
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 11, NOVEMBER 2019 2859

Xmark: Dynamic Software Watermarking
Using Collatz Conjecture

Haoyu Ma , Chunfu Jia, Shijia Li, Wantong Zheng, and Dinghao Wu

Abstract— Dynamic software watermarking is one of the
major countermeasures against software licensing violations.
However, conventional dynamic watermarking approaches have
exhibited a number of weaknesses including exploitable payload
semantics, exploitable embedding/recognition procedures, and
weak correlation between payload and subject software. This
paper presents a novel dynamic watermarking method, Xmark,
which leverages a well-known unsolved mathematical problem
referred to as the Collatz conjecture. Our method works by
transforming selected conditional constructs (which originally
belonged to the software to be watermarked) with a control
flow obfuscation technique based on Collatz conjecture. These
obfuscation routines are built in a particular way such that
they are able to express a watermark in the form of iteratively
executed branching activities occurred during computing the
aforementioned conjecture. Exploiting the one-to-one correspon-
dence between natural numbers and their orbits computed by the
conjecture (also known as the “Hailstone sequences”), Xmark’s
watermark-related activities are designed to be insignificant
without the pre-defined secret input. Meanwhile, being integrated
with obfuscation techniques, our method is able to resist attacks
based on various reverse engineering techniques on both syntax
and semantic levels. Analyses and simulations indicated that
Xmark could evade detections via pattern matching and model
checking, and meanwhile effectively prohibit dynamic symbolic
execution. We have also shown that our method could remain
robust even if a watermarked software is compromised via re-
obfuscation using approaches like control flow flattening.

Index Terms— Software watermarking, code obfuscation,
Collatz conjecture.

I. INTRODUCTION

FOR a long time, software industry has been at war with
intellectual property violation of various kinds, including

software piracy, plagiarism and etc. A recent report from The
Software Alliance said that as of 2017, there are still 37%
of all software installed worldwide which are not properly
licensed, and the commercial value loss due to the unlicensed
software can be as high as $46.3 billion [1]. Meanwhile,
the rising of mobile platforms in recent years has greatly

Manuscript received August 2, 2018; revised January 27, 2019 and
March 24, 2019; accepted March 26, 2019. Date of publication March 29,
2019; date of current version June 27, 2019. This work was supported
in part by the National Natural Science Foundation of China under Grant
61702399 and Grant 61772291 and in part by the Natural Science Founda-
tion of Tianjin, China, under Grant 17JCZDJC30500. The associate editor
coordinating the review of this manuscript and approving it for publication
was Dr. Tomas Pevny. (Corresponding author: Chunfu Jia.)

H. Ma is with Xidian University, Xi’an 710126, China (e-mail:
hyma@xidian.edu.cn).

C. Jia, S. Li and W. Zheng are with Nankai University, Tianjin 300071,
China (e-mail: cfjia@nankai.edu.cn; sjli@mail.nankai.edu.cn; zhengwan-
tong@mail.nankai.edu.cn).

D. Wu is with Pennsylvania State University, University Park, PA
16802 USA (e-mail: dwu@ist.psu.edu).

Digital Object Identifier 10.1109/TIFS.2019.2908071

encouraged app piracy, which have started siphoning huge
amount of revenue from legitimate mobile publishers. The
need of maintaining a health ecosystem in software market
calls for countermeasures against software piracy and oth-
ers. Inheriting the idea of digital watermarking, people have
brought out the so called software watermarking technique to
meet the request.

A. Prior Work

Many software watermarking schemes have been proposed
in the last several decades [2]–[4]. Formally, a software water-
marking system is a collection of functions W : {E(·), R(·)},
consisting of a embedding process E(·) (a program transfor-
mation in essence) and a recognition protocol R(·). Given a
subject software S, a watermark w and a secret i as w’s trigger,
W produces the watermarked software instance Sw by

E(S)
w,i−−→ Sw. (1)

Later, using the same i , the recognition protocol of W should
be able to reliably output w from Sw by computing

R(Sw)
i−→ w. (2)

There is also a widely accepted set of functional and security
goals for software watermarking designs, namely:
• stealth, an embedded watermark message should exist as

an inconspicuous element of the subject software;
• resilience, an embedded watermark should remain func-

tional even if the subject software suffers from a various
kinds of manipulations intended to destroy it;

• data rate, which describes the cost (in term of code bloat)
for embedding one bit of watermark; and

• performance, which describes the overhead caused to the
subject software after a watermark is embedded.

A software watermarking method can be static or dynamic.
Static watermarking hides watermarks in code and/or data of
a software [5]–[12], yet methods of this type are known to
be highly susceptible to attacks based on semantic-preserving
transformations [13]. In dynamic watermarking, a watermark
is instead turned into data objects or program states created
by executing well-crafted payload code. The payload is then
injected into the subject software to be activated only when it
is run using a pre-selected special input-lineup (known as the
secret input) [14]–[25]. Dynamic watermarking is considered a
better option since it is by nature able to ignore many generic
semantic-preserving transformations. However, by reviewing
details of existing dynamic watermarking methods and some
targeted attack schemes, we find many known designs of this
type flawed at least on some aspects of their effectiveness.

1556-6013 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-8153-1406


2860 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 11, NOVEMBER 2019

The first category of design weaknesses is that watermark
payloads constructed by many existing works possess certain
exploitable semantics as intrinsic elements, which significantly
undermines their stealth. Typical examples include the path-
and thread-based watermarking techniques [15], [16], [20].
These methods encoded watermarks bit-by-bit with two types
of basic code widgets representing 0s and 1s. The resulting
payloads therefore repeated their widgets in unusual patterns,
leaving distinct footprints for malicious recognition attempts.
It was pointed out that the density of branches or function
calls introduced by path-based watermarking is too abnormal
for these code pieces to be taken for natural program logic [3].
In fact, same observation was already adopted as the basis of
a targeted (and successful) attack [26]. Similarly, to improve
stealth, thread-based watermarking created deceptive contexts
with a large number of decoy widgets because basic widgets
in constructed are too noticeable on themselves [16]. Tradeoffs
of using decoys, however, were significant overhead and code
bloat which limited the applicability of this method [3]. Other
cases of this category involve methods that caused noticeable
abnormalities in order to deploy their payloads. For instance,
a branch-based watermarking introduced fingerprint branch
functions (FBFs) into the subject software as both control flow
obfuscation and watermark constructor [17]. However, doing
so changes structure of targeted functions in a suspicious way,
causing the FBFs be exposed to further attacks [27].

Secondly, as pointed out in [25], payload constructed by
many existing dynamic watermarking methods tend to have
weak correlation with softwares they are merged with. Such
as, in graph-based watermarking and its derivatives [14], [19],
[22], payload widgets were designed to have nothing else to do
with the subject software except being attached to it. Having
weak correlation is not directly exploitable. Instead, it impairs
a dynamic watermark by making its security overly reliance on
stealth — because once located, payload corresponding to such
a watermark can be safely pruned with negligible collateral
damage, making resilience against generic attacks meaningless
under the circumstances. Existing attacks targeting path- and
branch-based watermarking had showed that defeating designs
with defective stealth can be much easier than expected if they
failed to establish proper dependencies between their payloads
and subject softwares [26], [27]. A similar case is the opaque
predicate based watermarking (and its static origin) [7], [18].
These designs used invariant opaque predicates as carriers of
watermark segments, with the assumption that distinguishing
such predicates apart from meaningful control flow structures
is difficult. Unfortunately, later studies soon provided effective
and efficient means to detect invariant opaque predicates [28],
[29], at which point the use of opaque predicates became a
major shortcoming because being tautologies in nature makes
the removing of these routines both safe and logical. Another
evidence is a more recent non-stealthy dynamic watermarking
method for Android apps [23], which relied entirely on code
hiding and obfuscation to protect its payload. The observation
of this work indicated that a so-concealed watermark widget
immediately becomes defenseless after it is eventually released
at runtime. Determined adversaries can therefore resort to a
combination of various attacks to remove the payload, even

though this method has adopted redundant embedding strategy
to enhance survivability of its watermark.

Last but not least, the third category of weaknesses exist in
several previous designs is the use of exploitable procedures.
In other words, certain mechanisms defined in the embedding
and/or recognition protocols of these methods could be taken
advantage of to launch tailor-made attacks on them. The first
case we identified is the hash function based watermarking
method [21]. The recognition protocol of this method involved
tracing the subject software with a debugger and monitoring
functions with 4 parameters. It was also defined to overwrite
the last parameter of matched functions (with 0), and fetch
their return values as potential watermark pieces. This allows
adversaries to identify the same functions of interest, and hook
them to a proxy which detects the recognizer with signs of
debugging and values of certain parameters as features. The
targeted recognition process can then invalidated by corrupting
return values of the hooked functions. Monitoring/modifying
a program’s execution using function and API hooking is well
studied [30], which strongly indicates the feasibility of this
attack. Similarly, a more recent work which adopted return-
oriented programming (ROP) for watermarking also exposed
weakness of this type [24]. The recognition procedure of this
method was designed to be triggered by overwriting a function
pointer to direct control to ROP payloads. Thus adversaries
can expose such payloads by hooking all indirect function
calls of a software to analyze code of the callees for ROP
behaviors.

B. The Xmark Scheme

This paper presents a novel dynamic software watermarking
scheme, named Xmark, which is established on top of a code
obfuscation technique based on unsolved conjectures [31]. Our
method performs a specialized obfuscation on a collection of
conditional constructs owned by the subject software to build
its payload. The watermark is parsed into a sequence of natural
numbers, which are used to control the obfuscation routines of
our method when the watermarked software runs with specific
input cases defined in the combination of secret input. We let
behavioral patterns of such payload routines be intentionally
echoed across multiple execution traces driven by the secret
input, making these patterns recognizable as the consequence.

The overall objective we intend to achieve with the Xmark
scheme is a solution that not only satisfies the generic require-
ments for dynamic watermarking, but also avoids the particular
weaknesses as described in Section I-A. Specifically:
• payload of our method should be difficult to locate using

either static or dynamic analyses;
• our method should be able to resist attempts of removing

its payload via de-obfuscation based on state-of-the-art
reverse engineering techniques;

• our recognition protocol should remain robust even if the
payload constructs suffer from malicious re-obfuscation
regarding to properties like control structure;

• a basic unit of our payload constructs should be able to
carry a watermark that is longer than a machine integer;

• performance overhead and code bloat due to embedding
a watermark using our method should be acceptable.



