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Abstract

In software security, many techniques and applications depend on binary code
reverse engineering, i.e., analyzing and retrofitting executables with the source code
unavailable. Despite the fact that many security hardening techniques rely heavily
on reverse engineering, modern binary disassembling and reconstruction techniques
still cannot adequately fulfill many of the requirements. In particular, no reverse
engineering tool can disassemble an executable into assembly code which can be
reassembled back in a fully automated manner, especially when the processed objects
are Commercial-Off-The-Shelf (COTS) binaries with most symbol and relocation
information stripped. Due to the lack of support for direct reassembling, existing
binary instrumentation tools leverage patch or replica-based rewriting techniques
to guarantee the correct functionality of the instrumented outputs, which usually
incur high execution slowdown and binary code size increase.

We present Uroboros, a tool that can disassemble legacy executables to the
extent that the generated code can be assembled back to working binaries without
manual effort. The key technique proposed in Uroboros is named reassembleable
disassembling, in which we develop a set of methods to precisely recover each
component of a binary executable, including code, data and meta-information.
In particular, Uroboros is the first to be capable of not only recovering the
assembly program, but enabling reassembling of the disassembled output with the
correct functionality. We further extend Uroboros into a general purpose binary
instrumentation platform with a rich set of binary instrumentation APIs and utilities.
Our evaluation on widely-used program binaries shows that Uroboros can provide
support for reassembly and instrumentation on legacy binary executables with
better performance, lower labor cost, and a broader scope of applications.

In addition, we build advanced binary analysis and instrumentation applications
for security purpose. Function recognition in program binaries serves as the
foundation for many security retrofitting and analysis tasks. However, as binaries
are usually stripped before distribution, function information is indeed absent in
most binaries. We develop FID to recognize functions through machine learning
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techniques. FID extracts semantic information from binary code and trains a
machine learning model for recognition. Our evaluation demonstrates that FID
has a high recognition accuracy on commonly-used program binaries as well as
obfuscated code.

We further build program diversification tools. By transforming software into
different forms before deployment, software diversification can effectively mitigate
many attacks. Enlightened by research in other areas, we seek to apply different
diversifications to the same program for a synergy effect such that the resulting
hybrid transformations can have boosted diversification effects at modest cost.
Given a set of commonly-used diversification passes, we propose a novel selection
strategy to promptly construct a transformation composition that performs better
than any single transformation in the set.
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Chapter 1 |
Introduction

Reverse engineering has many important applications in computer security, one of
which is retrofitting software for safety and security hardening when source code
is not available. However, we surprisingly found that no existing tool is able to
disassemble executable binaries into assembly code that can be correctly assembled
back in a fully automated manner, even for simple programs. Actually in many
cases, the resulted disassembled code is far from a state that an assembler accepts,
which is hard to fix even by manual effort. This has become a severe obstacle.
People have tried to overcome it by patching or duplicating new code sections for
retrofitting of executables, which is not only inefficient but also cumbersome and
restrictive on what retrofitting techniques can be applied to.

In this chapter, we first survey existing binary reverse engineering tools and
reveal our surprising finding that all the disassemblers share one common limitation
(i.e., the lack of reassembility). We then seek to design binary disassemblers from a
new angle; executables are disassembled to the extent that the generated code can
be assembled back to working binaries without manual effort. We name the new
disassembling technique as reassembleable disassembling.

1.1 Limitations of Existing Binary Reverse Engineer-
ing Tools
In computer security, many techniques and applications depend on binary reverse
engineering, i.e., analyzing and retrofitting software binaries with the source code
unavailable. For example, software fault isolation (SFI) [1–5] rewrites untrusted
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programs at the instruction level to enforce certain security policies. To ensure
program control-flow integrity (CFI, meaning that program execution is dictated
to a predetermined control-flow graph) [6–11] without source code, the original
control-flow graph must be recovered from a binary executable and the binary
must be retrofitted with the CFI enforcement facility embedded [12, 13]. Symbolic
taint analysis [14] on binaries must recover assembly code and data faithfully. The
defense techniques against return-oriented programming (ROP) attacks also rely on
binary analysis and reconstruction to identify and eliminate ROP gadgets [15–19].

Despite the fact that many security hardening techniques are highly dependent
on reverse engineering, flexible and easy-to-use binary manipulation itself remains
an unsolved problem. Current binary decompilation, analysis, and reconstruction
techniques still cannot fully fulfill many of the requirements from downstream. To
the best of our knowledge, there is no reverse engineering tool that can disassemble
an executable into assembly code which can be reassembled back in a fully automated
manner, especially when the processed objects are commercial-off-the-shelf (COTS)
binaries with most symbol and relocation information stripped.

We have investigated many existing tools from both the industry and academia,
including IDA Pro [20], Phoenix [21], Dagger [22], MC-Semantics [23], Second-
Write [24], BitBlaze [25], and BAP [26]. Unfortunately, these tools focus more
on recovering as much information (e.g., data and control structures) as possible
for analysis purposes, but less on producing assembly code that can be readily
assembled back without manual effort. Hence, none of them provide the desired
disassembly and reassembly functionality that we consider, even if the processed
binary is small and simple.

Due to lack of support from reverse engineering tools, people build high-level
security hardening applications based on partial binary retrofitting techniques,
including binary rewriting tools such as Alto [27], Vulcan [28], Diablo [29], and
binary reuse tools such as BCR [30] and TOP [31]. We consider binary rewriting as a
partial retrofitting technique because it can only instrument or patch binaries, thus
not suitable for program-wide transformations and reconstructions. As for binary
reuse tools, they work by dynamically recording execution traces and combining
the traces back to an executable, meaning the new binary is only an incomplete
part of the original binary due to the incomplete coverage of dynamic program
analysis.
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Partial retrofitting has notable drawbacks and limitations:

• Patch-based rewriting could introduce non-negligible runtime overhead. Since
the patch usually lives in an area different from the original code of the binary,
interactions between the patch and the original code usually require a large
amount of control-flow transfers.

• Patch-based rewriting usually relocates instructions at the patch point to
somewhere else to make space for the inserted code. As a result, it requires
the affected instructions to be relocatable by default.

• Instrumentation-based rewriting expands binary sizes significantly, sometimes
generating nearly double-sized products.

• Binary reuse often requires a binary component to be small enough for
dynamic analysis to cover; otherwise the correctness cannot be guaranteed.

1.2 Reassembleable Disassembling
Having investigated previous research on binary manipulation and reconstruction,
we believe that it could be a remarkable improvement if we are able to automatically
recover the assembly from binaries and make the assembly code ready for reassembly.
When a binary can be reconstructed from assembly code, many high-level and
program-wide transformations become feasible, leading to new opportunities for
research based on binary retrofitting such as CFI, diversification, and ROP defense.

Our goal is quite different from previous reverse engineering research. Instead
of trying to recover high-level data and control structures from program binaries
which helps binary code analysis, we aim at a more basic objective, i.e., producing
assembly code that can be readily reassembled back without manual effort, which
we call the reassembility of disassembly. Although the research community has
made notable progress on binary reverse engineering, reassembility is still somewhat
blank due to the lack of attention. In this sense, our contribution is complementary
to existing work.

With that said, we believe that the technical challenge is also a cause of the
deficiency in binary reassembly support from existing tools. We have confirmed that
the key to reassembility is making the assembly code relocatable. Relocation is a
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linker concept, which is basically for ensuring program elements defined in different
source files can correctly refer to each other after being linked together. Being
relocatable is also a premise for supporting program-wide assembly transformations.
In COTS binaries, however, the information necessary for making disassembly
results relocatable is mostly unavailable. There has been research trying to address
the relocation issue [30–32], but existing work mostly relies on dynamic analysis
which is unlikely to cover the whole program.

We present Uroboros, a disassembler that does reassembleable disassembling.
In Uroboros, we develop a set of methods to precisely recover each part of
a binary executable. In particular, we are the first to be capable of not only
recovering code, but also data and meta-information from COTS binaries without
manual effort. We have implemented a prototype of Uroboros and tested it on
244 binaries, including the whole set of GNU Coreutils and the C programs in
SPEC2006 (including both 32-bit and 64-bit versions). In our experiments, most
programs reassembled from Uroboros’s output can pass functionality tests with
negligible execution overhead, even after repeated disassembly and reassembly. Our
preliminary study shows that Uroboros can provide support for program-wide
transformations on COTS binaries.

In summary, we make the following contributions:

• We initiate a new focus on reverse engineering. Complementary to historical
work which mostly focuses on recovering high-level semantic information from
binary executables or providing support for binary analysis, our work seeks
to deliver reassembility, meaning we disassembles binaries in a way that the
disassembly results could be directly assembled back into working executables,
without manual edits.

• We identify the key challenge is to make the disassembled program relocatable,
and propose our key technique to recover references among immediate values
in the disassembled code, namely “symbolization”.

• With reassembility, our research enables direct binary-based transformation
without resort to the previously used patching method, and can potentially
become the foundation of binary-based software retrofitting.
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• We implement a prototype of Uroboros and evaluate its strength on binary
reassembly. We applied our technique to 244 binaries, including the whole set
of GNU Coreutils and SPEC2006 C binaries. The experiment results show
that our tool does correct disassembly and introduces only modest cost.

• Our disassembler produces “normal” assembly code in the sense that binaries
reassembled from Uroboros’s output assembly can again be disassembled
(and hence the name Uroboros1), or be used to accomplish other reverse
engineering tasks. We verify this by repeating the disassemble-reassemble
loop for thousands of times on different binaries.

• We further extend Uroboros into a general purpose binary instrumentation
platform with a rich set of binary instrumentation APIs and utilities.2 We
perform comparative evaluations between Uroboros and the state-of-the-art
binary instrumentation tools. To demonstrate the versatility of Uroboros,
we also implement two real-world reverse engineering tasks which could be
challenging for other instrumentation tools to accomplish. Our experimental
results show that Uroboros outperforms the existing binary instrumentation
tools with better performance, lower labor cost, and a broader scope of
applications.

1.3 Thesis Organization
The rest of the thesis is organized as follows. We first present an overview of the
related research work in Chapter 2. Chapter 3 proposes a novel disassembling
technique of binary executables, reassembleable disassembling. Chapter 4 elaborates
on the design and implementation of a generic binary instrumentation platform
Uroboros that implements our reassembleable disassembling algorithm. We
further proposes two binary instrumentation applications on top of Uroboros in
Chapter 5 and Chapter 6 for function recognition and software diversification. We
present further discussion in Chapter 7 and conclude the thesis in Chapter 8.

1Uroboros is a symbol depicting a serpent eating its own tail.
2Uroboros is publicly available for download from https://github.com/s3team/uroboros.
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Chapter 2 |
Related Work

In this chapter, we first review related research on binary code reverse engineering
and instrumentation. We then review research articles on binary analysis and
retrofitting applications such as software diversification and function recognition.
Literatures reviewed in this section are actually related and also inspired this thesis
research.

2.1 Reverse Engineering and Binary Instrumentation

2.1.1 Binary Disassembling

There is no disassembler known to us that can generate working assembly code
from binaries whose symbol and relocation information is stripped. IDA Pro [20]
is considered as the best commercial disassembler available on the market. It can
decode binaries into assembly and further decompile assembly into C code for
program analysis. However, the assembly code produced by IDA Pro cannot be
directly used as the input of any assembler. As stated in its manual [33], assembly
code produced by IDA Pro is meant for analysis and cannot be directly reassembled
or recompiled.

SecondWrite [24] leverages multiple static analysis techniques to lift binaries
into LLVM IR. It is reported that the recovered LLVM IR can be converted back
into C code given the LLVM’s IR-to-C backend. However, it is unclear to us how
SecondWrite symbolizes the data sections and recovers the meta-data information
of the binaries. The paper does not contain an evaluation on this recompilation
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functionality. Moreover, the IR-to-C backend has been removed from LLVM release
since 3.1, because it is not mature enough to handle non-trivial programs [34].

Dagger [22] is another tool that translates native code into LLVM IR, but the
implementation is far from complete. There is a pre-release version available online.
We tried to use it to decompile a simple binary (compiled from a C program with
only empty main function). The decompiler reported several errors and generated
an LLVM IR file which cannot be compiled back into binary due to lack of some
symbol definitions.

MC-Semantics [23] is yet another tool for native code to LLVM IR translation.
We used MC-Semantics to decompile some quickly written mini programs. Although
the code produced by MC-Semantics can be made binaries, the execution results
of these binaries are not the same as the originals, which we believe is due to
incorrect symbol references. In addition, different from previously reviewed work,
MC-Semantics works at the scale of object files rather than executables. Lacking
the ability to handle linked binary programs narrows its scope of application.

BAP [26] is a binary analysis platform that comes with a disassembler. It can lift
assembly code to a BAP-defined high-level intermediate representation that can be
further analyzed statically. Several reverse engineering tools have been built based
on BAP, including the C type recovery tool TIE [35] and the C control-flow recovery
tool Phoenix [21]. Although BAP provides solid support for binary analysis, the
strength of its disassembler is also limited to analysis only.

There could be multiple reasons that existing tools fail on reassembling. One
reason is the technical challenges such as separating code and data, symbolizing
the data sections, etc. The other reason could be the difference in the design
goals. Most existing tools aim to produce more readable code or code that can be
analyzed, not for the purpose of translation and reassembly. We emphasize that
the ability to reassemble the output from a disassembler can provide an enabling
infrastructure, facilitating further research.

2.1.2 Static Binary Instrumentation

Static methods instrument the whole input binary before execution [24,29,36–38].
It has been widely used in security hardening tasks such as control-flow hijacking
mitigation [17], software control-flow integrity enforcement [12, 13], and retrofitting
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security defenses [39]. However, due to the difficulties of disassembly, most previous
static binary rewriting tools have to require relocation or debug information [29,
36,38]. SecondWrite [24] performs advanced static analysis to lift binary code into
LLVM IR. The IR is then employed for binary rewriting. PSI [37] supports robust
security-related binary instrumentation through binary rewriting.

As we have pointed out, a common feature of conventional static binary in-
strumentation is that it relies on binary rewriting. It has to carefully relocate
instructions at the instrumentation point to arrange space for newly inserted code.
To this end, patch-based and replica-based instrumentations are frequently used.
However, the newly generated binary could exhibit high execution slowdown, size
increase, and even error functionality. The key feature of Uroboros is that it
does not rely on binary rewriting. Instead, it leverages the advanced disassembling
technique [40] to directly inline the instrumentation code into the target binary.
Therefore, Uroboros delivers a decent runtime performance and a small increase
in code size.

2.1.3 Dynamic Binary Instrumentation

Dynamic binary instrumentation inserts additional code when a program executes,
which is more accurate than static binary instrumentation since it only considers
the real path taken at run time [41–43]. Dynamic binary instrumentation has
been widely used for program performance profiling [44] and security-oriented
execution monitoring tasks [14, 45]. Pin [41] and DynamoRIO [42] undertake
lightweight instrumentation jobs, while Valgrind [43] is designed for more heavy-
weight instrumentation tasks, e.g., memory debugging. Among them, Pin is widely
used for goal-driven binary security tasks, such as dynamic taint analysis [14,45].
DynInst [46, 47] supports both static and dynamic binary instrumentation. It
disassembles the stripped binaries and instruments them statically or dynami-
cally. Dynamic instrumentation methods cannot be deployed in some scenarios
such as real-time or mission-critical systems due to the runtime instrumentation
environment.
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2.2 Applications

2.2.1 Binary Code Reuse

Binary reuse is mostly based on dynamic analysis. One of the representative binary
reuse tools is BCR [30]. BCR extracts and reuses functions from binaries with
a hybrid approach. BCR first executes binaries in a monitored environment and
records execution traces and memory dumps. Binaries are then statically disassem-
bled starting from the entry point. In the disassembly process, the dynamically
collected information is used to resolve the destinations of indirect branches. In the
end BCR manages to extract a “closure” of code reachable from the entry point
which can be reused by other programs. Clearly, the correctness of the reused code
cannot be guaranteed if BCR does not cover all feasible execution paths.

In addition to BCR, there are other binary reuse tools that employs similar
basic ideas, such as Inspector Gadget [32] and TOP [31]. While these tools have
made improvements in different aspects, the fact that they all rely on dynamic
analysis leads to the incompleteness issue, more or less. In general, these tools can
only do partial binary retrofitting.

2.2.2 Software Diversification

The idea of software diversification has been studied for decades. Diversifying
approaches are presented with various scopes from a single instruction to the
whole program. Fine-grained approaches such as instruction and basic block-level
diversification aim at diversifying instructions within one basic block or sequences
of basic blocks. Typical transformations include dead code insertion, instruction
substitution, and basic block reordering [48–50]. These transformations have been
adopted by both malware triage evasion [51,52] and program randomization [17,
19]. Coarse-grained approaches are essentially deployed in the program runtime
environment, hardening the program context from being exploited. Stack-layout
randomization [53] and address space layout randomization (ASLR) [54] can deploy
probabilistic defense, say, the unpredictable memory addresses can effectively
impede code reuse attacks. However, attacks are still feasible due to limited
randomization space of these coarse-grained approaches [55].
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Other related work propose to randomize the encoding of program instructions
[56]. Program encoding leverages one reversible encoding method to statically
translate program text into encoded data. Usually a decoding routine and the
decoding key is distributed inside the program, which can decode the data later.
The encoded program can defeat a large number of static analyses. Improved
techniques like virtual machine packer have been utilized to construct more secure
binaries [57–60].

Even though a few research work have touched the process of “composite
diversification” [48,61, 62], they are limited to some primary ideas or the proposed
approaches only transform input program with very limited iterations. To our
best knowledge, there are not existing work undertake an in-depth study on the
composite transformation synergy.

2.2.3 Function Recognition in Binary Executables

Function identification is considered as the foundation for many binary analysis and
test applications, and there has been a number of related work in this topic [63–67].
Rosenblum et al. [65] propose to use machine learning based approach to address the
function recognition problem. Bao et al. [68] detail multiple challenges in this topic,
and propose a weighted prefix-tree based approach to train the recognition model.
As aforementioned, their work have two implementations by learning both machine
code bytes and instruction sequences, and it has been evaluated that ByteWeight
can significantly outperform previous work [65] regarding recognition accuracy
and processing time. Shin et al. [69] proposes a deep-learning based technique
to recognize functions by learning from machine code bytes. It is reported that
their work has better performance and less processing time than ByteWeight.
Williams et al. [70] report that by extending machine learning based approach with
control flow reconstruction, their work can also have comparable performance.

While some recent research work reports good performance using data mining
approaches, they essentially share a similar design choice, i.e., they mainly capture
the syntax-level information to learn. Conceptually, while syntax can be easily
extracted, the learned model suffers from syntax changes, e.g., binary obfuscation
and diversification.
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Chapter 3 |
Foundation: Reassembleable Dis-
assembling

Binary executables widely exist in the wild for benign and malicious purposes, and
since high-level program representation is largely absent in executables, binary
code analysis has become a central focus and challenge in cybersecurity research.
We have briefly discussed the motivation and technical challenges for develop-
ing a disassembler which can deliver reassembility in Section 1.2. This chapter
presents a ground-breaking technique for binary code reverse engineering, which
transforms binary code into an analysis and retrofitting-friendly format and achieves
reassembility. In this chapter, we first detail the technical challenges in Section 3.1.
Section 3.2 elaborates on the key contribution of the proposed technique, and
we then present the design and optimization of our technique in Section 3.3 and
Section 3.4, respectively. The experimental results are reported in Section 3.5.1

3.1 Challenges
In this research, we assume that the binaries to disassemble are stripped COTS
binaries, namely binaries without any relocation information or symbols, except
those necessary for dynamic linking. We also assume that the binaries are compiled
from unobfuscated C programs, without self-modifying features. The target hard-
ware architectures of the binaries are x86 and x64. The binary executable format
is the Executable and Linkable Format (ELF).

1The work of this chapter is published in the 24th USENIX Security Symposium [40].
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3.1.1 Raw Disassembly

In this work, raw disassembly is referred to as the process of parsing the binary form
of a program to its raw textual representation. The difficulty of raw disassembly
can vary a lot in different situations. In the most general case, this problem is
undecidable. One of the reasons is that the problem of statically determining
the addresses of indirect jumps is undecidable [71]. Furthermore, the existence of
advanced program features such as self-modifying code makes the problem harder.
Another issue is that current computer architectures do not distinguish code and
data, and there is no easy way for a raw disassembler to distinguish them either.
This problem is further worsened by the variable-length instruction encoding used
by, for example, the x86 instruction set architecture.

However, with years of intensive effort on improving related techniques, the state
of the art can already reach a very high success rate when disassembling binaries
compiled from practically legitimate C source code by mainstream compilers. A
recent paper by Zhang et al. [12] proposed a novel raw disassembly method which
combines two existing disassembly algorithms together. We reimplemented this
algorithm and applied it to our evaluation set which includes 244 binaries. No
errors were reported by the raw disassembler and subsequent evaluation also verified
the correctness of this algorithm on our evaluation set. As a result, we do not
consider raw disassembly, or binary decoding, as a major challenge to address in
this research.

3.1.2 Reassembly

Successfully decoding the binaries is only the first step to the goal of this research.
Ideally, binary reverse engineering tools should be able to support at least the
following process:

• The reverse engineering tool disassembles the original binary into assembly
code.

• Users can perform static analysis on the disassembled program.

• Users can perform transformations on the disassembled program.
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mov 0xc0, %eax

0xa080xc0:

binary

.text
mov 0xc0 , %eax

.data

.long 0xa08

unrelocatable

.text
mov Glob , %eax

.data
Glob:
.long 0xa08

relocatable

mov 0xc0, %eax

0xa08

?0xc0:

mov Glob, %eax

0xa08Glob:

assemble

assemble

Figure 3.1: Relocatable and unrelocatable assembly code.

• The transformed program can be assembled back into an usable binary
executable, with all transformation effects retained.

Although it may not be obvious, the feasibility of the first three steps does not
naturally imply the feasibility of the last step. There have been reverse engineering
tools or platforms that can (partially) enable the first three steps [25, 26], but
support for reassembly is still blank.

