MB) (MB) (%) (MB) (MB) (%) (MB) (MB) (%)

avrora 1.98 1.32 66.67 3.15 2.21 70.16 7.46 6.53 87.53
batik 6.86 2.97 43.29 13.70 5.64 41.17 25.90 13.20 50.97
fop 6.20 4.69 75.65 12.30 9.37 76.18 24.40 20.70 84.83
h2 7.39 4.03 54.53 33.20 25.6 77.11 40.60 29.80 73.40
luindex 0.86 0.36 42.24 1.56 0.63 21.78 2.87 1.57 54.70
lusearch 1.26 0.38 30.08 1.83 0.63 34.43 3.31 1.69 51.06
pmd 2.86 1.68 58.74 5.46 2.81 51.46 11.80 7.67 65.00
sunflow 1.41 1.13 80.14 2.31 1.55 67.10 4.10 3.16 77.07
xalan 4.61 1.98 42.95 9.48 3.95 41.67 16.70 7.75 46.40
average 3.71 2.06 55.52 9.22 5.82 63.12 15.24 10.23 67.13

Table 3.3: Customized rt.jar of DaCapo benchmark applications code size before
and after unused code trimming comparison

Benchmark Size of Jar Files Size of All Files Size of All Files on Disk
Reduced (MB) Reduced/Original(%) Reduced (MB) Reduced/Original(%) Reduced (MB) Reduced/Original(%)

avrora 2.56 5.11 4.25 47.20 10.80 11.71
batik 10.90 21.75 19.90 40.04 44.40 48.16
fop 13.10 26.15 22.90 48.52 53.70 58.24
h2 9.17 18.33 16.40 34.75 36.81 39.91
luindex 8.00 15.97 15.10 31.99 31.29 33.95
lusearch 8.78 17.52 15.10 31.99 35.20 38.18
pmd 8.31 16.57 14.70 31.14 34.28 37.20
sunflow 9.67 19.30 16.21 34.32 37.21 40.35
xalan 8.17 16.31 14.50 30.72 33.62 36.44
average 8.74 17.45 15.45 32.73 35.26 38.24

Original Size of rt.jar Original Size of all files of rt.jar Original Size of all files of rt.jar on disk
50.1 47.2 92.2

Table 3.4: Java Application Code Complexity Measurements

Benchmark Avrora Batik Fop
Original Reduced Reduced/Original (%) Original Reduced Reduced/Original (%) Original Reduced Reduced/Original (%)

WMC 8377 7300 87.14 35272 14667 41.58 50324 25212 50.10%
DIT 702 614 87.46 3748 1642 43.81 4722 2298 48.67
NOC 1010 971 90.79 1695 1015 59.88 2884 1812 62.83
CBO 10065 9211 91.51 18239 9439 51.75 31281 17296 55.29
RFC 19797 17514 88.46 82546 36022 43.64 133805 66587 49.76
LCOM 83590 61597 73.69 282950 65357 23.10 355659 134006 37.68
Ca 10065 9211 91.51 18089 9439 52.18 29586 17296 58.56
NC 1644 1528 92.94 4622 2455 53.12 6559 3856 58.48

Benchmark H2 Luindex Lusearch
Original Reduced Reduced/Original (%) Original Reduced Reduced/Original (%) Original Reduced Reduced/Original (%)

WMC 22454 6885 36 5124 2241 43.74 5136 2249 43.79
DIT 1433 333 23.24 438 245 55.93 441 274 62.13
NOC 1051 215 20.46 284 139 48.94 286 171 59.79
CBO 10431 4196 40.23 2705 1339 49.50 2718 1406 51.73
RFC 66258 19734 29.78 12958 5502 42.46 12986 5481 42.21
LCOM 607960 79493 13.08 28280 9411 33.28 28280 7385 26.11
Ca 9593 4196 43.74 2684 1339 49.89 2697 1406 52.13
NC 2118 498 23.51 638 343 53.76 17518 7441 42.48

Benchmark Pmd Sunflow Xalan
Original Reduced Reduced/Original (%) Original Reduced Reduced/Original (%) Original Reduced Reduced/Original (%)

WMC 19525 10856 55.60 4828 2520 52.20 25574 13937 54.50
DIT 1788 1212 67.79 562 470 83.63 2960 1144 38.65
NOC 913 698 76.45 219 182 83.11 1158 497 42.92
CBO 10434 6737 64.57 4203 2412 57.39 15037 6387 42.48
RFC 44041 26060 59.17 12617 7440 58.97 60528 31433 51.93
LCOM 307277 193909 63.11 121318 7267 5.99 316124 152573 48.26
Ca 10372 6737 63.95 4200 2404 57.25 15033 6387 42.49
NC 2369 1702 71.84 657 551 83.87 2806 1396 49.75

31

Avrora Batik Fop H2 LuindexLusearch Pmd Sunflow Xalan
0

20
40
60
80

100
Pe

rc
en
ta
ge
(%

)
Ca NC

Figure 3.7: Reduced-Original Application LCOM and Ca Ratios

Table 3.5: The Java Runtime Rt.jar Code Complexity Measurements

Original rt.jar
WMC 157,448 RFC 377,100
DIT 34,059 LCOM 2,564,567
NOC 17,505 Ca 46,346
CBO 46,385 NC 17,518

Benchmark Avrora Batik Fop
Reduced (MB) Reduced/Original (%) Reduced (MB) Reduced/Original (%) Reduced (MB) Reduced/Original (%)

WMC 17897 11.37 72806 46.24 82876 52.64
DIT 4472 13.12 14924 43.77 17983 52.74
NOC 2411 13.77 9392 53.65 11325 64.70
CBO 2721 5.87 21059 45.40 29311 63.19
RFC 42822 11.36 181002 48.00 210779 55.89
LCOM 122205 4.77 660102 25.74 713399 27.82
Ca 2721 5.87 21059 45.44 29154 62.91
NC 2411 13.76 9392 53.61 11325 64.65

Benchmark H2 Luindex Lusearch
Reduced (MB) Reduced/Original (%) Reduced (MB) Reduced/Original (%) Reduced (MB) Reduced/Original (%)

WMC 64590 41.02 58735 37.30 58573 37.20
DIT 13895 40.75 13732 40.28 13693 40.16
NOC 7619 43.52 7432 42.46 7441 42.51
CBO 15313 33.01 12529 27.01 12552 27.06
RFC 162775 43.16 147044 38.99 146614 38.88
LCOM 669830 26.12 576999 22.50 573980 22.38
Ca 15313 33.04 12529 27.03 12552 27.08
NC 42378 38.87 7619 43.49 7432 42.42

Benchmark Pmd Sunflow Xalan
Reduced (MB) Reduced/Original (%) Reduced (MB) Reduced/Original (%) Reduced (MB) Reduced/Original (%)

WMC 57272 36.38 60422 38.38 56668 35.99
DIT 13547 39.73 14517 42.58 13426 39.38
NOC 7225 41.27 7744 44.24 7048 40.26
CBO 11792 25.42 13757 29.66 11099 23.93
RFC 143398 38.03 152322 40.39 141428 37.50
LCOM 571330 22.28 582335 22.70 570646 22.25
Ca 11791 25.44 13756 29.68 11099 23.95
NC 7225 41.24 38841 35.63 36465 33.45

3.4.2 Code Complexity

In this subsection, we present the experimental results to answer research question
Q2, the impact of JRed on the code complexity of Java applications and runtime
JRE. The results on Java applications are shown in Table 3.4 Figure 3.6, and
Figure 3.7. We measure the code complexity by the Chidamber and Kemerer (CK)

32

Avrora Batik Fop H2 LuindexLusearch Pmd Sunflow Xalan
0

20
40
60
80

100
Pe

rc
en
ta
ge
(%

)
WMC DIT NOC CBO RFC LCOM

Figure 3.8: Reduced-Original rt.jar CK Java Metrics Ratios

Avrora Batik Fop H2 LuindexLusearch Pmd Sunflow Xalan
0

20
40
60
80

100

Pe
rc
en
ta
ge
(%

)

Ca NC

Figure 3.9: Reduced-Original rt.jar LCOM and Ca Ratios

object-oriented metrics and two other metrics. The CK object-oriented metrics
suite is proposed by Chidamber and Kemerer [71, 72] for measuring the complexity
of object-oriented software. It contains 6 metrics, including Weighted Methods
Per Class (WMC), Depth of Inheritance Tree (DIT), Number of Children (NOC),
Coupling Between Objects (CBO), Response For a Class (RFC), and Lack of
Cohesion in Methods (LCOM). These metrics are measured at the class level. In
our experiment, we add the data of each class in an application or a JRE together
to calculate the complexity of that application or JRE, because we want to do
complexity comparison on the whole program level.

On WMC, we assign all methods the same weights, which means WMC simply
indicates the total number of the methods of the classes. According to the study
conducted by Misra and Bhavsar [73], the number of bugs are positively proportional
to the average number of WMC. DIT indicates the number of parents a class has.
A deeper inheritance tree may ease the OO design and software reuse. However, a
deeper inheritance tree also involves more design complexity. NOC is the number
of the intermediate subclasses a class has. Usually a big NOC is worse than a big
DIT since the depth of class hierarchies promotes more reuse than the width. If a
class has a big number of intermediate subclasses, then more classes will be affected
when this class is changed and more testing is necessary.

33

CBO measures how intensively an object invokes or accesses the methods, fields
or objects outside its own class inheritance hierarchy. Good software engineering
design practice requires high degree of cohesion but low degree of coupling. Frequent
inter-object reference usually breaks the modularity, decreases the chance of reuse,
makes code less understandable, and requires more testing endeavor in general.
RFC indicates the number of the methods of a class invoked from outside of this
class. This metric could be understood as a passive version CBO. Similarly, a high
RFC hints less understandable codes and demands higher testing effort in general.
LCOM measures the cohesion of a class. Each method of a class M operates on a
set of class fields F , LCOM equals to the maximum number of the F sets that are
completely disjoint. A high LCOM indicates that the methods in a class operate
on several separate data sets and share few common properties or functions. High
LCOM usually is caused by incorrect methods, unnecessary methods or unused
methods that are inappropriately encapsulated in a class. Low cohesion often makes
a class unnecessarily complicated.

The first 6 rows of each sub-table in Table 3.4 show the experimental results
of each benchmark application before and after JRed trimming on the CK Java
metrics.

Figure 3.6 visualizes the reduced-original ratio on all six CK metrics. For the
CK Java metrics, the results vary on different applications due to their own design
nature. On benchmark H2, no reduced-original ratio among all 6 CK metrics is
more than 40%. The reduction ratios on avrora are around 20%. In summary, all
6 metrics on all 9 applications are reduced significantly, resulting a reduced code
complexity after JRed trimming.

Besides the CK Java metrics, we also measure two other metrics on code
complexity. The first one is Afferent Couplings (Ca) [74]. It is the number of the
methods of the classes in a specific package invoked by the classes in other packages.
Ca is similar to RFC, but the granularity is coarser since it measures the inter-
package couplings. The other one is the number of the classes. We have measured
the total number of methods in the CK Java metrics. So we are also curious about
how the number of classes changes before and after trimming. Figure 3.7 and the
last two rows of each sub-table in Table 3.4 show the reduced-original ratio of these
two more measurements. Overall, there are significant reduction on the metrics Ca
and NC for all the 9 benchmark programs.

34

Table 3.6: Avrora Memory Footprint

Original (MB) Reduced (MB)
Heap allocated all pools 15.0 15.0

used survivor space 0.3 0.3
used tenured space 9.3 9.2

Non Heap allocated all pools 35.0 35.0
used perGen[shared rw] 7.3 7.3
used perGen[shared ro] 7.4 7.4
used perGen 3.5 3.4
code cache 1.6 1.6

Table 3.7: Avrora Execution and Garbage Collection Time

Original Reduced
full execution time(s) 129.4 128.5
GC time(s) 1.8 1.9

By comparing Figure 3.6 and Figure 3.7, we can see that all 8 metrics are
roughly positive proportional to each other. They together indicate we can reduce
the code complexity from the original application. Overall, if the original program’s
design is compact and the project scale is limited, it usually contains less code
bloat and low degree of code complexity. The complexity we can reduce is also
related to the nature of the application functions.

The impact on the code complexity of JRE core libraries is presented in Fig-
ure 3.8, and Figure 3.9. Due to the page limit, we do not show the data of JRE core
libraries’ code complexity in table. We use the same metrics on JRE by comparing
the data before and after unused code trimming. Again, compared with original
JRE, customized JRE reduced the code complexity significantly. Compared with
applications, the reduction proportion of code complexity in JRE is bigger.

3.4.3 Memory Footprint and Execution Time

In this subsection, we answer the research questions Q3 and Q4. We did experiments
to compare the performance and the memory usage between each original Java
application and its lean version. We select benchmark program avrora’s memory
footprint and execution time data here which is shown in Table 3.6 and Table 3.7.
The lean version benchmark has slightly smaller memory footprint, but mostly

35

Table 3.8: Vulnerabilities Removed from the Customized JREs

Benchmark CVE-2013- Trimmed Trimmed/Original
2473 2472 2471 2465 2463 2461 2457 2454 2453 2452 2450 2448 2446 2444 (%)

avrora 7 7 7 7 7 7 7 7 7 7 7 7 7 13 92.9
batik 7 7 7 7 7 7 6 42.9
fop 7 7 7 7 7 7 6 42.9
h2 7 7 7 7 7 7 6 42.9
luindex 7 7 7 7 7 7 6 42.9
lusearch 7 7 7 7 7 7 6 42.9
pmd 7 7 7 7 7 7 6 42.9
sunflow 7 7 7 7 7 7 6 42.9
xalan 7 7 7 7 7 7 6 42.9
average 6.8 48.6

remains the same size as the original version. Since the JVM loads class files on
demand, class trimming does not contribute to the reduction of memory usage. All
memory usage savings are from unused method trimming: given the same number
class files, lean version class files have fewer methods, which leads to less memory
usage. In most Java application memory footprints, byte code only occupies a
small portion, where the heap and stack occupy the most memory. In addition, to
avoid frequently requesting memory allocation from system, rather than allocating
memory on demand, JVM usually uses a more-than-enough memory (allocated all
pools) to run the Java program to give flexibility to garbage collection. Due to
these factors, JRed does not reduce memory footprint significantly. In our future
work, we would like to consider trimming unused fields as well after unused method
and class trimming, which might have more impact on the memory footprint as it
affects the object sizes.

On performance, our measurement does not show significant improvement. This
is mainly due to that JRed does not perform optimizations on the reduced code.
However, JRed might potentially create more opportunity for the whole program
optimizations. Also, due to the reduction of code size, the program loading and
starting time can be significantly reduced and thus from end user point of view,
JRed does improve the performance for certain Java applications. This might have
a bigger impact in a smart device environment.

3.4.4 Security

In this subsection, we address the research question Q5. We surveyed all the known
security vulnerabilities in the CVE database that affects Oracle JRE 6 update 45.
In total, we found 14 security vulnerabilities reported, excluding the vulnerabilities

36

Table 3.9: JRed Performance

Benchmarks avrora batik fop h2 luindex lusearch pmd sunflow xalan
Transformation Time (s) 92 303 454 116 59 107 103 148 106
Reinstatement Rounds 4 88 223 0 5 11 98 2 0

that only involve native code or do not offer enough Java code patch information.
We then checked the number of those vulnerabilities that still exist in the customized
Java Runtime JREs for each of the 9 benchmark programs. The results are shown
in Table 3.8. For avrora, the specialized JRE only contains 1 vulnerability; the
other 13 are trimmed. For others, JRed trimmed 6 out of 14. On average, JRed
trimmed nearly half of the security vulnerabilities. By specializing Java Runtime
JRE for different applications, we can achieve more diversity, resulting enhanced
moving target defense [64].

3.4.5 Performance

In addition to the effectiveness evaluation, we also measured the running time
performance for our tool JRed. We measure the performance of JRed from
two perspectives. First, we measure how much time JRed takes to finish the
transformation. The transformation time is sum of the time taken by the parser,
analyzer, reducer, and code generator until the start of reinstater. Second, we
measure reinstatement iteration rounds.

The results are shown in Table 3.9. The data is averaged over 10 runs. The
transformation time on the 9 benchmark programs ranges from 1 to 7 minutes.
The transformation time is related to two factors. The first one is the original size
of the application. The transformation time is roughly proportional to application
code size. For example, the original size of Fop (6.20MB) is 3.13 times to Avrora
(1.98MB); the transformation time of Fop is 4.93 times to Avrora. The second factor
is the cohesion of the application. For instance, if we only consider application size,
then H2 would be an exception: the H2 original application size is 7.39MB but
its transformation time is only 116s. By checking Figure 3.6 and Figure 3.7, we
found that H2 is the one of the applications that are trimmed off most in terms
of code complexity, which indicates H2 has relatively low cohesion. Overall, no
transformation time is over 10 minutes on 9 non-trivial benchmark programs.

The data of reinstater iteration rounds is listed in the second row of Table 3.9.

37

The range of iteration rounds is from 0 to 223. Reinstater adds one missing method
per iteration, so the number of reinstatement rounds is actually equal to the number
of methods being incorrectly deleted by static analysis due to the reflection. On
average, reinstater drives each benchmark to run 48 rounds on test suite to fix all
incorrect trimming. Compared to 19,624, the number of methods each benchmark
application has on average, 48 iterations indicate 1 per 410 methods might be
incorrectly removed by static analysis due to reflection. The time of each round
varies. An exception may be caught in 0.1 second after the start of a test round
or happen during the time when the application has passed 99% of the test suite.
The time of passing the entire test suite depends on the design of the test suite
and the task nature of the application.