MA et al.: XMARK: DYNAMIC SOFTWARE WATERMARKING USING COLLATZ CONJECTURE 2861

TABLE I

A COMPARISON ON TYPICAL DYNAMIC WATERMARKING SCHEMES (REGARDING WEAKNESSES)

Xmark does not require locating its payload as precondition of
a successful watermark recognition, thus its recognizer is not
designed to look for some particular static code features that
might be exploited by adversaries. Its recognition protocol also
determines that the embedded watermark pieces are not given
away just by hitting some of the secret-input-driven execution
paths by luck. As obfuscated predicates, our payload objects
cannot be straight-forwardly removed since their existence is
necessary with regard to the subject software’s integrity. The
underlying obfuscation technique of Xmark can be identified
as a special type of dynamic opaque predicate [29]. It exploits
an intrinsic shortcoming of symbolic execution, causing state
explosion to prohibit dynamic program analyses. As the result,
resilience of Xmark against state-of-the-art reverse engineer-
ing tools is significantly improved, especially when compared
with similar schemes based on invariant opaque predicates
[7], [18]. To the best of our knowledge, Xmark is the first
of its kind to overcome all types of weaknesses stated in
Section I-A, as summarized in Table I.

II. BACKGROUND

A. Control Flow Obfuscation Using Unsolved Conjectures

Unsolved conjectures are important elements in the history
of mathematics, and Collatz conjecture, or the 3x+1 problem,
is no doubt a representative example. The core of this problem
is the so-called Collatz function, a mapping θ :N∗→N∗ where
for any n ∈ N∗,

θ(n) =
{

n ÷ 2 i f n is even,

3n + 1 i f n is odd.
(3)

Let θ0(n) = n, and let

θ k(n) = θ ◦ · · · ◦ θ(n)︸ ︷︷ ︸
k times

= θ(θ k−1(n)), (4)

Collatz conjecture asserts that there always exists a δn ∈ N∗
such that θδn (n) = 1. Note that the iterative computing given
in Equation 4 derives a sequence �(n) = {θ k(n)}δn

k=0, which
is called the orbit for n in the conjecture (also known as n’s
Hailstone sequence). The assertion of Collatz conjecture also
implies that, given n1, n2 ∈ N∗, �(n1)=�(n2) holds only if
n1=n2, i.e. the number of distinct Hailstone sequences is as
many as that of members in N∗.

Collatz conjecture is “a deterministic process that simulates
‘random’ behavior” [32]. This characteristic was thus adopted

in a control flow obfuscation method [31]. Figure 1 illustrates
the main idea of the obfuscation. Let the subject be a branch
which directs control to a Do_sth() module if its predicate
“x==C” evaluates to true (as in Figure 1.a). The obfuscation
first creates a spurious integer variable y > 0 via a mapping
denoted by φ(x) (with the original condition variable x as the
seed), then attach a Collatz conjecture loop controlled by y to
participate predicate evaluations of the branch, resulting in a
routine as illustrated in Figure 1.b. This transformation asserts
correctness of the subject branch by replacing its predicate
(as aforementioned) with a combinatory logic eval(x, y, C)
which instead verifies whether{

x + y < C + 2

x − y > C − 2
(5)

is satisfied. The obfuscated routine operates iteratively, in each
round it computes y = θ(y) before evaluating eval(x, y, C).
Equation 5 indicates that eval(x, y, C) is not satisfiable until
y yields to 1, at which point the evaluated predicate becomes
“C−1 < x < C+1”, which (for integers) is equivalent to the
original predicate. However, since y is not a concrete value,
adversaries trying to explore the protected branch has to resort
to symbolic execution where y is handled as a symbol. As the
result, the loop of Collatz conjecture introduces numerous
of potential execution paths, crippling the analysis before it
solves the actual branch bounder. In this paper, we use the
above obfuscation method as the corner stone of Xmark’s
watermark payload constructs.

B. Mixed Boolean-Arithmetic Encoding

Another code obfuscation technique involved in this work
is the mixed boolean-arithmetic (MBA) encoding, which was
proposed to provide diversified obscuring transformations on
real-world functions and data via mixed-mode computation
over Boolean-arithmetic algebras [33]. By constructing the so-
called zero/invertible MBA functions, MBA encoding can be
used to hide constants or variables, and consequently conceal
actual semantics of algorithms. A main resource for building
such MBA functions is the permutation polynomials [34].
According to Theorem 3 of [33], a polynomial over Z/(2n) is
a permutation polynomial (and therefore invertible) if its 1st-
order coefficient is odd and all higher order coefficients are
even. An example provided in [33] is the inverse generation
for cubic polynomials: given a f (x)=∑3

i=0 ai x i , its inverse



2862 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 11, NOVEMBER 2019

Fig. 1. Basic idea of the Collatz-conjecture-based control flow obfuscation.
(a) Original structure. (b) Obfuscated version.

f −1(x)=∑3
i=0 a�i x i can be computed by⎧⎪⎪⎪⎨

⎪⎪⎪⎩
a�3 = −a−4

1 a3

a�2 = −a2a−3
1 + 3a0a−4

1 a3

a�1 = a−1
1 + 2a0a−3

1 a2 − 3a2
0a−4

1 a3

a�0 = −a0a−1
1 − a2

0a−3
1 a2 + a3

0a−4
1 a3.

(6)

We exploit these existing results to support the construction
of Xmark’s watermark payload constructs.

C. Adversarial Model Against Xmark

For the soundness of this work, we define the adversarial
model against Xmark on both the priori knowledge and the
strategies of potential adversaries.

1) Priori Knowledge: An implication made by many past
researches (via the assumed attacks against their designs [15],
[16], [19], [23]–[25]) is that adversaries against a software
watermarking scheme should be considered as being aware of
all deterministic design details regarding both its embedding
and recognition processes. In this paper, we too consider the
same assumption since it is practically reasonable. Neverthe-
less, the capacity of adversaries we assumed are also limited
on a number of aspects. To start with, adversaries should have
no knowledge on the secrets used by the watermarking scheme
beforehand (e.g. the secret i defined in Equation 1 and 2 from
Section I-A). In specific, two types of secrets are referred to
in this assumption:
• any secret used by the target scheme in the extraction of

an embedded watermark; and
• any secret that is involved in the process of embedding a

watermark with the target scheme.
To give an example on the second type of secrets, consider a
watermark embedder which randomizes its payload in some
way. The so introduced randomness should be a secret to the
assumed adversaries, i.e. although they know the fact that
the targeted payload is randomized as well as the method
used to do so, concrete implementation of this randomized
payload is still something out of their reach. Moreover, like
suggested in [19], given a subject software, we assume that
adversaries have not determined in advance on whether the

subject indeed carries a watermark, i.e. a diagnose regarding
the existence of watermark is needed before they can take any
further moves. Last but not least, adversaries are assumed to
have no access to source code of subject softwares (either the
original or watermarked version). Here we assume that subject
softwares are released as commercial off-the-shelf (COTS)
binaries, thus the adversary can only launch attacks on binary
level.

2) Strategies: As suggested by existing works [14]–[16],
[19], the generic threat model against dynamic watermarking
consists of watermark cropping, watermark forgery or water-
mark distorting attacks. Again, use the notations in Equation 1
and 2 to help explaining the concept of these attacks:
• a watermark cropping attack aims to transform Sw in a

way that elements related to w are removed while useful
semantics of S are preserved;

• a watermark forgery attack aims to deceive the recognizer
R(·) into believing that a compromised instance of Sw

carries a bogus watermark w� �=w; and
• a watermark distorting attack, while also attempt to make

w unrecognizable, applies indiscriminate transformations
on Sw rather than targeting specific elements of it.

Since watermark forgery could be deemed as successful even
if w still survives after Sw is compromised, we consider
coping with such attacks more as a tamper-proofing task and
thus out of our scope. Nevertheless, we include watermark
disclosure attacks into the arsenal of adversaries. The aim of
watermark disclosure is to reveal those elements of Sw that are
relevant to w with the absence of secret i , so that subsequent
attacks can be properly focused on the revealed elements.1

Therefore, we consider such attacks as the necessary premise
of watermark cropping attacks. Our specific adversarial model
focuses on a number of targeted attacks which are by all means
adapted version of the considered generic attacks, namely:
• we consider pattern matching and model checking as the

static-level tools of watermark disclosure attacks against
Xmark. In particular, model checking should be utilized
in the same way as in malicious code detection [37];

• we also consider a dynamic probing attack against our
method, with adversaries imitating the same protocol of
our recognizer while exploring execution traces of the
subject software, hoping to detect patterns indicating the
existence of Collatz conjecture routines;

• for more powerful adversaries mounted with sophisticated
dynamic program analysis tools like symbolic execution,
we consider watermark cropping attacks against Xmark
by removing its payload constructs via de-obfuscation;

• last but not least, being a control-flow based scheme,
we also have to consider distortive attacks which attempt
to invalidate Xmark by re-transforming the watermarked
software via tools like control flow flattening [38].

Note that as long as a determined adversary is willing to throw
in time and effort, a software-based protection technique (like
Xmark) could always be dismantled eventually. Therefore,

1In the prior literature, disclosure attack (such as key/memory/statistical
disclosure) was used to refer to an adversary’s gain in knowledge about
cryptographic secrets [35], [36]. Here we extend the concept to cover
steganographic secrets, e.g. whether a watermark is present in a covertext
(in our scenario, a software), and if so, where the watermark can be found.



MA et al.: XMARK: DYNAMIC SOFTWARE WATERMARKING USING COLLATZ CONJECTURE 2863

we deem our method as effective should the cost for defeating
it be great enough to encourage adversaries to consider devel-
oping the protected software functionalities from scratch.

III. METHOD OVERVIEW

Recall that the goal of this work is to present a novel design
of dynamic software watermarking that is 1) difficult to be
disclosed by means like pattern matching and model checking,
2) secure against de-obfuscation attempts using tools such as
symbolic execution, 3) robust against certain re-obfuscation
approaches, and 4) without obvious drawbacks with respect
to data rate and performance (as discussed in Section I-B).
The Xmark scheme proposed in this paper is established on
top of the Collatz-conjecture-based code obfuscation method
that is briefly introduced in Section II-A. The key motivation
is: structureless and “randomness” (which is exploited by the
mentioned obfuscation) is just one aspect of the conjecture,
the case-by-case determinacy of its procedure in mapping
natural numbers to Hailstone sequences, on the other hand,
indicates a potent way to stenographically interpret an arbitrary
message into dynamic program activities. We thus aim to
fully develop the potential of Collatz conjecture in information
hiding.