As mentioned in the introduction, making the assembly code relocatable is the
crux of reassembility. Figure 3.1 is an artificial example comparing relocatable and
unrelocatable assembly code. In COTS binaries, information required for making
disassembly results relocatable is unavailable. Most program transformations
inevitably change binary layouts, but a reverse engineering tool has only very
limited control over how the linkers assign memory addresses of the program
elements, leading to situations illustrated by Figure 3.1. Note the memory cell
located at address 0xc0 in the original memory, which is possibly a global variable.
The raw disassembly process does not recognize the concrete value 0xc0 in the
code as a reference. Thus when this unrelocatable assembly code is reassembled,
the resulting binary will very likely be defective because the content of the memory
cell at 0xc0 in the original binary may not be placed the same address in the new
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binary. In the relocatable assembly, however, the data originally living at 0xc0 is
given a symbolic name, and the concrete address 0xc0 is replaced by a reference to
this name. This is why relocatable assembly can be reassembled into a working
executable.

As suggested by the example, if a reverse engineering tool seeks to reassemble
the transformed assembly code into a working executable, it has to identify program
elements whose addresses could possibly change in the new binary, and lift concrete
memory addresses referring to them to abstract symbolic references. Obtaining
relocatable assembly from a COTS binary is non-trivial because very little auxiliary
information in the binary can be utilized to help identify references among concrete
values. Essentially, the problem can be generalized as the following: given an
immediate value in the assembly code (either in a code section or data section),
is it an memory address or a constant? Although this looks like a typical type
analysis problem, in the context of binary reassembly it becomes much more
challenging. From a static point of view, since most machine assembly languages
are untyped, type inference is difficult in the first place. Compared to high-level
programming languages, assembly languages lack explicit syntax for denoting
procedure boundaries and basic control-flow logic, making static analysis even more
difficult. What is worse, many references live in the data sections, some of which
are indirectly referred to by the code via numerous reference hops. At present, most
proposed program analysis techniques, either static or dynamic, are code oriented,
lacking the capability of analyzing the property of a given data chunk. Finally,
reassembly has almost zero tolerance for type inference errors, because a single
false positive or false negative can place the reassembled binary in a non-functional
state.

Solving the relocatable problem in binary disassembly is the main purpose
and contribution of this work. In the rest of the paper, we call the process of
identifying references among immediate values in the raw assembly the process
of “symbolization”. To distinguish the concept from the traditional meaning
of disassembling, we call our work reassembleable disassembling that generates
relocatable assembly code.

In addition to relocation information, a full-fledged disassembler also needs to
recover some meta information to make the reassembly feasible. Meta-data sections
in a binary executable provide information to direct some link-time and runtime
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behavior of the program. They should also be recovered properly in order to ensure
the reassembled binaries are semantic-equivalent to the originals.

3.2 Symbolization
This section describes the symbolization problem in detail and presents our solution.

3.2.1 Classification

There are four types of symbol references that we need to identify for reassembility.
The classification is based on two criteria—where a reference lives and where a
reference points. Basically, we divide the binary into two parts, i.e., the code
sections and the data sections, whose contents are as suggested by their names.
For ELF binaries on Unix-like platforms, typical code sections include .text and
.init etc. Typical data sections include .data, .rodata, .bss, etc. A symbol
reference can live in either code sections or data sections, and can point to either
code sections or data sections as well, leading to a total of four types. Figure 3.2 is
an example showing all four types of symbol references. We give each of them a
short name, i.e., c2c, c2d, d2c, and d2d references.

3.2.2 Method

When it comes to solving the symbolization problem, we have considered various
potential solutions. Due to the reasons listed in Section 3.1.2, we conclude that
no existing program analysis technique can handle the symbolization problem in
our special context. Hence, we decide to turn to another direction. In this work,
we identify the immediate values which are actually symbol references by applying
several matching rules inferred from our study on a large amount of binaries.
Although some of these strategies may not seem exciting at the first sight, they
work surprisingly well in our evaluation on 244 binaries compiled from C code.

Since we are solving the symbolization problem in an empirical way, the match-
ing strategies are all based on certain assumptions. Depending on whether an
assumption is accepted or not, different rules are applied for symbolization. We
now introduce the assumptions and the corresponding symbolization strategies.
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fun1:
call fun2

fun2:
mov ptr , %eax
lea (%eax , %ebx , 4), %ecx
call *% ecx

handler1 :
...

handler2 :
...

ptr:
.long table

table:
.long handler1
.long handler2

Code Section
Data Section

c2c c2d

d2c

d2d

Figure 3.2: Different types of symbol references in assembly code.

At the point of symbolization, we assume that we have already obtained the raw
assembly decoded from binaries using the algorithm by Zhang et al. [12], so we can
get all immediate values that appear in a binary. There are two kinds of immediate
values—constants used as instruction operands and the byte stream living in data
sections. Among all these immediate values, some can be excluded from being
considered for symbolization at the first place. Unless a program intentionally
causes memory access errors, which is rarely the case, an immediate value can be a
reference to symbols only if this value falls in the address space allocated for the
binary. For a binary of reasonable size, the utilization of address space is usually
sparse, so there is a wide range of address space which is actually invalid.

Assuming all immediate values are potential symbol references, we can filter
out obviously invalid references based on their target addresses. According to
our symbol reference classification in Section 3.2.1, a reference can only point to
code sections or data sections; especially, if a reference points to code sections, the
destination must be the starting address of some instruction. Our study on 244
binaries shows that this simple filter is sufficient to identify c2c and c2d symbol
references with full correctness.
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The really challenging part is data section symbolization, i.e., identifying d2c
and d2d references. The first step of data section symbolization is to slice the
data sections, which are continuous areas of binary bytes, into individual values
of different lengths. Since the raw disassembly process does not assign the data
sections any semantics, there is no ready-made guidance on how they should be
sliced. Regarding this problem, we introduce the first assumption which is about
binary layout:

(A1) All symbol references stored in data sections are n-byte aligned,
where n is 4 for 32-bit binaries and 8 for 64-bit binaries.

Since unaligned memory accesses cause considerable performance penalty, compilers
tend to keep data aligned by its size. For data alignment, compilers can even
sacrifice memory efficiency by inserting padding into data sections. With that
said, A1 stays as an assumption because occasionally programmers do want non-
aligned data layout. For example, the “packed” attribute supported by GCC allows
programmers to override the default alignment settings.

If we accept assumption A1, only n-byte long values which are also n-byte aligned
in data sections are considered for symbolization. Alternatively with A1 rejected,
all n-byte long memory content in data sections are considered for symbolization.
This is implemented as an n-byte sliding window which starts from the beginning
of a data section and scans through the entire section in a first-fit manner. Each
time the sliding window moves forward 1 byte and check the value of the covered
bytes. If the value fulfills the basic requirements for being a d2d or d2c reference,
it will be considered for symbolization and the sliding window advances n bytes
forward. In case that the value does not meet the requirements, the sliding window
moves forward 1 byte only.

In addition to assuming the characteristics of binaries, making assumptions on
user requirements for our tool also helps improve its performance. As stated earlier,
the goal of symbolization is to make assembly code relocatable so that users can
perform program-wide transformations on the assembly and then assemble it back
to a working executable. From our experience, most transformations on assembly
only touch the instructions without modifying the original data. If we make the
following assumption
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(A2) Users do not need to perform transformation on the original binary
data.

then we can keep the starting addresses of data sections the same as their old
addresses when performing reassembly, by providing a directive script to the linker.
In this way, we can ignore d2d references during symbolization simply because we
do not need them to be relocatable anymore. Thus, with A2 accepted, only the
immediate values that fall within code sections (d2c references) are considered for
symbolization. Contrarily without accepting this assumption, immediate values
that fall within either code sections (d2c references) or data sections (d2d references)
will need to be considered for symbolization.

We want to avoid symbolizing d2d references because they are used in a very
flexible manner. On the other hand, there are more common patterns in d2c
references which can be exploited by our symbolization method. We summarize
the patterns with the following assumption:

(A3) d2c symbol references are only used as function pointers or jump
table entries.

By accepting A3, an n-byte value in data sections is lifted to a d2c reference if it is
the starting address of some function, or it forms a jump table together with other
n-byte values adjacent to it. Otherwise with A3 rejected, an n-byte data section
value is symbolized whenever it is within the address space of code sections.

When A3 is taken, we will need to know whether a code section address is the
start of a function. We also need to clarify what a jump table would be in the
binary form. Identifying function beginnings in a binary is not a new research topic.
Based on machine learning techniques, recent research [68] can reportedly identify
function starting addresses with over 98% precision and recall. To avoid reinventing
the wheel, we assume we have already known all the function start addresses. Since
the binaries used in our research are all compiled from source code, we are able to
get the ground truth by controlling the compilation and linking process.

Regarding the identification of jump tables, our algorithm is as follows:

• Jump table start. We traverse the data sections from the beginning to the
end. If the address of an n-byte value is referred to by an instruction as the
operand, it is considered as the first entry of a new jump table.
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Figure 3.3: Uroboros workflow.

• Jump table entry. If an n-byte value follows an already identified jump
table entry, this value is also considered as an entry as long as it refers to
instructions within the same function that previous entries point to.

The three assumptions A1, A2, and A3 are the basics of our symbolization
method. With different choices of an assumption being applied or not, we can
derive different strategies when processing a binary. Section 3.5 has a detailed
evaluation on the correctness of reasonable combinations of these assumptions.

3.3 Design

3.3.1 Overview

The architecture of Uroboros is shown in Figure 3.3. Uroboros consists of two
main modules—the disassembly module and the analysis module. The disassembly
module decodes instructions with raw disassembling (Section 3.3.2) and dumps
the data sections. The analysis module symbolizes memory references in both
code and data sections (Section 3.2) and recovers the meta-information from the
dumped content (Section 3.3.4). Uroboros also recovers part of the control-flow
structures from direct transfers so that it provides basic support for program-wide
transformation (Section 3.3.3).

The disassembly module employs an interactive process to validate disassembled
code from a linear disassembler. The linear disassembler decodes the code sections
and dumps out all data and meta information sections. A validator is then invoked
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to correct disassembly errors due to “data gaps” embedded inside code sections.
The details are presented in Section 3.3.2.

After the raw disassembly is over, the dumped code, data, and meta-data
are sent to the analysis module. This module identifies symbol references among
immediate values in the code and data. As elaborated in Section 3.2, we propose
three assumptions for reassembleable disassembling. The corresponding strategies
are implemented in Uroboros to guide the symbolization process. Uroboros can
be configured to utilize different combinations of assumptions for symbolization. We
give a detailed evaluation on the correctness of different strategies in Section 3.5.1.

Given the symbolized instructions, the analysis module also partially recovers
the control flows based on direct control-flow transfers. With the relocatable
assembly and the basic control-flow structures, users of Uroboros can easily
perform advanced program analysis and program-wide transformations before they
assemble the code back to binaries.

Finally, we emphasize that the assembly code generated and transformed by
Uroboros can be directly assembled back as a working binary by normal assemblers.
In particular, the binary output is indeed a normal executable file without any
abnormal characteristics such as patched or duplicated sections. Therefore, the
reassembled binary can be disassembled again by Uroboros or be processed by
other reverse engineering tools.

We have implemented a prototype of Uroboros in OCaml and Python, with
a total of 13,209 lines of code. Our prototype works for both x86 and x64 ELF
binaries.

3.3.2 Disassembly

In our prototypical implementation, the linear disassembler employed by Uroboros’s
disassembly module is objdump from GNU Binutils. We implement an interactive
disassembly process originally proposed in BinCFI [12].2 In this process, the disas-
sembler communicates with a validator which corrects disassembly errors due to
“data gaps” between adjacent code blocks. The interactive procedure is as follows:

• objdump tries to decode the input binary for the first time.
2The BinCFI tool is available open source. We choose to reimplement the algorithm to make

the codebase of Uroboros more consistent such that it is fully automated and easy to extend.
We refer readers to BinCFI [12] for the details of the disassembly process.
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• The validator examines the output and check if there are explicit errors
reported by objdump. In case there are no errors, the raw disassembly process
terminates. Otherwise, the validator assumes the errors are caused by data
embedded in code and computes the upper and lower bounds of identified
“data gaps”.

• With the computed range of identified “gaps”, the validator guides objdump
to decode the binary again, with those “gaps” skipped.

• Repeat this decode-validate process until no error occurs or the running time
of the whole process reaches a time limit specified by users.

We leverage three rules proposed in BinCFI to validate the disassembly results
and locate the data “gaps”, i.e., “invalid opcode”, “direct control transfers outside
the current module”, and “direct control transfer to the middle of an instruction”.
Since identifying bounds of each data gap can rely on the control-flow information
of decoded instructions, the validator occasionally leverages Uroboros’s analysis
module to retrieve the control-flow information.

3.3.3 Support for Program Transformation

Uroboros provides basic support for program-wide transformations by partially
recovering control-flow structures of the decoded instructions. We collect all the
control transfer instructions to divide each function into multiple basic blocks.
Control-flow graphs are rebuilt on top of these basic blocks. As a prototype,
Uroboros currently only processes direct control transfers. Regarding the in-
tractable indirect transfers, a potential solution is to use value set analysis (VSA) [72]
for destination computation. We leave including indirect control transfers in the
CFG as future work.

3.3.4 Meta-Information Recovery

Uroboros recovers the program-linkage table (PLT) and the export table in ELF
binaries. The PLT table supports dynamic linkage by redirecting intra-module
transfers on its stubs to external functions. As the base address of the PLT table
can change after reassembling, we translate the memory references to PLT stubs to
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their corresponding external function names, and let the linker to rebuild the PLT
table with correct memory references during link time. In particular, this table is
dumped out from the input binary and parsed into multiple entries, each containing
the memory address of a PLT stub with its corresponding function name. Next,
we scan the program and identify the addresses that match to a table entry. These
addresses are then replaced by the corresponding function name.

Symbols need to be “exported” so that other compilation units can refer to
them. The exported symbols together with their memory addresses are recorded
in the export table. As ELF binaries do not keep a standalone export table, we
construct this table by searching for all global objects in the symbol table. The
symbol name of each entry and its memory address are then kept in a map. The
export table can help identify functions and variables that are only referred to by
other compilation units. We iterate each entry of the export table to insert symbols
and .globl macros to the corresponding addresses.

For typical ELF binaries compiled from C code, .eh_frame and .eh_frame_hdr
sections are used by compilers to store information for some rarely-used compiler-
specific features, such as the “cleanup” attribute supported by GCC. For these
sections, we dump the content out and directly write them back to the output.
These sections are also used to store exception information for C++ programs.

3.3.5 Position Independent Code

Position independent code (PIC) typically employs a particular routine to obtain
its memory address at run time. This address is then added by a fixed memory
offset to access static data and code. According to our observation, the routine
below is utilized by PIC code in 32-bit binaries to achieve relative addressing.

804 C452: mov (% esp ),% ebx

804 C456: ret

PIC code invokes this routine by a call instruction, and register ebx is then assigned
the value on top of the stack, which equals the return address. Uroboros identifies
this instruction pattern, traces the usage of ebx, and rewrites the instructions that
add ebx with memory offsets to a relocatable format.

An example is shown in Figure 3.4. Once we identify a call instruction targeting
the above sequence, we calculate the absolute address by adding 0x804c466 with
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804 c460: push %ebx
804 c461: call 804 c452
804 c466: add $0x2b8e ,% ebx
804 c46c: sub $0x18 ,% esp

804 c460: push %ebx
804 c461: call S_0x804C452
804 c466: add $_GLOBAL_OFFSET_TABLE_ ,% ebx
804 c46c: sub $0x18 ,% esp

Figure 3.4: PIC code reuse.

offset 0x2b8e, which equals 0x804eff4. By querying the section information from
ELF headers, 0x804eff4 equals the starting address of .got.plt table, and we
rewrite offset 0x2b8e to the corresponding symbol, which is _GLOBAL_OFFSET_TABLE
in this case.

Theoretically PIC could use other patterns besides the above sequence to obtain
its own memory address; the above instruction sequence is, however, the only
PIC pattern we encountered after testing a broad range of real world applications
(compiler and platform information is disclosed in Section 3.5).

As for x64 architectures, RIP-relative [73] memory references allow assembly
code to access data and code relative to the current instruction by leveraging
the rip register and memory offsets, which makes the implementation of PIC
more flexible. In the raw disassembly output, instructions utilizing this mode are
commented by objdump with the absolute addresses they refer to. We identify the
comments, symbolize the memory offsets, and insert labels to the corresponding
absolute addresses.

3.4 Optimization

3.4.1 Redundancy Trim

When a binary is dynamically linked to libc, the prologue and epilogue functions of
the library are automatically added to the final product. Uroboros attempts to
support multiple iterations of the disassemble-reassemble process. Each time the
binary is assembled, a new copy of the prologue and epilogue functions are inserted,
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which unnecessarily expands binary size. Some tentative experiments show that
binary size can grow 5 to 6 times larger with respect to the original, if we perform
the disassemble-reassemble iteration for 1,000 times.

We cannot identify the prologue and epilogue functions in COTS binaries as
the symbol information has been stripped. However, after the first disassemble-
reassemble attempt, we get an unstripped binary with sufficient information indi-
cating which functions are added by the linker. If we are to do another disassemble-
reassemble round, Uroboros can skip these functions in the disassembly phase.

Another source of redundancy is the padding bytes in data sections. In ELF
binaries,there are three data sections (.data, .rodata, and .bss) that have padding
bytes at the beginning. As these padding bytes are not used, we remove them from
the recovered program before reassembling.

With the code and data redundancy trimmed, binary size expansion is reduced
to almost zero, no matter how many times a binary is disassembled and reassembled.

3.4.2 Main Function Identification

In a compiler-produced object file, the symbol information of the main function is
exported so that it can be accessed by the libc prologue functions in the linking
process. However, as this symbol information in executable file is stripped in COTS
binaries after linking, we need to recover and export it before reassembling.

Through our investigation, we found that the code sequence shown below
is typically used to pass the starting address of main to libc prologue function
libc_start_main.

push $0x80483b4

call 80482 f0 <__libc_start_main@plt >

hlt

The first argument of libc_start_main, which is 0x80483b4 in this example,
is recognized as the starting address of the main function. We insert a label named
main and the type macro .globl main in the output at this address.

3.4.3 Interface to External Transformation

In order to demonstrate that Uroboros is an enabling tool that makes analysis
and transformations applicable to legacy binaries in general, we implement a
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Table 3.1: Programs used in Uroboros evaluation.

Collection Size Content
Coreutils 103 GNU Core Utilities
Real 7 bc, ctags, gzip, mongoose,

nweb, oftpd, thttpd
Spec 12 C programs in SPEC2006

diversification transformation based on basic block reordering. After disassembly,
we walk through each function and randomly select two basic blocks from its CFG
as the reordering targets. Control-flow transfer instructions and labels are inserted
in the selected blocks, their predecessors, and successors to guarantee semantic
equivalence. We perform this reordering iteratively, namely the output of each
iteration becomes the input of the next round. We conducted a quick experiment on
gzip. The disassembly-transformation-reassembly process was iterated 1,000 times.
The effectiveness of the diversification transformation is evaluated by the elimination
rate of ROP gadgets measured by the ROP gadget detector ROPGadget [74]. From
this preliminary study, we find that it is much easier than binary rewriting to
perform binary-based software retrofitting based on Uroboros. As the ROP
defense is not the focus of this research, we omit the detailed results in this work.

3.5 Evaluation
We evaluate Uroboros with respect to correctness, cost, and its ability to
support program-wide transformation. The correctness verification examines
whether Uroboros’s reassembly is semantic preserving. Evaluation on the cost
of Uroboros reveals its reassembly’s impact on binary size and execution speed,
and also the running time of Uroboros itself. As presented in Section 3.4.3, we
study Uroboros’s support for binary-based software retrofitting, by implementing
a basic block reordering algorithm to diversify disassembled binaries and eliminate
ROP gadgets. As we have emphasized, Uroboros is an enabling tool for other
security hardening techniques. However, as goal-driven software security hardening
is out of the scope of this work, we do not present the detailed experiment results
here.
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Table 3.2: Functionality test input for Real.

Program Test Input
bc Test cases shipped with the program
gzip Test cases shipped with the program
ctags Parse a C source file of 152,270 lines
oftpd Login and fetch a large file
thttpd Request some web pages & a large file
mongoose Request some web pages & a large file
nweb Request some web pages & a large file

We use three collections of binaries compiled from C code to evaluate Uroboros.
The first set, referred to as Coreutils, is the entire GNU core utilities including 103
utility programs for file, shell, and text manipulation. The second set, called Real,
consists of 7 real-world programs picked by us, covering multiple categories such as
floating-point and network programs. The last set subsumes all the C programs
in the SPEC2006 benchmark suit, thus will be denoted by Spec. Details of each
collection are listed in Table 3.1. In the evaluation we compile all programs for
both 32-bit and 64-bit targets. Since there are 122 programs, the number of tested
binaries is 244 in total. The compiler is GCC 4.6.3, using the default configuration
and optimization level of each program. All experiments are undertaken on Ubuntu
12.04. For each test case, we use the strip tool from GNU Binutils to strip off the
symbol information and debug information before testing.

3.5.1 Correctness

We verify the correctness of Uroboros’s reassembility in two steps. First, we
execute binaries assembled from Uroboros’s output with test input shipped with
the software. Both Coreutils and Spec have test cases shipped with the software
by default. As for the Real programs, most of them do not have test cases, so we
develop input by ourselves to verify the major functionality. The input we use for
testing the Real collection is listed in Table 3.2.

Second, we examine the false positives and false negatives of our symbolization
process for all the binaries of the three collections. In our context, a false positive
is an immediate value that we mistakenly symbolize, while a false negative is a
symbol reference that we fail to identify.
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Table 3.3: Dynamic test results on reassembled binaries.