3.4.6 Experimental Result Summary

In summary, JRed is quite effective in trimming code size, reducing code complexity,
and minimizing attack surfaces.

1. JRed reduces the size of the Java application code on average by 44.5%.

2. JRed reduces the size of the Java Runtime JRE core library rt.jar by as
much as 94.9%.

3. JRed, from the end user point of view, reduces the device disk footprint by
roughly 50%.

4. Based on the 8 code complexity metrics including CK Java Metrics, JRed
reduces the code complexity of both Java application and Java Runtime JRE
core library rt.jar significantly.

5. JRed trims nearly half of the known security vulnerabilities in the specialized
Java Runtime JREs for each benchmark program. Since unknown vulnera-
bilities are trimmed as well, this roughly leads to reduced attack surface by
50%. By specializing Java Runtime JRE for different applications, we can
achieve more diversity, resulting enhanced moving target defense [64].

38

3.5 Discussion

3.5.1 Code Trimming on Java Core Library

A consequence of trimming code from the JRE is that the customized JRE may
not be capable of running other Java programs but only the application for which
the JRE is customized. For those computing environments that run only one Java
program, this would be a desired feature. First, JRE customization reduces the
program size additionally. It is important to some scenarios where the resources
is very limited. For example, the micro-sensor for the military usage and the
endoscope for the medical care could save valuable resource from JRE customization.
Additionally, each Java program is running with a specialized JRE. This can
potentially increase the cost of cyber attacks as the same attack script work for one
JRE will unlikely work on another specialized different JRE. We do not expect the
JRE customization to be applied anywhere in any scenario. However, this feature
could be useful and effective in certain applications and scenarios.

3.5.2 Soundness and Limitation of Dynamic Reflection Resolv-
ing Method

Our static analysis approach for code reduction is sound and conservative on most
Java static and dynamic features including inheritance, polymorphism, and object
reference except for some dynamic features such as reflection. The insight of using
the dynamic approach to aiding static analysis is that a control flow graph edge
coverage test suite, which is also known as branch coverage test suite in software
engineering domain, can cover all intended reflection call targets. Therefore, if a
branch coverage test suite is available, we can address the reflection issue safely.
In addition, the data presented by Bodden et al. [1] shows possibility that we
may loose the requirements on test suite coverage. Intuitively, the limitations of
the dynamic approach come from two perspectives: how many reflection call sites
could be covered by a well designed test suite, and how many reflection call edges
could be explored by a well designed test suite. Someone may argue that, dynamic
approach is not practical unless the test suite is designed with branch coverage
requirements, which is not always the case. However, from the data of software

39

Table 3.10: Number of reflection call sites of selected benchmarks in DaCapo
discovered by test suites of different sizes, cited from Eric Bodden et al. [1]

Small Default Large
batik 41 44 44
h2 31 31 31
pmd 32 32 32
sunflow 30 30 30
xalan 54 54 54

engineering practice, a reasonably-well-designed industry-strength test suite is good
enough to achieve our goals. Eric Bodden et al. [1] reported the results shown in
Table 3.10. From the table, we have the following observations. The number of
reflection callees discovered by test suites quickly converges to a stable number
and no longer increases with the expansion of the test suite. Just like many other
properties in a program, the usage of reflections show its locality. Developers do not
use reflection in random places which may cause poor performance of the program.
Reflection usually is used in some hub-like components to make the design can be
easily extended. A reasonable test suite will cover such a key part of the program.
Except for the programs with intensive user interaction, the data of experiments
on reflection callees exploration shows quick convergence feature [1]. Thus, our
approach might encounter difficulties on transforming user-interaction intensive
programs. But this dynamic reflection resolving approach can be applied to most
programs.

40

Chapter 4 |
Android Application Customiza-
tion and Redundancy Removal
Based on Static Analysis

4.1 Introduction

4.1.1 Two Types of Redundancy

Android applications contain software bloat due to multiple reasons. We cate-
gorize the software bloat into two basic types, compilation-time redundancy and
installation-time redundancy. This categorization is based on the time when they
can be determined as redundancy.

4.1.1.1 Compile-time Redundancy

Modern software engineering rarely implements a software product from scratch.
Developers are relying on different kinds of libraries and frameworks to finish their
jobs. Libraries usually are implemented for a more general purpose, instead of the
requirements from a specific group of developers. For example, an cryptographic
library may contain the implementations of multiple crypto algorithms. However,
developers would mostly stick to only one of them in their applications. In fact, it
is very common to see only one method from one class in a large library is used by
an application.

Java language compilation and runtime has neither “static link” nor “dynamic

41

Lib 2 Class B

Lib 1 Class AYour Code

... ...

APP
JAR JAR

(a) Modern Software Engineering
Paradigm

APP APP

... ...

APP
JAR JAR

(b) Remove Compile-Time Redundancy in Libraries

Figure 4.1: Motivation of RedDroid

link” in the terminology of standard program compilation. After each class of Java
source code is compiled into bytecode, there is no static link process to include a
library into a monolithic executable file. Making a jar file is simply a process of
zipping every single class file in the working directory into one package. During
runtime, each Java application runs in its own Java virtual machine. So two Java
applications cannot share one copy of a dynamic library through memory mapping
as executable files do. Accordingly, current development practice is to include each
library entirely in the final software product delivery. Figure 4.1a illustrates this
process. Gray box represents the code written by a developer herself. Green bar
and red bar in the gray box indicate two method invocations from two classes,
respectively. Used methods are highlighted from unused methods. When packaging
this application, the jars that contain the classes we referred must be put in the
build path of the application and packaged with the application code entirely.

The unused code in the libraries comprises a major part of software bloat in an
application. The implementation of application code determines which part of the
library code is used or not. Application code can be seen fixed after its compilation.
So we categorize the redundancy, such as unused code, that can be decided by
checking compiled code as compilation-time redundancy.

4.1.1.2 Install-time Redundancy

The virtual-machine based Java runtime enables all Java programs to “build once,
run everywhere”. This fact allows Java developers to release a single version of their
product for those heterogeneous platforms. Besides bytecode, which is compatible
to different platforms, to run a Java software product also requires many other
files, including configurations, resource files, and binaries. Developers still need to

42

create multiple versions of those non-bytecode files to meet the requirements of
different platforms. For example, an Android application may contain multiple sets
of figures to be compatible with different screen sizes and scales. Another example
is that some devices require some additional SDKs which might be unnecessary on
other platforms.

Developers cannot foresee which platforms the applications will be installed.
However, when an application is installed on a specific platform, all of those files
that are created for platform compatible issue will become redundancy immediately.
So the install-time redundancy refers to those files can be seen as redundancy only
after the installation platform information is given.

4.1.2 The Focus of This Chapter

4.1.2.1 Compile-Time Redundancy from Java Libraries

Figure 4.1b illustrates our focus of compile-time redundancy removing in this study.
An Android application contains the code written by developers and libraries whose
classes are derived from several jar files. By analyzing the application code, we
want to distinguish the used library classes from unused library classes and remove
those unused ones. In addition, in those used classes, we would like to identify and
remove unused methods. Usually, in a real world Android application, all code is in
one monolithic Dalvik code file. We need to split it into classes first. Please note
that in this study we only remove redundancies from Java libraries. The potential
compile-time redundancy in native code and Android framework is out of the scope
in this study.

4.1.2.2 Install-time Redundancy from Application Binary Interface and
SDKs

Install-time redundancy contains multiple SDKs to support different platforms,
multiple sets of embedded Application Binary Interface (ABI) is used to support
different CPUs, the components in Android Support Package is designed to support
different levels of APIs, different User Interface (UI) layout management, figures
with different sizes for being compatible with different screen sizes, as well as many
other types of install-time redundancy. In this study, we focus on install-time
redundancy caused by embedded ABIs and SDKs.

43

Table 4.1: Android supported CPU architectures and embedded ABIs

CPU Architecture embedded ABI
ARMv5 armeabi
ARMv7 armeabi-v7a
x86 x86
MIPS mips
ARMv8 arm64-v8a
MIPS64 mips64
x86_64 x86_64

Multiple versions of ABIs contribute to the install-time redundancy. In general,
ABI bridges an application code with the operating system on binary level by its
definition. In particular, an ABI in an Android application is usually maintained as
a shared library (.so file) which has been compiled into a specific kind of Instruction
Set Architecture (ISA). Not every Android application has an ABI; if an Android
application is written in pure Java, its apk file will not have ABIs. However, since
many Android applications depend on native libraries, each of those applications
should bring in ABIs. Furthermore, considering different Android devices are
supported by different CPUs with probably different ISAs, it is recommended
to include multiple versions of ABIs in an application’s apk file to support the
cross-architecture execution. Currently, Android system supports 7 different CPUs.
Each type of CPU has its own ABI. Table 4.1 shows all the supported CPUs and
their corresponding embedded ABIs by the Android system. We note that once an
application is installed, since the architecture (and the ISA) is uniquely determined,
except the matched ABI, the rest parts become redundant.

Please notice that it is a recommendation to include multiple ABIs instead
of a must. Some applications just included one type of ABI, which usually is
armeabi. Such application is still compatible with most Android devices because
ARM architecture is backward compatible and most x86 CPUs on Android devices
can emulate ARM instructions at the cost of performance. However, to present
better experience to the users, many Android applications are likely to include all
dedicated ABIs for all the CPU architectures. In Section 4.3, we will evaluate both
the proportion of applications that contain install-time redundant ABIs and the
impact of removing those redundancies from applications which contain multiple
ABIs.

44

Another type of install-time redundancy comes from multiple SDKs in one
Android application. Besides mobile phones, Android applications can also run
on other kinds of computing platforms, such as smart watches, televisions, cars,
and Internet of Things (IOT) devices. To take advantage of those heterogeneous
hardware features, Android provides different set of Software Development Kits
(SDKs) for each hardware platform. They are Android API for mobile devices,
Android Wear SDK for smart watches, Android TV SDK for televisions, Android
Auto SDK for cars, and Android Things for Internet of Things (IoT) devices.

In this chapter, we focus on Android Wear applications to study its install-time
redundancy. An Android smart watch cannot connect to the Internet by itself.
To connect to the Internet, an Android smart watch should connect to a mobile
phone first via Bluetooth, WiFi or a USB cable. Then that mobile phone will
send or receive data on the behalf of its paired smart watch. Hence, an Android
wear application that involves on-line operations must consist of at least two
parts, the mobile phone components and its smart watch counterparts. A typical
installation process, in the circumstances that a user has a mobile phone and a
smart watch at the same time, will have the following steps.1 First, a mobile
phone will download an apk file to its hard disk. Second, the installer on the
mobile phone will install the code running on mobile phones. Third, mobile phone
will inject a smaller apk file carried by the original apk, which is usually named
“android_wear_micro_apk.apk”, to the paired smart watch2. However, if a user
just has a mobile and does not have a smart watch, which in fact is a more common
case, the entire apk will still be downloaded and kept on the mobile phones as a
whole, including the code for running on a smart watch.

4.1.3 Our Contributions

In summary, we make the following contributions:

• We define and categorize the sources of software bloat in Android applications.

• We propose an automated static approach to identifying and removing those
software bloats from Android applications.

1Not all Android wear compatible applications use same way to carry smart watch code in the
same way, but most applications follow the pattern described here.

2Here we describe how applications are installed on standard Android wear 1.x system. The
detailed installation process may vary on different customized systems.

45

Android Apk File Dummy Main
Generator

Call Graph Builder

Call Back
Information

Reflection Solver Code Reducer Install-Time
Redundancy Remover

Dalvik Bytecode
Generator and Signer

Android Apk File

Compile-Time
Redundancy Remover

User Information

Figure 4.2: RedDroid Architecture

• We have implemented our proposed approach into a prototype called Red-
Droid. The experimental results we reported not only validate the effec-
tiveness of our approach, but also comprehensively depict the landscape of
bloatware issue in the Android application domain for the first time. These
results can help developers gain insights about their pain points regarding
application resource consumption issue and better plan their optimization in
the future.

The remainder of this chapter is organized as follows. Section 4.2 describes the
details of the our approach and how we implemented it. We present the evaluation
results in Section 4.3. We discuss some interesting thoughts and future works in
Section 4.4.

4.2 Design and Implementation

4.2.1 Architecture

Figure 4.2 illustrates the architecture of RedDroid, which consists of two major
components, compile-time redundancy remover and install-time redundancy re-
mover. The tool takes an Android apk file as its input and yields a leaner Android
apk file. Compile-time redundancy remover, as shown in the middle part of Fig-
ure 4.2, includes several components, which are dummy main generator, call graph
builder, reflection solver, and code reducer. The dummy main method generator
generates a single entry point for static analysis. Call graph builder statically builds
a call graph for the whole Android application. We also use call back information
based on Android framework analysis to enhance the results of call graph builder.
In addition, the reflection solver helps reinstate some methods which are incorrectly
removed due to reflective calls back to the call graph. Based on a more accurate
call graph, code reducer will remove the methods and classes not in the call graph.
Each component in compile-time redundancy remover responds to a challenging in

46

Android application static analysis. We will elaborate on each component in the
following subsections. Then with user information, install-time redundancy remover
will work on the application. We briefly introduce how we build this component
at the end of this section. At last, we wrap up the leaner files into a new apk file
and sign it. This architecture gives an overall view of our tool in a temporal order.
Two removers are not necessarily to execute in one run. There might be a time gap
between the running of two removers since installation can happen long after we
compile our program.

4.2.2 Call Graph

To obtain the information that which classes and methods are used, we build a call
graph for the given application. Building an accurate call graph is undecidable, so
we over approximate this problem. In other words, in the context of our research,
we preserve the soundness of the call graph by ignoring its completeness. Soundness
here is defined as all the methods that are not included in a call graph is guaranteed
not being invoked. By ignoring completeness we mean some methods that are
included in a call graph may also never be invoked. Considering the sizes of some
applications are considerable, we do not use some advanced but more expensive
call graph building algorithms [69,75]. In our approach, we use a more intuitive
method based on Class Hierarchy Analysis (CHA) [76] to build it.

More specifically, it first establishes class hierarchical information by traversing
all the classes. All Java classes and interfaces are inherited from java.lang.object
Class. So all inheritance relationship will converge into a directed graph.3 To
provide a quick service for the query from next step on if there is a path between
two vertexes (if one class is the ancestor of the other one), we in addition compute
the transitive closure for all vertex pairs in the graph based on simplified Floyed-
Warshall algorithm [77].

Second, we traversed all call sites in an application. During this process, we can
obtain the method signature information and the static type of the reference at a
call site. But we cannot precisely know what type or subtype of this object can be
at static time. Java subtype polymorphism allows runtime to dynamically decide

3This directed graph is not a tree (it does resemble a tree though). In Java, a class may
implements multiple interfaces. This fact implies there are vertexes having multiple parents in
this graph, which contradicts with the definition of a tree.

47

which version of method to call based on the actual type of an object during run
time (a.k.a. dynamic dispatch). We assume that this method can be invoked by
the statically-analyzed static type or all subclasses that inherit or overwrite this
method. Thus we will add edges from the call site to all versions of this method
into the call graph by querying the information generated in the previous step. Our
analyzed application starts from the DummyMain. So similarly, all vertexes and
edges comprise a directed graph with a root.

4.2.3 Android Standard Lifecycle and Dummy Main

A major difference of Android applications, compared with normal Java applica-
tions, is that Android applications do not have a main method as its entry point.
An android application has multiple entry points. Due to the nature of mobile
computing environments and the design of the Android operating system, Android
application has a very unique execution model compared with a desktop application
with which we are familiar.

An Android application consists of four types of components. They are activities,
services, content providers, and broadcast receivers. Each component has the same
standard lifecycle. To implement a specific component, a developer must extends a
base class of that component and overwrites a set of Android framework callbacks,
such as onCreate, onStart, onStop, and onDestroy. Then a component can re-
spond to the events of interested, like memory full, the launching of a higher-priority
application, or user navigation back to the previous activity. In a sense, the Android
framework is “scheduling” on the granularity of components and an application
can start from any component which is not disabled by AndroidManifest.xml.

To use existing static analysis frameworks and algorithms in analyzing an
Android application, we need to generate a dummy main method to model the
Android framework invocation behavior and the lifecycle of each component. More
specifically, the generated dummy main method will be connected to all possible
system callbacks of each component on the call graph. This dummy main method
serves as the root of the whole call graph, and our static analysis will start from
this dummy entry point.

48

4.2.4 Callbacks

Asynchronous callbacks are implicit control flow transitions, which are widely
used to receive and handle User Interface (UI) events in the Android framework.
Code listing 4.1 shows an example of asynchronous callback in a simple Android
application. At line 8, a button instance in MainActivity registers itself to a new
OnClickListener. Method setOnClickListener is a registration method. This
anonymous class implements the method onClick in the original OnClickListener
interface from line 10 to line 12. The method onClick is a callback. In this
implemented onClick method, another method (method implementation is omitted)
in the MainActivity is invoked (line 11). We note that method onClick will not
be invoked right after btnOne sets its OnClickListener (line 8), instead, it will
wait until a click event is received, which is the reason we call it an asynchronous
callback.

Our previous call graph construction approach (§4.2.2) cannot handle asyn-
chronous callbacks. For example, since onClick will be triggered by the Android
framework instead of any user-defined method, onClick and anotherMethodInMain-
Activity will be reasoned as not being used. Indeed the actual control flow for this
example will involve multiple layers of method invocation inside Android framework.
Since our customization is essentially focus on application code, one challenge is
to capture the implicit control flow transfer between setOnClickListener and
onClick and add additional edge from setOnClickListener to onClick should
be added into the call graph.