Figure 2 presents a motivating example for illustrating the
idea of our method. Assume a software S(μ) where μ denotes
its input; and, without loss of generality, assume the goal is to
embed a watermark w=3 into S and later recognize it. Xmark
selects from S a pair of conditional constructs (i.e. b1 and b2
in this example) that can be reached when running S with
input cases μ= i1 and μ= i2 respectively. Both constructs are
then transformed using a specialized Collatz-conjecture-based
obfuscation to produce S’s watermarked instance (denoted by
Sw).2 Different from what’s described in Section II-A, here
Xmark defines a pair of functions {φ1, φ2} which each takes
μ and the original condition variable of b1/b2 (i.e. x1 or x2)
as inputs, and outputs spurious variables y1/y2 for the Collatz
conjecture routines used in obfuscation. These two functions
are also constructed to satisfy

φ1(x1, i1) = φ2(x2, i2) = w. (7)

As the result, when running Sw(i1), the obfuscated construct
labeled as l1 is reached with y1=w=3. According to Collatz
conjecture, y1 yields to 1 according to the orbit 3→ 10→
5→ 16→ 8→ 4→ 2→ 1. In other words, l1 would iterate
for 7 rounds, with the bold if-else branch within the loop
takes its if path (henceforth the odd path) in the 1st and 3rd
round, whereas the else path (henceforth the even path) is
taken in the rest rounds. Equation 7 further indicates that if
run Sw one more time using input i2, the exact same sequence
of branchings will be repeated by the bold if-else structure
inside construct l2. Xmark identifies the embedded watermark
via such intentionally crafted echoing of branching behaviors,
then recover the message (w = 3 in this example) by reversing
the corresponding Hailstone sequence. Conditional constructs

2For simplicity, in this example we only assume the typical implementation
of Collatz conjecture. More extensions regarding to Xmark’s embedding
transformation are explained in Section III-A.

Fig. 2. A motivating example of Xmark’s general idea.

selected for watermark embedding are henceforth called the
embedding points for our method. Meanwhile, since the timing
of watermark presentation is controlled by φ0 and φ1, they are
hereby referred to as the control units of Xmark’s payload.

Figure 3 gives the overall deployment model of Xmark.
Given the source of a subject software, our embedder first run a
preliminary analysis to determine available embedding points,
and subsequently obtain a secret input lineup for reaching them
at runtime. These supportive information, together with the
watermark message, are then used by a program rewriter to
generate binary of the software’s watermarked instance. The
recognizer of our method, extracts the hidden watermark by
running the watermarked binary with the secret input, while
tracing and analyzing control transfers within the resulting
execution traces. In the rest of this section, we explain the
important details regarding to both the watermark embedding
process and the recognition protocol of our method.

A. Watermark Embedding

The actual watermark embedding process of Xmark is an
extension of the aforementioned basic example. Purposes of
the extension include making the process compatible with real
watermark instances in practice, while preventing the created
payload constructs from exposing exploitable features.

1) Embedding Large Watermark: In a real-world scenario,
a watermark containing sufficient information is almost always
too lengthy to be represented using a single machine integer.
Like many existing works, in such a generic scenario, Xmark
considers w as a collection of substrings �w={wε|1≤ε≤n},
with each wε be of a safe length (which is further discussed
in Section V-B) to encode into a single unsigned integer. The
embedding of w thus yields to that of �w. Xmark does this
by preparing a long enough input-lineup I= i0∪{iε|1≤ε≤n},
and extends its control units to further satisfy

φ1(x1, iε−1) = φ2(x2, iε) = wε, 1 ≤ ε ≤ n. (8)

Extended control units can either be generated using function
fitting, or simply implemented as segmented functions. Recall
the example in Figure 2, and now assume the goal is instead
to embed a longer watermark such as �w = {103, 93} (which



2864 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 11, NOVEMBER 2019

Fig. 3. Deployment model of the Xmark scheme.

is the ASCII of “WM”). Without loss of generality, our method
derivates a secret input lineup I = {8, 5, 2018}, then
• let φ1 go through coordinates (8, 103) and (5, 93);
• let φ2 go through (5, 103) and (2018, 93);

As the result, after sequentially running Sw(8), Sw(5) and
Sw(2018), Xmark should identify w1 = 103 from the traces
of Sw(8) and Sw(5), then detect w2=93 from those of Sw(5)
and Sw(2018) — both via the same pair of embedding points
(i.e. the obfuscated constructs l1 and l2). Making watermark
substrings “overlap” in such a way improves both stealth and
data rate of Xmark, although developers are certainly allowed
to embed a watermark into more embedding points.

2) Burying Footprints of Collatz Conjecture: The pivotal
operation of Xmark’s payload is the Collatz function. In its
typical form, this function is of a simple and fixed structure,
while at runtime, it generates Hailstone sequences as explicit
program states with the loops of Collatz conjecture unrolling.
Such fundamental semantic-level features could undermine the
stealth of our payload constructs on two aspects:
• structural signatures of the Collatz function could expose

the payload constructs to pattern matching; and
• the Hailstone sequences derived by computing the Collatz

function could also be picked up using data flow analyses,
which consequently exposes our payload as well.

Intuitively, binary mutation and constant/variable obfuscation
could be solutions for this problem [39], [40]. However, known
techniques of such type have the basic need of being semantic-
preserving program transformations [41], whereas in Xmark,
features that needs to be concealed exist in semantic-level and
therefore can hardly be hidden using such transformations.
Our idea of solving the above mentioned problem come from
the observation that for either watermarking or obfuscation,
the functionality of Xmark’s payload constructs does not rely
on the specific operations done in the two paths of their Collatz
function routines:
• the key factor in watermarking is parity of the spurious

variable during the loop unrolling process of a payload
construct (so that its Collatz function branches correctly
in every round), whether concrete value of this variable
comply to Hailstone sequences is in fact irrelevant;

• regarding obfuscation, a payload construct is able to work
correctly as long as both its loop guard and the obfuscated
conditional logic it holds behave as expected.

Therefore in Xmark, we apply what we call the salted
Collatz functions, a mutation of the typical Collatz function,
to erase footprints left by Collatz conjecture. In supplement,
with the participation of outputs provided by this mutated
Collatz function, we transform obfuscation-related predicates

of Xmark’s payload into mixed boolean-arithmetic (MBA)
expressions (as introduced in Section II-B), so that these
payload constructs could remain functionally correct after
being enhanced.

Let θ(·) be the typical Collatz function, and p(n) ∈ {0, 1}
be the parity of a natural number n ∈ N∗. Assume a payload
construct of Xmark where x is the condition variable involved
in its underlying code obfuscation, φ(·) is its control unit, and
y=φ(x) is the spurious variable for manipulating its Collatz
conjecture behavior. To initialize our salted Collatz function,
we randomly generate the following parameters:
• a set of salt expressions {ei (x)|1≤ i ≤3} which consists

of n-degree polynomials of x , with coefficients of each
ei (x) be even;3 and

• coefficients {a j |1≤ j≤6} where a1÷ a3=3, a6÷ a4=2,
a2≡0 mod a3, and a5≡0 mod a6.

Using this configuration, we substitutes the computing of θ(y)
with Algorithm 1. Next we explain in detail the mechanism
of our salted Collatz function ϑ(·).

Algorithm 1 Xmark’s Salted Collatz Function
Initialization: s0=(a4e1(x)+ a5e3(x))/a6,

s1=(a1e1(x)+ a2e2(x))/a3 − 1,
y|0=φ(x), s|0=0, s|r>0=s0 + s1 �

The notations y|r and s|r here indicates the value of y/s
in round r of Collatz conjecture

1: function ϑ(y|r−1) � assume the payload construct is at
round r of its Collatz conjecture process

2: y|r ← y|r−1 + e1(x)− s|r−1
3: if y|r ≡ 1 mod 2 then
4: y|r ← (a1y|r + a2e2(x))/a3 + s0
5: else
6: y|r ← (a4y|r + a5e3(x))/a6 + s1
7: end if
8: return y|r
9: end function

When the assumed payload construct proceeds to run the
first round of Collatz conjecture (i.e. r = 1), inputs of ϑ(·) are
respectively y|0=φ(x)= y and s|0=0. Therefore, y is added
with e1(x) at line 2 before further operations are computed.
Since all coefficients of e1(x) are even, it’s not hard to realize
that p(y + e1(x))= p(y)+ p(e1(x))= p(y), i.e. whether ϑ(·)
branches to line 4 or line 6 still depends only on the parity of y
(like in computing θ(y)). Without loss of generality, consider
the case where y is odd, the arithmetic given at line 4 of ϑ(·)
thus equivalents to

a1(y + e1(x))+ a2e2(x)

a3
= 3y + 1+ a1e1(x)+ a2e2(x)

a3
− 1

= θ(y)+ s1. (9)

Similarly, in case y is even, line 6 of ϑ(·) also equivalents
to θ(y)+s0. However, operations in θ(·) are neither explicitly
computed nor implied by any of the atomic arithmetics (or

3According to [33], polynomials can be considered as MBA expressions
involving only addition and multiplication.



MA et al.: XMARK: DYNAMIC SOFTWARE WATERMARKING USING COLLATZ CONJECTURE 2865

any sub-sequences of them) within the compositions at line
4/6 of ϑ(·). In other words, data flow signature of Hailstone
sequences cannot be detected within a single run of ϑ(·).

Collatz conjecture is an iterative process, thus it’s necessary
to prevent the s0/1 factor carried by the output of ϑ(·) from
accumulating in an uncontrollable way. Now consider the case
where the assumed payload construct has proceeded to the
r th round of the conjecture (r > 1), at which point the input
y|r−1 to ϑ(·) can be decomposed into θ(y|r−2)+ sr−1. Since
ϑ(·) is designed to remove the sr−1 factor (which equals to
s0+ s1) at line 2, it guarantees its later processes to work with
θ(y|r−2)+ e1(x), and therefore again branches exactly as if
computing θ(y). Meanwhile, by adding e1(x) and removing
s0/1, signature of Hailstone sequences is effectively broken
between adjacent rounds of Collatz conjecture.