Assumption Set Binaries Failing Functionality Tests
32-bit 64-bit

{} h264ref, gcc, gobmk, hmmer perlbench, gcc, gobmk, hmmer, sjeng, h264ref, lbm, sphinx3
{A1} h264ref, gcc, gobmk perlbench, gcc, gobmk
{A1, A2} h264ref, gcc, gobmk perlbench, gcc, gobmk
{A1, A3} gobmk gcc, gobmk
{A1, A2, A3} gobmk

As described in Section 3.2, we have different assumptions to guide the symbol-
ization process, so the correctness of different assumption combinations are verified.
Since the three assumptions are orthogonal, there are eight different combinations
with the choices of the three assumptions. With limited resources, it is difficult to
test all 244 programs on all assumption sets. With some tentative experiments, we
found that A1 is an assumption which greatly improves the overall performance of
our disassembly and reassembly method. Therefore, we reduce the eight candidates
to five by always including A1 except in the empty assumption set. In detail, the
five assumption sets applied are {} (empty set), {A1}, {A1, A2}, {A1, A3}, and
{A1, A2, A3}.

For all tested assumption sets, all reassembled binaries from Coreutils and
Real pass the functionality tests. Some binaries from Spec, however, fail to pass
the tests, which are listed in Table 3.3. With the assumption set {A1, A2, A3},
only the 32-bit version of gobmk from Spec (out of 244 cases in total) fails the
functionality test. By inspecting this defected binary, we successfully locate the
cause of failure. Some 4-byte sequences in the data sections happen to contain the
same value as the starting address of a function, but they are not code pointers.
Uroboros incorrectly symbolizes them, leading to false positives. After we correct
these errors, gobmk successfully passes the test.

For symbol-level correctness verification, we provide the statistics on false
positives and false negatives of symbolization. A false positive is an immediate
value that should not have been symbolized. A false negative is an immediate value
which should be symbolized but failed to be after our symbolization process. We
obtain the ground truth by parsing the relocation information provided by the
linker.

We have verified all binaries in this step. We now list the results for non-trivial
cases, namely programs with at least one symbolization false positive or false
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Table 3.4: Symbolization false positives of 32-bit Spec, Real and Coreutils (Others
have zero false positive).

Benchmark # of Ref.
Assumption Set

{} {A1} {A1, A2} {A1, A3} {A1, A2, A3}
FP FP Rate FP FP Rate FP FP Rate FP FP Rate FP FP Rate

perlbench 76538 2 0.026‰ 0 0.000‰ 0 0.000‰ 0 0.000‰ 0 0.000‰
hmmer 13127 12 0.914‰ 0 0.000‰ 0 0.000‰ 0 0.000‰ 0 0.000‰
h264ref 20600 27 1.311‰ 1 0.049‰ 1 0.049‰ 0 0.000‰ 0 0.000‰
gcc 262698 49 0.187‰ 32 0.122‰ 32 0.122‰ 0 0.000‰ 0 0.000‰
gobmk 65244 1348 20.661‰ 985 15.097‰ 912 13.978‰ 78 1.196‰ 5 0.077‰

Table 3.5: Symbolization false negatives of 32-bit Spec, Real and Coreutils (Others
have zero false negative).

Benchmark # of Ref.
Assumption Set

{} {A1} {A1, A2} {A1, A3} {A1, A2, A3}
FN FN Rate FN FN Rate FN FN Rate FN FN Rate FN FN Rate

perlbench 76538 2 0.026‰ 0 0.000‰ 0 0.000‰ 0 0.000‰ 0 0.000‰
hmmer 13127 12 0.914‰ 0 0.000‰ 0 0.000‰ 0 0.000‰ 0 0.000‰
h264ref 20600 27 1.311‰ 0 0.000‰ 0 0.000‰ 0 0.000‰ 0 0.000‰
gcc 262698 11 0.042‰ 0 0.000‰ 0 0.000‰ 0 0.000‰ 0 0.000‰
gobmk 65244 86 1.318‰ 0 0.000‰ 0 0.000‰ 0 0.000‰ 0 0.000‰

negative with any assumption combination. Table 3.4 and 3.5 show the false
positive and false negative analysis for 32-bit binaries, and Table 3.6 reports false
positive analysis for 64-bit binaries. There are no false negatives on any of the 64-bit
binaries. We emphasize in particular that, with {A1, A2, A3} applied, among all
the 244 binaries, only gobmk has a few false positives, and none has false negatives.

The results of symbol-level verification are highly synchronized with the results
from the first stage—binaries reassembled with no false positives or false negatives
can pass all test cases. The results show that symbolization errors are found in
gobmk no matter which assumption set we apply. In particular, we have verified
that symbolization errors found in gobmk when applying {A1, A2, A3} are all caused
by program data colliding with some function starting addresses. These collisions
cause a functionality test failure for 32-bit gobmk, but the 64-bit version can pass
the test due to the incompleteness of test input. In summary, the two stages of
verification together imply that all three assumptions proposed for symbolization
are reasonable.

Although the symbolization errors occurring in the case of gobmk seem concep-
tually “general”, our study shows that the collisions are actually rare in practice,
unless the disassembled binary has very large data sections like gobmk does. On
the other hand, Uroboros can successfully disassemble large and complicated
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Table 3.6: Symbolization false positives of 64-bit Spec, Real and Coreutils (Others
have zero false positive). Also, no false negatives are found for any binary.

Benchmark # of Ref.
Assumption Set

{} {A1} {A1, A2} {A1, A3} {A1, A2, A3}
FP FP Rate FP FP Rate FP FP Rate FP FP Rate FP FP Rate

perlbench 76952 32 0.416‰ 10 0.130‰ 10 0.130‰ 0 0.000‰ 0 0.000‰
gcc 259213 506 1.952‰ 126 0.486‰ 14 0.054‰ 112 0.432‰ 0 0.000‰
gobmk 65255 2437 37.346‰ 1079 16.535‰ 7 0.107‰ 1073 16.443‰ 1 0.015‰
hmmer 13165 11 0.836‰ 2 0.152‰ 0 0.000‰ 2 0.152‰ 0 0.000‰
sjeng 8837 22 2.490‰ 2 0.226‰ 0 0.000‰ 2 0.226‰ 0 0.000‰
h264ref 20264 15 0.740‰ 1 0.049‰ 0 0.000‰ 1 0.049‰ 0 0.000‰
lbm 248 1 4.032‰ 0 0.000‰ 0 0.000‰ 0 0.000‰ 0 0.000‰
sphinx3 8656 3 0.347‰ 0 0.000‰ 0 0.000‰ 0 0.000‰ 0 0.000‰
ctags 12997 2 0.154‰ 0 0.000‰ 0 0.000‰ 0 0.000‰ 0 0.000‰
gzip 3323 11 3.310‰ 0 0.000‰ 0 0.000‰ 0 0.000‰ 0 0.000‰
mongoose 3643 1 0.275‰ 0 0.000‰ 0 0.000‰ 0 0.000‰ 0 0.000‰
df 4202 1 0.238‰ 0 0.000‰ 0 0.000‰ 0 0.000‰ 0 0.000‰
du 4593 1 0.218‰ 0 0.000‰ 0 0.000‰ 0 0.000‰ 0 0.000‰
split 2851 1 0.351‰ 0 0.000‰ 0 0.000‰ 0 0.000‰ 0 0.000‰
timeout 1935 1 0.517‰ 0 0.000‰ 0 0.000‰ 0 0.000‰ 0 0.000‰
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Figure 3.6: Execution overhead for
Coreutils programs relative to the
original versions.

binaries like gcc and perlbench. Overall, the results from two stages of correctness
verification suggest that Uroboros is a promising tool with remarkable practical
value.

3.5.2 Cost

The cost of Uroboros manifests from three aspects: size expansion of reassembled
binaries, execution overhead of reassembled binaries, and the processing time of
Uroboros itself.We report the evaluation results on 32-bit binaries in this paper.
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Figure 3.8: Processing time for
Coreutils binaries.

3.5.2.1 Execution Overhead

Some programs in Coreutils are not suitable for performance benchmarking,
including su, nohup, and timeout, etc. After excluding these programs, we have
90 left to inspect in Coreutils. The experiments are conducted on a machine
with Intel Core i7-3770 3.40GHz and 8GB memory running Ubuntu 12.04.

We present the execution slowdown of reassembled binaries in Figure 3.5 and
Figure 3.6. Since it is hard to present the data of all 90 binaries from Coreutils,
we sort Coreutils programs by their names in alphabet order and plot the data for
the first and last 10 programs in Figure 3.6. We report that the average slowdown
for is 0.44% for Coreutils, 0.29% for Spec and 0.52% for Real. The data
suggests that Uroboros does not have any significant impact on the execution
speed of reassembled binaries.

3.5.2.2 Size Expansion

We use the stat program from GNU Coreutils to calculate file size expansion of
the reassembled binaries compared to the originals. As the increase is generally
negligible, we only report the average data here. The average expansion for
Coreutils is 0.83%, 0.00% for Spec and -0.02% for Real. Data shows that
Uroboros has almost zero impact on binary size when delivering reassembility.
As aforementioned in Section 3.4.1, subsequent disassembly-reassembly iterations
have zero expansion.
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3.5.2.3 Processing Time

We measure how long it takes Uroboros to disassemble binaries. Figure 3.7
presents the processing time for Spec and Real binaries. Figure 3.8 presents
processing time for Coreutils binaries selected using a same alphabet order
strategy. As expected, larger binaries take more time to process. On average,
Uroboros spends 8.27 seconds on binaries from Spec, 0.98 seconds on binaries
from Real, and 0.57 seconds on binaries from Coreutils. We interpret this as a
promising result, and the efficiency of Uroboros makes it a tool totally practical
for production deployment.
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Chapter 4 |
Instrumentation Framework

Software instrumentation techniques are widely used in program analysis tasks such
as program profiling, vulnerability discovering, and security-oriented transforming.
Enabled by our novel disassembling technique, in this chapter we present a generic
binary instrumentation platform called Uroboros. Uroboros overcomes the
limitation of existing static instrumentation tools and supports low-cost instru-
mentation on stripped binaries. In this chapter, we first give a platform overview
in Section 4.1 and elaborate on the instrumentation capability of Uroboros in
Section 4.2. We then present the platform design in Section 4.3. We evaluate the
Uroboros instrumentation cost in Section 4.4, and present two sample applications
in Section 4.5.1

4.1 Platform Overview
Software instrumentation inserts extra instructions to the target program to achieve
multifaceted tasks. For example, instrumented code can record process run-time
behavior [41], support program analysis [14,45], or harden the executable layout to
improve security [12,13]. The instrumentation task can be performed at different
stages: at compile time [1], at run time [14], or statically on executable files [12,13].
We present Uroboros, a tool performing static instrumentation on stripped
binaries.

The primary target of Uroboros is stripped binaries, i.e., binaries with no
debug or relocation information. In order to hinder reverse engineering and reduce

1The work of this chapter is published in the 23rd IEEE International Conference on Software
Analysis, Evolution, and Reengineering [75].
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the executable size, debug and relocation information is usually removed from
binaries before releasing to the public. Without sufficient program information,
reverse engineering on stripped binaries could be problematic and fragmentary.
In particular, as the disassembled output of stripped binaries is unrelocatable,
program transformations have to be very conservative for correctness, leading to
enormous challenges for binary instrumentation. With several novel disassembling
methods [40], Uroboros recovers relocatability for stripped binaries. This enables
painless program instrumentation because on relocatable assembly programs users
can statically inline extra code to the instrumentation points. The instrumentation
output, including both the original program and the instrumentation code, can be
then assembled back into normal binaries. In sum, Uroboros delivers complete,
ease-to-use, efficient, and transparent instrumentation on stripped binaries.

Complete. Most existing work leverages dynamic analysis to recover relocation
information, in which only incomplete functional components are obtained from
the input [30,31]. Uroboros disassembles input binaries and recovers relocation
information in both data and code sections through advanced static analysis.
As the whole disassembled output is relocatable, program-wide transformations
become feasible without common binary instrumentation drawbacks introduced by
unrelocatable code or data snippets.

Easy-to-use. Existing static binary instrumentation tools need to rewrite the
input binary. The instrumentation code is usually attached to the rewritten
output to generate a workable executable [24,37,46,47]. Although the rewriting
process on stripped binaries could be complicated, tedious, and even problematic,
the static instrumentation facilities of Uroboros are make it easy, even for
users with no binary rewriting skills. In fact, distinguished from existing static
binary instrumentation approaches, Uroboros does not need to rewrite the input
binary. Legacy binaries are disassembled into relocatable programs, which can be
instrumented as easily as compiler-generated assembly code. Users with only source
code analysis and transformation skills can find no difficulty in using Uroboros
because they are essentially facing the same tasks they are familiar with.

Transparent. Uroboros performs reassembly-based instrumentation. Previous
static instrumentation tools rewrite the input binary to patch the instrumentation
code or replicate the original code section into two and instrument both. In contrast,
instrumentation code of Uroboros is directly inlined into each instrumentation
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point. Transparent instrumentation enables Uroboros itself or any other binary
instrumentation tool to re-process the Uroboros output easily. This feature
can greatly broaden the application scope by bridging Uroboros with existing
infrastructures and potentially puts Uroboros as the foundation of most binary
analysis tasks.

Efficient. As jump instructions are frequently used to redirect control transfers
between original code sections and patched sections, existing static binary instru-
mentation tools can incur relatively high execution slowdown and size increase on
the rewritten output. However, as Uroboros inlines instrumentation code at each
instrumentation point, instrumentation code is connected with the context by “fall-
through” transfers. In fact as jump instructions are not used anymore, Uroboros
engenders no additional execution cost from the instrumentation process, which is
very efficient compared with previous binary instrumentation tools.

4.1.1 Platform Highlights

Different from the existing binary instrumentation techniques, Uroboros delivers
static reassembly-based instrumentation, i.e., the instrumentation output can
be readily reassembled back to generate a binary again. Uroboros recovers
relocatable assembly code, enabling painless program-wide transformations. Due to
the lack of relocation information, traditional static binary instrumentation (SBI)
tools insert jump instructions at instrumentation targets to redirect control flow
transfers. Note that the inserted jump instructions can bring in a non-negligible
performance penalty in the instrumentation outputs. Furthermore, dynamic binary
instrumentation (DBI) tools hook the target process and instrument the program
during run time, which can lead to even higher execution cost. By contrast,
benefiting from relocatability, no additional overhead is introduced by Uroboros,
which is very efficient compared with the existing SBI and DBI tools.

4.1.1.1 An Easy-To-Use Rich Instrumentation API

Uroboros translates the input binary into its internal representation and then
recovers the program control flow structures on top of the representation. It provides
an easy-to-use rich API to inspect and manipulate the internal representation
and program structures. Currently, Uroboros provides access to data bytes,
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instructions, basic blocks, functions, control flow graphs (CFGs) and call graphs
(CGs). We demonstrate the versatility of the Uroboros API by instrumenting
input binaries at different levels of the program structure and also presenting two
real-world instrumentation applications.

4.1.1.2 Enable Novel Applications and Boost Existing Applications

We present and evaluate two applications on top of Uroboros. To our best
knowledge, Uroboros enables iterative software diversification on stripped bina-
ries. On trace profiling, Uroboros delivers significantly better instrumentation
performance. We present an in-depth study of Uroboros comparing with the
industry-standard DBI tool, Pin [41]. We summarize our results as follows:

• Iterative diversification. A novel disassemble-diversify-reassemble workflow is
enabled by Uroboros. The diversified output is reprocessed for multiple
times, boosting the diversification due to the “iteration effect”. We observed
notable binary similarity score decreasing with more iterations of processing.

• Trace profiling on SPEC2006 and Linux common utilities. Uroboros incurs
around 2.37X execution slowdown comparing with the native execution, while
Pin imposes a sharp 8.83X slowdown on average.

4.2 Static Binary Instrumentation
The Uroboros API enables static instrumentation on stripped binaries in a
program-wide scope. In this section, we first compare reassembly-based binary
instrumentation with two commonly-used static binary instrumentation strategies
used in the previous tools, i.e., patch-based instrumentation and replica-based
instrumentation. We then demonstrate the Uroboros instrumentation capability
by creating an instrumentation application to trace memory writes.

4.2.1 Existing Binary Instrumentation Techniques

As previous binary disassemblers only recover unrelocatable assembly programs,
existing static instrumentation tools have to deliberately instrument input binaries
without breaking memory references. To rebuild the instrumentation code and the

35



0x51
0x58

push %eax

mov %eax, 0xc(%esp)

jne 0x51

push %ebx

push %ecx

0x10:

0x51:

0x58:

code & data sections

B1

B2

Figure 4.1: An example of instrumentation target.

input binary into a workable output, two rewriting methods are usually used, i.e.,
patch-based instrumentation and replica-based instrumentation. Instrumentation
tools using the first strategy patch instrumentation code as a new section to the input
binary. Jump instructions are inserted in the original code which redirect control
transfers to the patched section. Replica-based instrumentation duplicates the
original code sections into two; the replica is instrumented while jump instructions
are inserted to the original which forward indirect control transfers to the replica.
Both existing strategies could become challenging, and it may require users with
specific rewriting skills to handle the whole process. In this section, we take a binary
instrumentation task as an example to compare reassembly-based instrumentation
with existing methods. Figure 4.1 presents the layout of a stripped binary. Note
that memory references (e.g., 0x51) are all unrelocatable immediate values. The
code section contains two basic blocks (B1, B2); suppose we want to instrument
basic block B1 to add a counter instruction at the beginning.

4.2.1.1 Patch-Based Instrumentation

Patch-based instrumentation replaces instructions at the instrumentation point with
a jump instruction, which points to a new section patched at the end of the input
binary. The newly added section contains both the instrumentation code and the
replaced instructions. Figure 4.2 presents the code layout after patching. As a long
jump (e.g., “jmp Patch”) needs to occupy 5 bytes, two instructions are relocated
to leave enough space. During run time, the inserted jump instruction redirects
the control flow to the patched section, and after executing the instructions on the
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jne 0x51

push %ebx

push %ecx

0x10:

0x51:
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0x58:

code & data sections
instrumented binary

inc (counter)

push %eax

mov %eax,0xc(%esp)

jmp 0x56

Patch:

patch section

B1

B2

Figure 4.2: Patch-based instrumentation.

patched section, another jump instruction redirects control flow back to the original
code section. As two control transfers could occur at each instrumentation point,
this rewriting strategy introduces relatively high performance slowdown. Even more
seriously, usually more than one instruction have to be replaced, and the replaced
instructions are required to be relocatable in order to keep the correct semantics. It is
not always obvious whether these instructions can be safely relocated. Optimization
techniques are proposed to use a short jump or even an interrupt (int 3) to transfer
control to the patched section, but short jump (2 bytes on x86 architecture) still
cannot substitute a single byte instruction and frequent interrupt handlings have a
big penalty on the execution [38,76].

4.2.1.2 Replica-Based Instrumentation

Typical instrumentation tools in this category generate a replica of the original
code section. The replica contains both the instrumentation and the original code.
As the replica has a different range of memory addresses, memory references in
the original code, e.g., destinations of function calls, are cautiously rewritten with
new memory addresses in the replica at the best effort. Jump instructions are
deliberately inserted at control flow destinations in the original copy, forwarding
indirect memory references to their new targets in the replica in case some address
translations are missed and the execution control is transferred to the original copy.
This replica-based instrumentation can reduce performance slowdown caused by
frequent control transfers in the instrumentation output, especially when there are
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push %ecx
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0x108:

replica section
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Figure 4.3: Replica-based instrumentation.

large amounts of instrumentation targets, e.g., all the basic blocks. However, the
size of rewritten output can be notably increased.

In general, the rewritten output by either patch-based or replica-based instru-
mentation changes the internal structure of input binaries, and it becomes very
challenging or even impossible to apply binary analysis and transformation on the
instrumented binaries. Our experiments in Section 4.4 report that disassembling
the rewritten outputs can lead to many decoding errors, while no error is found
when disassembling their original inputs. Deng, Zhang, and Xu [77] also discuss
how patch-based and replica-based instrumentations can impede binary component
extraction and embedding. Overall, in addition to high cost imposed on the in-
strumentation output, existing instrumentation tools cannot undertake transparent
instrumentation, which narrows their application scope as well.

4.2.2 Reassembly-Based Instrumentation

As Uroboros can recover an executable in a relocatable format before instru-
mentation, the instrumentation code can be directly inlined into the target. The
instrumentation output is then assembled to produce a normal binary output. As
shown in Figure 4.4, memory references in the unrelocatable program have been
translated into relocatable formats (e.g., “S_0x01” and “S_0x51”), and Uroboros
directly inserts the counter instruction at the instrumentation point. As the counter
instruction is inlined in the context, instrumentation cost introduced by frequent
control transfers or replicated code is indeed avoided. Moreover, given all the
memory references in a relocatable format, linkers will resolve these references with
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Figure 4.4: Reassembly-based instrumentation.

new memory addresses during reassembling. Code pointers can naturally refer to
their original destinations at this time, and no intentional binary rewriting is needed
to adjust the value of code pointers. In addition, the instrumentation output can
be seamlessly reprocessed by further binary analysis or transformation without any
particular difficulty introduced by the Uroboros instrumentation.

4.2.3 Instrumentation Samples

In Figure 4.5, we present the code that a user needs to write if he wants to trace
memory writes. The code is written in the OCaml programming language. The
process function (line 20) utilizes the Uroboros Instr_visitor module to tra-
verse the whole instruction list and iterate all the memory writing instructions.
By leveraging the is_mem_write function (line 23) from the Instr_utils module,
memory writing instructions are filtered out during iterating. Users only need to
define their visit function (line 22), and Uroboros takes care of the underlying
details. Memory writing instructions are classified into three categories according to
the number of operands each instruction has (line 8). The Instr_template module
provides the gen_logging_instrs function (line 14) to generate logging instruc-
tions, which initializes a sequence of instructions for logging according to the target
instruction and its location information. Finally, the insert_instr_list function
(line 24) from the Instr_utils module updates programs by inserting instrumen-
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1 open Type
2 open Utils
3 open Instr_utils
4 let il_update = ref []
5

6 let instrument i t =
7 let module IT = Instr_template in
8 match t with
9 | SINGLE_WRITE

10 | DOUBLE_WRITE
11 | TRIPLE_WRITE ->
12 il_update :=
13 (get_loc i
14 |> IT.gen_logging_instrs i) @ !il_update;
15 (* relocation labels on instrumentation target have
16 * been given to inserted code; remove redundancy *)
17 eliminate_label i
18 |_ -> i
19

20 let process il =
21 let module IV = Instr_visitor in
22 let visit i t = instrument i t in
23 IV.map_instr is_mem_write visit il
24 |> insert_instr_list BEFORE !il_update

Figure 4.5: A Uroboros plugin for tracing memory writes.

tation code at instrumentation points. This function supports instrumentation
before or after target instructions.