To tackle this challenge, we employ a widely-used tool EdgeMiner [55] to analyze
a series of Android frameworks. EdgeMiner first identifies a set of methods which
are defined in the Android framework and can be overridden in user space. These
methods are callback method candidates. Then it iteratively checks each call site of
those methods by performing backward analysis. If a call back method candidate P

(e.g., onClick method) is defined in an Android framework class/interface C (e.g.,
Listener interface), and the type of argument of method Q (e.g., setListener
method) is C, then method Q and P is recognized as a potential registration-callback
method pair. The method pairs that satisfy these criteria can overapproximate the
real set of actual registration-callback method pairs in the framework.

Then we use the identified registration-callback pairs list to extend our call graph.

49

Listing 4.1: Callback Example
1 public class MainActivity extends AppCompatActivity{
2 private Button btnOne;
3 @Override
4 protected void onCreate(Bundle savedInstanceState) {
5 super.onCreate(savedInstanceState);
6 setContentView(R.layout.activity_main);
7 btnOne = (Button) findViewById(R.id.btnOne);
8 btnOne.setOnClickListener(new OnClickListener () {
9 @Override
10 public void onClick(View v) {
11 anotherMethodInMainActivity ();
12 }
13 });
14 }

......
}

To this end, for each registration method in the list, we first check if it is in our call
graph. If the answer is true, we will analyze all classes that inherit or implement
the class or interface in the Android framework to check whether they override
the methods mapped with the registration method. In our example, registration
method setOnClickListener is in our call graph. By checking the list, we found
method setOnClickListener maps to multiple callbacks. One of these callbacks
is method onClick declared in the interface OnClickListener. By traversing the
program we can see that an anonymous class implements the interface and its
method onClick. So an edge from setOnClickListener to onClick is added
to the call graph. An application may implement multiple versions of callbacks
(e.g., multiple versions of onClick). Then we will follow the same conservative
principle described in the previous subsection. In other words, in the call graph, we
will connect the registration method to all possible implementations of a callback
based on the class hierarchical information. Then we check the method invocation
happened in the method body of newly added callbacks to extend the call graph.
If in the callback method body or in the call chain from the callback, we encounter
new registration method invocation, then we will recursively repeat this process
until a fix point is reached. A fix point is that we do not found any new registration
calls in the call chains from the callbacks we discovered in the previous round.

50

Listing 4.2: Reflection Example
1 public void methodExample(String methodName){
2 Class <?> c = Class.forName("com.package.Demo");
3 Object demoInstance = c.newInstance ();
4 Method m = c.getDeclaredMethod(methodName ,

new Class <? >[0]);
5 m.invoke(demoInstance);
6 }

4.2.5 String Analysis and Reflections

Reflection is a dynamic language feature of Java, which allows a Java program
to inspect itself and change the behavior during runtime. Investigating reflection
invocation targets is one typical challenging task for static program analysis. The
call graph construction process (§4.2.2) cannot capture those reflective method
invocations, hence some methods might be incorrectly deleted if they are only
triggered from call sites of reflections.

Some previous works have proposed several ways to solve reflections, including
leveraging annotations from developers and performing test suites. In this research,
we tend to use less information from external resources and take advantage of the
information carried by the program itself. Hence, we use static analysis to reason
the value sets of string variables in the call sites of reflections. Considering Code
listing 4.2 which contains two reflection call sites (line 2 and line 5), by statically
analyzing potential values of string literals passed to the reflection call sites as
parameters, we can reason callees of each reflection call site and use this information
to replenish the call graph.

Strings can exist as different forms in a program. For example, string at line 2 in
the Code listing 4.2 is a constant literal, and such constant literal is in general easy
to handle. On the other hand, reflection call site at line 5 takes a variable of string
type as the input, which reveals limited information of potential callees at this call
site without further analysis. The major challenges of analyzing string variable are
unwrapping loops and solving method invocation contexts. In addition, there exist
lots of ways to split, concatenate, and manipulate the values of strings. Precise
string analysis requires us to faithfully model those string operation semantics.

Our analysis is based on Violist, a general Java program string static analysis
framework [41]. This framework separates representation and interpretation of string

51

operations, and it provides an IR to represent string values or the string operation
data flow relationship. The framework will first perform an intra-procedural analysis
to calculate the method summary for each method. Inside a method body, it will
first generate the string variable representation for all statements outside loops.
Then it treats each nested loop body as a region and uses region-based analysis
to generate string variable representations. A string variable in a loop may either
depend on the value of a variable, which could be itself, in the previous round of
iteration or the same iteration. The framework will not stop its recursively regional
analysis until all string variable dependency relationship has reached its fixed point
and been reduced to its simplest form. Then the framework will use the method
summary of each method to perform inter-procedural analysis to achieve context
sensitivity.

Next, interpretation part will parse the results of string variable representation.
For example, the constant literals “A” and “B” connected by a plus sign can be
represented as (+, “A”, “B”). A function of interpretation component is to model
the semantics of operations like “+” and output result “AB”. We extended the
original interpretation part of the framework to support the method signatures and
semantics of string operations used in our reflection analysis problem domain.

4.2.6 Obfuscation

In the applications we analyzed, there are many obfuscated samples. In this
subsection, we present why most obfuscated code will not affect our analysis result.
Program obfuscation is an important technique to prevent external users from
reverse engineering the software and obtaining the logic, algorithms, or other
intellectual properties. It is especially critical to those software that run on virtual
machines since it is easier to transform the bytecode back to its source code form.
It is notable that program obfuscation is a set of different technologies instead of a
single technique. We discuss different cases respectively.

Static obfuscation refers to the obfuscation approaches that do not change pro-
gram run time behaviors. One of the most widely used static obfuscation approach
is symbol name replacement. Though it can dramatically increase the difficulty
of understanding the program logic by human beings, its effect is transparent
to our analysis. For example, the meaningful symbol names such as orderName,

52

studentID in the program will be replaced into a and aa. This type of obfuscation
does not change the call graph. Therefore our analysis results remain correct when
we encounter the programs that are statically obfuscated.

Dynamic obfuscation refers to the obfuscation technologies that obfuscate
a program by changing its run time behaviors. One major type of dynamic
obfuscation is to change the control flow of the software, such as control flow
flattening obfuscation. Changing the control flow of a software can hide the original
logic of the code. However, this approach just changes the control flow graph
inside a procedure. It doesn’t change the shape of the call graph. Thus the
validity of our analysis results will not be compromised. In recent years, some
more advanced dynamic obfuscation approaches are proposed such as virtualization
based obfuscation [78]. However, researchers have found several approaches to
automatically deobfuscating those virtualization-obfuscated software [79]. By
applying those deobfuscation processes before our analysis, we can overcome the
difficulty imposed by virtualization obfuscation.

4.2.7 Install Time Redundancy Removal

Works of removing install time redundancy cannot be done by removing resources
alone. It also requires dependency relationship analysis. Figure 4.3 shows the build
process of an Android application. The parts in the dotted line box present how
resources in an Android project are processed and linked to other components.
Android asset packing tool (aapt) plays a major role in resource compilation. First,
except the files in the asset directory and the res/raw directory which will be
packaged into the apk file in their original formats, all other resources will be
compiled. For example, all XML files will be compiled into binary XML files.
Second, except the resources in the asset directory, all other resources will be
assigned an ID. Third, it will generate a R.java file which will be compiled with
other Java source code by a Java compiler later, and a resources.arsc file which will
be put long with all compiled resources. The resource.arsc and complied resources
will be packed into a zip file which uses ap_ as its suffix. Android system has its
own resource reference mechanism. All resources, are not referred in the program
by their paths directly. Instead, they are referred by their IDs. More specifically,
during runtime, when a resource is referred, the system first validates the value of

53

ID by checking R.java. Then it uses resource.arsc as a symbol table to translate the
ID into a specific filename. Then AssetManager will use it to open a file. Therefore,
conceptually, besides removing redundant resources, the generated symbols and the
dependency upon those symbols across all resource files also need to be removed.
We elaborate the details of the implementation of this part in the end of this
section.

4.2.8 Sign the Customized Application

An Android application must be signed to run on Android systems. The Android
application sign process includes two steps. First, a message digest is generated
for each file in the apk file of an application. Second, the developers or some other
people on behalf of the developers use the private key to sign the message digest
of every file in the application. If a program has already been signed before it
is customized, then the program needs to be signed again to be runnable since
RedDroid will modify files in the apk of an application.

4.2.9 Implementation

We have implemented our approach in a prototype called RedDroid. RedDroid is
mostly written in Java and Unix shell scripts. It includes a compile-time redundancy
remover written in Java and a installation-time redundancy remover written in
Unix shell scripts. Regarding compile-time redundancy remover part, we rely on
FlowDroid [56] to generate dummy main method for analyzed Android applications.
We use Soot [63] to convert Dalvik bytecode into the Soot IR Jimple. Our analysis
and code modification is based on Jimple. We use Apktool to reverse resource files
in an apk file from binary format back to human readable ASCII format.

Android application install-time redundancy remover consists of two components,
Android wear application redundancy remover and redundant embedded ABIs re-
mover. We use Unix shell scripts to implement Android wear application install-time
redundancy remover. It first calls apktool to unzip the analyzed apk file and decode
resource files into its original form. Then it removes android_wear_micro_apk.apk
from directory res/raw and android_wear_micro_apk.xml from directory res/xml.
We then search all build files to identify and remove the build targets which rely
on android_wear_micro_apk.apk and android_wear_micro_apk.xml. In addition,

54

A
pplication

R
esources

.aidl F
iles

aapt

aidl

R
.java

A
pplication S

ouce
C

ode

Java Interfaces

Java C
om

piler
C

lass F
iles

dex
.dex files

3rd P
arty Libraries

and .class F
iles

apkbuilder
A

ndroid P
ackage

(.apk)

C
om

piled
R

esources

O
ther R

esources

Jarsigner
S

igned .apk

Figure
4.3:

A
ndroid

A
pplication

Build
Process

55

we search all resource files that referred to those two files. After these three steps,
we use apktool to rebuild the whole project into a new apk file. The redundant
Android embedded ABIs remover is implemented in a similar approach. It accepts
an ABI name which we want to preserve as its argument. After unzipping the
analyzed apk file and decoding the resource files by calling apktool, our tool will
search the subdirectories under the lib directory. All subdirectories except the one
we want to preserve will be deleted. We then rebuild the whole package into a new
apk file and sign it.

4.3 Evaluation
In this section, we evaluate RedDroid on Android applications downloaded from
Google Play. Our experiments were conducted on a server with an 32-core Intel
Xeon CPU E5-2690 @ 2.90GHz processor and 128G Memory. The operating system
is Ubuntu 12.04.5 LTS. The Linux kernel version is 3.8.0-30-generic. We use Android
API level 14 as our Android application running environment.

To evaluate RedDroid, we want to answer the following research questions.

Q1: What is the impact of our compile-time redundancy trimming technique on
the size of Android applications?

Q2: What is the impact of our compile-time redundancy trimming technique on
the code complexity of Android applications?

Q3: How many and what types of reflection calls are used by Android applications?

Q4: What is the impact of our install-time redundancy trimming technique on
Android wear applications?

Q5: What is the proportion of applications that include multiple sets of embedded
ABIs in their .apk files?

Q6: What is the impact of our install-time redundancy trimming technique on
Android applications that have redundant embedded ABIs?

56

4.3.1 Code Size

In this section, we present experiments to answer the research question Q1, the
impact of trimming off compile-time redundancy from Android applications. We
first show the data distribution on all of our 553 Android application samples.
Then we present some data from some selected applications to give a glimpse of
the details of our results.

4.3.1.1 Results of Tested Android Applications

We first report the overall results of the tested Android applications. We apply
RedDroid towards 553 Android applications to remove their unused methods and
classes. By dividing the application original size by its size after customization, we
get the percentage of the remaining size of an lean apk file. Figure 4.4 presents all
553 data points we yielded. The vertical axis is the percentage of a lean application
size. The horizontal axis is the original size of an application. The maximum
reduced-original ratio is close to 100% and we report the minimum reduced-original
ratio is 43.11%. On average, the reduced-original jar size ratio is 85.59%. The
median percentage is 86.44%.

4.3.1.2 Detailed Data of Selected Android Applications

We randomly selected 10 Android applications from our data samples to demonstrate
some detailed results. The experimental results are shown in Table 4.2. Among 10
benchmark programs, the lowest reduced-original apk size ratio is 64.97% which
is from OpenTable (line 7 in the table). Evernote Widget (line 3) has the highest
reduced-original apk size ratio which is 94.17%. Please note that, these percentage
numbers present the overall impact on an application apk file as a whole. Besides
bytecode, an application also has many other files, including native libraries and
resource files. If the proportion of resource file size among overall size is small, then
the trimming on the bytecode part is more likely to have bigger impact. In next
subsection, our evaluation focuses on the sole bytecode part.

57

3MB 5MB 7MB 9MB 11MB

20%

40%

60%

80%

100%

Figure 4.4: Reduced Size Distributions

Table 4.2: 10 Selected Android Application Code Size Before and After Unused
Code Trimming Comparison

Benchmark Original Reduced Reduced/Original
(Byte) (Byte) (%)

IFTTT 7416304 6026077 81.25
Evernote Widget 1201311 1131289 94.17
Motorola Migrate 4542461 3260831 71.79
Baidu Browser 5009942 4103846 81.91
Yahoo Messenger 3865985 3279559 84.83
OpenTable 3919118 2546431 64.97
Flashlight 4767339 4091859 85.83
Marvel Comics 5503831 4475991 81.33
Papa Johns 5206893 3753546 72.09
Instagram 10365650 9406437 90.75

58

4.3.2 Code Complexity

In this subsection, we present the experimental results to answer the research
question Q2: the impact of RedDroid on the code complexity of Android applica-
tions by removing compile-time redundancy. By using Chidamber and Kemerer
object-oriented metrics (CK metrics) and two other software engineering metrics,
we can exclude the factors from other parts of an application and dedicatedly
evaluate the impact of our approach on the bytecode part of an application.

CK metrics is a set of metrics to measure Object-Oriented(OO) software com-
plexity, which is proposed by Chidamber and Kemerer [71,80]. We use the following
measurements from CK metrics, Weighted Methods Per Class (WMC), Depth
of Inheritance Tree (DIT), Coupling Between Objects (CBO), Response For a
Class (RFC), and Lack of Cohesion in Methods (LCOM). All of these metrics
are calculated based on a single class. We sum up the results of all classes of an
application to profile the bytecode complexity of an application as a whole.

Each measurement depicts different aspects of bytecode. WMC is the sum of
weight of each method. In our evaluation, the weight of all methods is 1. So the
number of WMC equals to the total number of methods in an Android application.
The number of DIT is the levels from given class to java.lang.Object which is
the root in the Java inheritance tree. A deeper inheritance tree sometimes can help
developers to better model problems and design solutions. However, it may also
involve more complexities into code base and runtime. CBO counts the number
of classes that are “coupled” to a given class. We define that if class A calls the
methods or accesses the variables of class B, then class A is coupled to class B
and class B is coupled to class A. A high CBO indicates that the software design
violates many OO principles, which can cause many problems. First, modifying the
implementation of one high CBO class will risk affecting many other parts of the
software. In addition, it will make a software less modular and harder to be reused.
At last, it is difficult to test a class with high CBO independently [81]. RFC is
the number of response set of a class. Response set, according to the paper of
Chidamber and Kemerer [71], is “a set of methods that can potentially be executed
in response to a message received by an object of that class”. A class with higher
RFC tends to have higher complexity. If a great number of methods are involved in
responding a message, then the developers need to understand more pieces of code

59

WMC DIT CBO RFC LCOM Ca NPM0

20%

40%

60%

80%

100%

0.23

0.76

0.37

0.21

0.12

0.28

0.20

Figure 4.5: Code Complexity Results

to construct the event handling logic, which raises more challenges in development
and test. LCOM is calculated based on the following steps. Every pair of methods
in a given class is checked. If a pair of methods both access to at least one the same
reference or variable, then the number of LCOM minus 1. If a pair of methods
does not share any reference or variable, then the number of LCOM plus 1. A high
LCOM implies some code in a class should be moved out. The other two metrics
are Number of Public Methods (NPM) and Afferent Coupling (Ca). Ca counts how
many other classes refer to the class we are measuring.

Figure 4.5 shows the results of code complexity evaluation. We use the data of
each metric we collected in the lean version of an application to divide the data
from the original version of an application. We collected code complexity data from
the 553 Android application data samples. The vertical axis is the reduced-original
ratio. The horizontal axis lists every metric. For the 553 data points of every
metric, we use a boxplot to depict the distribution of the results. The position of

60

Table 4.3: Reflection Call Sites
Method Name Call Sites Constants Variables
java.lang.Class: java.lang.Class forName 8.579 3.779 4.800
java.lang.ClassLoader: java.lang.Class loadClass 2.611 1,846 0.765
java.lang.Class: java.lang.reflect.Field getField 2.168 1.786 0.382
java.lang.Class: java.lang.reflect.Field getDeclaredField 1.077 0.828 0.249
dalvik.system.DexClassLoader: java.lang.Class loadClass 0.302 0.035 0.267
java.util.concurrent.atomic.AtomicIntegerFieldUpdater: java.util.concurrent.atomic.AtomicIntegerFieldUpdater newUpdater 0.042 0.042 0
java.util.concurrent.atomic.AtomicLongFieldUpdater: java.util.concurrent.atomic.AtomicLongFieldUpdater newUpdater 0.014 0.014 0
net.sourceforge.pmd.typeresolution.PMDASMClassLoader: java.lang.Class loadClass 0.014 0 0.014
org.codehaus.jackson.mrbean.AbstractTypeMaterializer$MyClassLoader: java.lang.Class defineClass 0.007 0 0.007
org.codehaus.jackson.mrbean.AbstractTypeMaterializer$MyClassLoader: java.lang.Class findLoadedClass 0.007 0 0.007
java.lang.ClassLoader: java.lang.Class findClass 0.004 0 0.004
Total 14.825 8.330 6.495

top and bottom of a box represent third (Q3) and first (Q1) quartiles of a group of
data. Interquartile Range (IQR) is defined as Q3−Q1. The highest bar and lowest
bar indicates the maximum value and minimum value respectively. The maximum
value and minimum value are defined as Q3 + 1.5IQR and Q1 − 1.5IQR in a
boxplot. The data out of maximum value and minimum value is seen as “outliers”
in a boxplot. The position of red line indicates the median of the data.