As the result, we can see that while ϑ(·) is constructed
to be semantically inequivalent to the typical Collatz function,
it is capable of producing the same branching behaviors as the
latter without exposing Hailstone sequences in the software’s
data flow. The role of e1(x) and s0/1 in ϑ(·) is analogous to
the addition of salt to a cryptographic primitive, which is the
reason we named Algorithm 1 as the “salted” Collatz function.
Note that although x is a variable in larger scopes, it can be
safely considered as a constant between the point of entering a
payload construct until exiting from it. Therefore, the concrete
value of all ei (x) expressions, and consequently those of s0
and s1, can be determined upon initializing the salted Collatz
function rather than computed within it. In addition, if treating
x as a variable (even though its value won’t change during the
entire procedure of Collatz conjecture), then s|r>0−x=s0+s1−x
is by all means a permutation polynomial of x (see Section II-
B), thus according to Theorem 3 of [33], the inverse of s|r>0−x
can be computed using the configuration of {a j |1≤ j≤6} and
{mi (x1)|1≤ i ≤ 3}. Let this inverse expression be denoted by
s−1, our enhanced payload construct determines if the Collatz
conjecture loop should be terminated by evaluating “s−1(y|r−
x−1)== x”. Similarly, (without loss of generality) assume
the obfuscated predicate in our payload construct is “x ==
30”, this condition is instead checked by evaluating “s−1(y|r−
31) == x”. The correctness of the above transformation is
discussed later in Section V-B. It’s also worth mentioning that
line 4/6 of ϑ(·) can be mutated to have diversified control
structures, which would further help enhancing our payload
constructs on static stealth.

Note that the sole purpose of our MBA-based transformation
is to conceal static signatures of Collatz conjecture. Therefore,
low-degree polynomials, like cubic or quadratic ones, should
already be enough to address the requirement (while causing
less overhead in the meantime). Xmark does not rely on MBA
encoding to prohibit dynamic program analyses.

B. Watermark Recognition

There is a widely accepted generic procedure for identifying
a dynamically embedded software watermark: the recognizer
runs the subject software (which may or may not carry a
watermark) using the secret input it possesses; these specific
executions are monitored, and the recognizer collects activities
(e.g. register states, control transfers and memory operations

Fig. 4. Illustrative examples of Xmark’s loop instrumentation. (a) Basic
case. (b) Control flow flattening.

etc.) that are considered watermark-related during the process;
the collected information is then interpreted according to some
pre-defined rules to recover the message — or if none of such
activities are found, the recognizer reports the recognition as
a failure [3]. Taking into account both stealth and robustness,
such a recognizer should comply to a number of assumptions
to limit its capacity to a practical extent, namely:
(1) same as adversaries against software watermarking, the

recognizer itself must also be assumed to have no prior
knowledge on whether a subject software indeed carries
a watermark or not;

(2) the recognizer should not rely on any source-code-level
supportive information, like debug symbols etc.;

(3) when determining the relevance of a runtime activity to
watermarking, the recognizer cannot rely on any specific
static pattern of payload code, or be allowed to receive
manual assistances of any kind.

The key of the aforementioned procedure is to define what
should be consider as “watermark-related”, i.e. determining
exactly what kind of activities should the recognizer be looking
for. In general, the execution trace of a software is extremely
noisy, where activities corresponding to a watermark (if there
is one) are more or less like a needle in the sack. Specific to
Xmark, a watermark is demonstrated by repeating a particular
Hailstone sequence via control transfer activities of the Collatz
function deployed within two different obfuscated conditional
constructs. Due to assumption (3) given above, our recognizer
cannot statically locate such payload constructs. In addition,
we must also consider the scenario where adversaries try
to obstruct our recognizer by altering the subject software’s
static structure with techniques like control flow flattening.
In order to identify the watermark-related control transfers
with the presence of irrelevant execution states as well as
potential malicious interference, our method adopts dynamic
instrumentation assisted trace analysis as the solution of the
task, which consists of following operations. Without loss of
generality, in the rest of this subsection, we assume it is indeed
Sw being analyzed by our recognizer, and the watermark to
be extracted is denoted by w as in all previous examples.



2866 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 11, NOVEMBER 2019

Fig. 5. An illustration of Xmark’s watermark recognition.

1) Loop Instrumentation: By the mechanism of Xmark,
to extract a watermark embedded by our method is in fact
to track down branchings caused by the Collatz functions
in our payload constructs. Let us first consider the normal
case where Sw’s control structure is not maliciously tampered
with. In this case, the Collatz function is essentially a branch
structure that, along with its two conditional blocks, exist in
the body of a loop (as in Figure 2). Therefore, before actually
running Sw, Xmark examines it statically to identify all loops
containing at least one conditional branch, and instruments
them in the way as demonstrated in Figure 4.a. On binary level,
a loop structure is typically indicated by a backward-pointing
control transfer (either conditional or not), like the thick arrow
in the figure from the last jxx instruction to label lp. This
helps our Xmark to determine the loop’s entry and exit, and
consequently region of the loop body. If a loop further contains
a conditional branch controlling two destination blocks (like
the jxx before label bra that points to label brb, from which
the two execution paths are given by the dashed arrows), then
both destinations of the branch, together with the loop’s entry
and exit points, are inserted with instrument routines (e.g.
instrument① to instrument④ in the figure), such that

• once the loop is accessed at runtime, a variable-length
buffer is created by instrument① for recording control
transfers from the instrumented branches within it;

• when an instrumented branch is executed, instru-
ment② or instrument③ at its destinations will be
reached, thus a corresponding bit is recorded into the
buffer; and

• finally, after the loop breaks, the completed record is sent
by instrument④ to Xmark’s recognizer.

A single loop could have multiple instrumented branches,
in which case each of these branch is inserted with instru-
ment② and instrument③ in the same way. Consequently,
activities from all instrumented branches in the same loop are
buffered in mixture. Our recognizer parses such a mixed record
into separated binary strings called the branching trails, which
each reflects activities of a specific instrumented branch.

It is equally important for our method to be able to handle
the scenario where Sw is maliciously re-obfuscated to make
w unrecognizable. We consider control flow flattening as the
adversarial tool in this case, not only because it is well
studied and integrated in many obfuscation toolkits [42],
[43], but also because it is lightweight enough for launching
distortive attacks. This technique re-organizes normal control

flow into iteratively executed switch-case structures in
which basic blocks from different functionalities are mixed
together. On binary level, such obfuscated control flows still
exist in the form of loops. As illustrated in Figure 4.b, for
a loop of this kind, Xmark attaches instrumentation routines
instrument⑤ and instrument⑦ at its entry and exit to create
and export a buffer record consists of not simple binary bits,
but atomic strings of a special format encoded by instru-
ment⑥ within case blocks of the switch-case structure in
it. Each atomic string contains the case block’s distinct index
and a unique ID associated with the switch-case object,
which helps our recognizer to identify activities of the same
flattened structure. Buffer records formed in this way are called
the raw traces, meaning that they cannot be directly used as
branching trails, but have to be further analyzed and parsed in
the next step.

Intuitively, there should be many loops come and go while
running a software. Therefore, Xmark’s recognizer maintains
a data structure called loop buffer arena (LBA) for all instru-
mented loops to create and update their buffers. With the above
mechanisms, the loop instrumentation phase allows Xmark to
define the exact kind of behaviors that the recognizer should
focus on, and meanwhile complete all necessary preparations
for extracting them from monitored executions.

2) Branching Trail Harvesting: After done instrumenting
Sw, Xmark’s recognizer runs the instrumented software in a
virtual machine to harvest branching trails on-the-fly. Without
loss of generality, here we assume the same Sw described in
the motivating example at the beginning of Section III, and
suppose both cases of the secret input {i1, i2} lead Sw to the
same execution path. Figure 5 schematically illustrates such a
path, with the backward-pointed curves indicating loops traces
derived during the executions. We label loops of our payload
with l1 and l2, and let L1/L2 denote irrelevant loops in Sw. It
is necessary to emphasize that a branching trail only profiles
behaviors of a branch construct during one single access to
the loop it is located. If a loop is accessed repeatedly,4 like
L2 in Figure 5 (which is assumed to have been accessed twice
on traces of both Sw(i1) and Sw(i2) in this example), a new
set of branching trails are created each time. Xmark searches
for echoing branching trails after the harvesting process is
completed. Two branching trails are accepted as an echoing
pair only if they meet a number of conditions, namely:

4This could have for a number of reasons, e.g. one loop residing inside
another, subroutine containing the loop gets invoked repeatedly, etc.



MA et al.: XMARK: DYNAMIC SOFTWARE WATERMARKING USING COLLATZ CONJECTURE 2867

• the trails must be respectively ported from two executions
driven by contiguous cases of the secret input lineup;

• the trails must also be ported from different conditional
branches of the software; and

• last but not least, the trails have to be either identi-
cal or bit-by-bit opposite to each other.

We consider the bit-by-bit opposite cases because adversaries
could try to corrupt w by performing edge flipping on some
branches of the software, compromising the positional relation
between their destinations so that the resulting branching trails
are bitwise negated. By accepting bit-by-bit opposite pairings,
Xmark could reliably recognize w even if one of the echoing
branches happens to be tampered with in the aforementioned
way. Back to the scenario assumed in Figure 5, within the
two harvested trails listed in the “Loop Buffer Arena (LBA)”
area, Xmark finds that trail [bt

l1
2nd:1st] (which stands for the

first branching trail exported by the second branch within loop
l1) from Sw(i1) is echoed by trail [bt

l2
1st:1st] from Sw(i2) (and

together they indeed demonstrate w), whereas all other trails
does not echo with anyone ported from the other execution.
In a successful recognition, Xmark should be able to locate at
least one pair of branches echoing throughout all secret-input-
driven executions of Sw. It admits branching trails ported by
such branches as watermark-related.

Again, our recognizer should be able to work properly even
if Sw is compromised using control flow flattening. Challenge
brought by the re-obfuscation is that various kinds of control
transfers are turned into parallel indirect jumps, therefore our
recognizer can no longer use the original structure of flattened
case blocks for encoding branching trails. However, since case
blocks in a flattened control flow are associated with unique
indexes, Xmark could infer loops and if-else branches in
an execution trace using the following heuristic rules:
• intuitively, the first block of a loop is guaranteed to be

executed in every round of that loop; and
• if two blocks are loop-wise mutually exclusive, i.e. each

round of a loop asserts to execute one of them (but never
both), these blocks indicate an if-else construct.