By providing sufficient instrumentation facilities, Uroboros only exposes high-
level interfaces to users. In the above example, we visit programs at the instruction
level and search for memory write operations. The Instr_utils module provides
various instruction filtering utilities (e.g., is_mem_write, is_jmp) to help users
classify instructions according to the functionality. Uroboros also provides a rich
API to traverse and access multiple levels of the program structure. More examples
are presented in Section 4.5.
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Figure 4.6: The architecture of Uroboros.

4.3 Design

4.3.1 Platform Structure

The design overview is shown in Figure 5.2. Uroboros consists of three main
modules—the disassembly module, the analysis module, and the instrumentation
module. The disassembly module takes executable files as inputs and recovers
unrelocatable disassembled outputs. The disassembly module also dumps the data
and metadata sections from the input. The analysis module identifies memory
addresses from all the immediate values found in the input and lifts them into
relocatable symbols. The analysis module also recovers control flow structures on
top of the relocatable program. The recovered program is parsed into multiple levels
of internal representations, and the instrumentation module provides utilities to
access and manipulate these internal data structures. Users can utilize the provided
facilities to undertake program-wide analysis and transformations on the relocatable
program. As we have emphasized, the instrumented output of Uroboros can be
directly assembled back into a normal binary, which can even be re-processed by
Uroboros for multiple times.

The disassembly module of Uroboros implements the disassembling algorithm
proposed in BinCFI [12]. We consider data bytes embedded in code sections the main
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reason to make linear disassembling fail. In this algorithm, the linear disassembler
leverages a validator to correct disassembling errors due to the embedded data bytes.
As suggested by BinCFI, we rely on three rules to validate the raw disassembling
results and locate “data gaps”, i.e., invalid opcode, direct control transfers outside
the current module, and direct control transfer to the middle of an instruction.
According to these rules, we implement a multiple-round disassembling validation
process.

Various kinds of relocatable symbols exist in compiler generated assembly
programs, e.g., jump table entries, function pointers. During the link time, linker
substitutes each relocatable symbol with a concrete value, which represents the
runtime memory address of the corresponding object . To make the disassembled
output relocatable, the main challenge is to identify memory addresses from all
the data found in the disassembled output. The identified memory addresses
can be then translated into relocatable symbols that enable the reassembly-based
instrumentation. However, it is indeed quite challenging to find memory addresses
in the disassembled output, as theoretically it is impossible to decide statically any
suspicious immediate value as a memory address or some random data without
execution. We leverage multiple methods to guide Uroboros in identifying
memory addresses from immediate values. These methods are proposed based
on observations of the disassembled outputs from real-world programs [40]. An
in-depth study shows that with all the methods applied, almost no false positive or
negative is found on broad sets of real world binaries.

4.3.2 Instrumentation Module

4.3.2.1 Internal Data Representation

Uroboros supports program-wide instrumentation by recovering control flow
structures of the input program. The disassembled instructions, dumped data sec-
tions, and metadata are parsed into an intermediate representation for analysis and
transformations. We now introduce how we organize these internal representations.

We have created a hierarchical representation for the recovered program to
support program-wide analysis and transformation. The topmost level in this
hierarchy is the Module object, which corresponds to each disassembled binary. This
object stores the binary-level information of inputs. Typically program binary stores
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its data, code, and metadata in different binary sections, and Uroboros keeps
each section in one object. Control structure units, i.e., basic blocks and functions,
are stored in their corresponding BBlock and Function objects. Uroboros also
maintains Instruction objects, which represent instructions in the code section.
Three data sections (.rodata, .data, and .bss) are stored inside Uroboros,
and Uroboros uses one object to represent each data byte. Metadata from the
input binaries is stored in the same way. Furthermore, each memory address is
maintained in an Addr object. Addr objects maintain both memory labels and
memory addresses. All the internal modules have their associated Addr objects.
Labels and memory addresses can be updated to support arbitrary manipulations
that may change memory addresses in the transformed output.

4.3.2.2 Support Binary Instrumentation

Stripped binaries usually do not contain sufficient control flow information, e.g.,
functions, basic blocks, or control flow graphs. This information is recovered in the
Uroboros analysis module. Uroboros recovers function entry point addresses by
collecting destinations in call instructions and exported function information from
the symbol table.2 Uroboros also identifies functions by matching instructions
with typical function starting patterns; 52 instruction patterns are implemented in
this step. In addition, Uroboros can be configured with user provided function
entry point addresses.

Uroboros recovers basic blocks as the units of the control flow structure.
Basic blocks are identified in its standard way, i.e., instruction sequences with only
one control flow entry point and one exit point. We collect all the identified code
pointers and control flow instructions to divide instructions into multiple blocks.
Note that as the destinations of most indirect jump instructions are code pointers
that can be found in code and data sections, Uroboros is capable of identifying
basic blocks determined by indirect jumps according to the collected pointers. Each
basic block object maintains information of its predecessors and successors on
the CFG. For indirect control flow transfers, we conservatively consider they can
transfer to the beginning of any basic block.

2Note that a symbol table does often exist in stripped binaries that contains, for example,
“exported function” information to support dynamic linkage.
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Uroboros and other static instrumentation tools face similar challenges (unde-
cidability issues), for example, basic block and function recognition [68,69]. We are
currently working on more sophisticated strategies to recover function boundaries,
and these techniques will be merged into the Uroboros future releases. Besides,
the identification of indirect control transfer destinations can be improved through
value-set analysis (VSA) [72], which is left for our future work.

In general, 21 modules, including 121 functions, are implemented in Uroboros
to support binary instrumentation. These utilities include common operations at
different levels of the program structure (e.g., function, basic block and instruction).
For instance, Uroboros provides multiple visitor modules to support visiting
different levels of the program structure in a flexible way, e.g., Function_visitor,
BBlock_visitor, and Instr_visitor. Utility modules are also provided to
query, modify, and remove internal objects. For example, Uroboros provides
Instr_utils and BB_utils modules to support inspection and manipulation on
Instruction and BBlock objects. In addition, the Instr_utils module provides
functions to query instruction types, for example, is_mem_write, is_mem_read,
is_call, get_label, and get_addr. If modules (Instruction, for instance) are
maintained in a list, Uroboros also provides utilities to traverse all the entries on
the list one by one.

4.3.2.3 Instrumentation on Assembly Code

Currently Uroboros supports inserting instrumentation instructions in the format
of its internal representation. Instrumentation code can be inserted as follows:

insert_single_instr pos loc i_insert il

This function inserts instrumentation instructions at the given location. Pos is a
predefined type, including both BEFORE and AFTER type variables. Instrumentation
code can be inlined before or after the target instruction. BEFORE means inserting
instrumentation code in front of the target, while AFTER means behind. i_insert
represents the assembly instructions in the Uroboros internal data structures.
loc consists both memory address and possible relocation labels referring to that
address. il is the internal representation of input program instructions.

As shown in Figure 4.5, another frequently-used function is insert_instr_list.
In case a large amount of instrumentation code needs to be inserted at different
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places, users need to construct each instrumentation instruction with its desired
instrumentation position. The instrumentation instruction list is then provided to
this function, as well as the pos type. This function sorts the instrumentation code
according to their desired memory positions and inlines instrumentation instructions
into the targets.

Besides instrumentation code insertion, we also provide functions to replace
existing instructions with instrumentation code as follows:

sub_single_instr i_t i_sub il

This function uses instrumentation code to replace the given target. Here, i_t
and i_sub represent the target instruction and its substitution while il stands for
the whole instruction list. Uroboros also provides function instrument_update to
support instrumentation code updating in both insertion and substitution operations.
This function requires users to construct bundles which consist of instrumentation
code and the associated instrumentation types, i.e., INSERT or SUB.

In addition, Uroboros can output the text representation of assembly code
which can further facilitate ad-hoc or customized analysis and transformation.

4.3.2.4 CPU Flags Usage Optimization

Many instrumentation scenarios require the instrumentation code to have a counter;
whenever execution flow hits the instrumentation point, the counter is incremented
by a fixed stride. The maintained counter can be used to record the number
of executed instructions, or as the index of an array to record some execution
information. However, opcodes (inc, for instance) that are usually used to increment
the counter need to change CPU flags, and in order to preserve the correct semantics,
CPU flags need to be saved and restored for instrumentation. Opcodes pushf and
popf are designed to save and restore CPU flags on the stack. However, both
opcodes can delay the instruction pipelining and cause relatively high performance
slowdown.3 In fact, some of our early experiments show that performance slowdown
could reach almost 700% for a trace profiling instrumentation on gzip.

Instead, Uroboros deliberately selects instructions to optimize the flag manip-
ulation operations. Templates are provided to users so that they can easily construct
optimized instrumentation code. For the commonly used counter-increment sce-

3The instruction pushf takes 3 uops while popf takes 9 uops on the Intel Haswell architecture.
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nario, Uroboros can even avoid changing CPU flags by misusing the loop opcode.4

Loop does not change any flag and decreases the value in register ecx each time
until it reaches zero. A classic example is shown below, which records the number
of executed basic blocks.

BB: push %ecx

movl index , %ecx

loop BB_stub

BB_stub : movl %ecx , index

pop %ecx

On 32-bit x86 architecture, the global variable index needs to be initialized with
0xffffffff before execution, and the total number of executed basic blocks can
be calculated by subtracting 0xffffffff with the final value in index.

Another optimization is to use opcode lahf and sahf to speed up the saving
and restoring of CPU flags. However, tests show that lahf and sahf slow down
the execution for about 15% compared with the “loop” optimization. Also these
two opcodes are absent for early AMD and Intel CPUs. Uroboros still provides
templates using these opcodes to construct instrumentation code for the sake of
handling more general cases. The accessibility of low-level details makes Uroboros
quite flexible when facing some cost-sensitive instrumentation scenarios.

4.4 Evaluation
Uroboros instrumentation is directly applied to the relocatable assembly, and
only negligible cost is introduced without actually inserting instrumentation code.
The experiments have shown a trivial instrumentation, i.e., disassembling a binary
and reassembling it as what it was, leads to at most 1% execution slowdown and
size expansion, when evaluating a broad set of real world program binaries.

We do not report the detailed results of this trivial evaluation, for the data
is not very informative. Instead, we compare Uroboros with another static
instrumentation tool DynInst [46,47] with respect to the performance and size of
instrumented binaries. We also evaluate the execution time of Uroboros itself to

4We learned this optimization from a discussion at http://goo.gl/Fb0Djk. The trick was
initially suggested by Guntram Blohm.
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demonstrate its efficiency. We set up all the experiments on a server machine with
a 2.90GHz Xeon(R) E5-2690 CPU and 128GB RAM.

We pick DynInst (version 8.2.1, http://www.dyninst.org/), a widely used
static binary instrumentation framework, as the competitor of Uroboros. DynInst
features both patch-based and replica-based instrumentation. For instrumentation
tasks with small amount of instrumentation targets, DynInst undertakes a patch-
based instrumentation, in which two control transfers occur before and after
executing instrumentation code. However, patch-based instrumentation could
result in many additional control transfers when instrumenting large amount of
targets (e.g., instrumentations on every basic block or function). In that case,
DynInst will switch to the replica-based instrumentation to reduce the execution
overhead at the expense of code size bloating.

We use basic block and function counting instrumentation as the benchmark
to evaluate both tools on all the C programs from 32-bit SPEC2006. We record
execution slowdown and size increase for the instrumented binaries. We compile all
the test cases from source code with the default configurations. All the test cases are
stripped before processing by Uroboros (with the strip tool from GNU Binutils).5

Before the cost evaluation, we first verify the functionality of the instrumentation
output with test cases officially provided by SPEC2006. Verification shows that
all binaries instrumented by Uroboros successfully pass all test cases, while two
binaries (gcc and mcf) processed by DynInst fail the functionality testing.

Figure 4.7 presents the size increase for the function and the basic block level
instrumentation. For both tests, DynInst increases binary sizes to more than
twice of the original (131.2% increase for basic block counting and 119.1% for
function counting), while Uroboros only brings in less than 40% of size expansion
for basic block counting and 2.0% for function counting. Note that for several
cases, Uroboros only introduces negligible size increase (lbm in both evaluations;
mcf and bzip in function counting evaluation). It is worth mentioning that the
instrumentation output of DynInst will load both the original and replica code
into memory during run time. Uroboros has a quite big advantage in terms of
memory efficiency.

5Similar to other tools, Uroboros cannot fully recognize all the functions in stripped binary
code. We assume the function information is known to us in Section 4.4 and Section 4.5.
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Figure 4.7: Size increase comparison.

Figure 4.8 presents the performance slowdown for the function and basic block
level instrumentation. As DynInst enables the “replica-based” instrumentation, we
expect that execution slowdown of DynInst could compete with the Uroboros
reassembly-based instrumentation. Indeed, for function level instrumentation, the
average execution slowdown of DynInst (2.94%) is as good as Uroboros (2.93%).
For the basic block counting task, binaries instrumented by Uroboros is slower
than DynInst (93.38% compared to 76.56%). We attribute this to that DynInst
adopts multiple customized optimization solutions. One such example is liveness
analysis. The inc instruction used for counting basic blocks modifies CPU flags.
In this experiment, we conservatively save/restore the flags in each instrumentation
process. DynInst, on the other hand, performs liveness analysis to avoid some
saving/restoring operations, offering an enhanced performance gain.

Still, we consider around 93% instrumentation slowdown is acceptable for
instrumentation tasks with many targets such as basic block counting. On the
other hand, as we reported, all the instrumented binaries of Uroboros preserve the
correct semantics, while two instrumented cases of DynInst (gcc and mcf) do not
pass the functionality testing. The reason may because the DynInst instrumentation
facilities contain certain bugs, or the employed rewriting strategy is likely to break
the correctness when instrumenting complex binaries.

As aforementioned, previous instrumentation techniques significantly deforms
binary structure, inevitably complicating subsequent analyses and transformations.
In this experiment, we found that the commonly-used disassembler objdump reports
a considerable number of decoding errors on the output from DynInst. In the
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Figure 4.8: Performance slowdown comparison.

Uroboros case, the instrumented binaries can be successfully disassembled by
objdump with no error.

We also evaluate the processing time of Uroboros with or without instrumen-
tations. We design three tasks for evaluation, each of which instruments binaries
at different levels of the program structure. We evaluate Uroboros against the
same set programs from 32-bit SPEC2006. The processing time is calculated from
starting to disassemble the inputs until finishing assembling the instrumentation
outputs.

We evaluate Uroboros in terms of instruction, basic block, and function
level instrumentations. Our instruction level instrumentation inserts “sandbox”
instructions to all the indirect control transfers. An and instruction is used to
validate the destinations of the upcoming control transfers. This instrumentation
is quite useful in developing goal-oriented security applications, e.g., software
fault isolation (SFI). The basic block and function level instrumentation inserts
instructions at the beginning of each basic block or function to count the number
of executed units.

Table 4.1 presents the evaluation data. The “baseline” column presents pro-
cessing time without applying instrumentation while the other three columns show
data with instrumentations. “Instr. A” corresponds to instruction level instru-
mentation; “Instr. B” and “Instr. C” represent basic block and function level
instrumentations, respectively. On average, the instruction level instrumentation
increases the processing time by 3.89%, basic block level instrumentation increases
14.50% while function level instrumentation increases 1.86%. The basic block level
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Table 4.1: Instrumentation time evaluation.

Program Baseline (s) Instr. A (s) Instr. B (s) Instr. C (s)
bzip 0.72 0.77 0.87 0.77
hmmer 3.04 3.11 3.64 3.11
gcc 67.93 72.46 77.37 69.24
gobmk 31.75 32.04 35.89 32.39
h264ref 5.91 6.02 6.74 6.00
perlbench 12.92 13.04 16.43 13.08
sjeng 8.87 8.91 9.12 8.93
mcf 0.39 0.40 0.42 0.40
libquantum 0.62 0.62 0.69 0.63
milc 1.31 1.32 1.52 1.34
lbm 0.37 0.38 0.43 0.40
sphinx3 1.91 1.91 2.26 1.94
average 11.31 11.75 12.95 11.52

instrumentation has the most candidates to instrument, and therefore it imposes
the highest instrumentation time cost.6 Overall, the instrumentation processing
time of Uroboros is quite small.

4.5 Sample Applications
To demonstrate how Uroboros can be used in practice, we developed two appli-
cations for Uroboros. The first application, UroborosDiv, instruments the input
binary for a large amount of iterations. An unique “iteration effect” is leveraged
to boost the generation of large amounts of diversified binaries with increasing
performance. The second application, UroborosTrace, records executed basic block
information. It can be used for trace profiling. By demonstrating these applications,
we show Uroboros can perform some transformations that existing tools can
hardly handle. For some of the transformations that can be done by other tools,
we show that Uroboros can result in better performance.
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Figure 4.9: Binary similarity rates under different iterations.

4.5.1 Binary Code Diversification

Although it is originally proposed for optimization, function inlining has been
employed as a software diversification strategy [50]. To demonstrate the strength of
Uroboros in binary instrumentation and transformation, we present a software
diversification application UroborosDiv in this section. UroborosDiv is an instru-
mentation application that diversifies binaries by randomly selecting functions from
a set of candidates and inlining them into their call sites. Different from the “one-off”
design of most diversification frameworks, in which the original input is used to
generate diversified copy one, two, three, etc., UroborosDiv takes the instrumenta-
tion output as the input and re-instrument it iteratively. As previously discussed,
existing instrumentation tools, either patch-based or replica-based, can hardly
process binaries in this iterative manner because massive binary structure changes
impede secondary instrumentation. However, transformation through Uroboros
is transparent, i.e., Uroboros produces normal binaries in which all newly inserted
code is blended into the original code. Therefore, instrumented binaries can be
directly re-processed by any existing binary tool, including Uroboros itself.

We apply UroborosDiv to all the SPEC2006 C programs. By iterating the
instrumentation procedure on a program binary, we can quickly produce a large
number of unique copies. In the experiments, we iterate the pass for 200 times.
After processing, we use test cases from 32-bit SPEC2006 to verify the functionality
correctness on the diversified binaries, and all diversification outputs pass the
functionality testing.

6Note that instruction level instrumentation only targets indirect control transfer instructions,
while basic block level instrumentation targets all the basic blocks.
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ter instrumentation.

We evaluate the diversification effect by using the industry standard binary
diffing tool BinDiff.7 For each diversification output, we diff it with the original
input and get the instruction level matching rate.8 The evaluation data for all
tested programs are shown in Figure 4.9. Binary similarity rate decreases for all the
test cases. Note that as one function is inlined at each iteration, binaries with larger
code sections, e.g., gobmk, gcc, get higher matching rates in general. It should
be clarified that when this application is deployed in real-world scenarios, more
iterations can be applied, also with more functions to be inlined in each iteration.

We have noticed a “stabling” trend in the case of lbm, mcf and libquantum.
These binaries have relatively fewer functions, and it is likely that UroborosDiv has
consumed all inline-able targets after certain iterations. Overall, as shown in the
“average” data of Figure 4.9, average similarity rate decreases with more iterations.
We interpret it as a promising result to show the diversification effect increases
with more iterations. Again, the transparent instrumentation in Uroboros allows
us to re-process the instrumentation output for many iterations. A large amount of
instrumentation outputs can be generated, with the distinguished diversification
effect enabled by iterations.

7http://www.zynamics.com/bindiff.html
8BinDiff provides the number of matched functions, basic blocks and instructions. Since

function and basic block can be "partially" matched, e.g., 30% of the instructions in a function
are matched with another function, counting the number of matched functions or basic blocks
could be tricky. Therefore, we only adopt the instruction level matching rate.
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4.5.2 Trace Profiling

In this section, we demonstrate the efficiency of Uroboros by comparing it with
Pin [41] (version 2.14, build 71313), on trace profiling, a widely-used instrumentation
task. We iterate the basic blocks of a binary, and instrument each basic block
with a sequence of instructions for logging. We record executed basic blocks by
writing their memory addresses in the original binary to a global buffer. As for
Pin, we write a simple Pintool (a tool built on top of Pin) to instrument basic
blocks on the execution traces in the same way. We strictly follow the optimal
Pintool writing strategies for better performance, such as Pin code inline, fast-call
linkage, and IPOINT_ANYWHERE to schedule the call anywhere. Note that the profile
data is not flushed to the disk, and the buffer will be rewritten when it is full. We
consider the measurement without I/O overhead can give us a better estimation
of the instrumentation cost. As discussed in Section 4.3.2.4, we avoid to save
and restore CPU flags by misusing the loop opcode. Currently we allocate a 16M
buffer to store the memory addresses of the executed basic blocks. We write a
4-byte memory address into the allocated buffer for each basic block.

Figure 4.10 shows the performance overhead of running 32-bit SPEC2006 C
programs. We use the shipped test cases to measure performance. For each pro-
gram, we instrument the binary with trace logging code and present the data
in “Uroboros-Logging” bar. The “Null-Pin” bar presents the Pin environment
overhead, which runs the binary under Pin without any instrumentation. The
“Pin-Logging” bar shows overhead when Pin is executed with our basic block instru-
mentation Pintool. On average, “Uroboros-Logging” incurs 2.77X performance
overhead comparing with the native execution, while “Pin-Logging” imposes as
much as 9.76X overhead. In fact, the overhead of Uroboros-Logging is close to
that of “Null-Pin”, which is 2.47X. Note that “Pin-Logging” can generate over 15X
performance penalty for some test cases, e.g., gcc, milc, and sphinx3, while the
overhead of “Uroboros-Logging” is relatively stable at around 2–4X. In fact, the
average performance overhead of “Uroboros-Logging” reaches the theoretically
lowest value. Particularly, as on average a basic block has 5–10 instructions, and
for each basic block, UroborosTrace inserts 7 new instructions, the total amount
of executed instructions could double. Furthermore, as the loop instruction has
a relatively high CPU ticks (7 for our experiment platform), we estimate the
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theoretical lowest execution slowdown is around 2.3–2.7X, which matches very well
with “Uroboros-Logging” (2.77X).