4.3.3 Reflection Call Sites

In this section, we present the results to answer research question Q3. Table 4.3
presents the results of our reflection analysis. We inspect all Java and Android
reflective methods in the 553 Android application samples. We listed the name of
methods which are used at least once by those applications in column “method
name”. A method name we listed consists of three parts. From left to right, they
are the class to which the method belongs, the type of return value, and method
name. We merged the data of overloaded methods into one entry of the table, so
we did not list the parameters of each method. In the second column, we listed the
average number of call sites of each method in the Android applications that used
reflections from higher frequency to lower frequency. In addition, we also calculate
the average number that how many string parameters at reflection call sites are
string literal constants or variables. We report them in the third and fourth column.
In the last row of Table 4.3, we can see that, each Android application has 14.825
reflection call sites. Among this number, 8.330 call sites directly use a constant
literal as their string parameters, while the other 6.495 call sites use a variable as
their string parameters. Though Java language provides many reflection methods,
in real programs, the distribution of their usage is quite biased. Top 4 entries in
the table have more than 97% of all reflective call sites.

61

Table 4.4: Size and Percentage of Installation Redundency in Wear Applications

Application Name Original Size (Byte) Reduced Size(Byte) Reduced/Original (%)
Mobills: Budget Planner 15725488 14023717 89.18
AccuWeather 33442700 30437691 91.01
Wear Tip Calculator 4070793 2011661 49.42
App in the Air: Flight Tracker 14826753 10847048 73.16
Weather Live Free 32659948 31086561 95.18
ViewRanger - Trails and Maps 14537273 12374449 85.12
Keeper: Free Password Manager 15905430 11531725 72.50
Instant - Quantified Self 10038765 9544534 95.08
Google Play Music 17961307 15678474 87.29
Microsoft Outlook 30348958 26821576 88.38
Nest 41391891 35063279 84.71
Robinhood - Free Stock Trading 13858114 9777723 70.56
Strava Running and Cycling GPS 28164055 24944648 88.57
Viber Messenger 31555265 30305049 96.04
Wear Face Collection 27476581 17154939 62.43
Komoot Cycling and Hiking Maps 12150268 9573000 78.79
WatchMaker Premium Watch Face 13864136 8879229 64.04
Average N/A N/A 80.67

4.3.4 Installation Time Redundancy

4.3.4.1 Install-Time Redundancy from Android Wear Applications

In this section, we answer the research question Q4. We did experiments to
compare the reduced size and original size of Android wear applications. At
this moment, the number of applications that support Android watch is still
limited. We downloaded all applications in the category of "Android Wear". We
analyzed those Applications and identified 17 applications that explicitly contain
an "android_wear_micro_apk.apk" in their apk files. We applied our tool to all of
those 17 applications. Table 4.4 presents our experimental results. Among all 17
applications, the lowest reduced-original ratio is 49.42% which is from Wear Tip
Calculator. The application Weather Live Free has the highest reduced-original
rate, 95.18%. On average, after removing android install-time SDK redundancy,
the size of a customized application will be 80.67% of its original size.

4.3.4.2 Install-Time Redundancy from Android Application embedded
ABIs

In this paragraph, we answer the research questions Q5 and Q6. We did experi-
ments to compare the reduced sizes and original sizes of Android applications that

62

Table 4.5: Proportions of applications that contain redundant ABIs by different
size groups

Size All Analyzed Apps Modified Apps Modified/All (%)
1M 717 411 61.51
2M 416 244 58.65
3M 303 168 55.45
5M 495 209 42.22
10M 908 445 49.01
20M 1029 391 38.00
30M 240 13 5.42
50M 604 148 24.50
200M 67 12 17.91
Total 4779 2041 42.71

contain redundant ABI. ARM architectures dominate mobile devices. Among ARM
architectures, ARMv7 is most pervasive. So in our evaluation settings, we always
try to keep ARMv7 ABI if multiple ABIs are present. If ARMv7 ABI does not
exist, we turn to keep ARMv5 while we are deleting the rest.

Table 4.5 presents the proportions of applications that contain redundant ABIs
by different size groups. In total, we analyzed 4779 Android applications, among
which 2041 applications contain more than one type of ABIs. That is to say 42.71%
applications in our samples can be additionally customized. We also calculated
the data by application size groups. For example, the applications that are in 3M
group are larger than 2M and less than or equal to 3M. The applications that are
smaller than 1M has the highest proportion of application containing redundant
ABIs, which is 61.51%. We can also observe a trend that larger applications have
less redundant ABIs.

Figure 4.6 shows the size distribution of all 2041 applications that can be
customized. The vertical axis is the percentage of the customized size divided by
the original size. The horizontal axis is the original size of an application. On
average, after customization, the reduced size is 93.37% of the original size.

63

0MB 50MB 100MB 150MB 200MB

20%

40%

60%

80%

100%

Figure 4.6: ABI details

4.4 Discussion and Future Work

4.4.1 Install-time Redundancy to Support legacy APIs

Android systems have different levels of APIs, from level 1 which is the oldest
one to 25 which is the most recent one. Those APIs are not always backward
compatible. Some features are only available on some higher level APIs. Com-
pared with iOS, Android ecosystem is more fragmented. Android users are using
many different Android systems which support different levels of API. To bring
a unified experience to all users, developers can include some packages provided
by Google in the apk file. Those packages provide the implementation of some
features that originally only available in some versions of Android systems. If an
application is installed on a new version of Android system, those packages will
be redundant. Including these packages are not transparent to developers. For
example, class android.app.Fragment is only available to API levels higher than
22. If developers decide they also want to support those old systems, they must
explicitly use android.support.v4.app.Fragment which is located in the package
can be brought by the application itself, instead of android.app.Fragment which
is only in Android framework. To optimize this case, we not only need to remove
the package, but also need to rewrite the class declarations and package importing
in application code. We leave this part as one further work.

64

4.4.2 Feature based Customization

Another future work is to perform feature based customization towards an appli-
cation. Jiang et al. [82, 83] discuss an approach of feature-based customization
over a Java program. The approach is based on analyzing the call sites of some
framework APIs. The permissions in Android systems which map to some specific
Android framework APIs provide an ideal handler to conduct feature optimization
on Android applications. For example, by customizing application features, we can
abandon existing “all-or-nothing” permission protocols with users. It is possible for
users to only select part of the permissions they allowed and still enjoy (part of)
the applications. It is also useful to enforce some policies for some special groups
like minors, military personnel, and the employees working in the enterprise where
some features (e.g., video streaming) are disallowed.

4.4.3 Relationship with Other Android Application Compaction
Approaches

There are a plenty of Android application code size reducing approach based on
packing and compressing. More specifically, developers can compress the images
music, and animation with or without losing their original resolutions. They can also
transform all the string literals in .csv or .plist files into binary-based representation.
We note that these approaches are orthogonal to our technique. RedDroid can be
boosted with other code size reducing approach mentioned above towards Android
applications. Our analysis is conducted on off-the-shelf Android applications, and
it is reasonable to assume they should have already been optimized by existing
trimming approaches. In other words, our evaluation results indicate that our work
is still notably effect given the presence of other related techniques.

4.4.4 The Relationship Between Our Approach and Dead Code
Elimination

To this end, we have used two chapters to discuss how we remove unused code and
resources from Java applications, JRE, and Android applications. Unused code
removing, by its literals, resemble another well known term, dead code elimination.
Dead code elimination is a technique to remove the code that has no affect on

65

program outputs [84]. By the definition, the approach proposed by us is also a
kind of dead code elimination techniques. However, it has a different scope with
the well known dead code elimination techniques used in modern compilers.

Modern compilers use a set of methodologies to identify and remove the dead
code inside a procedure. Constant folding and constant propagation can replace
those variables whose values are never used in their life cycles into constants.
Unreachable code can also be identified by a compiler by analyzing the control flow
in a function. For example, if an if-else structure contains an always true or always
false branch, then that if-else structure can be optimized. The other example is the
statements that are after return statements and also cannot be jumped into from
other parts of the function. Another type of dead code eliminated by a compiler is
the variables that are initialized or written but never read by the program.

Our techniques focus on the whole program analysis and interprocedural anal-
ysis. Rather than removing the unused statements or variables in the scope of
a function, we remove the unused classes and unused methods from the entire
program perspective.

4.4.5 The Universality of Our Unused Code Removing Imple-
mentation and Approach

The evaluation regarding unused code removal in the previous two chapters is
conducted on some language-specific benchmarks. However, our implementation
and approach are not language-specific. This issue can be discussed from the
perspectives of compilation targets and programming paradigms respectively.

Regarding compilation targets, source code can be compiled into bytecode or bi-
nary. First, our implementation can be applied to almost all bytecode. For example,
Java Virtual Machine (JVM) can run a considerable number of JVM-compatible
languages including Scala, Clojure, Groovy, JRuby, and Jython. Though the source
code of those languages are different, after compilation, their bytecode formats are
identical. Accordingly, our tools can be used to analyze the applications written
in JVM-compatible and Dalvik Virtual Machine (DVM) compatible languages
seamlessly. For other types of bytecode, because of the nature of bytecode virtual
machine interpretation-based execution and no linkage process during compilation,
bytecode instructions usually carry enough type information and do not replace

66

symbols by constants. Accordingly, in most cases, we can faithfully transform
them into other types of IR. Therefore, by properly implementing a language
transformation front end, our implementation can also be directly used. Second,
our general approach still remains valid for binary. This is because the mechanisms
of variable access, class initialization, method invocation, and other control flow
transfer are still the same. However, there are additional challenges caused by
binary code. A major one is that, due to the linkage process, many symbols are
replaced into constants, which caused the unreallocatable code program. It is
still an open problem in binary reverse engineering area. But we have seen some
promising progresses in solving this problem [85]. By taking advantage of their
works to overcome the unreallocatable code issue, our approach is also compatible
to binary code.

In terms of programming paradigms, there are OO languages and non-OO
languages. OO languages are the major sources of bloatware and exactly the major
target of our research. In our research, many efforts are spent on solving some OO-
specific challenges including inheritance and polymorphism. For non-OO languages,
call graph building approach needs to be adjusted accordingly, but each step of our
general framework is still useful. Intuitively, the programming paradigms such as
imperative languages or functional languages are not likely to import much unused
code into their applications. But it is still interesting to see how great our approach
works on those types of languages, which can be investigated in the future.

4.4.6 Security Impacts

The works of removing redundancy from software have multiple security impacts.
First, less code means less vulnerabilities. According to an estimate made by
McConnell [86], there are about 10–20 defects every thousand lines of code (KLOC)
during the in-house testing stage. In the final release version, there is about 1
defect per KLOC.4 Assume the bugs are distributed randomly. The number of the
bugs we can be trimmed is positively proportional to the percentage of the code
size we can reduce. In the evaluation of the previous chapter, we have confirmed
that, on average, nearly half of the known vulnerabilities in JRE can be trimmed.
It is notable that our method also trims unknown vulnerabilities.

4Note this is a rather conservative estimate. For example, Mockus, Fielding, and Herbsleb [87]
found that the Apache Server has about 2.64 defects per KLOC.

67

Second, less code indicates smaller attack surface in general. Property-Oriented
Programming (POP attack) is an code reuse attack that takes advantage of available
classes and methods (not necessarily used ones) in software written in Java, PHP,
and many other bytecode-based languages [88]. As we know, another well-known
code reusing attack, Return-Oriented Programming (ROP) is not available to those
bytecode-based languages, since the call stacks of bytecode-based languages is spread
over real stacks, heaps, and data segments. An overflow cannot take control over
multiple places. In addition, the bytecode is at unknown positions of heaps. POP
attack walks around those challenges to reuse code in the software by exploiting
deserialization functions in languages like Java and PHP. More specifically, by
rewriting the serialized objects files, attackers can replace the properties, especially
those object references, in serialized objects to redirect the control flow to the
points they wish. The key of this attack is to identify and chain some usable
classes, instead of “gadgets” in ROP, in all available classes in the software to reach
the operations like files deleting or dynamic code execution. Therefore, removing
unused classes and methods reduces the attack surface and greatly suffocates the
possibility that an attacker is able to create an object chain in the software.

Third, removing unused code can increase software diversity, which also improves
security. For example, customized JRE can only run the applications for which it
customized. It is a desirable feature for security. More importantly, we will have
different versions of JRE to run different applications. It is hard for attackers to
use a single attack script to compromise all those different JREs, which can prevent
some massive security incidents.

Another security impact is that using the approach of removing unused code to
reduce the code size brings in little new security loopholes, compared with other
code size reduction approaches. For example, some research on JavaScript code
size reduction focuses on code compression, which may give attackers chances to
obfuscate their malicious JavaScript [89]. Trimming redundant code can help reduce
JavaScript code size without security concerns.

Last but not least, removing unused code can reduce code complexity, which po-
tentially makes other analyses possible. “Complexity is the enemy of security” [90].
But in real world, the pace of software complexity increasing does not slow down,
which causes that conducting the whole system analysis and optimization is expen-
sive. The cost of formal methods like model checking is also sensitive to the code

68

Table 4.6: reflection patterns and our strategies
Reflection Pattern Strategy
unknownClass.knownMethod Keep all methods that have the name “knownMethodName” in any class. (Sound)
unknownClass.knownField Keep all fields that have name the name “knownField” in any class. (Sound)
knownClass.unknownMethod (no such case in our data samples) Do not change this class. (Sound)
knownClass.unknownField Do not change this class. (Sound)
unknownClass.unknownField Delete methods only, do not delete classes. (Sound)
unknownClass.unknownMethod (no such case in our data samples) Send alert to developers.
unknownClass.<constructor> (no such case in our data samples) Send alert to developers.

complexity. Less complex code gives space to those additional measurements to
improve security of software.

4.4.7 Soundness of Static Reflection Resolving Method

Soundness is important to program transformation. Theoretically, reflections
cannot be statically decided. However, the usage patterns of reflections in real
world applications allow us to walk around many challenges caused by reflections.
Let’s review Table 4.3 again. From the table we can see that, 553 applications
only use 11 reflection methods in total. None of the return types of these methods
is java.lang.reflect.method, which means no methods are invoked in a reflective
manner in our data samples. We can see that developers only use reflections to
get a Class, a Classloader, a Field, or a Fieldupdater. Table 4.6 lists our strategies
to each refection pattern. If a class, a method, or a field is referred statically,
or referred by reflection calls but can be determined by analysis, then we label
it as “known”. Otherwise, we label it “unknown”. In total, there are 7 different
combinations listed in the table. First 5 cases can be processed soundly. Last 2
cases are unsound. However, we have never seen last 2 cases in our data samples.
Therefore, our approach can be applied to almost all applications in the market.
More importantly, by using static analysis, we can know when our analysis will be
unsound. Compared with developer annotations or the dynamic approach, this is a
great improvement, since for other reflection solving approaches, if there is a flaw
in annotations or test suites, we cannot know it until the transformed program
throws an error. The data we collected regarding the reflection usage and static
approach on reflection call resolving is promising. It will be interesting to conduct
a dedicated reflection study on real world programs to additionally investigate the
static approach.

69

Chapter 5 |
Feature-based Software Customiza-
tion: Preliminary Analysis, For-
malization, and Methods

5.1 Introduction
A typical modern software system delivers a set of features to its users in a bundled
way. The requirements of removing and customizing one or some of those bundled
features are raised from both developers and users, for both software engineering
reasons and software security reasons.

5.1.1 Software Engineering Pragmatic Issues

Rinard [91] lists several reasons causing functionality bloat in modern software.
Based on his work, we summarize some software engineering pragmatic issues
related to feature creep problem. First, feature creep happens in most software
development projects. When a software product becomes mature and stable, the
developers still update it by adding more functions into original design. Second,
software is designed and delivered as general purpose software which contains all
functions required by all potential users. However, for a specific user, his or her
requirements on the software are special. Only a small part of the functions of
the software are useful. Other functions, to this specific user, become redundant
features. Third, software reusing also is an important source of functionality bloat.
The design of libraries tends to be generalized. The design of legacy projects is

70

specialized for the purpose of legacy requirements. None of them are built for
current projects and requirements. Building applications upon them inevitably
brings redundant features into the software. Fourth, development “errors” also
import new features. Developers are not always aware of the all effects might
caused by the code they are writing. Holzmann [6] calls this phenomenon “dark
code” which means “the application somehow can do things nobody programed it
to do”.

5.1.1.1 Why Customizing a Feature is Difficult?

If a property, feature, component is well abstracted, then it is easy to be changed,
extended, or removed. The challenges of features removal actually are caused
by the challenges of features abstraction. Modern programing languages (e.g.,
OO languages), code organization (e.g., package domain, name space) and other
software engineering toolkit give developers a way to model a real-world work
flow and split them into smaller and smaller units. However, a system could be
modeled into different abstractions and concerns. Programmers can only design the
software according to the primary abstractions. The secondary and third important
abstractions might be cross cut with the primary abstractions. Kiczales et al. [92]
discuss several cross-cutting features in typical real world applications. For example,
to design an online banking system, the concepts and entities that are primarily
abstracted would be “balance”, “account”, “user”, and etc. Extending and changing
those entities are relatively easy because of well abstraction and encapsulation.