Therefore, given a raw trace ported from a flattened control
flow (in which each unit is a case block index), an unrolled
loop is in fact indicated by a group of case blocks repeating
alternately. Xmark assumes the first appeared block in such a
group as entry block of the loop’s body, and use it to parse the
unrolled loop trail into individual rounds. Our recognizer then
analyzes the separated rounds to determine if there exists a
loop-wise mutually exclusive block pair. In case of a while
loop which evaluates loop guard in front of the loop body,
its last round is omitted in this analysis. Upon identifying
an exclusive block pair, Xmark randomly associates the two
blocks with 0 and 1, and a binary format branching trail can
therefore be organized.

3) Watermark Recovering: After extracting branching trails
that are considered watermark-related, the final task for
Xmark’s recognizer is to recover the actual message they
represent. Since the two branches of the Collatz function are
mapped respectively to 0s and 1s in the branching trials,
our recognizer can traverse a given trail (e.g. [bt

l1
2nd:1st] or

[bt
l2
1st:1st]) from its least significant bit to the most significant

one, and, starting from 1, build the Hailstone sequence repre-
sented by the trail (which is �(w) in this case) reversely, thus
eventually recovers the initial integer of the sequence (i.e. w).

In addition, according to the rules of the Collatz function,
the odd path operation will never be the last of a Hailstone
sequence, and it never appear continuously since its result is
guaranteed to be even. Hence a branching trial that indeed
represents a Hailstone sequence must fit the above description
(since either 0s or 1s are associated with the odd path of the
Collatz function). This allows Xmark to once more validate
the admitted branching trials to reduce false positives in its
recognition: even an irrelevant trail accidentally survived the
harvesting phase (which is already highly improbable), it can
still be filtrated for having an inappropriate format.

IV. IMPLEMENTATION

We have implemented a prototype of Xmark based on the
LLVM compiler infrastructure and the dynamic instrumentation
framework Pin [44]. Currently, our embedding module works
with the LLVM intermediate representation (IR) to be source-
and target-agnostic, while the watermark recognizer processes
x86 binaries only. In our future works, we plan to extend our
method to support other instruction sets, e.g. ARM.

A. Compiler-Based Watermark Embedder
Xmark’s watermark embedder is implemented as an add-on

attached to LLVM’s middle-end. It performs necessary analyses
on the subject software’s IR ported by LLVM’s front-end, and
based on the analysis results transforms the IR in the way as
described in Section III-A to construct the watermark payload,
then finally send the transformed IR to the compiler’s back-
end. As said in Section III-A, Xmark is capable of putting a
considerably large watermark into as few as two embedding
points. This allows it to be applied either on the entirety of a
software, or on some selected functional modules in it. Both
cases can be seen as protecting code sections belonging to a
designated entry function and all subroutines reachable from
the entry function (given that a software is by all means the
collection of subroutines reachable from its main function).
This helps Xmark determining the subject code region where
the required embedding points should be selected. Considering
the iteration of Collatz conjecture could proceed for hundreds
of rounds, Xmark avoids using conditional constructs within
hot loops as embedding points such that the resulting payload
constructs would not be reached for too many times on any
input case (at least for those in the software author’s test suite).
Our embedder analyzes static control flow graph of the subject
software (provided by LLVM) to wash out branches located in
condition-controlled loops. Those from count-controlled loops
with small loop guards are still admissible because such loops
behave in more deterministic ways. All branches in the subject
code region which have survived the above screening become
our candidate embedding points. Xmark then tries to generate
a combination of input cases that
• each specific input case leads to an execution path that

goes by at least two of the candidate points; while
• for any two neighboring input cases in the combination,

their corresponding execution paths must share at least
one candidate point.



2868 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 11, NOVEMBER 2019

Determining an input combination that fits the above criteria
provides a valid secret input lineup, along with a set of actual
embedding points. Xmark can then define a control unit for
each of the selected branches, so that payload constructs built
on them can properly derive echoing branching trails for each
pair of neighboring cases of the secret input. On IR level, it is
not a tough mission to find out available execution paths going
through certain conditional branches and deduce possible input
cases corresponding to them. Available tools on this aspect
include (but not limited to) data-flow analyses, taint analyses,
concolic-execution-based path verification and etc.

B. LBA as Pseudo Stacks

In binary code, a branch instruction either jumps to a remote
code block (described by an offset), or simply falls through
to the one right after it. These two types of destinations
are often referred to as the jump target and the fall-through
target, and Xmark’s recognizer defines instrument② and
instrument③ to record a 1 if an instrumented branch directs
control to its fall-through target, or a 0 otherwise. Recall that
all branching trails from a single access to a loop are cached
as a mixed record within one loop buffer. Built in the form of a
Pintool, we let our recognizer to observe structure of loops
it instrumented, and for each of them build an abstract profile
to help correctly parsing the loop buffer records. To give
a motivating example, consider a record 11010001 that is
ported from an instrumented loop containing two conditional
branches b�1 and b�2, with b�2 located inside the jump target
block of b�1. Our recognizer thus generates the abstract profile
for this loop, denoted by 
b�1→
jmp, b�2��, then start analyzing
the above loop buffer record from its most significant bit: the
highest 1 indicates that b�1 took its fall-through target in the
1st round, which means b�2 was not reached in the same round.
Therefore, the next 1 can only indicate that b�1 again took the
fall-through target in the 2nd round. As the result, eventually,
the recognizer will return 11000 as the branching trail of b�1,
and in the meantime return 101 as that of b�2. Given that
the encoding format and parse rules of loop buffer record
when control flow flattening is involved is already explained
in Section III-B, we skip the scenario in this section.

Another problem that should be concerned is that the loop
buffers are defined to be variable-length, and it is more than
possible for an instrumented loop to have other instrumented
loops included in its body, thus the running software may
have to stop recording one loop buffer at some point to create
another one. Borrowing the idea of an existing stack protection
technique called SCADS [45], we let an instrumented software
maintaining its LBA as pseudo stacks deployed in the unused
address space between its heap and actual call stack. At the
beginning of the loop instrumentation phase, our recognizer
selects an anchor address within the available address space
that is distant enough from both the allocated sections above
and below it, then defines two pseudo stack structures that
grow towards opposite directions from the anchor address. The
layout of this structure is as demonstrated in Figure 6.a:
• the buffer stack stores the work-in-progress loop buffers,

which is maintained using a pseudo stack pointer and a

Fig. 6. Xmark’s loop buffer arena built as pseudo stacks. (a) After initialized.
(b) In recognition.

pseudo base pointer, denoted by PSP and PBP , with PSP

stored at the anchor address;
• the counter stack holds a group of loop counters created

to assist the maintenance of the incomplete loop buffers,
which is indexed using a counter pointer denoted by lc.

When an instrumented loop is accessed at runtime, the instru-
ment①/⑤ routine at its entry creates a new frame on top of the
buffer stack, then pushes a new loop counter into the counter
stack (as in Figure 6.b). This way the being examined software
could flexibly adjust the size of the currently recording loop
buffer, while correctly preserving all interrupted ones. When
the execution breaks out from an instrumented loop, the cor-
responding loop buffer and loop counter should be right on
top of the corresponding stacks, thus the memory space they
occupy can be easily recycled by the instrument④/⑦ routine
at the exit of the loop, which is defined to unwind the two
stacks after porting out the loop buffer record.

Finally, to avoid potential risk of register conflict, Xmark
builds all it instrument snippets as if inline subroutines. That
is, these snippets save the current register states as the first
thing to be done when being executed, while recovering the
saved environment as their last operation. Doing so guarantees
the correctness of the subject software throughout the water-
mark recognition procedure, and in the meantime keeps our
recognizer simple and efficient.

V. ANALYSIS

A. Completeness

The way in which Xmark selects its embedding points has
already been explained in Section IV-A. Our scheme cannot
be applied if a software (or a functional program module)
does not possess enough valid branches fitting the given
criteria, or if its input can hardly be manipulated with external
tools (e.g. when the input consists of only a boolean value).
Intuitively, as long as a software has one execution path that
contains two branches and is reachable on multiple inputs, it is
a suitable subject for Xmark. Moreover, in case of last resort,
it’s always possible to transform part of a subject executable
using tools like dynamic opaque predicates to create usable
branches for watermark embedding [46]. As the result, struc-
tural detail of a program is not much of a limitation regarding



MA et al.: XMARK: DYNAMIC SOFTWARE WATERMARKING USING COLLATZ CONJECTURE 2869

to the usability of our scheme. Having an uncontrollable input
space, on the other hand, might actually make an executable
inadequate to be watermarked using Xmark.

The recognition protocol of Xmark takes into account con-
trol flow level heuristics on the procedure of Collatz conjecture
of two different scenarios to ensure branchings made by the
Collatz function in our payload constructs be picked up during
the procedure (even when the subject software’s control flow
is compromised via semantic-preserving transformations). It is
also designed to be capable of effectively ruling out control
activities from irrelevant loops using the unique characteristics
of Hailstone sequences. In Section VI-D we will further verify
the effectiveness of heuristics adopted be our recognizer by
showing how these assumptions helps in resisting distortive
attacks based on control flow flattening.

B. Correctness

1) Preventing Integer Overflow: Recall the notations of Col-
latz conjecture in Section II-A. Given an arbitrary n∈N∗, it is
possible to have a k ∈N∗, k <δn such that θ k(n)> n. As the
result, when encoding a watermark into output of control
units, Xmark cannot use the full length of unsigned machine
integers (32/64 bits5). Otherwise the risk of integer overflow
cannot be neglected. The main consequence of such overflow
is that echoing branching activities created by our payload
no longer comply to the correct Hailstone sequences, and the
correctness of watermark recovery is therefore compromised.
We performed an exhaustive verification and found the earliest
overflow for all natural numbers under 32 bits occurred with
159, 487, i.e. the Hailstone sequence of this 18-bit number
includes some intermediate values longer than 32 bits. For all
natural numbers under 64 bits, the earliest overflow occurred
with 12, 327, 829, 503 (of which the binary length is 34 bits).
Therefore, by letting Xmark segment the watermark message
into 16-/32-bit aligned substrings respectively when working
with 32-/64-bit machine integers, we ensure that our payload
constructs do not overflow during watermark recognition, and
in the meantime achieve the best possible data rate under
the respective configuration. Overflow in regular using of a
watermarked software is a problem, because our payload only
act the role of obfuscated control structures in this case, and
the Collatz-conjecture-based obfuscation does not really care
about value of the spurious variable as long as it eventually
yields to 1 (which is true even if overflow occurs).