We also evaluate UroborosTrace on four common Linux utilities which represent
three kinds of workload. The program tar is I/O bound, bzip2 and gzip are CPU
intensive program, and scp is a network application. We use tar to archive and
extract the GNU Core utilities 8.13 package (about 50MB). The same input is
used by two compressors for compressing and decompressing and scp sends the
archived package through a 1 Gbps Ethernet link. Figure 4.11 shows the evaluation
data. The CPU bound programs show similar evaluation results with Figure 4.10.
UroborosTrace imposes relatively very low overhead on two tests of the tar program
(on average 1.23X), while on average over 14.5X overhead is incurred by Pintool.
Note that different from Figure 4.10, the average data of “Uroboros-Logging”
is even better than “Null-Pin”. Overall, UroborosTrace exhibits a decent runtime
performance.

Figure 4.12 presents the size increase of instrumented binaries. The average
size increase is 2.16X, which matches well with our expectation. In summary,
Uroboros is quite efficient compared with real-world dynamic instrumentation
tools.
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Chapter 5 |
Function Recognition in Binary
Executables

Function information is critical for many binary code retrofitting and analysis tasks.
Nevertheless, function symbols are usually stripped from binary executables to
defeat adversary analysis before release. By far, identifying functions in stripped
binaries remains a challenge. Recent research work proposes to recognize functions
in binary code through data mining techniques. The recognition model, including
typical function entry point patterns, is automatically constructed through learning.
However, we observed that as previous work only leverages syntax-level features
to train the model, binary obfuscation techniques can undermine the pre-learned
models in real-world usage scenarios.

In this chapter we propose FID, a semantics-based method to recognize func-
tions in stripped binaries. We leverage symbolic execution to generate semantic
information as the training set and learn a function recognition model through
well-performed data mining techniques. We start by introducing the research
context and giving a motivating example in Section 5.1. We then present the
design of FID in Section 5.2 and iterate each component of FID in the following
subsections. Section 5.3 reports the evaluation results regarding benign binaries as
well as obfuscated code.1

1The work of this chapter is published in the 33rd IEEE International Conference on Software
Maintenance and Evolution [78].
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5.1 Introduction
Function recognition in binary programs is critical in reverse engineering [21,79,80]
and many binary instrumentation and analysis tasks [12, 81, 82]. For example,
control-flow integrity validates control flow transfers with rules constructed before
execution [6,13,83], and function addresses are used to define these rules. In addition,
many binary similarity analysis tools launch the similarity test in the granularity
of functions [84–86]. Thus, incorrectly identified functions can drastically impede
the similarity test. Recent research work [40] studies the recovery of relocation
information from binary code, in which function addresses are the prerequisite to
identify code pointers.

Despite the fundamental role of functions in binary instrumentation and analysis
applications, function information is usually absent in real world program binaries.
The main reason is that to reduce application size and defeat reverse engineering
from adversaries, program symbols (including function information) are usually
removed from program binaries before distribution. By far, identifying functions in
stripped binaries remains a challenge. Some research work has been proposed to
discuss the recognition of functions in stripped binaries [63, 64]. Also, most of the
widely-used binary reverse engineering and analysis tools have implemented their
own methods to identify functions [25,26,87]. Note that most of these existing tools
rely on handwritten patterns to recognize function prologue instructions. However,
it is reported that these manually written patterns can become less effective when
the input binary is highly optimized. Indeed, it has been pointed out that the
industry strength reverse engineering tool IDA-Pro (version 6.5) which features
function detection fails to recognize functions in a simple C program compiled by
Intel icc compiler with the O3 optimization level [68].

Distinguished from these manually written patterns, Rosenblum et al. [65]
first consider the function recognition as a data mining problem; patterns are
automatically learned from the training data, which will be installed for usage.
In addition, recent work proposes advanced data mining techniques to recognize
functions with improved performance [68, 69]. In general, these data mining
methods automatically learn key features from a large set of binary code to train
a detection model, and given a sequence of machine code bytes (or assembly
instructions), the “learned” model is able to answer whether the given code bytes
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start new functions. The data mining approaches have been evaluated to work
better than handwritten pattern matching methods. However, we observe one of
the limitations of these methods is that they construct the “key features” purely
through machine code bytes (or assembly instructions). That means, the leveraged
features only capture the syntax-level information in the binary code. Thus, it
is reasonable to suspect that program syntax changes can potentially defeat the
learned models due to different complication settings or even program obfuscations.

Program obfuscation and diversification transform programs into complex repre-
sentations which are difficult to understand. Typical obfuscation techniques insert
garbage code into random positions of the program, change the control flow struc-
tures, and harden control flow predicates into opaque formats. To defeat reverse
engineering and analysis from adversaries, besides deleting the debug and relocation
information, we assume software can be obfuscated before release. To provide better
analysis facilities of real world program binaries, we study the function recognition
problem against binary obfuscated by commonly-used techniques, which, to our
best knowledge, has not been evaluated by previous work systematically.

Symbolic execution captures the semantic information of programs. The key
idea of symbolic execution is to use symbolic variables to represent the input and
(statically) interpret the code. After symbolic execution, for each initial input, a
symbolic formula is generated to represent its output semantics. To better tackle
the function recognition problem, we propose to identify functions through the
combination of symbolic execution and data mining. To this end, we first employ
an open-source reverse engineering tool Uroboros [40, 75] to disassemble the
input binary and recover basic blocks. We then apply symbolic execution on each
individual basic block to generate corresponding semantics. In particular, we record
the assignment formula ( [85]) of each register which captures the behavior within
one block as well as memory accesses during the interpretation. We select key
semantics from the outputs of symbolic execution, and translate them into numeric
feature vectors. We utilize well-performing data mining techniques to learn from
the acquired key features and train a recognition model. For any given basic block,
the learned model can answer whether it represents a function entry point basic
block or not, thus identifying a new function. We implement the proposed technique
in a tool named FID, and we evaluate FID against a broad set of diverse program
binaries produced by three compilers and four optimization levels. The evaluation
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results show that FID is comparable or even outperforms the state-of-the-art
function recognition tools towards the broad sets of test cases we use. We also
employ a widely-used program obfuscation tool, Obfuscator-LLVM [88] to measure
the obfuscation resilience of FID (Obfuscator-LLVM is referred as ollvm later).
Binaries transformed by seven obfuscation strategies are produced and evaluated
in this paper (including three widely-used binary obfuscation methods and their
four compositions). Our evaluation shows that while previous tools suffer from the
drastically changed syntax in obfuscated binary code, the performance of FID is
quite promising. In sum, this paper makes the following contributions:

• We identify the limitations of previous data mining based techniques in
function recognition, i.e., model learned from syntax-level features can be
defeated easily by program syntax changes. We propose a novel technique
to extract the semantics and learn a more robust model. We implement our
proposed approach as a practical tool, FID.

• We evaluate a broad set of normal and obfuscated program binaries. Evalu-
ation shows that our approach can successfully capture the semantic infor-
mation across various compilers and optimization levels. Our evaluation also
reports that FID can outperform previous available tools against multiple
widely-used obfuscation transformations and their compositions.

5.1.1 Motivating Example

We observed that previous function recognition methods can become malfunctional
in front of program syntax changes. We present an example in Figure 5.1, in which
a data mining based function recognition tool ByteWeight [68] misidentifies a
function entry point.

To set up this test, we first compile all the 32-bit GNU Coreutils binaries
(version 8.23) using LLVM 3.6 and optimization O0. We train ByteWeight (bap-
byteweight in BAP v0.99 [89]) to learn a recognition model from all these binaries.
This version of ByteWeight captures informative machine code bytes to train
the model. ByteWeight also has another implementation which takes assembly
instructions to train the model [90]. In the rest of this paper we refer to the
byte-level ByteWeight as BW-Byte while the other one as BW-Instr.
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1 <emit_try_help >:
2 push %ebp
3 mov %esp ,% ebp
4 sub $0x18 ,% esp
5 lea 0x804db36 ,% eax
6 mov 0x8050144 ,% ecx
7 mov %eax ,(% esp)
8 mov %ecx ,-0x4(% ebp)
9 call gettext

(a) Original code

eax = 0 x804db36
ebx = reg2
ecx = mem1
edx = reg4
esi = reg5
edi = reg6
ebp = reg8
esp = reg7 - 32

(b) Assignment formulas corresponding to
the original code

1 <emit_try_help >:
2 push %ebp
3 nop
4 mov %esp ,% ebp
5 sub $0x18 ,% esp
6 lea 0x804db36 ,% eax
7 mov 0x8050144 ,% ecx
8 mov %eax ,(% esp)
9 mov %ecx ,-0x4(% ebp)
10 call gettext

(c) Obfuscated code

eax = 0 x804db36
ebx = reg2
ecx = mem1
edx = reg4
esi = reg5
edi = reg6
ebp = reg8
esp = reg7 - 32

(d) Assignment formulas corresponding to
the obfuscated code

Figure 5.1: A motivating example.

Garbage code insertion obfuscates programs by inserting meaningless instruction
sequences into the code. To present a straightforward and informative example,
We insert garbage code to obfuscate the syntax of one Coreutils program binary
(basename). To this end, we disassemble the program binary of basename, insert
one nop instruction at the beginning of the function emit_try_help (line 3 in Fig-
ure 5.1c), and reassemble the instrumented output into an executable. Figure 5.1a
presents the prologue instruction sequence of emit_try_help before obfuscation,
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Figure 5.2: The workflow of FID.

and Figure 5.1c shows the obfuscated code. We then employ BW-Byte to identify
functions from both the original and the obfuscated binaries; we report that while
BW-Byte can correctly recognize this emit_try_help function from the original
binary, the same function cannot be recognized from the obfuscated code.

BW-Byte constructs weighted prefix trees to represent typical function entry
point patterns, each tree node maintaining one machine byte. We consider the main
reason for the misidentification is because the inserted nop defeats the matching
towards the pre-learned tree structures. To illustrate the hidden similarity between
the original and obfuscated code, we present the assignment formula of eight
registers through symbolic execution ( [85]). Assignment formulas capture the
code semantics in terms of input and output relations. We initialize each register
with a symbolic variable as the input (e.g., reg1), and during interpretation, every
memory access towards uninitialized region (e.g., line 6 in Figure 5.1a) creates a
new symbolic variable as well (e.g., mem1). The interpretation outputs are shown in
Figure 5.1b and Figure 5.1d; the assignment formulas of the original and obfuscated
instruction sequences—as can be expected—are equivalent. Note that while most
formulas have one symbolic variable, formula of stack register esp contains a
subtraction operation of 32. Typically for programs on the x86 architecture, stack
needs to grow to store local variables, which decrements the stack register. In sum,
the recognition model trained from program syntax could become unreliable in
front of even simple syntax changes, while the semantics can usually be preserved
regarding such changes.

5.2 Design
We now outline our approach for function recognition in program binaries. To this
end, we train a classifier through semantics of function entry point basic blocks.
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Later, for a given basic block, our classifier is able to answer whether it represents
a function entry point or not, thus recognizing a new function. The extracted
semantics is mainly represented as assignment formulas, which describe basic block’s
behavior regarding the input and output relation of registers.

FID is built on top of Uroboros, an open-source binary disassembly and
instrumentation platform [40]. The input program binaries are disassembled and
maintained as its internal data, and Uroboros provides utilities to perform
inspection and manipulation. While some program instrumentation facilities are
provided already, the analysis component of Uroboros is quite insufficient. In
this paper, we extend Uroboros with multiple analysis functionalities.
Scope and Assumptions. FID is mainly designed to recognize functions inside
x86 ELF binaries without debug or relocation information. We evaluate it in
test cases compiled by different compilers, optimization levels and commonly-used
obfuscations. Careful readers may notice that FID extracts semantics of each basic
block. Thus, correct disassembling and basic block recovery are the prerequisites
of FID. In this paper, we assume the disassembling and basic block recovery are
mostly reliable.

As previously mentioned, one motivation of our research is that syntax-based
pattern is untenable or even misleading due to syntax changes. Therefore, in this
research, besides call instructions identified inside the code section of the program
binary, FID does not take program syntax into consideration. In addition to the
trained recognition model, the destinations (i.e., the callee) of call instructions
are used to reveal more functions.

5.2.1 Workflow

Figure 5.2 shows the overall workflow of FID. FID takes a stripped binary as input
and employs Uroboros to recover program control flow structures (including each
basic block). FID visits each recovered basic block and launches the implemented
analysis components.

As Uroboros is mainly designed to support binary instrumentation, assem-
bly instructions maintained by it are not parsed into analysis-friendly formats.
Therefore similar to other binary analysis tools, FID first simplifies the complex
representations maintained by Uroboros and lift them into easy-to-analysis for-
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mats. This process exposes instructions with implicit memory operations into
corresponding explicit expressions and simplifies composite instruction operands
(e.g., indirect addressing).

In the next phase, we launch a symbolic execution engine to produce the seman-
tics of each basic block. Note that as we are only analyzing each individual block,
it is not necessary to track the intra and inter-procedure execution information. We
capture the assignment formulas for eight general-purpose registers and also record
the memory access behaviors in this step (Section 5.2.2). Given all the acquired
semantics, we then select informative features and trim off redundancy before learn-
ing (Section 5.2.3). We emphasize this step is necessary as the deliberately-selected
key features can boost the learning process and improve the performance.

We now have the representations of the semantics each basic block has; the
assignment formulas and memory access behaviors describe operations a basic block
will perform. However, assignment formulas are purely syntactic; learning directly
from assignment formulas are very challenging. Therefore, we then seek to translate
semantics into numeric feature vectors. We extract multiple numeric features from
both lexical and syntactic aspects of an assignment formula (Section 5.2.4).

With all the numeric vectors collected, we then discuss how we launch the
learning process and train the recognition model (Section 5.2.5). In addition, our
study shows that binary compiled by different compilers may have different feature
distribution, and to present a practical tool, we undertake a pre-classification step,
determining which compiler the input binary is compiled from (Section 5.2.6). After
that, for a given binary, we use the model learned from binaries compiled only by
the identified compiler to predicate.

Similar with previous work [68,70], we improve the accuracy through control
flow analysis, i.e., identifying function call instructions in the disassembled code.
Motivated by the low recognition precision of previous tools (Section 5.3.3), one
of our central design choice is to present conservative feature selection which
guarantees high precision rate, and improve the recall rate with call instruction
collection (Section 5.2.7).2

2In this paper, precision represents the percentage of function entry points identified that are
correct; recall is the percentage of real function entry points identified as such. We also calculate
F1 score in evaluation sections, which is the harmonic mean of precision and recall; naturally, the
higher F1 score is, the better a learned model is considered in general.
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5.2.2 Basic Block-Level Symbolic Execution

After acquiring the simplified code, the first step is to leverage symbolic execution
to interpret instruction sequences corresponding to each basic block. For each basic
block, we collect the assignment formula of every 32-bit general-purpose register.
We also record the memory access behavior a basic block commits during the
execution. As mentioned previously, symbolic execution engine implemented in
FID initializes the interpretation at the beginning of every basic block; this design
choice can largely improve the practicability, as typical challenges in analyzing
real-world large size binaries, such as inter-procedural analysis, are not considered.
Our implementation follows the common design of a symbolic execution engine.
We leverage bit vectors defined by the Z3 SMT solver [91] to construct the input
value of each register. The symbolic variables initialized through Z3 allow bit-level
arbitrary computation, and after aggregating assignment formulas representing the
output semantics, we pass formulas to the Z3 solver to simplify the expressions
before further analysis.

FID also maintains a lookup table to represent memory contents and how each
position is accessed through memory addressing formulas (e.g., 4*reg1 + 4, where
reg1 is the input variable of register eax). Memory read operations on stack is
likely to indicate access on function parameters, which is considered as a key feature
of function starting blocks (see Section 5.2.3 for details). Therefore after execution,
FID iterates each recorded memory read operation, and if any of the memory read
formula contains the input symbolic variable of the stack register esp, this memory
access formula will be recorded. Note that it is likely to use other registers instead
of esp to access stack, as we statically interpret the instructions and keep track of
the memory, dataflow from esp to other registers can be captured as well. After
the interpretation, assignment formulas and memory read formulas of each basic
block are dumped out for further analysis.

5.2.3 Select Informative Semantics

Before we “learn” a model from all the acquired data in Section 5.2.2, we first
select the key features that are mostly informative in this research. Indeed, our
preliminary test shows that by deliberately selecting a subset from all the outputs
in Section 5.2.2, we could notably improve the performance of FID.

63



mov $0x805248e ,0x4(% esp)
mov -0x10 (% ebp),%eax
mov %eax ,(% esp)
call c_strcasecmp

(a) Caller’s basic block

eax = mem1
ebx = reg2
ecx = reg3
edx = reg4
esi = reg5
edi = reg6
ebp = reg7
esp = reg8

(b) Assignment formulas of the caller’s basic
block

<c_strcasecmp >:
push %ebp
mov %esp ,% ebp
push %esi
push %ebx
sub $0x20 ,% esp
mov 0x8(% ebp),%esi
mov 0xc(% ebp),%ebx
cmp %ebx ,% esi
jne 0 x804cf85

(c) Callee’s basic block

eax = reg1
ebx = mem1
ecx = reg3
edx = reg4
esi = mem2
edi = reg6
ebp = reg8 - 4
esp = reg8 - 44
[reg8 +4] = mem3
[reg8 +8] = mem4

(d) Assignment formulas and memory reads
of the callee’s basic block

Figure 5.3: Memory access behaviors in an inter-procedure control transfer.

Stack Registers. We observe that most function entry point basic blocks will
create new stack frame and reserve spaces to allocate local variables. That means,
stack register esp and ebp are likely to be adjusted in typical function entry point
basic blocks. Figure 5.4 presents an example, demonstrating how stack register
esp is used in a typical function beginning basic block. As shown in Figure 5.4a,
register esp is utilized to reserve 92 bytes on the stack to store local variables. Note
that besides the explicit subtraction operation on esp (line 5 in Figure 5.4a), push
opcode (line 1–4) also implicitly decrements the input value of esp by 16 bytes
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1 push %ebp
2 push %ebx
3 push %edi
4 push %esi
5 sub $0x4C ,% esp
6 mov 0x68 (% esp),%eax
7 mov 0x64 (% esp),%edx
8 mov 0x60 (% esp),%esi
9 test %edx ,% edx

(a) A function entry point basic block

eax = mem1
ebx = reg2
ecx = reg3
edx = mem2
esi = mem3
edi = reg6
ebp = reg7
esp = reg8 - 92

(b) The corresponding assignment formulas

Figure 5.4: Stack register adjustments in a function entry point.

(this implicit effect has been translated into explicit statements before symbolic
execution). Figure 5.4b presents the assignment formulas corresponding to instruc-
tions in Figure 5.4a. Assignment formulas of register esp contain a subtraction
operation of 92. In general, stack registers are majorly informative, and we pick
their assignment formulas (formulas of register esp and ebp) to learn.

Memory Read. Although stack registers are informative, actually in a typi-
cal function call context, both caller and callee can manipulate the stack registers.
To future distinguish caller and callee, we elaborate on how we select key features
from memory access behaviors.

In this research, we capture the stack memory read operations through register
esp, which is likely to indicate typical parameter read operations at the beginning
of functions. Figure 5.3 presents typical memory access instructions in a function
call context (this example is from a GNU Coreutils program printf). As shown in
Figure 5.3d, memory positions pointed by reg8+4 and reg8+8 which represent the
memory positions of the first two function parameters, are all visited by the callee
(reg8 is the input variable of stack register esp). Whereas on the caller side no
memory read can be found.

In general, we assume stack memory read operations are informative in identify-
ing function entry points, if the memory access formula follows certain addressing
patterns. Recall in Section 5.2.2 the symbolic execution engine has iterated all
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the memory read addressing formulas and dumped out formulas containing the
input variable of esp. We then check the presence of memory addressing formulas
following such pattern reg8 + 4*n, where n can equal to 1, 2, and 3 (suppose reg8
is the input variable of esp, and we assume each stack memory fetching is 4-byte
aligned). Such addressing formulas indicate memory read towards the first three
potential parameters of a function. Functions with three or more parameters will
have the same feature vectors (i.e., (Present, Present, Present)) in this step.

5.2.4 Translate Assignment Formulas into Numeric Vectors

Several previous work seeks to recognize equivalent assignment formulas through a
theorem prover [92, 93]. Given two formulas, a theorem prover is able to prove the
equivalence between them, thus identifying program units (e.g., two basic blocks)
that are semantically equivalent. However, despite its disinformative results (a
prover can only tell “match” or “unmatch”), we emphasize this equivalence-seeking
approach is not suitable in our usage scenario, as we are more interested in the
gradual similarity.

On the other hand, we observe that most data mining methods take numeric
vectors to train the model. Enlightened by recent research [94], we seek to translate
the acquired semantics into numeric vectors to support a forthright learning process.
We also notice that some machine learning algorithms are able to use more complex
representations (e.g., string and tree kernels [95]). We leave it as one future work to
explore challenges in adopting such advanced models in mining symbolic formulas.

In this step, we choose to extract and combine lexical and syntactic features
from assignment formulas; each feature as a numeric value. Most lexical features are
captured directly from formulas’ textual representations, while syntactic features
are acquired from the parsed abstract-syntax trees (ASTs). Besides, we also capture
three boolean (0/1) stack features based on the stack memory access behaviors.
Note that each assignment formula produces 8 features, and we capture formulas
of esp and ebp (Section 5.2.3). Thus, for each basic block, we construct a numeric
vector with 19 elements (8*2+3).
Lexical Features. Table 5.1 shows the lexical features we extract from the textual
representations. We obtain the number of operators and constants by directly
analyzing the text. As for the token related feature, we employ Python library
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Table 5.1: Lexical features.