Feature “transaction integrity” also needs to be abstracted and implemented in
an online banking system. However, it is not a primary abstraction of an online
banking system. Code listing 5.1 shows an example. In that code snippet, feature
“transaction integrity” which is enforced by logging cross cuts with money transfer
and any other transaction business logic. If developers want to change or remove
the implementation of money transfer business logic, they just need to change the
business logic code inside method moneyTransfer. However, if developers want
to enhance the “transaction integrity” by changing logging policy. They have no
way to change the code in one place. They have to change all methods that the
transaction integrity cross cuts with such as “moneyTransfer”, “directDeposit”,
“checkDeposit”, and many others. Similar examples could be found in the way how
people implement network connection and database connection. Code listing 5.2

71

Listing 5.1: A simplified example showing how the transaction integrity feature
cross cuts with the moneyTransfer business logic

public void moneyTransfer(int amount , User sender ,
User receiver){

logger.info("transaction␣starts");
//do money transfer buisness logic;
logger.info("money␣was␣deducted␣from␣sender ’s␣balance");
//do money transfer buisness logic;
logger.info("money␣was␣added␣to␣receiver ’s␣balance");
logger.info("transaction␣completes");}

Listing 5.2: A simplified example showing how the network connection feature
cross cuts with the ingestContent business logic

public void ingestContent () throws Exception {
URL oracle = new URL("http ://www.example.com/");
URLConnection yc = oracle.openConnection ();
BufferedReader in = new BufferedReader(
new InputStreamReader(yc.getInputStream ()));
String inputLine;
while ((inputLine = in.readLine ()) != null){

//do business logic;
}
in.close ();}

shows how network connection feature cross cuts with other business logic. Code
listing 5.3 shows a similar example on database connection feature cross cutting
with other business logic. These examples just demonstrate some common cases
shared by many projects. In each specific project, it has more specialized features
that are tangled with other code.

Correctly customizing a well modularized component in a program is already a
challenge. From the examples above we can see that the pervasive features that
cross cut with other business logic additionally increase the difficulty of customizing.
That probably is one of the reasons that developers keep them there even after
recognizing the negative effects that might be caused by some redundant features.

5.1.2 Security Concerns

We also have strong motivations to customize some features from the software for
the security reasons. Redundant features play a role in at least three security threat
models.

First, malicious software vendors might threat users’ privacy. There are many

72

Listing 5.3: A simplified example showing how the database connection feature
cross cuts with the userAuthentication business logic

public void userAuthentication (){
Class.forName("org.postgresql.Driver");
Connection connection = null;
connection = DriverManager.getConnection(

"jdbc:oracle:thin:@localhost :1521: fakename",
"username","password");

//do business logic;
connection.close ();}

cases that the software companies insert backdoors to collect users’ or their com-
petitor software’s behavior. If network connection feature is not used by users
at all, then the users can just trim the network connection feature or at least
writing-to-network feature off from the software. For example, many text editors
have network connection feature. Trimming off such a feature will not affect the
functions of the text editors. If the users of software hold highly sensitive data
or they work in a settings with some hard constraints (e.g., military offices), they
should remove those features that are not useful to users’ business but with sensitive
behaviors.

Second, malicious libraries provider might repackage original authenticated
libraries to insert code for their own interests which threat the integrity of software
that includes such a library. For example, many mobile application developers
include adware library (adware here refers to the software that allows third party
distributes and displays advertisements on your own apps, webpages, or software)
to earn extra revenue. Some adwares might secretly collect both developers’ data
and users’ information. Besides existing scanning and malicious behaviors detecting
technologies, developers still have requirements and motivation to customize third
party libraries they include in their applications to achieve active defense.

Third, the software systems that lack diversity might be compromised all together
at one time by outside attackers. The approach of moving target defense (MTD) is
raised to “increase uncertainty and apparent complexity for attackers” [93]. Feature-
based software customization according to users’ requirements offers a natural way
to increase software diversity and achieve moving target defense.

73

5.1.3 Our Approach

In this dissertation, we propose a novel approach to conducting feature-based
program customization via multiple-step static analysis. One of the steps of our
approach is based on an enhanced program slicing method called solo slicing. Based
on a set of seed methods defining a feature, our approach investigates its call sites,
return value, and parameters. Then starting from the return values and parameters
at call sites, we remove any code that depends on return values, and any code that
is only depended by the parameters. Next, we remove call site itself. At last, if
possible, we remove method definition by checking a set of rules.

More specifically, we use return values in the seed method call sites as our
forward slicing criteria to find out all statements that depend on the return values
on both data flow and control flow. By removing these statements, we guarantee the
program is still runnable after seed method call sites removal. We use parameters in
the seed method call sites as our solo slicing criteria to find out all statements that
are only depended by the parameters on data flow or control flow. By removing
these statements, we trim off the redundancy caused by the absence of the seed
methods call sites.

We evaluate our methodology by conducting case studies on several real-world
Java applications. We aim to remove the network connection feature, database
connection feature, and logging feature from those applications respectively. The
results of the case studies show that our approach is correct and effective. In
summary, we make the following contributions:

• We define the feature and the problem of features-based customization.

• We purpose a multiple-step static analysis which is based on enhanced program
slicing technology to perform feature-based customization.

• We identify several features that are prone to be interwoven with other code
and contains security-sensitive behavior.

• We conduct a case study to evaluate the feasibility, correctness, and effective-
ness of our approach.

The rest of this chapter is organized as follows. We define and formalize the
research problem of feature-based software customization in section 5.2. We present

74

the general approach in Section 5.3. The evaluation and case study are reported in
Section 5.4. Discussion is presented in Section 5.5.

5.2 Problem Definition
Before we discuss the approach to conducting feature-based program customization,
we first define, formalize, and set the scope for the research problem in this section.
Based on the previous analysis in last section, we have found that many features
cross cut with other business logic. So feature customization cannot be done by
modifying one or several methods’ definition. Features are implemented as many
spread and repeated method calls. Still taking code listing 5.3 as an example,
database connection feature in a program is implemented by all invocations of
method DriverManager.getConnection(). So we use methods call sites as feature
definition basis.

We are going to formally define feature based on interprocedural control flow
graph (ICFG) G = (V, E) which regards method invocation as a special kind of
control flow [94]. Besides the normal control flow edges En, three special kinds
of control flow edges are imported to handle procedure invocation process: call-
to-return-site edge Ecall-to-return-site, call-to-start edge Ecall-to-start, and exit-to-
return edge Ecall-to-return. Call-to-return edge connects the call site node and
the node following the call site. Call-to-start edge connects the node that
invokes the method and the entry node of the callee. Exit-to-return connects
the exit node (usually return node) to the node immediate after the call site.
Formally, all-edges set E is the unions of those five subsets of edges, i.e., E =
En ∪ Ecall-to-return ∪ Ecall-to-start ∪ Eexit-to-return-site ∪ Eentry ∪ Eexit.

Definition 3.1. We define seeds as a set of methods denoted by SEEDS =
{m1, m2, m3, ..., mk}. Seeds could be the methods in Java standard libraries or part
of the application which are specified by users or developers. Seeds usually are the
methods conducting sensitive operations or other functions of interests. Simply, we
call a set of methods of interest “seed methods”.

Definition 3.2. We define call sites of a method f a set of node on this
graph G, Cm = {cm

1 , cm
2 , . . . , cm

n }, such that ∀cm
i ∈ Cm,∃ei ∈ Ecall-to-start connects

cm
i and the entry node of method m. Simply, we call the all statements that invoke
a method the “call sites” of that method.

75

Entry

B1

C1

Call f();

B2

B5 B6

B7

B4

C2

Call g();

B3

B8

B9

Exit

Method f()

Method g()

call-to-return edge

call-to-start edge

exit-to-return edge

normal control flow edge

Figure 5.1: Interprocedural Control Flow Graph of Code Listing 5.4

Definition 3.3. We define a feature a set of call sites F = {Cm1 , Cm2 , Cm2 , ..., Cmn}
such that ∀Cmi

∈ F, mi ∈ SEEDS , Simply, a feature consists of all call sites of
SEEDS .

Example. In our example program snippet shown in code listing 5.4, if we
specify method f and g as the seed methods, then SEEDS = {f, g}. The call site
of method f is C1. The call site of method g is C2. In this case, the feature is a set
consisting of two call sites: {C1, C2}. Taking a network feature for example, the
seed set is defined to be the set of network-related APIs and the feature set is the
set of call sites to these APIs. In some scenarios, we need to customize a software
package to completely remove network features. We will present an approach and
conduct case studies for these scenarios in the following sections. Customization
contains operation of add, remove, and modify. In this chapter, we discuss an
approach of feature removing.

5.3 Approach

5.3.1 Overview

Based on the definition given by last section, we can clearly define our task is to
remove all call sites of the seed methods safely and clear all the redundancy caused

76

Listing 5.4: A code listing example
public class CodeListing {

public static void main(String [] args) {
int argument=Integer.parseInt(args [0]);
int ret =0;
CodeListing instance=new CodeListing ();
if(argument <=42){

ret=instance.f(argument);
}

instance.g();
}
public int f(int x){

int y;
if(x>0){

y=1;
}else{

y=-1;
}
return y;

}
public void g(){

System.out.println("Hello");
System.out.println("World");

}
}

by this removal. To remove all methods invocation in the program, we potentially
need to remove 4 parts of code in order: the code that depends on the return value
or side effects (objects and array references that redefined in the callee) of the
call site, call site itself, the code that is only depended by the parameters of the
call site, and the method definition. To better demonstrate our idea, we will use
a Java program example shown in code listing 5.5 through the whole section to
show how our solution deletes those tangled code step by step. The Java code in
listing 5.5 shows an simplified SMTP client that interacts with network. We omit
the exception handling and invalid data checking in this example. This program
opens a network connection after necessary preparation. It writes string message
to the network. It reads data from the network and stores the data into array b

via calling method read of class DataInputStream which is in JRE. We show a
simplified implementation of this method in code listing 5.6 to ease the elaboration
later. In the end, the program prints the actual length of the data that is read
from the network, the first byte of the message, and the value of offset.

Our goal is to customize this program into a data-reading-free program which
only writes data to but never receives any data from the network. The seed method
in our example is DataInputStream.read(byte[] b, int off, int len). The only call

77

Listing 5.5: An example that a client reads data from and writes data to the
network

1 public class SocketInAndOut{
2 public static void main(String [] args) {
3 Socket smtpSocket = null;
4 DataOutputStream os = null;
5 DataInputStream is = null;
6 String message_body=args [1];
7 String message="message_example";
8 int offset =0;
9 byte[] b=new byte [100];
10 smtpSocket = new Socket("hostname", 25);
11 os = new DataOutputStream

(smtpSocket.getOutputStream ());
12 is = new DataInputStream

(smtpSocket.getInputStream ());
13 int array_length=b.length;
14 os.writeBytes(message);
15 String responseLine;
16 int actual_length=is.read(b, offset , array_length);
17 if(actual_length <array_length){
19 System.out.println(actual_length);
19 }
20 System.out.println(b[0]);
21 System.out.println(offset);
22 os.close ();
23 is.close ();
24 smtpSocket.close ();
25 }
31}

site in our case is the statement in line 16 of listing 5.5. Figure 5.2 highlights this
call site and denotes 4 customization steps. In the first step, all code that depends
on the return value actual_length and the value of the cells of array b which is
changed in the callee would be removed. In the second step, call site itself would be
removed. In the third step, we are going to remove the code that only affects the
parameters of the call site. In the last step, we are going to check if it is possible
to delete the method definition of DataInputStream.read(byte[] b, int off, int len).
It is not always the case that we need to perform all four steps every time. In our
example, the deleting in step 4 will not happen because the seed method we choose
is part of JRE. In other cases, we may skip step 2 or step 3 if the method does
not have return value and side effects or the number of its parameters is 0. We
unified all 4 steps of program customization as Program Dependency Graph (PDG)
and System Dependency Graph (SDG) updating and reachability problems solving
process. We need to build call graph and SDG as analysis preparation procedure.
The details of each step are given by the following subsections respectively.

78

int actual_length=is.read(b, offset, array_length);

1

2

3

4

1

33

1

Figure 5.2: Delete Overview

Listing 5.6: A simplified java.io.DataInputStream.read implementation
1 public final int read(byte b[], int offset , int len){
2 int c = read ();
3 b[offset] = (byte)c;
4 int i=1;
5 for(;i<len;i++){
6 c=read ();
7 if(c==-1){
8 break;
9 }
10 b[offset+i]=(byte);
11 }
12 return i;
13}

5.3.2 First Step: Forward Slicing

Before we start to describe the details of the first step, I would like to clarify
the terms we use here. The concept slicing is first formalized by Weiser [48] by
given a slicing criterion. Some following up works give their own definitions of
slicing [95, 96]. Those definitions resemble each other while there still are subtle
difference between them. In this chapter, by “forward slicing” we mean finding out
the statements that are affected by the variable v. Based on the SDG and PDG
built by the preprocessing procedures, we now present the approach of forward
slicing to identify the variables that rely on the return value and the side effect of
the call site. We use the two-pass SDG-searching algorithm introduced by Horwitz,
Reps, and Binkley [97].

The first step is to identify which variables in the program are slicing criteria.
The selected variables should be the ones that are defined or redefined in the method
and caused the effects out of the scope of that method. Apparently, the return
value of the method is such a variable. Besides return value, a method may have

79

other side effects. The side effects are caused by the change to the value pointed
by array or object reference or the change to the array or object reference itself. In
SDG, both explicit return value and implicit side effects data flow could be handled
uniformly. We show a simplified DataInputStream.read(byte b[], int off, int len)
implementation in code listing 5.6 which is called in line 16 of code listing 5.5.
Method read has one return value and one side effect. The return value is that
it returns an integer to the variable actual_length in line 16 of code listing 5.5.
The side effect is caused by the change to the value of the cells of array b in code
listing 5.6. The cells of array b is used as right value after the call site of read. We
present a partial SDG in Figure 5.3 to show how read method interprocedurally
depends with the code in the listing 5.5. In Figure 5.3, the nodes in grey are
special nodes in SDG. They map the data flow between actual parameters and
formal parameters. In the figure we can see that the return value and side effect are
modeled in the same way. Thus, from all actual out nodes of the call sites, a graph
reachability analysis would be performed to slice out all statements that depend on
the “output” of the call sites. The sliced out statements would be deleted. In our
example of code listing 5.5, line 17 depends on actual_length via data flow. Line 18
depends on actual_legnth via control flow. Line 20 depends on the value stored in
array b via data flow. However, line 21 would not be removed. Method read does
not mutate the value of offset, so the offset in line 21 does not depend on the call
site of read in line 16. In summary, line 17 to line 20 would be deleted. After this
step, there are no statements depending on the seed methods.

5.3.3 Second and Third Step: Call Site Delete and Solo-slicing

In this step, our target is to remove the call sites and the statements that dedicatedly
produce value for the actual parameters of seed methods call sites. Program slicing
cannot help us solve this problem. According to the definition given by Weiser [48],
program slicing could be denoted by a slicing criterion. Formally, it is a tuple
defined as C =< i, V >, where i is a statement of program P and V is a subset
of variables of program P . Slicing technology helps identify the statements that
may affect V in i via data flow or control flow. Theoretically, the slicing result is
still an executable program. However, our research question in this step could be
abstracted as, which statements only affect V . This question could also be asked in

80

ENTER read

int c=read();

byte b[] formal in int offset formal in int len formal in

int i=1; b[offset]=(byte)c;

while(i<len)

c=read(); if(c==-1)

break;

return i;

formal b out actual b out

System.out.println(b[0]);

formal i out

int actual_length=is.read(b, offset, array_length);

b actual in offset actual in array_length actual inactual_length actual out

i++;

Other Part of Program

Other Part of Program

Other Part of Program

Control Dependence Data Dependence
All Interprocedural Dependence (Method Invocation/Actual In-Formal In

Mapping/Formal Out-Actual Out Mapping)

Figure 5.3: Forward Slicing on Return Value and Side Effect

the other way equivalently: after removal of the call sites, which statements before
call sites could be removed safely. Here we do not require the sliced-out result still
a runnable program. But we require the program left is still runnable.

We still use code listing 5.5 as our example. If we set the backward slicing
criteria as the variable offset call site of read at line 15, then the statement in line
8 would be sliced out. However, we cannot delete the statement in line 8 because
line 21 still depends on it. Figure 5.4 highlights the relationship between these
statements. This example demonstrates why slicing cannot solve this program.
Some other various versions of slicing technologies such as thin slicing [98] improved
the slicing results based on an evolved slicing definition. They also cannot solve
the problem we raised here.

To this end, we find out that traditional slicing and its existing variation versions
cannot solve the problem we encounter in this step. we define an enhanced program
slicing methodology called solo-slicing to solve our problem. Like other slicing
technology, we define solo-slicing and develop our algorithm based on Program
Dependency Graph (PDG) and the System Dependency Graph (SDG).

81

16 int actual_length=is.read(b, offset, array_length);

8 int offset=0;

21 System.out.println(offset);

……

……

 Backward Slicing

Depends on

Figure 5.4: Traditional Slicing Fails to Identify the Redundancy Caused by Call
Site Removal

5.3.3.1 Program Dependence Graphs and Solo-slicing

PDG [50,51, 97,99] represent the data flow dependencies and control dependencies
of a program. It is notable that, by the definition of PDG [51], the term “program”
only contains scalar variables, assignment statements, conditional statements, and
loops. It does not contain procedure calling statement. A PDG could be denoted
by a directed graph Gp = {V, E} where V are the vertices and E are the edges
in PDG [51]. Vertices represent all statements in program P , including both
assignment statements and control predicates. Edges represent transitive data
flow dependencies and control dependencies. The vertex pointed by the directed
edge depends on the source of the edge, either on data flow or control flow. Two
statements (vertices) are connected by a data flow dependencies edge if 1) one
statement defines a value x, 2) the other one statement uses that value, and 3)
there is a def-use chain across at least one control flow.