2) MBA-Based Enhancement: In Section III-A.b we have
described how Xmark disguises data flow footprints of Collatz
conjecture, which involves introducing MBA encoding into
the Collatz function and obfuscation-related predicates built
by our method. We have explained why this design preserves
result of parity checking in the Collatz function. However,
it is still necessary to demonstrate whether the transformation
is indeed able to maintain the correctness of the other two
key predicates in a payload construct of ours, namely the loop
guard of the construct and the obfuscated conditional logic
in it. Recall the example in Section III-A.b where the loop

5We want Xmark to be downward compatible so that old 32-bit software
can also be protected.

guard “y > 1” is replaced with “s−1(y|r − x−1) == x” by
our transformation, and the to-be-protected logic “x==30” is
obfuscated by evaluating “s−1(y|r−31)== x” instead. These
transformations are correct because:
• Suppose the Collatz conjecture iteration of the assumed

payload construct should terminate at round k. According
to Algorithm 1 our salted Collatz function would produce
y|k=1+s0+s1=1+s|k , thus y|k−x−1=s|k−x , of which
the inverse is s−1. Therefore s−1(y|r−x−1)= x should
hold.

• Recall that in a Collatz-conjecture-based obfuscation,
the actual effective evaluation of the obfuscated condi-
tional logic happens only when the introduced spurious
variable yields to 1. Hence that during round k of the
assumed payload construct, y|k− 31= y|k−x−1 holds
only if x = 30. As the result, s−1(y|k−31)= x should
hold only in this particular circumstance.

VI. EVALUATION

We have evaluated the effectiveness Xmark against threats
defined in the adversarial model presented in Section II-C. All
test cases used in the evaluations are compiled into x86-64
binaries using optimization option -O2. Both the watermarked
instances and adversarial tools were run on a PC with an
2.7 GHz Intel Core i5-5257U CPU, 8 GB memory and
runs a Ubuntu 16.04.4 LTS operation system (kernel version
ubuntu-xenial 4.4.0-119-generic).

A. Xmark vs. Static Pattern Matching

In the first static-level attack to be discussed, we consider
adversaries who aim to disclose location of Xmark’s payload
constructs using pattern matching. To begin with, it’s necessary
to properly define the setup of such attacks in a practical and
reasonable way, so that the effectiveness of our method against
threats of this type can be properly evaluated.

In a real-world software, conditional branches at different
positions tend to be guarding code blocks of distinct semantics
(which is usually enforced by the compilers via optimizations).
Therefore, the similarity between any two payload constructs
of Xmark is intrinsically low, given that they carry very
different code blocks guarded by their embedding points. We
assume that our adversaries are aware of the fact that Xmark
disguises its payload with MBA encoding, but according to
assumptions stated in Section II-C, detailed implementation
of the enhancement, e.g. the value of parameters generated in
the random initialization or the concrete control structure of
the salted Collatz function, remains a secret to any third-party.
Taking these into account, the best adversarial strategy we can
think of is to look for patterns of the typical Collatz function
(the only possible artificial signature of our payload) with the
presence of MBA-based enhancement. Thus in this evaluation,
such a typical sample of Collatz-conjecture-based obfuscation
routine was adopted as the adversarial template, and was then
compared with a collection of various algorithms to show if
the comparison could single out implementations of Collatz
conjecture deployed in these algorithms with high significance.
In addition, we build the adversarial template to be as simple as



2870 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 11, NOVEMBER 2019

TABLE II

DESCRIPTIONS OF ALGORITHMS USED AS THE CONTROL
GROUP OF OUR STEALTH SIMULATION

possible, i.e. the obfuscated conditional construct only guards
a simple arithmetic operation like “i++”, to make the Collatz
function within this template dominating the matching.

1) Test Groups: We divide the algorithms to be compared
with our adversarial template into two groups. The experiment
group consisted of subject routines that were indeed payload
constructs built by Xmark. To clarify the effect of MBA-based
enhancement, we further classifies these instances into 3 types:

a. obfuscation in these instances involved no enhancement,
but their subject conditional constructs were individually
different (with the adversarial template excluded);

b. these instances obfuscated the same conditional construct
used in the adversarial template, but were also enhanced
with MBA encoding implemented in randomized ways;

c. these instances simulated the practical scenario, i.e. they
were built by obfuscating different conditional constructs
and applying MBA-based enhancement in the same time.

The second group was our control group, containing a number
of classical algorithms which have nothing to do with Collatz
conjecture (Table II have listed the specific algorithms selected
for this group). The philosophy behind this simulation is: if the
assumed adversaries could indeed obtain advantage via pattern
matching, similarity between the adversarial template and the
experiment group samples should be significantly higher than
that between the adversarial template and algorithms from the
control group. Otherwise, if two groups of comparisons failed
to demonstrate significant differences, then it should be safe
to consider Xmark as stealthy against attacks of this type.

2) Simulation Results: our simulation is carried out using
two binary diffing tools, namely Radare26 and Bindiff.7

Both tools adopt graph- or structure-based comparison strategy
to provide function-wise binary comparison8 [47], [48]. Note
that ideally, our simulation should be looking for small code
pieces similar with the adversarial template in a much larger
code region. We had to settle for function-wise comparisons
because we could not find a widely accepted analysis tool of
which the functionality meets this ideal scenario. In addition,
to the best of our knowledge, Radare2 and Bindiff adopts
the most appropriate similarity metrics for pattern matching
Xmark’s payload constructs, considering the implementation
of Collatz conjecture gives no other static features like unusual
instructions or specific system/API calls. Figure 7 presents a
few examples from both groups of the comparisons ported
by Bindiff, with the left part of each comparison be our

6http://www.radare.org/r/
7https://www.zynamics.com/bindiff.html
8Because of this, all subject algorithms, including the adversarial template

and instances of both test groups, are implemented as independent functions.

TABLE III

RESULTS OF OUR STEALTH SIMULATION (CODE SIMILARITY
COMPARISON) AGAINST Xmark

adversarial template, and their right part be instances selected
from the two groups described above. Table III also presents
full results of this simulation. Overall, similarities between the
adversarial template and instances of the experiment group
varied from 0.113/0.27 to 0.395/0.76 (Radare2/Bindiff),
while those between the adversarial template and control group
algorithms were in the range of 0.108/0.32 and 0.28/0.72. This
suggests that with code similarity as the metric, adversaries
cannot reliably distinguish which specific group does a being
compared program belong to. Furthermore, similarity results
on different types of experiment instances suggests that MBA-
based enhancement contributed significantly in impeding pat-
tern matching. Comparisons between the adversarial template
and type-b experiment instances showed lower similarities
than those with the type-a experimental instances, even though
the former group were essentially the same conditional con-
struct on which the adversarial template itself is built on.
Finally, when facing the type-c experiment instances, both
Bindiff and Radare2 reported the worst similarity result
in all simulations. Together, these results suggest that using
the assumed pattern matching attack, adversaries can neither
determine if a subject executable is actually watermarked via
Xmark, nor locate the embedded payload constructs.

B. Xmark vs. Model Checking

A more sophisticated static-level attack to be considered is
when adversaries leverage model checking to verify whether
a subject software contains payload of Xmark. As stated in
Section II-C, we assume that this attack uses model checking
in the way as for malware detection purpose, where the model
of a program is checked against specifications of a target code
(i.e. signatures describing known behavior of the target) [37].
Instead of targeting malware, adversaries against Xmark could
build specifications for the routine of Collatz conjecture, then
move to infer the existence as well as location of our payload
constructs by applying a model checking as described above
to verify a subject software against their specifications.

A successful model checking relies heavily on the accuracy
of target specifications. For attacks against Xmark, however,
the only priori knowledge for the adversaries to establish such
specifications is again the typical routine of Collatz conjecture
(same as in the previously discussed pattern matching attack).
However, due to the existence of MBA-based enhancement,



MA et al.: XMARK: DYNAMIC SOFTWARE WATERMARKING USING COLLATZ CONJECTURE 2871

Fig. 7. Examples of the code comparison between the adversarial sample and the test cases. (a) Versus type-a experimental instance. (b) Versus type-b
experimental instance. (c) Versus control group instance (GA).

our payload constructs are mounted with the salted Collatz
function that is semantically mutated from its origin. As the
result, the specifications which adversaries abstracted out of
the typical Collatz conjecture routine would be missing too
much vital information regarding to the actual implementation
of Xmark. Without reliable specifications of the target pro-
gram, chance for model-checking-based attacks to successfully
disclose our payload constructs is slim.

C. Xmark vs. Dynamic Program Analyses

On dynamic level, we assume two different attacks against
Xmark. First off, leveraging program testing techniques like
fuzzing and etc., adversaries could randomly probe a subject
software’s execution paths, hoping to trigger some watermark-
related activities by accident (and consequently disclose the
location corresponding payload code). Since our recognition
protocol can be learnt publicly, adversaries could build their
own recognizers that is equally effective in catching behaviors
of Collatz conjecture. However, according to the mechanism
of Xmark, an accidental exposure of any segments of an
embedded watermark would happen only if the watermarked
software is run on neighboring cases of the secret input in
the correct order. In practice, a software’s input could consist
of anything from a configuration value to a mouse click on
a GUI object, making it an unlikely event to encounter such
kind of “lucky draws” via random program testing.

In the next attack scenario, adversaries could try to compro-
mise or remove the payload constructs of Xmark using more
sophisticated analysis techniques such as symbolic execution,
constraint solving and etc. This attack could serve as a follow-
up once some components of our payload have been exposed
by the probing attack. It could also fly solo to indiscriminately
de-obfuscates the entire subject software. Xmark is integrated
with the Collatz-conjecture-based obfuscation technique which
is said to be a special type of dynamic opaque predicate [29].
The obfuscation specifically exploits an intrinsic shortcoming
of symbolic execution, i.e. state explosion in loop unrolling,
making it (and Xmark which is built on it) much more difficult
to be solved and removed compare to existing methods which
adopted invariant opaque predicates [7], [18].