Feature Definition
numOperator/length the number of occurrences of operators divided by the formula length of characters
numToken/length the number of tokens divided by the formula length of characters
numConstant/length the number of constants divided by the formula length of characters
decOperator/length the number of subtraction operators divided by the formula length of characters
decNum/length the number of “small operands” in subtraction operations divided by the formula length of characters

Table 5.2: Syntactic features.

Feature Definition
maxNestingDepth the maximum levels of nested parentheses
maxDepthASTNode the maximum depth of an AST
aveTreeDistance the average tree edit distance between the target AST and 50 random picked ASTs

tokenize to calculate the total number of tokens. We are particularly interested
in the subtraction operations of stack registers in typical function entry point
basic blocks, and to this end, we identify two features regarding the presence of
subtraction operations and their (potentially) small operands.3

Syntactic Features. In this step, we extract features that can be ignored in
the lexical analysis. In particular, as each assignment formula can be parsed into
a syntax tree, we extract syntactic features on top of the parsed tree. Table 5.2
presents features we utilized; We calculate the maximum levels of nested parentheses
and the maximum depth of an AST as two features. Considering function prologue
block delivers unique assignment formulas, it shall be accurate to assume ASTs of
prologue blocks and other blocks would yield different similarity distributions when
comparing to randomly selected ASTs. Hence, we calculate similarity for each AST
with other randomly select ASTs in our dataset. Tree edit distance is employed
to measure the similarity, and we use Python library zss, which implements the
Zhang-Shasha algorithm [96] to calculate the distance. Without losing generality,
we randomly select 50 ASTs and calculate their tree edit distances towards one
target AST.
Stack Features. As in the previous step we have checked the presences of three
stack memory accesses that indicate function parameter read (Section 5.2.3), here
we create three boolean (0/1) features for them. Zero indicates the absence and
one is for the opposite.

3“Small operands” refer to operands of subtraction operations that are less than a threshold.
In our prototype implementation this threshold is 65536.
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Table 5.3: Classifiers used by the majority voting mechanism.

Models Settings
LinearSVC penalty parameter C=16.0
AdaBoost number of weak learners=100
GradientBoosting number of boosting stage=100; learning rate=1.0; random state=0

Normalization

Although it may not be obvious, the lexical and syntactic feature extractions
have implicitly “normalized” the assignment formulas (normalization here means
generalizing a formula so that it can match formulas with similar structures). The
reason is that we extract structural and tokenism information from the formulas
(e.g., the total number of constant numbers), and ignore concrete values in the
formula. The “normalization” can usually help us identify more functions. For
example, if one function entry point basic block has an assignment formula esp =
reg8 - 4 + mem4, then it is reasonable to assume a basic block with formula esp
= reg3 - 8 + mem5 belonging to a function entry point as well since two formulas
produce the same lexical and syntactic features.

Even though we distinguish ourselves from previous work as we extract features
from the semantics while they focus on syntaxes, normalization is considered as a
general optimization for both.

5.2.5 Classification

After producing all the numeric feature vectors, we then employ data mining
methods to train a recognition model. Our preliminary test shows that multiple
data mining techniques have good performance. To present a well-performing and
robust classifier, we decide to employ the majority voting mechanism on top of
multiple learning algorithms. A typical majority voting classifier combines multiple
learning methods and use a majority voter to predict. A majority voting approach
can rule out weakness of each individual method, which should be more adaptable
in our scenario.

As shown in Table 5.3, our majority voting classifier contains three classic
learning methods. Besides settings shown in Table 5.3, we use the default value
for all the other parameters of the three learning methods. We use these methods
from Python data mining library scikit-learn.
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5.2.6 Distinguishing Different Compilers

Our preliminary test on three compilers (gcc, icc and LLVM) shows that while
binaries compiled by gcc and icc share quite similar feature distribution, LLVM
has a slightly different distribution (Section 5.3.1). Given this observation, we
construct a pre-classification step before predication in the real-world usage scenar-
ios, determining whether a given program binary is compiled by LLVM compiler or
gcc/icc (we put binaries compiled by these two compilers into one group as they
have similar feature distributions according to our observation). After that, we
recognize functions from the input with a model trained from binaries compiled
only by the corresponding compiler (i.e., LLVM or gcc/icc).

The question we seek to answer in this step is comparable to a classic pattern
recognition problem, i.e., given an image with thousands of pixels (in our case, it
is compared to a program binary with thousands of basic blocks), which category
does this image belong to. Enlightened by research work in that field, we classify
program binaries according to the feature distribution of informative basic blocks.
We first select representative basic blocks from thousands of candidates each binary
contains, and then calculate the distribution of these selected blocks regarding some
revealing features. We use the acquired distributions (in the format of numeric
vectors) to train a classification model. After the training step, for a given binary
code (i.e., the input), our classification model is able to answer which compiler it is
compiled from (the output). We elaborate on our method in terms of a three-step
approach as below:

The first step is to select “critical” basic blocks from all the blocks a binary
contains. Naturally, basic blocks corresponding to function entry points should
be considered as informative candidates in our research. However, our study has
shown that without knowing which compiler it belongs to, identifying functions
from obfuscated binaries through pre-learned models could become problematic
(low recall rate in our case). Thus, we conservatively select functions identified by
the callees of call instructions (as shown in Table 5.7, we can discover about 50%
functions through this method).

The semantics of each basic block is translated into a feature vector with 19
elements (Section 5.2.4); as most of them are continuous variables, it is—if possible
at all—quite challenging to calculate a feature distribution. Instead, as shown
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Table 5.4: Boolean features to distinguish different compilers.

Feature Definition
decESP Does esp contain subtraction operator?
decEBP Does ebp contain subtraction operator?
memREAD Can we identify stack memory read operations on memory position reg8 + 4*n (n can equal to 1, 2 and 3)?

in Table 5.4, the second step constructs five boolean features (note that memREAD
stands for three features, and reg8 is the input variable of register esp) from the
numeric features we already acquire (Section 5.2.4). As these features are all in
boolean distribution, the overall distribution space (25) is small and practical. We
then calculate the distribution of function starting basic blocks with respect to
these 25 (i.e., 32) variants and train a model using a majority voting classifier
with the same settings (Section 5.2.5). Evaluations in this step are detailed in
Section 5.3.2.

5.2.7 Call Instruction Collection

Our preliminary study shows that when analyzing complex binary code, it is not
always possible to achieve low false positive and negative rate at the same time.
Besides, we have observed that some of previous data mining based tools can have
relatively high recall rate with quite low precision rate (Section 5.3.3). This is not
satisfying in developing security applications (e.g., control-flow integrity [6, 12, 13]),
as low precision rate indicates many instructions are incorrectly considered as
function entry points, which potentially leaves more opportunities for attackers to
hijack the control flow.

To present a practical tool, one of our central design choice is to preserve low
false positive rate through deliberately-selected conservative features, and reduce
the false negative rate with additional control flow analysis. To catch functions that
are missed by the trained model, we extend the function entry point list through
call instruction collection. That is, for a given call instruction, if we can identify its
operand (say, the callee) in the code section, the callee is considered a new function
beginning. Functions identified by this approach will be added to the final result
of FID, thus reducing the false negative rate. We name this technique FID-CIC
later in this paper.
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5.2.8 Function Boundary Identification

Naturally, after recognizing function entry points, the next step is to recover the
function boundary, i.e., identifying both the entry point and (multiple) exit points
of functions. Most of the existing work recovers the function boundary information
through control flow analysis [68, 70]; starting from the identified function entry
point, they traverse the intra-procedural control flow to rebuild the control flow
graph, thus recovering the function boundaries. Actually given the identified
function entries, as the intra-procedural CFG recovery techniques are mostly well-
developed, function boundary identification is a matter of engineering effort. So our
major effort in this paper is to present novel techniques in recovering the function
entry points.

ByteWeight adopts one baseline method to split the whole code section
into multiple regions according to the identified function beginnings; each region
stands for one function. Indeed besides typical challenges such as overlapping
functions in highly-optimized binary code, this “naive” method has been proved
as quite reliable [68]. FID provides this method to recover the function boundary.
Indeed, we can utilize the value-set analysis to recover indirect control destinations
and precisely reconstruct the CFG [97]. Thus, the function boundaries can be
distinguished even for overlapped functions. We leave it as one future work to
extend FID with the precise recovery of function boundaries.

5.3 Evaluation
We undertake a three-step evaluation in this research. The first step evaluates FID
in function entry point recognition of normal binaries; three compilers and four
optimization levels are employed to generate test cases in this step. We then test
FID in distinguishing which compiler an input binary is compiled from. The third
evaluation is on obfuscated code. We leverage the Obfuscator-LLVM [88] (referred
to as ollvm) to obfuscate all the test cases with three widely-used obfuscation
methods and their compositions (in total 7 strategies). All the optimization levels
are used to generate obfuscated code in this evaluation. We evaluate FID in terms
of three standard criteria, i.e., precision, recall, and F1 score. In general, our
experiments aim to address the following questions:
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• Is FID resilient to compiler and optimization changes (Section 5.3.1)?

• Is FID capable of answering which compiler an input binary is compiled from
(Section 5.3.2)?

• Is FID resilient to widely-used code obfuscation techniques (Section 5.3.3)?

Before we present the evaluation of our approach, we first introduce the data
set we use and how we acquire the ground truth for comparison.
Data Set. Our evaluation are designed to compare with the cutting-edge research
and industrial binary analysis tools who features the function recognition functional-
ity. We choose to employ a widely-used program set, i.e., GNU Coreutils as the test
set in our research. GNU Coreutils consists of 106 binaries which provides diverse
tasks on Linux operating systems such as textual processing, system management,
and arithmetic calculation. We compile the test cases with three compilers (gcc,
icc and LLVM) and four optimization levels to produce “normal” program binaries
for evaluation.

To evaluate the resilience to program obfuscation, we employ ollvm in our
experiments. ollvm is a set of obfuscation passes implemented inside LLVM compiler
suite, which provides three widely-used obfuscation methods, i.e., instruction
replace [48], opaque predicate insert [62], and control-flow flatten [50] to obfuscate
the inputs. All of these methods are widely-used in typical program obfuscation
tasks. In this paper, we leverage all the implemented obfuscation methods, together
with their compositions (i.e., combining multiple methods to obfuscate) to produce
binaries with complex structures. We present the obfuscation strategies we use in
Table 5.5. Note that each column name corresponds to the abbreviated name we
use in evaluation. In summary, our data set consists of three variables:
Compiler. We use GNU gcc 4.7.2, Intel icc 14.0.1 and LLVM 3.6 to produce test
binaries.
Optimization Level. For both “normal” and obfuscated binary evaluation, we
test all the optimization levels, i.e., O0, O1, O2 and O3.
Obfuscation Methods. We test program binaries obfuscated by 7 different
strategies; each strategy is evaluated regarding 4 optimization levels as well.

In total, 4,240 (1,272 normal binaries and 2,968 obfuscated binaries) unique
test cases are evaluated in our work.
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Table 5.5: Obfuscation strategies used in the evaluation.

Obfuscation Methods ins opq flt mix1 mix2 mix3 mix4
Instruction Replace 3 3 3 3

Opaque Predicate Insert 3 3 3 3

CFG Flatten 3 3 3 3

Table 5.6: Ten-fold validation on different compilers with different optimization levels.

Opt. Level LLVM gcc icc
Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score

O0 0.828 0.980 0.898 0.961 0.978 0.969 0.961 0.979 0.970
O1 0.868 0.933 0.899 0.958 0.951 0.954 0.958 0.952 0.955
O2 0.792 0.961 0.868 0.957 0.946 0.951 0.957 0.945 0.951
O3 0.826 0.961 0.888 0.961 0.955 0.958 0.961 0.857 0.906
average 0.829 0.959 0.889 0.959 0.958 0.958 0.959 0.933 0.946

Ground Truth and Tool Usage. All the test cases are compiled with the
symbolic and debug information, and it is easy to get the ground truth (i.e.,
function beginning addresses) by disassembling the binary. Indeed we acquire the
ground truth by disassembling the code section of each test case with GNU tool
objdump, and extract all the functions with their starting address information by
using grep.

The symbolic and debug information will then be removed from test bina-
ries using GNU tool strip before analyzed by FID. Note that while FID and
ByteWeight can directly output the identified function starting address, IDA-Pro
recovers functions as its internal data structure for analysis and transformation.
For IDA-Pro, we write scripts to dump out the function information. As previously
mentioned, ByteWeight provides two syntax-based function recognition methods
which generate machine byte or assembly instruction-based models. Both of them
are evaluated in our research. we summarize the tools we evaluated below:
BW-Byte: The machine byte-level ByteWeight has been integrated into
BAP [26]. We use BAP version 0.99 for evaluation (the newest version by the time
of writing) [89].
BW-Instr: The instruction-level ByteWeight is provided through a virtual
machine image [90]. The image is downloaded and configured to use.
IDA-Pro: We use IDA-Pro version 6.6 with all the function identification options
enabled.4

4Although the newest version of IDA-Pro is 6.9 by the time of writing, there is no improvement
for function identification in x86 ELF binaries according to its release notes [98–100].
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5.3.1 Normal Code

We first evaluate FID in all the normal programs. As previously mentioned, we
utilize three compilers and four optimizations to compile programs in GNU Coreutils,
resulting into 1,272 test cases. To demonstrate the proposed semantics-based model
in FID, call instruction collection (Section 5.2.7) is not used in this step.

We used ten-fold validation in this step. In general, this validation divides the
total data set into ten subsets and tests each subset with the model trained by the
remaining 9. Table 5.6 presents the evaluation results against different compilers
and optimizations. The precision and recall rates represent the average of the
ten tests. On average, FID has 0.916 precision, 0.959 recall and 0.930 F1 score
for the 1,272 test cases. While the precision rate of binaries compiled from the
LLVM compiler is slightly lower than the other two, the overall data is convincing.
Indeed, most of the evaluation criteria on gcc and icc compiled binaries are quite
stable to around 96% (besides the recall rate of icc O3). We interpret this as a
promising result to show the semantics-based technique implemented in FID has
good performance against various compilers and optimization levels.

We compare FID with existing research and industry de facto tools, which
features handwritten patterns or data mining based function recognition. We also
present the “baseline” method, i.e., only leveraging call instruction collection to
recognize functions (Section 5.2.7). We evaluate all of them using the same test
cases. Table 5.7 presents the average performance results; FID notably outperforms
the baseline method, IDA-Pro and BW-Byte. Indeed by comparing with the
baseline method, we have shown how FID can effectively improve the performance
through the data mining-based method. BW-Instr can marginally outperform
FID on normal code with no obfuscation; later we will see how the semantics-based
model implemented in FID can surpass BW-Instr on obfuscated code. Note
that this evaluation only tests the learned model, and in practice, call instruction
collection (Section 5.2.7) can always provide additional information to improve the
performance of FID.
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Table 5.7: Comparison with different tools (the “baseline” method only uses call instruc-
tion collection to recognize functions).

Precision Recall F1 Score
Baseline 1.000 0.527 0.690
IDA-Pro 0.998 0.600 0.750
BW-Byte 0.788 0.954 0.863
BW-Instr 0.996 0.997 0.996
FID 0.916 0.959 0.930

5.3.2 Different Compilers

In this section, we present the evaluation on distinguishing different compilers. As
aforementioned (Section 5.2.6), for any given input binary, we aim to develop a
classifier which can answer whether this binary is compiled by LLVM or gcc/icc.

Table 5.8 presents the performance of ten-fold validation against all the benign
code. Most of the binaries compiled by gcc/icc can be correctly classified, with
small errors (over 0.97 precision rate). As for the binaries compiled by LLVM, we
report the recall rate is slightly lower than the other group. In particular, our
finding shows that binaries compiled by LLVM and optimization O1 have similar
distributions with binaries compiled by gcc/icc to certain degree. Nevertheless,
given 1.000 precision and over 0.85 recall rate, we still interpret it as a promising
result to show FID can recognize which compiler the input binary is compiled from
for most of the cases.

Our tentative evaluation shows that training using data from binaries compiled
by O0 and O2 optimization level can lead to stable performance, so to evaluate
the obfuscation-resilience, we train the model using data from Coreutils binaries
compiled by LLVM and icc compilers with O0 and O2 optimization levels (in total
424 program binaries),5 and test the trained model towards all the obfuscated binary
code (seven obfuscation methods and four optimization levels). Table 5.9 presents
the average performance regarding different optimizations. We report besides four
types of obfuscated binaries compiled by LLVM and O1 optimization, most of the
obfuscated binaries perform flawlessly in this evaluation. This is consistent with
our evaluation in Table 5.8.

5Considering the similarity of binaries compiled by icc and gcc, we choose to only use binaries
compiled by one of them. Our test reports similar test results when substituting with gcc compiled
binaries.
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Table 5.8: Ten-fold validation on distinguishing different compilers.

Opt. Level gcc/icc
Precision Recall F1 Score

O0 1.000 1.000 1.000
O1 1.000 1.000 1.000
O2 0.977 1.000 0.989
O3 0.940 1.000 0.969
Average 0.979 1.000 0.989

Opt. Level LLVM
Precision Recall F1 Score

O0 1.000 1.000 1.000
O1 1.000 0.775 0.873
O2 1.000 0.84 0.913
O3 1.000 0.84 0.913
Average 1.000 0.863 0.926

Table 5.9: Evaluation on distinguishing different compilers on obfuscated binary code.

Precision Recall F1 Score
O0 1.000 1.000 1.000
O1 1.000 0.391 0.488
O2 1.000 1.000 1.000
O3 1.000 1.000 1.000
Average 1.000 0.848 0.918

It is always possible to improve the recall rate when scarifying some precision.
Besides, some tricks such as analyzing the exported function name and mangling
schemes can also provide us with more clues. We leave it as one future work to
improve the recall rate of binaries compiled by LLVM and O1 optimization. Overall,
we assume FID can clearly distinguish whether an input binary is compiled by
LLVM compilers or gcc/icc for most of the cases.

5.3.3 Obfuscated Code

The next step is to evaluate FID against the obfuscated binary code. In this
test, we train a recognition model with normal binary code, and test the trained
model with obfuscated code. Apparently, this is how FID is supposed to work in
practice. Note that as obfuscated binaries are all compiled by LLVM compiler, as
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Table 5.10: Evaluation on obfuscated code compiled with O3 optimization level. FID-
CIC (5.2.7) outperforms all the other tools in terms of F1 score (i.e., the harmonic
mean of precision and recall), which demonstrates the resilience of our technique towards
obfuscated code.

Obf. IDA-Pro BW-Byte BW-Instr FID FID-CIC
P R F1 P R F1 P R F1 P R F1 P R F1

ins 1.000 0.474 0.643 0.719 0.929 0.811 0.911 0.920 0.915 0.958 0.683 0.798 0.966 0.839 0.898
opq 1.000 0.551 0.710 0.540 0.937 0.685 0.811 0.859 0.834 0.959 0.655 0.778 0.969 0.867 0.915
flt 1.000 0.489 0.656 0.730 0.924 0.816 0.716 0.936 0.811 0.913 0.607 0.729 0.933 0.806 0.865
mix1 1.000 0.543 0.704 0.569 0.931 0.706 0.768 0.907 0.832 0.955 0.586 0.726 0.968 0.840 0.899
mix2 1.000 0.489 0.657 0.494 0.935 0.647 0.685 0.915 0.783 0.896 0.621 0.733 0.918 0.809 0.860
mix3 1.000 0.560 0.718 0.395 0.929 0.554 0.671 0.942 0.784 0.943 0.608 0.740 0.958 0.835 0.892
mix4 1.000 0.565 0.722 0.444 0.925 0.600 0.703 0.941 0.805 0.849 0.557 0.672 0.895 0.842 0.868
Average 1.000 0.524 0.688 0.556 0.930 0.696 0.752 0.917 0.826 0.925 0.617 0.740 0.944 0.834 0.886

Table 5.11: Average performance evaluation on obfuscated code.

Opt. Level FID
Precision Recall F1 Score

O0 0.979 0.852 0.911
O1 0.900 0.555 0.685
O2 0.944 0.616 0.745
O3 0.925 0.617 0.740
Average 0.937 0.660 0.774

Opt. Level FID-CIC
Precision Recall F1 Score

O0 0.981 0.936 0.958
O1 0.933 0.885 0.907
O2 0.957 0.833 0.891
O3 0.944 0.834 0.885
Average 0.954 0.872 0.911

discussed in Section 5.2.6, we train FID with normal binaries compiled by LLVM.
To be consistent with Section 5.3.2, we train FID with normal binaries compiled by
optimization level O0 and O2 (in total 212 binary code). We also train BW-Instr
and BW-Byte with the same settings.

We first report detailed results regarding the most challenging setting, that is,
obfuscations with optimization O3. Table 5.10 reports the performance data. Note
that BW-Instr also provides the functionality to improve the learned model with
call instruction collection (Section 5.2.7), therefore to present a fair comparison,
BW-Instr is configured with this functionality (column four). We do not configure
BW-Byte with call instruction collection, as the high recall rate of BW-Byte
shows small space for improvement (as aforementioned, “recall” rate represents the
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percentage of real function entry points that is identified). As can be expected,
FID-CIC outperforms all the other tools in terms of average F1 score, which is a
strong evident to prove FID is resilient to obfuscated code.

In particular, our evaluation shows that while precision of FID is high whether
we leverage call instruction collection or not, recall increases when it is applied
(comparing column five and six in Table 5.10). This is consistent with our as-
sumption, i.e., we conservatively select semantics features to guarantee precise
recognition (low false positive rate), and eliminate false negative (improve recall
rate) through call instruction collection.

Although BW-Instr shows better recall compared with FID, FID outperforms
BW-Instr in terms of precision and F1 score. Thus, we interpret FID can have
much lower false positive in analyzing obfuscated code. Again, we emphasize the
recall rate can be improved by analyzing indirect function calls through value-set
analysis, which is left as our future work.