The edges denoting the control dependencies are labeled with either true or
false. The statement will be executed when the result of control predicate matches
the label of the edge that connects that statement and the control predicate. Code
listing 5.7 shows a really simple code example. The PDG of this example is shown
in Figure 5.5. In the Figure 5.5, the arrows in bold with label represent control
dependencies. The rest of the arrows represent the data dependencies.

Our algorithm is based on worklist and graph search which is shown in algorithm
listing 1. The main idea is to delete one vertex first from Gp and the edges pointed
to it. The first step has removed the statements depending on the return value
and side effects of seed method call sites. After removing call site vertex, we

82

Listing 5.7: A Simple Program Without Method Call
int session_pool =100;
int user_number =57;
if(session_pool >= user_number)

resources=session_pool -user_number;
}
int revenue=user_number *10;

ENTRY

int user_name=57; if(session_pool>=user_number)int session_pool=100;

int resources=session_pool-user_name;int revenue =user_name*10;

T
T

T

T

Figure 5.5: The PDG of the Example Code in Listing 5.7

update the SDG and check the out degree of vertices in updated Gp. Specifically,
if there are vertices whose out degree are zero, we can remove those vertices and
the in-degree edges pointing to those vertices. We repeat this process until there
are no vertices having zero out degree. When no vertices have zero out degree, we
say the fixed point is reached and the algorithm stops. By this algorithm, we can
calculate the solo-slicing result and delete the solo-sliced-out statements along side.
Figure 5.6 demonstrates two examples of solo-slicing. The number on each vertex
denotes the out degree of that vertex. The vertex that has zero out degree is in red.
Two examples have the same vertices number and the different initial dependency
relationship settings. The figure shows how they reach the fixed point via different
number of steps.

Back to the example in code listing 5.5, call site of read in line 16 is the slicing
criterion of solo-slicing which will be removed first as the trigger of the graph
updating. It has three parameters, array b, integer offest, and integer array_length.
Among them, array b depends on line 9 array b is declared. Variable array_length
depends on line 13 and line 9 via data flow. No other statements depend line 9 and

83

Algorithm 1 Solo-slicing Algorithm
1: function SoloSlicing(G,S)
2: PDG ← G
3: CallSiteVerticesSet ← S
4: WorkList ← CallSiteVerticesSet
5: while WorkList 6= ∅ do
6: Vertex ←WorkList.getOneVertex()
7: PDG.removeGivenVertex(Vertex)
8: PDG.updateVerticesOutDegree()
9: for each vertex v changes its out degree do
10: if v.OutDegree = 0 then
11: WorkList.add(v)
12: end if
13: end for
14: end while
15: end function

line 13. Thus these two statements are removed. Variable offset depends on line 8.
However, variable offset in line 21 also depends on line 8. According to solo-slicing
algorithm, line 8 would not be removed. In summary, in step 2 and 3, call site of
read in line 16, redundancy in line 9 and line 13 are identified and removed.

5.3.3.2 System Dependence Graphs and Solo-slicing

To handle the program in real world with procedure invocation, we need to extend
PDG into System Dependence Graphs (SDG) by adding new types of vertices and
edges to represent method calling. Here we use the notation of SDG introduced
by Horwitz et al. [51]. we extend PDG to SDG by adding five kinds of vertices.
They are call site vertex, actual-in vertex, actual-out vertex, formal-in vertex,
and formal-out vertex. The pair of actual-in/out vertices model the process of
passing the actual arguments to and read return value from the callee. The pair of
formal-in/out vertices model the process of formal parameters initialization and
the return value at the return site in the callee. Then, we add three kinds of edges
to link these newly added vertices. The first one is a call edge, which connects call
site and the entry vertex of callee. The second one is a linkage-entry edge, which
connects actual-in vertices in caller and their corresponding formal-in vertices int
the callee. The third one is a linkage-exit edge which connects formal-out vertices
in the callee and their corresponding actual-out vertices in the caller. Figure 5.3

84

3

2

0
3

1

0

11

3

1

3

0

11

1

1

The fixed point is reached

The fixed point is reached

Step 1 Step 1

Step 2 Step 2

Step 3

Figure 5.6: Solo-slicing Algorithm Illustration

already shows an example of a partial SDG in the previous subsection. According
to the definition of the newly added vertices and edges in SDG, call edge is a special
kind of control dependency edge. Linkage-entry edge and linkage-exit edge are
special kind of data dependency edges. Thus, the algorithm in listing 1 could easily
be extended to work on SDG. Consequently, solo-slicing could solve the problem
on a program with method calling.

5.3.3.3 Extending Solo-slicing Algorithm to OO Program

Similarly, by appropriately adding new types of vertices and edges, the dependency
relationship in an OO program could be represented by a graph data structure.
Larsen and Harrold [100] did this work and call such a data structure Class
Dependency Graph (ClDG). Traditional slicing algorithm could work on OO program

85

Listing 5.8: After Customization
1 public class SocketInAndOut{
2 public static void main(String [] args) {
3 Socket smtpSocket = null;
4 DataOutputStream os = null;
5 DataInputStream is = null;
6 String message_body=args [1];
7 String message="message_example";
8 int offset =0;
10 smtpSocket = new Socket("hostname", 25);
11 os = new DataOutputStream

(smtpSocket.getOutputStream ());
12 is = new DataInputStream

(smtpSocket.getInputStream ());
14 os.writeBytes(message);
15 String responseLine;
21 System.out.println(offset);
22 os.close ();
23 is.close ();
24 smtpSocket.close ();
25 }
31}

by utilizing ClDG. Likewise, we take advantage of ClDG to extend the working
scope of solo-slicing to include OO program. Specifically, each method entry vertex
is connected with the class entry vertex via class member edge. To represent an
inheritance relationship, the derived class reuses the the PDGs of all methods that
are inherited from its parent classes. To represent the polymorphism, a polymorphic
choice vertex is added. It points to all possible callee of a call site. Essentially,
ClDG is still a graph representing data flow and control flow dependency. So
our algorithm could work on ClDG and solo-slicing could be extended to the OO
program.

5.3.4 Fourth Step: Method Definition Delete

After all the processes above, in this step, we check if it is possible to remove the
seed methods definition. If the a seed method resides in an application class or
a third-party library class, then we remove it. If this method is in Java Runtime
Environment (JRE), then we do not remove it.

After all four steps, the result of our customization on code listing 5.5 is shown
in code listing 5.8. After customization, this code snippet is runnable, does not
contain the read feature and does not have redundancy code caused by the feature
customization.

86

5.4 Evaluation and Case Studies

5.4.1 The Complexity of Our Approach

In our four-step feature-based software customization approach, step 1 traditional
forward slicing and step 3 backward solo-slicing cost most. The cost of traditional
slicing has been given by Horwitz et al. [51]. It is bounded by O(P(V + E) + CX),
where P is the number of procedures in the system, V represents the biggest number
statements in a single procedure, E is the biggest number of edges in a single PDG,
C is the total number of the call sites in the system, and X is the sum of the
biggest number of formal parameters in any procedure plus the number of global
variables in the system. The cost of solo-slicing could be estimated in the same way.
Compared with traditional slicing, in each iteration of worklist, there are three
operations. The first one is removing current vertex which is a constant time in
a single iteration and linear to the size of worklist in the whole run. The second
one and third one are updating affected vertices’ out degree and checking if any
one of them become zero. The number of affected vertices equal to the reachable
vertices in traditional slicing. The number of vertices that are newly added to
the worklist in each iteration of solo-slicing is smaller or equal to the vertices that
are added to the worklist in each iteration of traditional slicing, when given the
same initial settings. So it is easy to see the cost of solo-slicing is also bounded by
O(P(V + E) + CX). Thus the complexity of the whole 4-step approach is bounded
by O(P(V + E) + CX) which is efficient.

5.4.2 The Pervasiveness of Cross Cutting Features in Real World
Java Program

In this subsection, we present the results to the research question “how pervasive
the cross cutting features are in the real world Java program”. We select three
features. They are network connection, database connection, and logging.

We conduct experiments on DaCapo 9.12-bach benchmarks, which contain 10
programs. These 10 benchmarks are typical desktop standalone applications that
are designed by following the principle of “small is beautiful”. For most of them,
network connection and data persistence are not their proposed functions. If one

87

Table 5.1: Network, Database, and Logging Features

Benchmarks avrora batik fop h2 jython lucene pmd sunflow tomcat xalan
Number of Network Feature Call Sites 0 83 28 1 1 8 3 0 N/A 9
Number of Database Feature Call Sites 0 0 0 N/A 2 6 3 0 8 1
Number of Logging Feature Call Sites 0 0 87 1 5 962 0 0 195 0

benchmark’s main function happens to be network connection and data persistence,
we are going to skip that application.

5.4.2.1 Presence of Network Connection Call Sites

The number of network connection call sites of each benchmark is shown in the
first row of Table 5.1. Among the benchmarks, tomcat is a webserver whose main
business logic includes network connection. In this case, we do not consider network
connection feature as a cross cutting feature for benchmark tomcat. So we do not
calculate this number for the benchmark tomcat. From the table, we can see that
7 out of 9 benchmarks have cross cutting network connection API call sites. The
benchmark batik has the highest call sites number 83. The benchmark avrora and
sunflow do not network connection call sites. On average, each benchmark has 15
network connection call sites.

5.4.2.2 Presence of Database Connection

The number of database connection call sites of each benchmark is shown in the
second row of Table 5.1. Among the benchmarks, h2 itself is a database. So we do
not calculate database connection call sites number for benchmark h2. From the
table, we can see that 5 out of 9 benchmarks have cross cutting database connection
API call sites. The benchmark tomcat has the highest call sites number 8. On
average, each benchmark has 2 database connection call sites.

5.4.2.3 Presence of Logging

The number of logging call sites of each benchmark is shown in the third row of
Table 5.1. From the table, we can see that 5 of out of 10 benchmarks have cross
cutting logging API call sites. The benchmark lucene has the highest call sites
number 962. On average, each benchmark has 125 logging call sites.

88

Table 5.2: Call Sites of method openConnection and openStream in DrJava

SEEDS: java.net.URL.openConnection/openStream
edu.rice.cs.drjava.ui.NewVersionPopup$6.updateAction
edu.rice.cs.drjava.ui.NewVersionPopup.getManualDownloadURL
edu.rice.cs.drjava.ui.MainFrame._generateJavaAPISet
edu.rice.cs.drjava.ui.NewVersionPopup.getBuildTime

5.4.3 Case Studies

5.4.3.1 DrJava: Network Connection

DrJava is a lightweight Java programming environment for pedagogic purpose [101].
The core functionality of DrJava has nothing to do with network connection. How-
ever, it does have network connections in its code for checking updates. DrJava
has 687 classes. The total number of lines of code are 163,566. We conduct a case
study on removing network based feature from Dr.Java. Network related features
are defined by methods openConnection and openStream in class java.net.URL.
Specifically, if developers want to have network connection in their program, they
must call those APIs. Thus, in this case, SEEDS consists of methods openConnec-
tion and openStream. Table 5.2 shows the specific call sites of the seed methods.
We use them as seed methods to conduct feature-based customization based on the
approach we proposed.

Among these call sites, we use method updateAction in class NewVersionPopup
as an example. Code listing 5.9 shows the forward slicing results of openConnection
inside method updateAction. The call site is at line 321. The return value of this
call site is uc whose type is URLConnection. This call site does not have side effect.
So the only slicing criteria is uc in the statement of line 321. The statements shown
in code listing 5.9 would be deleted. The method openConnection does not have
parameters. So the backward solo-slicing would not be performed. At the end, we
find out that the method openConnection is in JRE. So the method definition will
not be removed. After customization, we test Dr.Java by the test cases designed by
us. First, DrJava could start up successfully after feature customization. Second,
DrJava cannot access Internet to check and download update. Third, rest of
functions could work normally.

89

Listing 5.9: DrJava openConnection Callsite Forward Slicing Results
321 URLConnection uc = fileURL.openConnection ();
322 final int length = uc.getContentLength ();
323 InputStream in = uc.getInputStream ();
324 ProgressMonitorInputStream pin =

new ProgressMonitorInputStream
(_mainFrame , "Downloading␣"+fileName+"␣...", in);

325 ProgressMonitor pm = pin.getProgressMonitor ();
326 pm.setMaximum(length);
327 pm.setMillisToDecideToPopup (0);
328 pm.setMillisToPopup (0);
330 { public void run() { closeAction (); } });
331 BufferedInputStream bin = new BufferedInputStream(pin);
334 edu.rice.cs.plt.io.IOUtil.copyInputStream(bin ,bout);
335 bin.close ();
337 if ((! destFile.exists ())

|| (destFile.length () != length)) {
338 abortUpdate("Could␣not␣download␣update."); return;
339 }

5.4.3.2 Hadoop: Database Connection

Apache Hadoop is an open source software for scalable distributive computing.
In this case study, we want to remove the database connection feature from
Apache Hadoop project. Database connection related features are defined by
method getConnection in class java.sql.DriverManager. Specifically, to connect
with database, developers must write a sequence of routine code to perform a series
of operations which starts with DriverManager.getConnection. So in this case,
SEEDS contains only one method getConnection. It has two call sites. Both of
them are in method getConnection of class DBConfiguration. Code listing 5.10
shows two call sites of our seed method in DBConfiguration.getConnection. It is
notable and interesting that DBConfiguration.getConnection actually is a wrapper
method of Java standard API DriverManager.getConnection. They even have the
same method name. DBConfiguration.getConnection directly uses the return value
of seed method as its own return value (line 151 and line 153). This fact causes that
all call sites of DBConfiguration.getConnection are also removed from the program
in the forward slicing stage.

The backward solo-slicing starts from the parameters of DriverManger.getConnection.
We use the call site at line 151 as an example. That seed method call site uses
the anonymous return value of conf.get(DBConfiguration.URL_PROPERTY)) as
its parameter. Apparently, an anonymous return value is impossible to be used
somewhere else but its call site. So the call site conf.get is also removed. After

90

Listing 5.10: The Code of Call Sites of DriverManager.getConnection
150 if(conf.get(DBConfiguration.USERNAME_PROPERTY) == null) {
151 return DriverManager.getConnection(

conf.get(DBConfiguration.URL_PROPERTY));
152 } else {
153 return DriverManager.getConnection(

conf.get(DBConfiguration.URL_PROPERTY),
conf.get(DBConfiguration.USERNAME_PROPERTY),
conf.get(DBConfiguration.PASSWORD_PROPERTY));

155 }

this removal, the number of statements that depend on constant value DBConfig-
uration.URL_PROPERTY is one less. But the SDG shows that its out degree
is still greater than zero at this moment. So the solo-slicing stops here and the
static constant field DBConfiguration.URL_PROPERTY will not be removed.
The backward solo-slicingfrom parameters of call site in line 153 follows the same
manner. But the results are different. The static constant fields DBConfigura-
tion.USERNAME_PROPERTY and DBConfiguration.PASSWORD_PROPERTY
are removed in the end because line 153 is the only statements that depend on
these two fields. At last step, we check if it is possible to delete the method
definition. Our seed method is part of JRE. So the seed method definition will
not be deleted. But its wrapper method DBConfiguration.getConnection, whose
call sites are removed as well, is in application space. So the method definition of
DBConfiguration.getConnection will be deleted.

After customization, we test Hadoop-mapreduce-client by the test cases designed
by us. We find out that the database connection is disabled. The project’s rest of
functions could work normally.

5.4.3.3 Maven: Logging

Apache Maven is a software project management tool written in Java which can
facilitate building automation, documents generation, and dependency resolving.
In this case study, we want to remove debugging information logging feature
from Maven. In Java, there are multiple logging frameworks. But their design
are quite similar. By calling different methods of logger, logger can log the
information and label these information with different importance-level tags. Thus
administrators can handle or retrieve these logs according to their importance levels
for different purposes. Maven uses the logging framework from Plexus project.

91

In this framework, the logging importance levels, from least important to most
important, are ranked as LEVEL_DEBUG, LEVEL_INFO, LEVEL_WARN,
LEVEL_ERROR, and LEVEL_FATAL. To log debug information, developers need
to call Logger.debug method. So SEEDS in this case study, contains one method
org.codehaus.plexus.logging.Logger.debug. By removing this seed method, we can
remove debug information logging feature.

The seed method has 60 call sites in 17 classes as shown in Table 5.3. Some
package names are omitted due to its length exceeding the page limit. We use one
of these call sites in class DefaultProjectDependenciesResolver as an example. The
relevant code is highlighted in listing 5.11. The code from line 253 to line 277 is
omitted due to the page limit. This code listing displays a quite typical scenario
that logging feature cross cuts with other business logic. The business logic of
method visitEnter is about node dependency resolving. Logging code is interwoven
with the main business logic of the method here. The call site of Logger.debug is
at line 283. It does not have return value. So we do not need to perform forward
slicing. It takes buffer.toString() as its parameter. The backward solo-slicing will
start from buffer.toString(). After removing call site, buffer in line 281 will lose its
only dependent. Thus line 281 would be deleted which causes buffer in line 280
lose its only dependent. Such a solo-slicing chain will go all the way back to line
250. The solo-slicing will not stop until line 250 is deleted. In other 59 call sites,
the operation and removing process is similar. After we remove all call sites of the
seed method. We can remove the seed method definition because this seed method
is in a third party library.