Our second simulation aims to evaluate what happens when
adversaries choose to analyze a payload construct of Xmark

Fig. 8. Growth rate of angr’s simulated states.

using symbolic execution. Note that in such a scenario, it is
the obfuscation nature of our payload standing in the way of
the program analyzers. In order to focus completely on how the
obfuscation affects this reverse engineering technique, this
simulation made the assumed adversaries examine a subject
software consisting of nothing else but a simple obfuscation
routine without applying MBA encoding, so that contextual
disturbances which adversaries have to face is minimized. We
used the same instance given in Figure 2c of [31] (in which
the obfuscated predicate is “x == 30”) as the sample to be
analyzed, while angr, a recently proposed binary analysis
framework, was used as the adversarial tool [49]. We set up
this simulation in such a way because with the improvement
of SMT solver, symbolic execution has become more powerful
than a decade ago, making it necessary to study whether the
state-of-the-art analyzer has now overturned past conclusions
regarding to the Collatz-conjecture-based obfuscation. Also,
angr is an open source framework, which makes it possible to
closely observe exactly how the sample instance is processed.

Our first observation is that exploring a conditional construct
obfuscated using the Collatz-conjecture-based approach is not
always equally difficult. Trivial instances do exist which can
be solved rather easily. For example, let the spurious variable
be computed by y= x−25, i.e. when the obfuscated condition
satisfies, our obfuscated object is initiated by y = 5 (and the
corresponding Hailstone sequence has only 6 steps), angr
solved this specific case in the matter of seconds. After looking
into angr’s log in detail, we found that on the first pass of



2872 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 11, NOVEMBER 2019

our obfuscated construct, angr considered it as symbolic and
started path exploration while unrolling the Collatz conjecture
loop. Since the conjecture is not a theorem, there was no way
for angr to understand in advance that the explored routine
always terminates when y= 1. As the result, the exploration
of this analyzer worked according to the following strategy:
(1) according to the definition of Collatz function, enumerate

all valid paths after running the explored instance for a
specified number of steps (starting from 1);

(2) for each enumerated path, use constraint solving to see if
the obfuscated condition logic is already satisfiable, and
return the solution if so;

(3) if otherwise, increase the specified step length by 1, then
return to step (1).

The above procedure would keep iterating until correct trigger
of the obfuscated branch is found eventually. This observation
suggests that unless the execution path corresponding to the
being explored trigger condition is short enough, angr will
soon face path explosion during analyzing our payload objects.
To verify this argument, we modified the generator of spurious
variable in our sample instance into y = x + ag, and set
ag respectively to 50, 1000 and 77001. Put in other words,
when the obfuscated predicate is satisfied, these modified
instances would accordingly be controlled to walk 9, 124 and
350 steps until the obfuscated branches in them were satisfied.
Figure 8 shows the growth rate of simulated program states
maintained by angr when all four instances mentioned in
this subsection were analyzed. We can see that angr did
successfully solve the two trivial cases. But when processing
the other two, the simulated states it had to maintain rapidly
increased to over 2000/3500 only after enumerating possible
Collatz conjecture paths for 14 steps. This burst of states
crashed angr after prolonged yet fruitless analyses, and
before any path of 15 steps was able to be enumerated.
Recall that the obfuscation constructs used this simulation
were not yet enhanced using MBA encoding. Thus we can
safely assume that when set in its full configuration, Xmark
can prohibit dynamic analyses driven by symbolic execution
even more effectively than what is shown in this simulation.
More importantly, results of this simulation suggest that even
if a probing attack managed to detect some payload constructs
of our method, it would still be a difficult task to further
compromise or remove them.

D. Xmark vs. Control Flow Flattening

One last attack scenario to be discussed involves adver-
saries who attempt to distort a watermark embedded using
Xmark by indiscriminately manipulating static structure of
a subject software using control flow flattening. As said in
Section III-B and V-A, Xmark adopts heuristics on control
flow behavior of Collatz conjecture to collect watermark-
related program states, which covers payload constructs re-
obfuscated by control flow flattening. We performed our third
simulation to demonstrate how this feature helps our method
resisting such attacks. In this simulation, we extended the sim-
ple obfuscation routine used previously in Section VI-C into a
more realistic instance by applying MBA-based enhancement
on it. Control flow of this disguised test instance is given in

the left half of Figure 9. Our transformation introduced an
extra branch into the even path of Collatz function within
the test instance in order to provide a better picture on
how Xmark’s recognizer work on payload constructs with
diversified structures. Re-obfuscated version of the test instant
is built using ollvm, a well-known obfuscation tool able to
perform control flow flattening [43]. The flattened control flow
of our test instance is given in the right half of Figure 9. All
code blocks in the figure are indexed as how they were labeled
by LLVM. We executed both test instances with their Collatz
conjecture loop controlled by y=3 to evaluate the resilience
of Xmark against control flow flattening.

Execution trace of the two test instances (in the form of
basic block sequences) are presented in the middle of Figure 9.
Recall that as said in Section III-B, normally Xmark focus on
branches within loop bodies, while for looped switch-case
structures it only instruments the case blocks. Therefore, trace
of the disguised-only instance consisted of blocks denoted by
dark squares, where block 16 and 20 (marked by “[]” and
“()” respectively) were the two operations of Collatz function.
We consider the disguised-only instance as the baseline case.
On the other hand, trace of the flattened instance only con-
sisted of block 12 to 52 in the right half of Figure 9. According
to heuristics as also given in Section III-B, our recognizer
identified block 13 as the first appeared repeating block (which
is marked with “
�”), and use it to parse the flattened trace into
individual loop rounds. It is then easy to see that after omitting
the last round, block 22 and 26 formed a loop-wise exclusive
pairing, the sequence of which was accepted by our recognizer
as a branching trail. After compared with the baseline case,
we can see that block 22 and 26 in the flattened trace in fact
correspond to block 16 and 20 in the baseline trace, suggesting
that Xmark had correctly resolved the same branching trail
from the compromised control flow. We believe this result
has demonstrated that Xmark’s recognition protocol is capable
of resisting structure level distortive attacks like control flow
flattening, which also supported our completeness argument
as given in Section V-A.

E. Performance

There is a silent consensus that performance of a software
watermarking method is mainly about its impact to the subject
software caused by the watermark-related modifications, while
the watermark embedder and recognizer themselves are more
often than not deemed as off-line processes. Evidence of such
an assumption can be found in many existing works from how
these schemes were evaluated on this aspect [15], [16], [19],
[23]. In this paper, we have evaluated Xmark’s performance
according to the same philosophy.

We generated a total of 10 random 128-bit binary strings as
assumed watermarks, which were then embedded into selected
SPEC-CINT-2006 benchmarks using Xmark. Our method
managed in watermarking all 12 benchmarks included in the
test suite. However, we found that for 6 of the benchmarks,
all valid embedding points we identified cannot be reached
using the official workload of SPEC (see Section 3.3 of [50]).
Due to this observation, we chose to omit these benchmarks
in our evaluation, since otherwise they would only make the



MA et al.: XMARK: DYNAMIC SOFTWARE WATERMARKING USING COLLATZ CONJECTURE 2873

Fig. 9. Simulation of Xmark’s recognition process with & without control flow flattening.
TABLE IV

CODE BLOAT AND PERFORMANCE OVERHEAD CAUSED BY Xmark

results unfairly better. We described the performance impact
of Xmark by measuring code bloat and runtime overhead of
the watermarked projects. Code bloat was assessed simply by
comparing size of executables before and after watermarking.
We implemented the control units of our payload constructs in
the form of segmented functions, so that embedding different
watermarks only changes size of the payload in a limited way
(which strengthens the credibility of our evaluation results). To
demonstrate runtime overhead induced by our watermarking,
we put each of the original and the watermarked benchmarks
though 5 rounds of tests, with each of these tests complying
to SPEC’s standard procedure. Slowdown of the watermarked
benchmarks was then measured by comparing the average time
consuming of the two groups of tested executions.

We found that when analyzing the benchmarks as executable
files, the overall size increments caused by watermarking was
always of a number either less than ±200 bytes or close
of 4KB (size of a memory page). This suggested that padding
and alignment done by the file system contributed too much
in those increments compared with watermark embedding.
To reach more accurate results, we used IDA pro to measure
the exact size of target functions (where Xmark deployed the
payload constructs) in each evaluated benchmark, to see the
actual increment caused by the embedding. From Table IV we
can see that the embedding transformation of Xmark caused
an average code bloat of around 460 bytes to the residential
code modules of its payload, with the worst case obverted in
the tests a little bit more than 1KB. Results on overhead further

showed that in all the tested cases, slowdown introduced by
Xmark’s watermark payload was not significant.

It is necessary to understand that code bloat and overhead
caused by Xmark’s watermark payload depend heavily on the
implementation of its control units and MBA-based disguising.
Also, in its worst cases, a Collatz conjecture routine could
iterate for hundreds of round before terminating, and overhead
caused to the corresponding embedding point could increase
severalfold compared to the average scenarios. Our simulation
provided an empirical estimation on the average situation of
Xmark’s performance. Nevertheless, we admit that results
given in this section does not cover the worst scenario.

VII. CONCLUSION

We have presented a novel dynamic software watermarking
scheme name Xmark, which is built on the Collatz-conjecture-
based control flow obfuscation. Our method exploits Hailstone
sequences to encode binary messages into iterative branching
behaviors produced in computing Collatz conjecture, while
making a so encoded watermark recognizable by manipulating
different Collatz conjecture routines to walk through the same
Hailstone sequence on different execution traces. This mecha-
nism, together with the MBA-based enhancement applied to its
payload constructs, makes Xmark able to conceal watermark-
related code and activities from most unauthorized external
observations. The obfuscation nature of Xmark’s payload also
makes it functionally emerged with the subject software. Our
method overcomes a series of known weaknesses existed in



2874 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 11, NOVEMBER 2019

conventional dynamic watermarking solutions. It is capable of
carrying large watermark with light-weight payload, and could
effectively resist targeted attacks based on a number of static
and/or dynamic program analysis techniques including pattern
matching, model checking and symbolic execution. Moreover,
as a control flow based scheme, our method is robust against
distortive attacks using control flow flattening or edge flipping.

REFERENCES

[1] The Software Alliance. (2018). Software Management: Security Imper-
ative, Business Opportunity. [Online]. Available: https://gss.bsa.org/wp-
content/uploads/2018/05/-2018_BSA_GSS_Report_en.pdf

[2] W. F. Zhu, “Concepts and techniques in software watermarking and
obfuscation,” Ph.D. dissertation, Dept. Comput. Sci., Univ. Auckland,
Auckland, New Zealand, 2007.