We also reported the average performance score against all four optimization
levels. As shown in Table 5.11, the average precision is over 0.95, and recall is
over 0.87. Note that our evaluation shows that with more complex optimization
applied, the recall rate decreases. We consider the main reason is that advanced
optimization techniques are likely to decrease the need to use stack for parameter
passing and locate variable allocation. In general, given overall 0.91 F1 score, we
interpret that FID is capable of identifying functions even in front of binary code
obfuscated by widely-used techniques with various optimization levels.

5.3.4 Execution Time

Our experiments are launched on a server machine with Intel Xeon(R) E5-2690
CPU, 2.90GHz and 128GB memory. In this section we report the time consumption
of FID.
Feature Generation. FID takes 123.2 CPU hours to process all the normal
binary code, and 1659.9 CPU hours for all the obfuscated code; the process time of
each test case is recorded from starting to disassemble until finishing producing
the numeric feature vectors. Naturally, as obfuscation complicates control flow
structure and generates more basic blocks, it is reasonable to take more time to
process.
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Our study shows that there are two tasks taking more time than others, i.e.,
symbolic execution (Section 5.2.2) and tree edit distance computation (Section 5.2.4).
On the other hand, while it takes a relatively long CPU time to process, as FID
boosts several tasks (e.g., symbolic execution) with multithreading facilities, the
real execution time is indeed much shorter. We report FID takes 23.1 real hours
to process normal binary code and 483.8 real hours for obfuscated binary code. On
average, it takes 7.2 minutes to analyze one binary code.
Model Training. Our ten-fold validation training takes 3.62 CPU hour (Sec-
tion 5.3.1), and the training time with only LLVM O0 and O2 binary code (Sec-
tion 5.3.3) takes 178.1 CPU seconds. We consider the training time is in general
promising.
Predication. Given the trained model and numeric feature vectors extracted from
an input binary, predication is straightforward. We report that the predication
time is 679.53 CPU seconds (Section 5.3.3). That is, on average it takes about
0.23s to recognize functions in one binary.
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Chapter 6 |
Composite Software Diversifica-
tion

Many techniques of software vulnerability exploitation rely on deep and comprehen-
sive analysis of vulnerable program binaries. By transforming software into different
forms before deployment, software diversification is considered as an effective mitiga-
tion of attacks originated from malicious binary analyses. Enlightened by research
in other areas, we seek to apply different diversification transformations to the same
program for a synergy effect such that the resulting hybrid transformations can
have boosted diversification effects with modest cost. We name this approach the
composite software diversification. In this chapter, we undertake an in-depth study
in this direction and develop a reasonably well working selection strategy to find a
transformation composition that performs better than any single transformation
used in the composition. We start by demonstrating composite diversification with
a motivating example and presenting its formal definition in Section 6.1. We then
introduce how we setup our study in Section 6.2. Afterward, Section 6.3 details our
selection strategy and Section 6.4 validates the design of composite diversification
with more experiments.1

6.1 Introduction
With the rapid development of software reverse engineering and analysis, attackers
have gained a certain level of advantages in the arms race. Code-reuse attack

1The work of this chapter is published in the 33rd IEEE International Conference on Software
Maintenance and Evolution [101].

80



analyzes the victim programs to identify sequences of reusable code snippets and
direct the control flow through these snippets to construct malicious operations [15,
102,103]. Patch-based exploitation analyzes the post-patch binary code to expose
hidden vulnerabilities (fixed by the patch) and construct attacks towards the
pre-patch binary [104].

Software diversification produces different variants of a program, altering soft-
ware syntax but retaining the semantic equivalence. After diversification, each copy
of the software has a different structure. Therefore, knowledge obtained by reverse
engineering one copy of the software is not applicable to other copies, making
attacks depending on such knowledge (e.g., code-reuse attack and patch-based
exploitation) lose generality or not feasible at all.

There has been many great work on software diversification and a large por-
tion of them focus on the transformation algorithm side [48–50,53,105]. A good
transformation algorithm can vastly mutate the binary form of a program with
a considerable amount of randomness. Meanwhile, the transformation preserves
the original semantics and keeps the incurred cost as modest as possible. Typical
penalties of diversification transformations include binary size expansion and execu-
tion slowdown. As more and more transformation algorithms have been proposed,
it becomes more and more difficult to develop new algorithms that provide reliable
diversification effects with low cost. We have noticed that recent progress on
software diversification is more about building frameworks and providing support
for upstream techniques (binary rewriting, for instance) which enable software
diversification in different scenarios [17,19].

In this research, we propose composite software diversification which combines
existing methods together for a synergy effect. The basic idea is that by applying
different diversification transformations to the same program, we can make the
binary more efficiently diversified compared to applying a single transformation;
meanwhile, the cost of the composite transformation is kept low enough for practical
deployment. The composite diversification, if feasible, can extract the hidden value
of past research results and greatly enrich the choices of software diversification
algorithms.

The idea of combining different program transformations of the same kind for
greater benefits is not merely an intuition but has been proven reasonable and
feasible by previous work on compiler optimization [106]. Although optimization
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and diversification have different goals and are evaluated with entirely different
metrics, we do believe that the success of the idea in one area gives a strong hint
that similar methods can work in another field.

Given a set of primitive program transformation algorithms, the search space for
an optimal or a close-to-optimal composition is considerably large. To investigate
the feasibility and effectiveness of composite software diversification, we propose a
methodology that comprehensively evaluates a diversification transformation, either
primitive or composite. With this methodology, we further develop a strategy to
prune the search space so that our study can be done in an empirical way; this
strategy itself has a reference to the data mining research. To the best of our
knowledge, despite the growing need for deploying diversified real-world applications,
no systematic study has focused on comprehensively evaluating the performance of
software diversification transformations when they are composed together.

In summary, we make the following contributions:

• We propose a new concept of software diversification called composite software
diversification. By composing different diversification transformations in a
certain way we can boost the effectiveness of the previously proposed methods
while keeping the cost of diversification under control.

• By referring to data mining research, we develop a fairly well-performed
search guideline on the basis of backward stepwise selection [107,108]. This
guideline effectively selects the satisfactory composition of transformations
which diversifies a program without incurring much cost.2

• We justify our research idea and methodology with extensive empirical exper-
iments on the C programs of the SPEC2006 benchmark suite. The results
show that composite diversification is a promising technique that should be
appealing to software developers and distributors.

• We developed a tool called Amoeba, which delivers composite software
diversification to binary code (it is publicly available for download at https:

2Careful readers may notice there is no guarantee that stepwise selection can yield the globally
optimal model; the proposed guideline performs a greedy search from composition candidates.
On the other hand, the proposed guideline has been demonstrated as fairly well-performed in
this research (details are given in Section 6.4). Hence we refer the constructed composition as
“optimal” composition for simplicity purposes later in this thesis.
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Figure 6.1: Program diversification in multiple iterations.

//goo.gl/OYRLky). To our best knowledge, there is no publicly available
diversification tool on binary code, and we contribute to filling the gap.

6.1.1 Motivating Example

We now present a motivating example that demonstrates the synergy effect of
composite software diversification. We then formalize the problem that our research
is to solve in the next section.

The key observation is that a program can become more diversified, by composing
multiple transformations on the processed binaries. We use a simple two block
control flow graph to illustrate our observation. As shown in Figure 6.1a, the two
blocks are connected by a direct jmp instruction. The original control structure
is firstly transformed through an opaque predicate [62]. As shown in Figure 6.1b,
B1 will have to invoke function B3 to get the predicate. A conditional jmp is
implemented in B4 to check the predicate, and if it fails, hlt instruction will be
executed in B5. The B4 is then transformed by splitting itself into B4a and B4b via
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a inserted jmp instruction, as shown in Figure 6.1c. Finally, the output CFG is
transformed by control flow flatten. As shown in Figure 6.1d, intra-procedural
control flow graph is flattened (the graph in Figure 6.1d is simplified). Instructions
are inserted to update each control flow transfer destination to a global variable,
and the control transfers are redirected to B6. An indirect jmp in B6 uses the
address in the global variable to transfer the execution flow. Note that after
three transformations, the 2-block graph is extended to a 7-block graph with a
more complex structure. In summary, by reprocessing the output with different
transformations, the diversified code can become progressively complex.

6.1.2 Problem

A program transformation could be formalized as a function T : P → P where P
is the universe of all programs. In software diversification, T may be probabilistic,
meaning the output of applying T to the same input is not unique but follows a
distribution specific to T . In the rest of the text, we always consider diversification
transformations.

Given two transformations T1 and T2, a mixture of them could be the composition
T2 ◦ T1, namely we first apply T1 to a program and then apply T2 to the output of
T1. Just like the expectation we have for any hybrid method, it would be ideal if
T2 ◦ T1 outperforms both T1 and T2 applied alone, concerning the given criterion
for measuring the performance of software diversification. If T2 ◦ T1 indeed has the
better performance, we say there is a synergy effect between T1 and T2. The same
study can be done with T1 ◦ T2 which is another way to compose T1 and T2.

In this research, we would like to investigate if such synergy effect generally exists,
especially when there are more than two primitive transformations to compose. If
the synergy exists indeed, we want to develop a method that can effectively and
efficiently achieve it. Since the synergy may manifest only if the transformations are
composed in a particular way, this problem grows beyond trivial as the number of
applicable primitive transformations increases. Therefore, the first step is to make
a clear definition of the problem by generalizing the previously made example.

Suppose we have a set T containing k diversification transformations T1, · · · , Tk,
then we can construct the set of all possible compositions in the following way.
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Cn = {Tin ◦ · · · ◦ Ti1 | ∀l ∈ {1, · · · , n}, Til
∈ T }

C∗ =
∞⋃

n=1
Cn

Therefore, the objective of our research is to develop a search strategy which can
find a subset of C∗ such that the composed diversification transformations in this
subset have the optimal or close-to-optimal performance under certain evaluation
criteria.

6.2 Experiment Setup
Since there are very few mature formal theories on program diversification, we try
to solve the problem in an empirical way. That is, by actually implementing a set
of composite diversification transformations and developing a set of measurements
we compare the performance of different compositions with field experiments. We
believe that with carefully designed experiments and evaluation metrics, empirical
results can still have a certain level of generality even without strong theoretical
foundations.

From the construction of the problem space it can be seen that the choice of three
factors decides a composition, which are 1) the length of the composition (“length”
refers to the number of iterations), 2) the subset of primitive transformations to
use, and 3) the order in which these transformations are composed. Apparently,
enumerating all choices for the three factors is not feasible, so the major challenge
of this research is how to reasonably prune the problem space so that the empirical
evaluation can be done with limited resources.

In this research, we focus on the first two factors. Given the choices of the first
two factors, we randomly decide the third factor to construct a composition. There
are two reasons behind this decision. The first is that among all three factors,
the third one expands the problem space most vastly. The second reason is that
randomizing the sequence of composition potentially makes the diversification more
unpredictable, which is a significant benefit in practice. Nevertheless, heuristic-
based approaches, or perhaps machine learning-based approaches could facilitate
the study of the third factor effectively. We leave it as one future work to investigate
the third factor in boosting composite diversification.
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Note that software diversification can be performed at different stages, e.g., at
the pre-compile time, compile time, or at the post-link time (i.e., binary retrofitting).
Although composite diversification in general is applicable at any of these stages, we
choose to implement Amoeba and demonstrate it with post-link time diversification
because security hardening through binary retrofitting does not require source code
and therefore has a broader application scope. We leave it to software developers
to decide at what stage to perform composite diversification in the real-world
scenarios.

The underlying reverse engineering facility Amoeba relies on is an open-source
disassembler called Uroboros [40, 75]. Starting from the assembly code of the
original binary, we iteratively apply different diversification transformations to
the program, producing a unique variant each time. All transformations we
use in Uroboros are from existing software diversification research that are
relatively simple and straightforward. The overlay of different simple transformations
eventually leads to a synergy effect after a particular number of iterations, making
the produced variants resilient to certain security threats and binary similarity
detection.

6.2.1 Diversification Passes

We intuitively choose ten “classic” binary diversification methods proposed by
existing research as the transformation candidates. In the rest of the paper, we
name each transformation as a diversification pass applied to input programs. Most
of these transformations have also been indexed by an influencing literature review
on software diversification [50]. The roster of these transformations is in Table 6.1.
Note that we use these simple transformations in our study, but more advanced and
sophisticated transformations can be implemented as well. There are three levels
of assembly transformations—instruction level, basic block level, and function level.
At this point, it is still unknown whether each pass in Table 6.1 will be used in
composite diversification or not. An in-depth selection process is required to decide
an appropriate combination of passes for effective diversification. Pass selection
will be discussed later in Section 6.3. We now elaborate on each pass.
Basic block reorder. This diversification rearranges the relative positions of
basic blocks. In particular, two basic blocks are randomly selected as candidates
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Table 6.1: Diversification pass candidates.

Class Methods

Instruction Level
instruction replace [48]
instruction insert [48]

Basic Block Level

basic block reorder [49]
basic block merge [50]
basic block split [50]
opaque predicate insert [62]
control flow flatten [62]
branch function insert [105]

Function Level
function reorder [53]
function inline [50]

to reorder, with necessary control transfer instructions and labels inserted in the
context to preserve the correct semantics. For each pass, we reorder one pair of
basic blocks from each function.
Basic block split. This diversification splits one basic block into two by inserting
a jmp instruction in an arbitrary position and set its destination to the associated
next instruction. We randomly select one basic block to transform from each
function.
Basic block merge. This transformation searches for mergeable basic blocks. A
basic block is defined as mergeable if it has only one predecessor, and its predecessor
has only one successor. For each pass, we randomly select one pair from all the
mergeable basic block pairs and merge them together.
Instruction insert. This diversification inserts meaningless code sequences into
the program. For each function, we randomly select one basic block and insert a se-
quence of garbage instructions with a random length (3–5). The insertion candidates
are nop, mov %esp, %esp, lea 0x0(%esi),%esi, and xchg %esp, %esp.
Instruction replace. This strategy searches for typical instructions and replaces
the targets with its semantic equivalent substitutions. We adopt two substitution
strategies to transform call and ret instructions. When replacing call instruc-
tions, jmp instructions are used to transfer the control, and the return address is
explicitly saved on the stack by a push. Ret instructions are replaced in a similar
way, with a pop instruction to obtain the return address on the stack.
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Control flow flatten. As shown in Figure 6.1d, this transformation flattens the
control flow graph. Given a target control structure, control flow transfers are
redirected to a dispatcher block inserted by this transformation. The dispatcher
leverages a global variable to decide which block to jump, and instructions are
inserted at the end of each basic block to update the global variable with control
destinations. For each pass, we randomly select one function and flatten its control
flow graph for each iteration.
Opaque predicate insert. As shown in Figure 6.1c, a basic block B can be
guarded with a conditional branch to B and another (garbage code) block B’
using an arbitrary predicate. A call instruction to the predicate function and a
conditional jump instruction are inserted at the beginning of target block. For each
pass, we insert one opaque predicate for each function.
Branch function insert. This transformation substitutes jmp instructions with
call instructions to the branch routine and the jmp destinations are updated
into an artificial global variable. The branch function utilizes an indirect jmp,
transferring to the destination stored in a global variable. We transform all the
identified candidates.
Function inline. This transformation inlines functions into their call-sites. Direct
call instructions to the target function are found and the target function is
inserted after these call-sites. The call instructions are changed into push and
jmp instructions to simulate the original semantics. Ret instructions in the target
are also rewritten into jmp instructions. As destinations of an indirect function call
are hard to analyze, we conservatively leave the target function in its original place.
In the implementation, one function is randomly selected to transform as long as
its size is less than a predefined threshold (the threshold is set as 500 bytes in this
paper).
Function reorder. Same as basic block reorder, this transformation rearranges
the relative positions of two functions. In case the execution flow falls through the
function boundaries, we insert jmp instructions and corresponding labels in the
predecessors and successors of the reordered pair, thus delivering the equivalent
semantics. For each pass, we reorder one pair of functions.

88



6.2.2 Measurement

The goal of composite diversification is to provide production of low cost and
well-diversified software variants. To assess our fulfillment of this objective, we
need to quantitatively measure cost and diversity.

6.2.2.1 Cost

We assess cost with two metrics—size expansion and execution slowdown of di-
versified binaries. The cost is a concern in composite diversification because most
passes in Table 6.1 insert new instructions or new control flow transfers into the
binary, which will inevitably affect the size and speed of the products. We leverage
bzip (Section 6.3 and Section 6.4.1) and SPEC2006 programs (Section 6.4.2) in
our experiments. The execution speed (i.e., slowdown) of diversified variants are
measured through the test cases shipped with the programs. The size is calculated
using the stat program from GNU Coreutils. Our experiments are launched on a
machine with Intel E5-2690 2.90GHz with 128GB memory running Ubuntu 12.04
LTS.

6.2.2.2 Diversity

Another aspect of the assessment is to measure the diversity of the variants produced
by composite diversification. We present our quantitative evaluations on diversity
regarding two typical threats that software diversification can hinder, i.e., code
reuse attack [15] and patch-based exploitation [104]. The security strength of a
diversification method can be well reflected by its resilience to these two adversaries.

Resilience to code reuse attacks can be evaluated by the elimination rate of
return-oriented programming (ROP) gadgets. ROP attack is one state-of-the-art
program exploitation which manipulates program call stacks and chains sequences
of victim program’s own code snippets (named ROP gadgets) to perform arbitrary
operations [15,16]. A general assumption made by related work is that attackers
need to know the memory addresses of ROP gadgets in order to tamper the call
stack [17, 19, 50, 109, 110], and if a ROP gadget changes its location or no longer
exists in the diversified binary, attackers will have difficulty in reusing the existing
attack payloads. We use the ROP gadget harvesting tool ROPGadget [74] to search

89



for gadgets in binaries. Gadget elimination rate between two binaries is defined as

1− |A ∩B|
min{|A|, |B|}

where A and B are the sets of gadgets found in two binaries. Two gadgets
are considered equal if they have the same instruction sequence and starting
address. Note that recent research work has proposed advanced methods to launch
ROP attacks without the pre-knowledge of ROP gadgets (i.e., Just-In-Time ROP
attack [111,112]).

Resilience to patch-based exploitation can be evaluated by investigating how
well the diversified binaries can mislead binary diffing tools [61], which can be used
to locate the vulnerability by comparing the semantics of the original binary and the
patched one. We use BinDiff (version 4.0.1) [86], the de facto industrial standard
binary diffing tool available on the market, to calculate the similarity between two
binaries. Given two binaries, BinDiff provides the number of matched functions,
basic blocks, and instructions. Since function and basic block can be “partially”
matched, e.g., 30% of the instructions in a function are matched with another
function, counting the number of matched functions or basic blocks could be tricky.
Therefore, we only adopt instruction matching rate. The rate is calculated by

|A ∩B|
min{|A|, |B|}

where A and B are the sets of instructions in two binaries. Two instructions are
considered equal if they are matched by BinDiff, so |A ∩ B| is the number of
matched instructions. It should be noted that being semantic equivalent does not
necessarily make two instructions a match; BinDiff also takes the contexts of the
instructions into account [113,114]. BinDiff does provide an overall similarity score
to summarize the comparison. However, it is unclear how this score is computed.
To make our results more interpretable, we do not use it in our evaluation.

Also, unlike cost assessment which only compares every diversified binary with
the original one, evaluation on the diversity of composite diversification needs an
additional step. Since attackers are usually not limited to only chose the original
binary to analyze, the diversity of variants should reach the pairwise granularity.
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That means, every pair of the generated variants should be different enough so that
attackers cannot exploit any other variant by reverse engineering one of them.

6.3 Pass Selection
Given the candidate passes in Table 6.1, we want to find an applicable subset of
them as the primitive transformations to employ in composite diversification.

6.3.1 Selection Methodology

Having decided the metrics used for assessing the performance of composite diver-
sification, we can start searching for the subset of diversification passes that can
be employed by our implementation of composite diversification. Given 10 passes,
there are a total of 1023 different non-empty combinations of them if we do not fix
the number of passes to pick. Assessing all possible combinations is unlikely to be
feasible.

To address this issue, we propose a two-stage pass selection method. In the first
stage, we evaluate the cost of every single pass when they are repeatedly applied to
a binary for many times. After this first-stage selection, passes that are too costly
in the context of composite diversification will be ruled out for further consideration.
Hopefully, the first-stage selection can reduce the total number of passes we need
to consider in the second stage.

We leverage program bzip2 (version 1.0.3), a widely-used data compressor as
the experiment object in the selection process. For each diversification combination,
we iterate it for 500 times, which we believe is significant enough for an in-depth
study. These 500 iterations lead to 500 variants, each of which is based on the
previous one instead of the the original. Before launching selection steps below,
we first verify the functional correctness of these diversified outputs using the test
cases shipped with bzip2. We report all the outputs can pass these shipped test
cases.While the adopted algorithms are supposed to produce equivalent code, we
test the functional correctness to confirm the faithful implementations of these
algorithms in Amoeba.
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Figure 6.2: Execution slowdown by single-pass diversification.
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Figure 6.3: Size expansion by single-pass diversification.

When comparing the diversified binaries with the original one, we do a 1-in-50
sampling on the 500 variants, leading to a sample size of 10. For pairwise comparison
on diversity-related metrics, we randomly pick 50 pairs of variants.

6.3.2 First-Stage Selection

The first-stage selection measures the singular cost of each diversification pass.
We consider a pass to be too costly if the size expansion grows super-linearly, or
the execution slowdown does not grow sub-linearly with respect to iteration times
because users are usually much more sensitive to execution speed than binary size
increases.

Figure 6.2 and Figure 6.3 show the size expansion and execution slowdown
of diversified bzip2 variants over 500 iterations, for all 10 diversification passes.
While most of the transformations only introduce negligible runtime overhead, the
impact of basic block flatten, instruction insert, and opaque predicate insert is out
of the scope of our tolerance for execution slowdown. As for size expansion, the
increasing trends of most passes are linear, except basic block flatten. According
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Table 6.2: Candidate diversification pass combinations generated by backward-stepwise
selection (mix2 indicates the best of all).

mix0 mix1 mix2 mix3 mix4 mix5
Instruction replace X X X X
Basic block reorder X X X X X X
Basic block merge X X X X X
Basic block split X X X X X X
Branch function insert X
Function reorder X X X
Function inline X X

to our definition of costly transformations, basic block flatten, instruction insert,
and opaque predicate insert will be excluded from further consideration by our
composite diversification framework, reducing the number of candidate passes from
10 to 7.