To this end, we have removed the debugging information feature from Apache
Maven project. We test Maven by the test cases designed by us. We find that
Maven cannot do debugging information logging any more. Other functions of
Maven work normally.

5.5 Discussion

5.5.1 Solo-slicing

To solve the problem of redundancy removal, we propose a new slicing concept and
technique, solo-slicing. Solo-slicing could slice out the statements that are only

92

Table 5.3: Logger.log Call Sites in Apache Maven project

SEEDS: java.util.logging.Logger.log
The Classes that have SEEDS call sites Call Sites Number
org.apache.maven.bridge.MavenRepositorySystem 1
org.apache.maven.classrealm.DefaultClassRealmManager 8
org.apache.maven.DefaultMaven 3
org.apache.maven.lifecycle.internal.LifecycleDebugLogger 20
org.apache.maven.· · · .DefaultLifecyclePluginAnalyzer 1
org.apache.maven.lifecycle.internal.MojoDescriptorCreator 1
org.apache.maven.· · · .MultiThreadedBuilder 2
org.apache.lifecycle.DefaultLifecycles 1
org.apache.maven.LoggingRepositoryListener 2
org.apache.maven.plugin.internal.DefaultMavenPluginManager 5
org.apache.maven.· · · .DefaultPluginPrefixResolver 3
org.apache.maven.· · · .DefaultPluginVersionResolver 5
org.apache.maven.plugin.DebugConfigurationListener 2
org.apache.maven.project.DefaultProjectBuildingHelper 2
org.apache.maven.project.artifact.MavenMetadataSource 1
org.apache.maven.project.DefaultProjectDependenciesResolver 1
org.apache.maven.toolchain.DefaultToolchainsBuilder 1

Listing 5.11: The Code Around One Call Site of Seed Method in Apache Maven
Project

249 public boolean visitEnter(DependencyNode node){
250 StringBuilder buffer = new StringBuilder(128);
251 buffer.append(indent);
252 org.eclipse.aether.graph.Dependency dep

= node.getDependency ();
253 if (dep != null){

...//omit due to page limit.
277 }else{
278 buffer.append(project.getGroupId ());
279 buffer.append(’:’). append(project.getArtifactId ());
280 buffer.append(’:’). append(project.getPackaging ());
281 buffer.append(’:’). append(project.getVersion ());
282 }
283 logger.debug(buffer.toString ());
284 indent += "␣␣␣";
285 return true;
286 }

93

affected by or only affect the slicing criteria. As a side product of our research
on feature-based software customization, solo-slicing actually could be applied to
many other research areas independently. Solo-slicing might improve the slicing
efficiency on software debugging, transformation, and binary difference comparison
tasks in certain scenarios. The possible impact there is worth further investigation.

5.5.2 Definitions of Feature

The term feature may have different meanings in different contexts. The most
well-known usage context of the term feature is in software engineering domain. In
software engineering, using features, instead of components or modules, to organize
teams, plan development schedules, and deliver products is a new trend nowadays.
A feature represents some values to users. Or in more plain words, a feature enables
a user to do something. Compared with having each team work on a component
respectively, making each team work on a feature is more user-centric, which not
only avoids developers to measure their workloads by lines of code and work on
some “invented works”, but also encourage them to think about the problem from
a big picture in the shoes of users. Compared with a component, feature is across
functions, across front ends and back ends, and across modules in nature.

In this paper, we define a feature as all call sites of an API of interests. To
some extents, our feature based software customization can be called as call sites
based software customization. We define term feature in this paper in such a way
is for making the feature analysis operational. Though this paper and software
engineering domain do not share the same definition of the term feature, we both
try to use this term to capture and express some common insights behind it, which
is across functions, across frond ends and back ends, and across modules.

5.5.3 Future Work

This chapter focuses on a novel research question, the formalization and analysis
of this research question, and potential techniques for solving the problem. We
evaluate our approach from several perspectives. However, we have not done
large-scale experiments yet in this preliminary feasibility study. In the future, we
will conduct more through empirical study to evaluate our approach in a more
comprehensive way.

94

Chapter 6 |
Conclusion

Bloatware problem is an emerging issue in modern software engineering. This prob-
lem has caused many negative consequences including wasted technical resources
and security risks. In the era of mobile computing, cloud computing, wearable
devices, and Internet of things, new hard constrains are imposed to the limited
resources, which makes the bloatware problem more urgent than ever before.

In this dissertation, we present a fully automated tool called JRed for trimming
unused methods and classes from both Java application code and the Java Runtime
JRE core libraries. We have implemented a prototype on top of Soot. Our
experimental results show that JRed can reduce Java code size by 44.5% and 82.5%
on average for Java application code and runtime JRE library code respectively. We
also evaluated the effectiveness of JRed on trimming security related vulnerabilities
in the Java Runtime JRE, and the results show that nearly half of the known
security vulnerabilities can be trimmed away with the specialized JREs for each
benchmark program. Overall, our evaluation results show that our tool could be
very effective on reducing the code size, code complexity, and attack surfaces for
both Java applications and runtime JRE libraries in certain scenarios.

We also present an approach to trimming compile-time redundancy and install-
time redundancy from Android applications. We have implemented a fully auto-
mated tool called RedDroid. Our experimental results show that RedDroid can
reduce Android application size by around 15% on average via removing unused
bytecode. Code complexity, measured by a set of well-known metrics, is also reduced
significantly. RedDroid can also identify and remove redundant Android wear
SDKs, which can reduce the size of related applications by another 20% on average.
By removing redundant embedded ABIs, the size of applications can be reduced by

95

additional 7% on average. If an application has all three kinds of software bloat,
in sum its size can be reduced by around 42%. Overall, our evaluation results
show that our approach is effective on reducing both compile-time redundancy and
install-time redundancy. In addition, our results depict the landscape of bloatware
issue in the Android application domain for the first time. The results we reported
can help developers better identify their pain point regarding application resource
consumption issue and better plan their development and build process.

In addition, we discuss and formally define a novel research problem of feature-
based software customization. Based on that, we present a multistep static program
slicing based approach to conducting feature-based software customization. Ad-
ditionally, as a part of of the multistep approach, we propose a new concept,
solo-slicing, which can slice out the statements that are only affected by or only
affect the slicing criteria. Our approach can help remove a feature from the software
safely and clean all redundancy caused by this removal, and can potentially help
legacy code retrofitting and maintenance.

Our research still has several limitations at this stage. First, reflections may
cause unsoundness in our program analysis and transformation. In our research, we
have used both dynamic and static approaches to overapproximate this undecidable
problem. The data yielded from both directions are promising. The static approach
might be even better since it is sound on almost all programs and it can predict
when it will be unsound before the program transformation is done. This conclusion
is based on the reflection usage patterns we observed in thousands of applications.
If we can analyse even larger scale of application samples, the validation of the
approach might be additionally strengthened. This work can be done in the future.
The other limitation is that we do not customize the binary part of a program. As
we have reasoned in the dissertation, our approach can be applied to binary as
well with some minor extension. This is also one of our future works. Other future
works include customizing the entire Android system, and connecting our feature
based software customization to the Android permission system, which may help
us revoke those over-requested permissions claimed by Android applications.

96

Bibliography

[1] Bodden, E., A. Sewe, J. Sinschek, H. Oueslati, and M. Mezini (2011)
“Taming Reflection: Aiding Static Analysis in the Presence of Reflection and
Custom Class Loaders,” in Proceedings of the 33rd International Conference
on Software Engineering, ACM, pp. 241–250.

[2] Xu, G., N. Mitchell, M. Arnold, A. Rountev, and G. Sevitsky
(2010) “Software Bloat Analysis: Finding, Removing, and Preventing Perfor-
mance Problems in Modern Large-scale Object-Oriented Applications,” in
Proceedings of the FSE/SDP Workshop on Future of Software Engineering
Research, FoSER ’10, ACM, pp. 421–426.

[3] McGrenere, J. (2000) “"Bloat": The Objective and Subject Dimensions,”
in CHI ’00 Extended Abstracts on Human Factors in Computing Systems,
CHI EA ’00, ACM, New York, NY, USA, pp. 337–338.

[4] McDaniel, P. (2012) “Bloatware Comes to the Smartphone,” IEEE Security
& Privacy, 10(4), pp. 0085–87.

[5] Allen, D. (April 1993) “Editorial: Fatware Strategies,” Byte, 18(4), p. 12.

[6] Holzmann, G. J. (2015) “Code Inflation,” Software, IEEE, 32(2).

[7] Bu, Y., V. Borkar, G. Xu, and M. J. Carey (2013) “A Bloat-aware
Design for Big Data Applications,” in Proceedings of the 2013 International
Symposium on Memory Management, ISMM ’13, ACM, pp. 119–130.

[8] Adam, M. (2013), “Java 7 Applet 0day Exploit,”
Http://www.cs.bu.edu/~goldbe/teaching/HW55813/marc.pdf.

[9] Pugh, W. (1999) “Compressing Java Class Files,” in Proceedings of the
ACM SIGPLAN 1999 Conference on Programming Language Design and
Implementation, PLDI ’99, ACM, pp. 247–258.

[10] Bradley, Q., R. N. Horspool, and J. Vitek (1998) “JAZZ: An Efficient
Compressed Format for Java Archive Files,” in Proceedings of the 1998

97

Conference of the Centre for Advanced Studies on Collaborative Research,
CASCON ’98, IBM Press, pp. 7–15.

[11] Tip, F., C. Laffra, P. F. Sweeney, and D. Streeter (1999) “Practical
Experience with an Application Extractor for Java,” in Proceedings of the
14th ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA ’99, ACM, pp. 292–305.

[12] Johnson, J. (2009), “CHAOS 2009,” .

[13] Sweeney, P. F. and F. Tip (2000) “Extracting Library-based Object-
Oriented Applications,” in Proceedings of the 8th ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering: Twenty-first
Century Applications, SIGSOFT ’00/FSE-8, ACM, pp. 98–107.

[14] Wagner, G., A. Gal, and M. Franz (2011) “‘Slimming’ a Java Virtual
Machine by Way of Cold Code Removal and Optimistic Partial Program
Loading,” Science of Computer Programming, 76(11).

[15] Google, I. (2017), “Improve Your Code with Lint,”
Https://developer.android.com/studio/write/lint.html.

[16] Edwards, D. (2007), “Packer: A JavaScript Compressor,”
Http://dean.edwards.name/weblog/2007/04/packer3/.

[17] Crockford, D. (2003), “JSMin: The JavaScript Minifier,”
Http://www.crockford.com/javascript/jsmin.html.

[18] Souders, S. (2008) “High-performance Web Sites,” Communications of the
ACM, 51(12), pp. 36–41.

[19] Likarish, P., E. Jung, and I. Jo (2009) “Obfuscated Malicious Javascript
Detection Using Classification Techniques,” in Malicious and Unwanted Soft-
ware (MALWARE), 2009 4th International Conference on, IEEE, pp. 47–54.

[20] Oberländer, J. (2003) “Applying Source Code Transformation to Col-
lapse Class Hierarchies in C++,” Study Thesis, System Architecture Group,
University of Karlsruhe, Germany.

[21] Sweeney, P. F. and F. Tip (1998) “A Study of Dead Data Members in
C++ Applications,” in Proceedings of the ACM SIGPLAN 1998 Conference
on Programming Language Design and Implementation, PLDI ’98, ACM, pp.
324–332.

98

[22] De Sutter, B., B. De Bus, and K. De Bosschere (2002) “Sifting out
the Mud: Low Level C++ Code Reuse,” in Proceedings of the 17th ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA ’02, ACM, pp. 275–291.

[23] Xu, G. (2012) “Finding Reusable Data Structures,” in Proceedings of the
ACM International Conference on Object Oriented Programming Systems
Languages and Applications, OOPSLA ’12, ACM, pp. 1017–1034.

[24] ——— (2013) “CoCo: Sound and Adaptive Replacement of Java Collec-
tions,” in Proceedings of the 27th European Conference on Object-Oriented
Programming, ECOOP’13, Springer-Verlag, Berlin, Heidelberg, pp. 1–26.

[25] Hosking, A. L., N. Nystrom, D. Whitlock, Q. Cutts, and A. Di-
wan (2001) “Partial Redundancy Elimination for Access Path Expressions,”
Software: Practice and Experience, 31.

[26] Whitlock, D. and A. L. Hosking (2001) “A Framework for Persistence-
Enabled Optimization of Java Object Stores,” in Revised Papers from the 9th
International Workshop on Persistent Object Systems, POS-9, Springer-Verlag,
London, UK, UK, pp. 4–17.

[27] Xu, G., N. Mitchell, M. Arnold, A. Rountev, E. Schonberg, and
G. Sevitsky (2014) “Scalable Runtime Bloat Detection Using Abstract
Dynamic Slicing,” ACM Transaction of Software Engineering Methodology,
23(3), pp. 23:1–23:50.

[28] Nguyen, K. and G. Xu (2013) “Cachetor: Detecting Cacheable Data to
Remove Bloat,” in Proceedings of the 2013 9th Joint Meeting on Foundations
of Software Engineering, ESEC/FSE 2013, ACM, pp. 268–278.

[29] Morgenthaler, J. D., M. Gridnev, R. Sauciuc, and S. Bhansali
(2012) “Searching for Build Debt: Experiences Managing Technical Debt at
Google,” in Proceedings of the Third International Workshop on Managing
Technical Debt, MTD ’12, IEEE Press, Piscataway, NJ, USA, pp. 1–6.

[30] Wang, P., J. Yang, L. Tan, R. Kroeger, and J. D. Morgenthaler
(2013) “Generating Precise Dependencies for Large Software,” in Proceedings
of the Forth International Workshop on Managing Technical Debt, pp. 47–50.

[31] Vakilian, M., R. Sauciuc, J. D. Morgenthaler, and V. Mirrokni
(2015) “Automated Decomposition of Build Targets,” in Proceedings of the
37th International Conference on Software Engineering - Volume 1, ICSE ’15,
IEEE Press, Piscataway, NJ, USA, pp. 123–133.

99

[32] Ryder, B. G. and F. Tip (2001) “Change Impact Analysis for Object-
oriented Programs,” in Proceedings of the 2001 ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis for Software Tools and Engineering, PASTE
’01, ACM, New York, NY, USA, pp. 46–53.

[33] Larsen, P., A. Homescu, S. Brunthaler, and M. Franz (2014) “SoK:
Automated Software Diversity,” in Proceedings of the 2014 IEEE Symposium
on Security and Privacy, SP ’14, IEEE Computer Society, Washington, DC,
USA, pp. 276–291.

[34] Snow, K. Z., F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and
A.-R. Sadeghi (2013) “Just-In-Time Code Reuse: On the Effectiveness of
Fine-grained Address Space Layout Randomization,” in Security and Privacy
(SP), 2013 IEEE Symposium on, IEEE, pp. 574–588.

[35] Collberg, C., C. Thomborson, and D. Low (1998) “Manufacturing
Cheap, Resilient, and Stealthy Opaque Constructs,” in Proceedings of the
25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, ACM, pp. 184–196.

[36] Barrantes, E. G., D. H. Ackley, S. Forrest, and D. Stefanović
(2005) “Randomized Instruction Set Emulation,” ACM Transactions on
Information and System Security (TISSEC), 8(1), pp. 3–40.

[37] Thies, A. and E. Bodden (2012) “RefaFlex: Safer Refactorings for Reflec-
tive Java Programs,” in Proceedings of the 2012 International Symposium on
Software Testing and Analysis, ISSTA 2012, ACM, pp. 1–11.

[38] Livshits, B., J. Whaley, and M. S. Lam (2005) “Reflection Analysis
for Java,” in Proceedings of the Third Asian Conference on Programming
Languages and Systems, APLAS’05, Springer-Verlag, Berlin, Heidelberg, pp.
139–160.

[39] Braux, M. and J. Noyé (1999) “Towards Partially Evaluating Reflection
in Java,” in Proceedings of the 2000 ACM SIGPLAN Workshop on Partial
Evaluation and Semantics-based Program Manipulation, PEPM ’00, ACM,
pp. 2–11.

[40] Christensen, A. S., A. Møller, and M. I. Schwartzbach (2003) “Pre-
cise Analysis of String Expressions,” in Proceedings of the 10th International
Conference on Static Analysis, SAS’03, Springer-Verlag, Berlin, Heidelberg,
pp. 1–18.

[41] Li, D., Y. Lyu, M. Wan, and W. G. Halfond (2015) “String Analysis
for Java and Android Applications,” in Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering, ACM, pp. 661–672.

100

[42] Shannon, D., S. Hajra, A. Lee, D. Zhan, and S. Khurshid (2007)
“Abstracting Symbolic Execution with String Analysis,” in Proceedings of
the Testing: Academic and Industrial Conference Practice and Research
Techniques-MUTATION, IEEE Computer Society, pp. 13–22.

[43] Lhoták, O. (2002) Spark: A Flexible Points-to Analysis Framework for
Java, Master’s thesis, McGill University.

[44] Grove, D., G. DeFouw, J. Dean, and C. Chambers (1997) “Call Graph
Construction in Object-Oriented Languages,” in Proceedings of the 12th ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA ’97, ACM, pp. 108–124.

[45] Grove, D. and C. Chambers (2001) “A Framework for Call Graph Con-
struction Algorithms,” ACM Transaction of Programing Language System,
23(6), pp. 685–746.

[46] Agrawal, G., J. Li, and Q. Su (2002) “Evaluating a Demand Driven Tech-
nique for Call Graph Construction,” in Proceedings of the 11th International
Conference on Compiler Construction, CC ’02, Springer-Verlag, London, UK,
UK, pp. 29–45.

[47] Tip, F. and J. Palsberg (2000) “Scalable Propagation-based Call Graph
Construction Algorithms,” in Proceedings of the 15th ACM SIGPLAN Confer-
ence on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA ’00, ACM, pp. 281–293.