[3] C. Collberg and J. Nagra, Surreptitious Software: Obfuscation, Water-
marking, and Tamperproofing for Software Protection: Obfuscation,
Watermarking, and Tamperproofing for Software Protection, 1st ed.
Reading, MA, USA: Addison-Wesley, 2009.

[4] A. Dey, S. Bhattacharya, and N. Chaki, “Software watermarking:
Progress and challenges,” INAE Lett., vol. 4, no. 1, pp. 65–75, 2018.

[5] R. I. Davidson and N. Myhrvold, “Method and system for generating
and auditing a signature for a computer program,” U.S. Patent 5 559 884,
Sep. 24, 1996.

[6] R. Venkatesan, V. V. Vazirani, and S. Sinha, “A graph theoretic approach
to software watermarking,” in Proc. 4th Int. Workshop Inf. Hiding, 2001,
pp. 157–168.

[7] G. Arboit, “A method for watermarking java programs via opaque
predicates,” in Proc. 5th Int. Conf. Electron. Commerce Res., 2002,
pp. 102–110.

[8] R. El-Khalil and A. D. Keromytis, “Hydan: Hiding information in
program binaries,” in Proc. Int. Conf. Inf. Commun. Secur., 2004,
pp. 187–199.

[9] C. Collberg and T. R. Sahoo, “Software watermarking in the frequency
domain: Implementation, analysis, and attacks,” J. Comput. Secur.,
vol. 13, no. 5, pp. 721–755, 2005.

[10] W. Zhu and C. Thomborson, “Extraction in software watermarking,” in
Proc. 8th workshop Multimedia Secur., 2006, pp. 175–181.

[11] H. Lee and K. Kaneko, “New approaches for software watermarking
by register allocation,” in Proc. 9th ACIS Int. Conf. Softw. Eng., Artif.
Intell., Netw., Parallel/Distrib. Comput., 2008, pp. 63–68.

[12] D. Gong, F. Liu, B. Lu, P. Wang, and L. Ding, “Hiding informationin
in Java class file,” in Proc. Int. Symp. Comput. Sci. Comput. Technol.,
2008, pp. 160–164.

[13] J. Hamilton and S. Danicic, “A survey of static software watermarking,”
in Proc. World Congr. Internet Security, 2011, pp. 100–107.

[14] C. Collberg and C. Thomborson, “Software watermarking: Models and
dynamic embeddings,” in Proc. 26th ACM SIGPLAN-SIGACT Symp.
Principles Program. Lang., 1999, pp. 311–324.

[15] C. Collberg et al., “Dynamic path-based software watermarking,” in
Proc. ACM SIGPLAN Conf. Program. Language Design Implement.,
2004, pp. 107–118.

[16] J. Nagra and C. Thomborson, “Threading software watermarks,” in Proc.
6th Int. Workshop Inf. Hiding, 2005, pp. 208–223.

[17] G. Myles and H. Jin, “Self-validating branch-based software watermark-
ing,” in Proc. Int. Workshop Inf. Hiding, 2005, pp. 342–356.

[18] G. Myles and C. Collberg, “Software watermarking via opaque predi-
cates: Implementation, analysis, and attacks,” Electron. Commerce Res.,
vol. 6, no. 2, pp. 155–171, 2006.

[19] C. S. Collberg, C. Thomborson, and G. M. Townsend, “Dynamic
graph-based software fingerprinting,” ACM Trans. Program. Lang. Syst.,
vol. 29, no. 6, 2007, Art. no. 35.

[20] Y. Ke-Xin, Y. Ke, and Z. Jian-Qi, “A robust dynamic software water-
marking,” in Proc. Int. Conf. Inf. Technol. Comput. Sci., vol. 1, 2009,
pp. 15–18.

[21] X. Zhang, F. He, and W. Zuo, “Hash function based software water-
marking,” in Proc. Int. Workshop Digit. Watermarking Advanced Softw.
Eng. Appl., 2008, pp. 95–98.

[22] W. Zhou, X. Zhang, and X. Jiang, “AppInk: Watermarking Android
apps for repackaging deterrence,” in Proc. 8th ACM SIGSAC Symp. Inf.,
Comput. Commun. Secur., 2013, pp. 1–12.

[23] C. Ren, K. Chen, and P. Liu, “Droidmarking: Resilient software water-
marking for impeding Android application repackaging,” in Proc. 29th
ACM/IEEE Int. Conf. Automated Softw. Eng., Jan. 2014, pp. 635–646.

[24] H. Ma, K. Lu, X. Ma, H. Zhang, C. Jia, and D. Gao, “Software
watermarking using return-oriented programming,” in Proc. 10th ACM
Symp. Inf., Comput. Commun. Secur., 2015, pp. 369–380.

[25] H. Ma, R. Li, X. Yu, C. Jia, and D. Gao, “Integrated software fingerprint-
ing via neural-network-based control flow obfuscation,” IEEE Trans. Inf.
Forensics Security, vol. 11, no. 10, pp. 2322–2337, Oct. 2016.

[26] M. Madou, B. Anckaert, B. De Sutter, and K. De Bosschere, “Hybrid
static-dynamic attacks against software protection mechanisms,” in Proc.
5th ACM Workshop Digit. Rights Manage., 2005, pp. 75–82.

[27] G. Gupta and J. Pieprzyk, “A low-cost attack on branch-based software
watermarking schemes,” in Proc. Int. Workshop Digit. Watermarking,
2006, pp. 282–293.

[28] M. D. Preda, M. Madou, K. De Bosschere, and R. Giacobazzi, “Opaque
predicates detection by abstract interpretation,” in Proc. Int. Conf.
Algebraic Methodol. Softw. Technol., 2006, pp. 81–95.

[29] J. Ming, D. Xu, L. Wang, and D. Wu, “LOOP: Logic-oriented opaque
predicate detection in obfuscated binary code,” in Proc. 22nd ACM
SIGSAC Conf. Comput. Commun. Secur. (CCS), 2015, pp. 757–768.

[30] J. Lopez, L. Babun, H. Aksu, and A. S. Uluagac, “A survey on function
and system call hooking approaches,” J. Hardw. Syst. Secur., vol. 1,
no. 2, pp. 114–136, 2017.

[31] Z. Wang, J. Ming, C. Jia, and D. Gao, “Linear obfuscation to combat
symbolic execution,” in Proc. 16th Eur. Symp. Res. Comput. Secur.,
2011, pp. 210–226.

[32] J. C. Lagarias, The Ultimate Challenge: The 3×1 Problem. Providence,
RI, USA: AMS, 2010.

[33] Y. Zhou, A. Main, Y. X. Gu, and H. Johnson, “Information hiding
in software with mixed Boolean-arithmetic transforms,” in Information
Security Applications. Berlin, Germany: Springer, 2007, pp. 61–75.

[34] R. L. Rivest, “Permutation polynomials modulo 2w ,” Finite Fields Appl.,
vol. 7, no. 2, pp. 287–292, 2001.

[35] G. Danezis, “Statistical disclosure attacks,” in Proc. IFIP Int. Inf. Secur.
Conf. Boston, MA, USA: Springer, 2003, pp. 421–426.

[36] K. Harrison and S. Xu, “Protecting cryptographic keys from memory
disclosure attacks,” in Proc. 37th Annu. IEEE/IFIP Int. Conf. Depend-
able Syst. Netw. (DSN), Jun. 2007, pp. 137–143.

[37] J. Kinder, S. Katzenbeisser, C. Schallhart, and H. Veith, “Proactive
detection of computer worms using model checking,” IEEE Trans.
Dependable Secure Comput., vol. 7, no. 4, pp. 424–438, Oct. 2010.

[38] C. Wang, J. Davidson, J. Hill, and J. Knight, “Protection of software-
based survivability mechanisms,” in Proc. 31th Int. Conf. Dependable
Syst. Netw., 2001, pp. 193–202.

[39] F. Cohen, “Computer viruses: Theory and experiments,” Comput. Secur.,
vol. 6, no. 1, pp. 22–35, 1987.

[40] F. Hohl, “Time limited blackbox security: Protecting mobile agents
from malicious hosts,” in Mobile Agents and Security. Berlin, Germany:
Springer, 1998, pp. 92–113.

[41] Z. Wu, S. Gianvecchio, M. Xie, and H. Wang, “Mimimorphism: A new
approach to binary code obfuscation,” in Proc. 17th ACM Conf. Comput.
Commun. Secur., 2010, pp. 536–546.

[42] C. Collberg, S. Martin, J. Myers, and J. Nagra, “Distributed application
tamper detection via continuous software updates,” in Proc. 28th Annu.
Comput. Secur. Appl. Conf., 2012, pp. 319–328.

[43] P. Junod, J. Rinaldini, J. Wehrli, and J. Michielin, “Obfuscator-LLVM—
Software protection for the masses,” in Proc. IEEE/ACM 1st Int.
Workshop Softw. Protection, May 2015, pp. 3–9.

[44] C.-K. Luk et al., “Pin: Building customized program analysis tools
with dynamic instrumentation,” in Proc. ACM SIGPLAN Conf. Program.
Lang. Design Implement., 2005, pp. 190–200.

[45] C. Kugler and T. Müller, “Separated control and data stacks to mitigate
buffer overflow exploits,” EAI Endorsed Trans. Secur. Saf., vol. 2, no. 4,
pp. 1–34, 2015.

[46] D. Xu, J. Ming, and D. Wu, “Generalized dynamic opaque predicates:
A new control flow obfuscation method,” in Proc. Int. Conf. Inf. Secur.,
2016, pp. 323–342.

[47] T. Dullien and R. Rolf, “Graph-based comparison of executable objects
(English version),” in Proc. Symp. sur la Securite des Technol. de l’Inf.et
des Commun., 2005, p. 3.

[48] H. Flake, “Structural comparison of executable objects,” in Proc. Int.
GI Workshop Detection Intrusions Malware Vulnerability Assessment,
2004, pp. 161–174.

[49] Y. Shoshitaishvili et al., “SOK: (State of) the art of war: Offensive
techniques in binary analysis,” in Proc. IEEE Symp. Secur. Privacy,
May 2016, pp. 138–157.

[50] SPEC-Open-Systems-Group. (2011). SPEC CPU2006 Run and Report-
ing Rules. [Online]. Available: https://www.spec.org/cpu2006/Docs/
runrules.html

Authors’ photographs and biographies not available at the time of publication.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