[48] Weiser, M. (1981) “Program Slicing,” in Proceedings of the 5th International
Conference on Software Engineering (ICSE ’81), IEEE Press, Piscataway, NJ,
USA, pp. 439–449.

[49] Arvind, D. and P. Shankar (2006), “Slicing of Java Programs using the
Soot Framework,” .

[50] Ottenstein, K. J. and L. M. Ottenstein (1984) “The Program Depen-
dence Graph in a Software Development Environment,” in Proceedings of
the First ACM SIGSOFT/SIGPLAN Software Engineering Symposium on
Practical Software Development Environments, SDE 1, ACM, New York, NY,
USA, pp. 177–184.

[51] Horwitz, S., T. Reps, and D. Binkley (1988) “Interprocedural Slicing
Using Dependence Graphs,” in Proceedings of the ACM SIGPLAN 1988
Conference on Programming Language Design and Implementation, PLDI ’88,
ACM, New York, NY, USA, pp. 35–46.

101

[52] Wang, T. and A. Roychoudhury (2008) “Dynamic Slicing on Java Byte-
code Traces,” ACM Transaction of Programing Language System, 30(2), pp.
10:1–10:49.

[53] Hammacher, C., A. Zeller, V. Dallmeier, M. Burger, and S. Hack
(2008) “Design and Implementation of an Efficient Dynamic Slicer for Java,”
Bachelor’s Thesis, November.

[54] Treffer, A. and M. Uflacker (2014) “Dynamic Slicing with Soot,” in
Proceedings of the 3rd ACM SIGPLAN International Workshop on the State
of the Art in Java Program Analysis, SOAP ’14, ACM, New York, NY, USA,
pp. 1–6.

[55] Cao, Y., Y. Fratantonio, A. Bianchi, M. Egele, C. Kruegel, G. Vi-
gna, and Y. Chen (2015) “EdgeMiner: Automatically Detecting Implicit
Control Flow Transitions through the Android Framework.” in 22nd Annual
Network and Distributed System Security Symposium, NDSS 2015, San Diego,
California, USA, February 8-11, 2015, pp. 1–15.

[56] Arzt, S., S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel (2014) “FlowDroid: Precise
Context, Flow, Field, Object-sensitive and Lifecycle-aware Taint Analysis for
Android Apps,” in Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’14, ACM, New
York, NY, USA, pp. 259–269.

[57] Octeau, D., S. Jha, and P. McDaniel (2012) “Retargeting Android
Applications to Java Bytecode,” in Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering, FSE
’12, ACM, New York, NY, USA, pp. 6:1–6:11.

[58] Pan, B. (2017), “dex2jar,” Https://github.com/pxb1988/dex2jar.

[59] Au, K. W. Y., Y. F. Zhou, Z. Huang, and D. Lie (2012) “Pscout:
Analyzing the Android Permission Specification,” in Proceedings of the 2012
ACM Conference on Computer and Communications Security, ACM, pp.
217–228.

[60] Felt, A. P., E. Chin, S. Hanna, D. Song, and D. Wagner (2011) “An-
droid Permissions Demystified,” in Proceedings of the 18th ACM Conference
on Computer and Communications Security, CCS ’11, ACM, New York, NY,
USA, pp. 627–638.

[61] Connor Tumbleson, R. W. (2017), “Apktool: A Tool for Reverse Engi-
neering Android apk Files,” Https://ibotpeaches.github.io/Apktool/.

102

[62] (2017), “FernFlower,” Https://github.com/JetBrains/intellij-
community/tree/master/plugins/java-decompiler/engine.

[63] Vallée-Rai, R., P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sun-
daresan (1999) “Soot - a Java Bytecode Optimization Framework,” in
Proceedings of the 1999 Conference of the Centre for Advanced Studies on
Collaborative Research, CASCON ’99, IBM Press, pp. 13–23.

[64] Jajodia, S., A. K. Ghosh, V. Swarup, C. Wang, and X. S. Wang
(2011) Moving Target Defense, Springer.

[65] Whaley, J. (2003) “Joeq: A Virtual Machine and Compiler Infrastructure,”
in Proceedings of the 2003 Workshop on Interpreters, Virtual Machines and
Emulators, IVME ’03, ACM, pp. 58–66.

[66] Vallee-Rai, R. and L. J. Hendren (1998) Jimple: Simplifying Java
Bytecode for Analyses and Transformations, Tech. rep., Sable Research Group,
McGill University.

[67] Whaley, J. and M. S. Lam (2004) “Cloning-based Context-sensitive Pointer
Alias Analysis Using Binary Decision Diagrams,” in Proceedings of the ACM
SIGPLAN 2004 Conference on Programming Language Design and Imple-
mentation, PLDI ’04, ACM, New York, NY, USA, pp. 131–144.

[68] Dean, J., D. Grove, and C. Chambers (1995) “Optimization of Object-
Oriented Programs Using Static Class Hierarchy Analysis,” in Proceedings of
the 9th European Conference on Object-Oriented Programming, ECOOP ’95,
Springer-Verlag, London, UK, UK, pp. 77–101.

[69] Bacon, D. F. and P. F. Sweeney (1996) “Fast Static Analysis of C++
Virtual Function Calls,” in Proceedings of the 1996 ACM SIGPLAN Confer-
ence on Object-Oriented Programming Systems, Languages & Applications
(OOPSLA ’96), San Jose, California, October 6-10, 1996., pp. 324–341.

[70] Blackburn, S. M., R. Garner, C. Hoffmann, A. M. Khang, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z.
Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss,
A. Phansalkar, D. Stefanović, T. VanDrunen, D. von Dincklage,
and B. Wiedermann (2006) “The DaCapo Benchmarks: Java Benchmark-
ing Development and Analysis,” in Proceedings of the 21st Annual ACM
SIGPLAN Conference on Object-Oriented Programming Systems, Languages,
and Applications, OOPSLA ’06, ACM, New York, NY, USA, pp. 169–190.

[71] Chidamber, S. R. and C. F. Kemerer (1994) “A Metrics Suite for Object
Oriented Design,” IEEE Transactions on Software Engineering, 20(6), pp.
476–493.

103

[72] Project Analyzer v10.2 (2014), “Chidamber and Kemerer Object-
Oriented Metrics Suite,” Http://www.aivosto.com/project/help/pm-oo-
ck.html.

[73] Misra, S. C. and V. C. Bhavsar (2003) “Relationships Between Selected
Software Measures and Latent Bug-density: Guidelines for Improving Quality,”
in Proceedings of the 2003 International Conference on Computational Science
and Its Applications: PartI, ICCSA’03, Springer-Verlag, Berlin, Heidelberg,
pp. 724–732.

[74] Spinellis, D. (2006) Code Quality: The Open Source Perspective, Addison-
Wesley.

[75] Tip, F. and J. Palsberg (2000) “Scalable Propagation-based Call Graph
Construction Algorithms,” in Proceedings of the 15th ACM SIGPLAN Confer-
ence on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA ’00, ACM, New York, NY, USA, pp. 281–293.

[76] Dean, J., D. Grove, and C. Chambers (1995) “Optimization of Object-
Oriented Programs Using Static Class Hierarchy Analysis,” in European
Conference on Object-Oriented Programming, Springer, pp. 77–101.

[77] Cormen, T. H. (2009) Introduction to Algorithms, MIT press.

[78] (2017), “VMProtect,” Http://vmpsoft.com/.

[79] Coogan, K., G. Lu, and S. Debray (2011) “Deobfuscation of
Virtualization-Obfuscated Software: a Semantics-Based Approach,” in Pro-
ceedings of the 18th ACM Conference on Computer and Communications
Security, ACM, pp. 275–284.

[80] Spinellis, D. D. (2005), “ckjm Chidamber and Kemerer Metrics Software
v1.9,” Http://www.spinellis.gr/sw/ckjm/.

[81] Virtual Machinery (2017), “WMC, CBO, RFC, LCOM,
DIT, NOC - The Chidamber and Kemerer Metrics,”
Http://www.virtualmachinery.com/sidebar3.htm.

[82] Jiang, Y., C. Zhang, D. Wu, and P. Liu (2015) “A Preliminary Anal-
ysis and Case Study of Feature-Based Software Customization (Extended
Abstract),” in 2015 IEEE International Conference on Software Quality,
Reliability and Security, QRS 2015, August 3-5, 2015, pp. 184–185.

[83] ——— (2016) “Feature-Based Software Customization: Preliminary Analysis,
Formalization, and Methods,” in Proceedings of the 17th IEEE International
Symposium on High Assurance Systems Engineering, (HASE), pp. 122–131.

104

[84] Aho, A. V., R. Sethi, and J. D. Ullman (1986) Compilers, Principles,
Techniques, Addison wesley Boston.

[85] Wang, S., P. Wang, and D. Wu (2015) “Reassembleable Disassembling.”
in USENIX Security Symposium, pp. 627–642.

[86] McConnell, S. and D. Johannis (2004) Code Complete, 2nd ed., Microsoft
Press.

[87] Mockus, A., R. T. Fielding, and J. Herbsleb (2000) “A Case Study of
Open Source Software Development: The Apache Server,” in Proceedings of
the 22Nd International Conference on Software Engineering, ICSE ’00, ACM,
New York, NY, USA, pp. 263–272.

[88] Dahse, J., N. Krein, and T. Holz (2014) “Code Reuse Attacks in PHP:
Automated POP Chain Generation,” in Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security, ACM, pp. 42–53.

[89] Laskov, P. and N. Šrndić (2011) “Static Detection of Malicious JavaScript-
bearing PDF Documents,” in Proceedings of the 27th Annual Computer
Security Applications Conference, ACSAC ’11, ACM, pp. 373–382.

[90] Geer Jr., D. E. (2008) “Complexity is the Enemy,” IEEE Security and
Privacy, 6(6), pp. 88–88.

[91] Rinard, M. (2011) “Manipulating Program Functionality to Eliminate
Security Vulnerabilities,” in Moving Target Defense, Springer, pp. 109–115.

[92] Kiczales, G. and E. Hilsdale (2001) “Aspect-Oriented Programming,”
in Proceedings of the 8th European Software Engineering Conference Held
Jointly with 9th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, ESEC/FSE-9, ACM, New York, NY, USA, pp.
313–313.

[93] Xu, J., P. Guo, M. Zhao, R. F. Erbacher, M. Zhu, and P. Liu (2014)
“Comparing Different Moving Target Defense Techniques,” in Proceedings of
the First ACM Workshop on Moving Target Defense, ACM, pp. 97–107.

[94] Reps, T., S. Horwitz, and M. Sagiv (1995) “Precise Interprocedural
Dataflow Analysis via Graph Reachability,” in Proceedings of the 22Nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL ’95), ACM, New York, NY, USA, pp. 49–61.

[95] Jackson, D. and E. J. Rollins (1994) “A New Model of Program Depen-
dences for Reverse Engineering,” in Proceedings of the 2Nd ACM SIGSOFT
Symposium on Foundations of Software Engineering, SIGSOFT ’94, ACM,
New York, NY, USA, pp. 2–10.

105

[96] Reps, T. and G. Rosay (1995) “Precise Interprocedural Chopping,” in
Proceedings of the 3rd ACM SIGSOFT Symposium on Foundations of Software
Engineering, SIGSOFT ’95, ACM, pp. 41–52.

[97] Horwitz, S., T. Reps, and D. Binkley (1988) “Interprocedural Slicing
Using Dependence Graphs,” in Proceedings of the ACM SIGPLAN 1988
Conference on Programming Language Design and Implementation, PLDI ’88,
ACM, New York, NY, USA, pp. 35–46.

[98] Sridharan, M., S. J. Fink, and R. Bodik (2007) “Thin Slicing,” in
Proceedings of the 28th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI ’07, ACM, New York, NY, USA,
pp. 112–122.

[99] Kuck, D. J., Y. Muraoka, and S.-C. Chen (1972) “On the Number
of Operations Simultaneously Executable in Fortran-Like Programs and
Their Resulting Speedup,” Computers, IEEE Transactions on, 100(12), pp.
1293–1310.

[100] Larsen, L. and M. J. Harrold (1996) “Slicing Object-Oriented Software,”
in Proceedings of the 18th International Conference on Software Engineering,
ICSE ’96, IEEE Computer Society, pp. 495–505.

[101] Allen, E., R. Cartwright, and B. Stoler (2002) “DrJava: A
Lightweight Pedagogic Environment for Java,” in Proceedings of the 33rd
SIGCSE Technical Symposium on Computer Science Education, ACM, pp.
137–141.

106

Vita
Yufei Jiang

Yufei Jiang is currently a Ph.D. candidate in the College of Information Sciences
and Technology of Pennsylvania State University, where he is a member of the
Software System Security Research Lab. His research focuses on softwre engineering
and security, especially software analysis and program customization, including
Java software customization, Android application customization, software feature
based customization, software obfuscation, and software analysis for other security
issues. He received the B.S. degree in Software Institute from Nanjing University
in 2011.

Publications

[1] Yufei Jiang, Qinkun Bao, Shuai Wang, Xiao Liu, and Dinghao Wu. “RedDroid:
Android Application Redundancy Customization Based on Static Analysis,”
under review, 2017.

[2] Xiao Liu, Yufei Jiang, and Dinghao Wu. “A Lightweight Verification Frame-
work for Regular Expressions,” under review, 2017.

[3] Jiang Ming, Dongpeng Xu, Yufei Jiang, and Dinghao Wu. “BinSim: Trace-
based Semantic Binary Diffing via System Call Sliced Segment Equivalence
Checking,” in The 26th Usenix Security Symposium Conference (Usenix
Security 2017), Vancouver, BC, Canada, August 16–18, 2017.

[4] Xiao Liu, Yufei Jiang, Lawrence Wu, and Dinghao Wu. “ Natural Shell: An
Assistant for End-user Scripting,” International Journal of People-Oriented
Programming (IJPOP), 5(1):1–18, 2016.

[5] Yufei Jiang, Dinghao Wu, and Peng Liu. “JRed: Program Customization and
Bloatware Mitigation Based on Static Analysis,” in The 40th IEEE Computer
Society International Conference on Computers, Software & Applications
(COMPSAC 2016), Atlanta, Georgia, USA, June 10–14, 2016.

[6] Yufei Jiang, Xiao Liu, Fangxiao Liu, Dinghao Wu, and Chimay J. Anumba.
“An Analysis of BIMWeb Service Requirements and Design to Support Energy
Efficient Building Lifecycle,” Journal of Buildings, 6:19–43, 2016.

[7] Pei Wang, Shuai Wang, Jiang Ming, Yufei Jiang, and Dinghao Wu. “Translin-
gual Obfuscation,” in IEEE European Symposium on Security and Privacy
(Euro S&P 2016), Saarbrucken, Germany, March 21–24, 2016.

[8] Yufei Jiang, Can Zhang, Dinghao Wu, and Peng Liu. “A First Step Towards
Feature-based Software Customization,” in Proceedings of the 17th IEEE High
Assurance Systems Engineering Symposium (HASE 2016), Orlando, Florida,
USA, January 7–9, 2016.

[9] Yufei Jiang, Nan Yu, Jiang Ming, Sanghoon Lee, Jason W. DeGraw, John
I. Messner, John Yen, and Dinghao Wu. “Automatic Building Information
Model Query Generation,” Journal of Information Technology in Construction
(ITCon), 20:518–535, 2015.

[10] Yufei Jiang, Can Zhang, Dinghao Wu, and Peng Liu. “A Preliminary Anal-
ysis and Case Study of Feature-based Software Customization (Extended
Abstract),” in 2015 IEEE International Conference on Software Quality,
Reliability and Security (QRS 2015), Vancouver, Canada, August 3–5, 2015.

[11] Yufei Jiang, Nan Yu, Jiang Ming, Lannan Luo, Chong Zhou, Sanghoon Lee,
Abdou Jallow, Prasenjit Mitra, John Yen, Robert Leicht, John I. Messner,
and Dinghao Wu. “Simplify, Automate, and Integrate the BIM Data Ex-
change Process,” poster in 2013 EEB Hub Poster Session and Reception, The
Pennsylvania State University, University Park, PA, USA, April 16, 2013.

[12] Yufei Jiang, Nan Yu, Jiang Ming, Lannan Luo, Chong Zhou, Sanghoon Lee,
Abdou Jallow, Prasenjit Mitra, John Yen, Robert Leicht, John I. Messner, and
Dinghao Wu. “Subtask 3.2: Building Information Modeling (BIM) Data Hub,”
poster in 2013 Building SyENERGY - The EEB HUB Spring Conference,
The Navy Yard - Philadelphia, PA, USA, March 20–22, 2013.

[13] Nan Yu, Yufei Jiang, Lannan Luo, Sanghoon Lee, Abdou Jallow, John Yen,
John Messner, Robert Leicht, and Dinghao Wu. “Integrating BIMserver
and OpenStudio for Energy Efficient Building,” in 2013 ASCE International
Workshop on Computing in Civil Engineering (IWCCE), Los Angeles, CA,
USA, June 23–25, 2013.

[14] Yufei Jiang, Jiang Ming, Dinghao Wu, John Yen, Prasenjit Mitra, John
I. Messner, and Robert Leicht. “BIM Server requirements to support the
energy efficient building lifecycle,” in 2012 ASCE International Workshop on
Computing in Civil Engineering (ASCE 2012), Clearwater Beach, FL, June
17–20, 2012.

[15] Yufei Jiang, Yuan Huang, and Ruizhi Gao. “The Video of Xland: Two Core
Use Cases of 3D Blog,” in Videos Program of the 2011 ACM Conference
on Computer Supported Cooperative Work (CSCW 2011), Hangzhou, China,
March 19–23, 2011.

108