6.3.3 Second-Stage Selection

Although the first-stage selection has pruned a few passes, the remaining search
space is still too large for us to enumerate. Therefore, we need a strategy to further
compress the pass selection process in the second-stage.

After referring to previous research and related disciplines, we decide to borrow a
selection method from data mining. There is a classic problem in data mining called
regression which seeks to estimate the relationship between a response variable and
a set of predictor variables. In regression, a mathematical model with configurable
parameters is assumed, from which the response can be computed based on the
values of predictors. However, it is common that only a subset of the predictors
are actually related to the response, so regression has to decide which predictors
should be selected for fitting the model. Similar to our situation, enumerating all
possible combinations of predictors usually needs unaffordable resources. Therefore,
data mining researchers have developed numerous predictor selection methods to
avoid brutal-force search for an optimal model.

In this research, we employ the backward-stepwise method [107, 108] for pass
selection. In backward-stepwise selection, the baseline is first set as the model
containing all candidates (predictors in data mining and diversification passes in
our case). Starting from this baseline, the selection process generates a set of new
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models by removing one candidate from the baseline model. Among all newly
generated models, the one with the best performance is picked as the new baseline.
The selection process repeats in this way until the latest baseline model consists of
only one candidate. For our problem, we stop when the baseline model has only
two passes, because we have already assessed the performance of every single pass.
When the selection process is over, each baseline model is considered as the best
model among all models with the same number of candidates. The final step would
be comparing all baseline models.

There is a similar method called forward-stepwise selection. The difference
is that instead of eliminating candidates from the baseline model one by one,
forward-stepwise gradually adds new candidate starting from the empty model.
Compared to backward selection, forward selection tends to generate a model with
fewer candidates. Note that in composite diversification, we want to maximize the
diversity of the passes we use in the framework, so we choose to build the model
backward instead of forward.

When comparing two diversification plans for large iterations, it is hard to
give a particular criterion that will be universally applicable. Depending on the
characteristics of the program to protect and the demand of users, the comparison
result could be different. We do not try to develop a versatile comparator for
evaluating diversification plans. Instead, we only propose a reasonable comparator
to illustrate the feasibility of our proposed framework.

In this work, we assume users care about execution slowdown most, so it will be
the decisive factor when deciding the best diversification plan. On the other hand,
we do not want a winning plan that suffers from some obvious drawbacks. For that
purpose, we design the comparison method in a filter-oriented manner. A plan is
discarded if it does too badly with respect to any one of the metrics mentioned in
Section 6.2.2. After the filtering is over, we pick the best plan based on the metric
we care about most, which is execution slowdown in our illustration.

A plan is considered to be too poor at a metric if its score on that metric is an
outlier in the undesirable direction among the scores of all plans. In statistics, a
data point is called an outlier if it is greater than Q3 + (Q3 −Q1)× 1.5 or smaller
than Q1 − (Q3 −Q1)× 1.5, where Q1 and Q3 are the first and third quartile. For
example, if the execution slowdown of some plan is an outlier at the high end, we
will filter out that plan because high execution slowdown is unwanted. On the other
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Table 6.3: Mean of metrics used for plan selection.

mix1 mix2 mix3 mix4 mix5 Norm. Range
Slowdown (%) 3.42 -0.81 0.45 -0.31 3.20 [-5.59, 8.47]
Matching (%) 16.08 16.04 14.96 14.90 86.89 [13.28, 17.76]
Pair.Match. (%) 47.25 35.72 34.88 34.70 38.84 [28.94, 44.78]
Elim. (%) 98.21 98.21 98.22 98.22 98.22 [98.20, 98.24]
Pair.Elim. (%) 98.01 97.97 98.12 98.29 98.46 [97.59, 98.71]

hand, if the gadget elimination rate of some plan is an outlier at the low end, we
will also filter it out because low gadget elimination rate indicates poor diversity.

Note that the filter-based selection may result in a situation where all candidate
plans are pruned. That would mean every plan has at least one weakness. Any of
such situations happening would threaten the rationality of our selection method.
Nevertheless, none has manifested in our experiments.

Due to limited space, we are unable to show the analysis result of all combinations
that have appeared in the selection process. We only present the final selection,
i.e., selecting the best baseline model. Recall that the baseline models are the
best-performing combinations in each round of backward-stepwise selection. We
list these combinations in Table 6.2.

To illustrate the selection process, we first present the performance data of the
diversification plans. We measure all metrics for mix1 to mix5. mix0 only has data
reflecting execution slowdown. Since its runtime overhead is clearly unacceptable
for composite diversification (up to 462% after 500 iterations), there is no need to
consider it in subsequent selection.

Figure 6.4 shows the execution slowdown of each combination. As can be seen,
the overhead of mix0 is significantly higher than the rest, while overheads of other
plans are considered sub-linear (satisfying for further study). Figure 6.5 shows the
size expansion evaluation. All the plans show roughly linear expansion, which is
quite consistent with the size evaluation in the first-stage selection (Section 6.3.2).
For diversity between the generated variants and the original binary, Figure 6.6 and
Figure 6.7 show the ROP gadget elimination rate and instruction matching rate
from BinDiff, respectively. As shown in Figure 6.6, almost all the ROP gadgets
are eliminated after transformations; we report on average 98.2% gadgets become
un-reusable. Binary diffing evaluation also shows promising results. Actually
besides mix5 (which will be filtered out due to the high remaining similarity), all

95



-5

 0

 5

 10

 15

0 200 400

N
or

m
al

iz
ed

 O
ve

rh
ea

d 
(%

)

Iteration

mix1
mix2

mix3
mix4

mix5
mix0

Figure 6.4: Execution slowdown by multi-
pass diversification.
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Figure 6.5: Size expansion by multi-pass
diversification.

the plans show notable decrease in the instruction matching rate. We also present
the pairwise diversity evaluation in Figure 6.8 and Figure 6.9. Pairwise ROP gadget
elimination rate shows promising results; we observe stable high elimination rates
for all the compared pairs. As for the pairwise instruction matching, we report
mix1 has relatively high remaining similarity (47.3%), while the other four plans
show much better results (on average 36.0%).

Table 6.3 summarizes the experiment data by computing the average of each
metric. As previously described, we pick the plan with the lowest runtime overhead,
after filtering out plans with salient weaknesses. The normality range of each
metric is computed, also listed in the table. As can be seen, mix1 is pruned due to
lack of pairwise diversity; mix5 is filtered out because of high similarity between
the variants and the original binary. mix2 is selected as the best diversification
plan because it has the lowest execution slowdown and does not suffer from any
significant weakness.

6.3.4 Multi-Pass Versus Single-Pass

After the two-stage pass selection, we have chosen mix2 as the winner combination
of transformation passes for composite diversification. However, we have not yet
showed that mix2 can outperform single-pass diversification in terms of diversity. To
prove that the synergy effect we have discussed in Section 6.1.1 does exist, we launch
a competition between multi-pass and single-pass diversification. Measurement on
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Figure 6.6: ROP gadget elimination by
multi-pass diversification.
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Figure 6.7: Binary diffing by multi-pass di-
versification.
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Figure 6.8: Pairwise ROP gadget elimina-
tion by multi-pass diversification.
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Figure 6.9: Pairwise binary diffing by multi-
pass diversification.

the diversity of single-pass generated variants is illustrated in Figure 6.10, 6.11,
6.13, and 6.12.

We first make a comparison between single-pass diversification and multi-pass
diversification on their resilience to ROP attacks. Figure 6.10 and Figure 6.6
suggests that there is no significant difference between single-pass and multi-pass
plans on ROP gadget eliminate rates when comparing the variants with the original
binary. In the pairwise comparison showed in Figure 6.12 and 6.8, however, the
performance of some single-pass plans is clearly inferior to multi-pass plans. For
example, instruction replace has nearly zero pairwise diversity. The reason is that
after the first round of diversification, there are no suitable instructions for this
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Figure 6.10: ROP gadget elimination by
single-pass diversification.
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Figure 6.11: Binary diffing by single-pass
diversification.
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Figure 6.12: Pairwise ROP gadget eliminate
by single-pass diversification.
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Figure 6.13: Pairwise binary diffing by
single-pass diversification.

pass to replace, making it an idempotent transformation. Differently in multi-pass
diversification, the collaborating passes (basic block reorder, for instance) keep
inserting instructions that can be replaced, making instruction replace an efficient
pass throughout the iteration.

In the competition on resilience to patch-based exploitation generation, the
advantage of multi-pass diversification is even more significant. When matching the
diversified binaries with the original (Figure 6.11 and 6.7), most multi-pass plans
can reduce instruction matching rate to about 20% after 50 iterations. In contrast,
matching scores from most single-pass plans stay above 45% even after 500 iterations.
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The only exception is instruction replace, which can achieve nearly 0% matching
score. Our guess is that replacing call and ret with jmp causes exceptional
hardship for BinDiff when it tries to recover the control flow, which is the crux of
its matching algorithm. Nevertheless, instruction replace is an idempotent pass,
meaning it will surely have poor performance on pairwise matching. Actually,
Figure 6.13 and 6.9 show that all multi-pass plans provide much more pairwise
diversity than single-pass plans. At this point, we have enough evidence to conclude
that multi-pass diversification is more effective than single-pass diversification. This
conclusion further justifies the election of mix2.

6.4 Validation
In this section, we validate our approach in two aspects. We first compare our
backward stepwise selection against a baseline approach, i.e., random selection
(Section 6.4.1). We also validate our optimal combination with multiple large size
programs from the SPEC2006 test set (Section 6.4.2).

6.4.1 Comparison with the Baseline Method

In our pass selection step (Section 6.3), we initialize our selection from ten widely-
used program diversification methods. Since the ordering between different tech-
niques are not considered (Section 6.2), ten methods lead to 1023 non-empty
combinations. After the first phase, 3 of the methods are eliminated, resulting
in 127 different possible combinations. Our tentative tests show that it takes a
non-trivial time to apply transformations for hundreds of iterations. Thus, running
diversification for all 127 combinations and pick the best available option cannot
be done in a reasonable amount of time. As presented in Section 6.3.3, by using
stepwise selection to find the optimal combination, we have to test 27 different
candidates (7+6+5+4+3+2). In this section, we study whether a random selection
approach (i.e., the baseline method) can find a better combination in 27 different
runs.

We randomly select 27 combinations from 120 possible combinations which
contain at least two methods. Our study on the bzip2 program has shown that
after 100 times, there is no significant benefit for most of the methods regarding
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binary similarity (Figure 6.7). Thus, the process is iterated for 100 times for each
combination. We evaluate the performance and cost of the 100th diversified output;
we also compare the 100th and the 50th diversified outputs for the pairwise metrics
(in this step, experiment results of mix2 are acquired in the same way). The optimal
combination from 27 candidates is selected regarding the same filter-based selection
strategy employed in Section 6.3.3.

We launch this 27-round random process for 20 times, resulting in 20 control
groups.3 We now report the key observations. In general, all 20 control groups show
comparable execution slow and size expansion with mix2. On the other hand, while
binaries from control groups has acceptable (pairwise) ROP gadget elimination
rate and low similarity rate, we observe 18 control groups suffer from unsatisfying
pairwise similarity rate. In particular, test on mix2 reports a low pairwise similarity
rate (around 40%), while 18 control groups have over 95% pairwise similarity rate.
There are only two well-performing control groups, i.e., group6 and group10. We
report that group6 has the exact same combination with mix2, while group10 has
a combination of three methods, i.e., instruction replacement, basic block reorder
and basic block split. Overall, our study shows that for these 20 control groups,
only two of them show comparable performance with mix2, and there is no control
group can notably outperform mix2. We interpret this as promising results to show
our stepwise selection can quickly construct optimal combinations with reasonable
amount of effort.

6.4.2 Test on SPEC Programs

In Section 6.3 we have selected a set of diversification passes as the primitive
transformations to use in composite diversification, based on experiment data on a
single program bzip2. In this section, we validate our winning diversification plan
mix2 on a larger set of programs, i.e., all C programs in SPEC2006. For validating
the cost and effectiveness of the diversification plan, the experiment setting and
metrics to measure are same as the selection process. Although our experiments
on bzip2 indicate that there may not be obvious benefit after 100 iterations, the
SPEC programs are still conservatively processed for 500 iterations. We hope this
extreme setting can better reveal the advantage and limitations of our technique

3The full comparison can be viewed at https://goo.gl/3XbtVR.
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Figure 6.14: Size increase for SPEC binaries.
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Figure 6.15: Runtime overhead for SPEC binaries.

and facilitate software developers with detailed information regarding real-world
deployments, while a user can choose the needed number of iterations in practice.
Same as Section 6.3.1, before launching experiments below, we first verify the
functional correctness of all the diversified outputs. We report all the outputs can
pass the test cases shipped in SPEC2006.

The size expansion of binaries used for validation is given in Figure 6.14. The
data shows that the augment of binary size is bounded by 700% in 500 iterations,
for all tested programs. Moreover, the trend of size expansion is linear with respect
to original binary size and number of iterations. We believe this amount of cost is
acceptable, at least for desktop and server computing environments.

The execution slowdown of the diversified binaries is probably more of a concern
for composite diversification. The trend of runtime overhead increase over iterations
is presented in Figure 6.15. According to the graph, overhead of all programs grows
sublinearly, which fits our objective.
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Table 6.4: Mean of performance metrics for C programs in SPEC2006.

bzip2 mcf sjeng libquantum milc lbm sphinx3 perlbench gcc gobmk hmmer h264ref Mean
Slowdown (%) 7.16 7.50 52.52 9.05 12.13 -2.30 2.61 75.48 107.90 37.70 2.82 10.73 26.94
Matching (%) 32.66 24.88 1.60 10.49 11.63 23.58 5.89 13.73 6.56 7.09 9.85 6.18 12.84
Pair.Match. (%) 44.89 33.51 37.80 52.70 43.01 31.88 38.34 88.82 38.98 45.37 51.87 60.73 47.32
Elim. (%) 99.05 96.42 100.00 99.21 99.64 97.26 99.71 100.00 99.98 100.00 99.82 100.00 99.26
Pair.Elim. (%) 96.47 90.69 98.27 97.12 98.46 92.46 98.93 99.76 99.90 99.80 98.99 99.27 97.51

For diversity validation, Figure 6.16 presents evaluation on the ROP gadget
elimination. Almost all the ROP gadgets become unavailable after transformation.
We also report besides three test cases which have a relatively high instruction
matching rate (bzip2, lbm, mcf), average matching rate of all the other test cases
are less than 15% (Figure 6.17).

Figure 6.18 and 6.19 present the pairwise diversity. While all the pairwise
gadget elimination tests show promising results (on average 97.51% gadgets are
eliminated), we observe one outlier (perlbench) in the pairwise binary diffing
evaluation. Its relatively large size of program code section is probably the main
reason for the low diffing rate. On the other hand, we report the average diffing
rate of other cases is 43.87%, which is promising.

Table 6.4 presents a summary of the performance data gathered from the
validation process, showing the same set of metrics as we do pass selection in
Section 6.3.3. While on most metrics, the validation result is consistent with the
selection process, there may be some concern about execution slowdown. For 8 out
of 12 programs, composite diversification introduces less than 15% runtime overhead
on average. However, the impact on the other 4 programs is much more significant,
leading to an average slowdown from 37.70% to 107.90%. Our observation is that,
programs with more complicated control flows tend to be penalized more by our
diversification plan. This is under intuition since many passes in mix2 focus on
disturbing the control flow.

Apart from metrics that have been used for pass selection, the processing time
needed for generating diversified copies is also an important factor affecting the
deployment of our framework. We report on average, it takes 248.1 seconds to
process a binary in one iteration of diversification. The time is measured on the
same machine to evaluate the runtime overhead, whose specification is posted in
Section 6.2.2. We also measure the relationship between the average processing
time for one iteration and the original binary code size. We fit processing time with
code size by a linear function with zero intercept. The regression test shows that
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Figure 6.16: ROP gadget elimination for SPEC binaries.
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Figure 6.17: Binary diffing for SPEC binaries.
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Figure 6.18: Pairwise ROP gadget elimina-
tion for SPEC binaries.
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Figure 6.19: Pairwise binary diffing for
SPEC binaries.
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the linear relation (with the slope as 0.695) is significant at the confidence level of
99%. Note that the processing time is the average of an extreme setting with 500
iterations. That means, as the average processing time increases almost linearly
regarding the code size, we can expect a notable decrease in processing time when
binaries are diversified with a smaller number iterations in the real-world usage.
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Chapter 7 |
Discussion and Future Work

We believe that we have built an enabling technology that could be employed
as the basis of many important research and applications, such as software fault
isolation (SFI), control-flow integrity (CFI), ROP defense, and in general software
retrofitting for binary code, which is extremely important for legacy code systems.
Nevertheless, this is a first step in the toolchain development. In this chapter we
discuss the application scope of Uroboros. We also discuss some short- and long-
term directions that we see as promising to extend Uroboros, such as supporting
emerging platforms and bridging with the LLVM compiler framework.

7.1 Application Scope
Uroboros is mainly designed to process stripped binaries without debug or
relocation information. Most challenges originate from the difficulties in precisely
disassembling binary program and producing relocatable code. As a result, we
assume input binaries are not obfuscated. In addition, we assume binaries to
instrument do not dynamically generate code or feature self-modifying.1 Binaries
compiled from typical C programs fit these assumptions very well.

Currently, Uroboros mainly takes binaries compiled from C code as the input.
C++ programs can be processed by Uroboros as long as it does not rely on
the exception handling. Since binaries store the exception handling meta-data as
separate sections, parsing these sections requires additional engineering efforts. We
present further discussion on C++ binary support soon in Section 7.3.

1Note that Uroboros and other static tools face similar challenges on correctly disassembling
obfuscated binary code or self-modifying code [17,115].
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By the time of writing, Uroboros supports ELF binaries on both x86 and
x64 architectures. Uroboros makes no assumptions on what compilers are
used to generate the input binaries (compiler compatibility is discussed soon in
Section 7.2), and it produces relocatable assembly code regardless of the input
binaries being stripped or not. We believe that Uroboros has initiated a new focus
on binary reverse engineering and instrumentation by delivering reassembly-based
instrumentation.

7.2 Compiler Compatibility
Sometimes binary reverse engineering is compiler dependent, but Uroboros does
not explicitly depend on any compiler-specific features as far as we know. To roughly
investigate Uroboros’s compatibility with other compilers, we try to disassemble
and reassemble some binaries compiled by Clang, another widely used compiler
different from GCC. We repeat the same functionality verification described in
Section 3.5.1 on the 32-bit binaries in Real, which are compiled by Clang this time.
The applied assumption set in this experiment is the empty assumption set, and all
reassembled binaries can pass the functionality tests. We plan to test Uroboros’s
compatibility in more depth in the future.

7.3 C++ Binary Disassembly
The C++ programming language has more specific features compared with C.
Binaries compiled from C++ programs often contain more sections to store meta-
information. At this point Uroboros still cannot fully support C++ disassembly,
but we have already worked out a blueprint on how to recover these sections. There
are two kinds of meta-information sections specific to C++. We now briefly discuss
how to recover them.

• The .ctors and .init_array sections contain the addresses of constructor
functions—functions that need to be executed at start up before the main
function takes control. These sections can be directly dumped out and
symbolized by treating them as data sections.
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• The .eh_frame and .gcc_except_table sections store the information used
for stack unwinding and exception handling for C++ programs in the
DWARF format [116]. There have been some reverse engineering tools,
e.g., Katana [117] and IDA Pro, that can parse the DWARF data. By un-
derstanding the semantics of a DWARF entry, we can adjust its content and
make the reassembly flawless.

7.4 Support Emerging Platforms
Research conducted in this thesis mainly focuses on analyzing binary executables
from x86 platforms. For the next step, it is interesting to see whether we can apply
the same methodology towards firmwares from embedded and IoT platforms.

Given the heterogeneity of embedded devices which can exhibit many differences
in their microarchitectural details, static disassembling of firmwares is generally
considered as more challenging. Comparing to binary executables on x86 platforms,
firmwares which may include a kernel and file systems could become much larger
and more entangled. In addition, typically one firmware program need to be
compiled into executables of different formats regarding various embedded device
specifications. Hence, ignorant disassemblers would likely be trapped by even
decoding errors.

Most existing security research towards embedded and IoT systems are per-
formed via dynamic analysis; firmwares are executed within a hardware simulator
to detect its malicious or vulnerable behaviors. However, dynamic analysis in prin-
ciple cannot cover every program component. It is also well-known that malicious
behaviors could be hidden upon awareness of runtime monitors.

We envision the research opportunity lies within the reliable static disassembling
of firmwares. It is interesting to see how we can apply techniques developed within
Uroboros to conduct firmware disassembling, and even one step further, deliver
reassembleable disassembling towards firmwares. A promising application for such
static disassembling is to support side channel analysis, where this line of research
is considered as significantly more difficult due to the heterogeneity of ARM
devices [118]. Additionally, while existing research has conducted study to detect so
called “hidden-sensitive operations” from Android apps where malicious activities
are protected by control flow guards to evade runtime monitoring [119], to our
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best knowledge, firmwares are not analyzable following the same principle. By
expanding Uroboros towards firmware disassembling, our research shall provide
a solid foundation to capture malicious firmwares via static analysis.

7.5 Bridge with the LLVM Compiler Framework
We plan to build and maintain a sustainable ecosystem for binary code analysis,
and we are particularly interested in linking to the existing ecosystems such as the
LLVM compiler framework [120].

We have implemented a number of security applications where commonly-used
program analysis techniques (taint analysis, symbolic execution, etc.) are required.
Our current practice is to re-build all the involved techniques based on Uroboros.
Things could become even more complex, considering many techniques (e.g., pointer
analysis) need to be composed together to construct more rigorous static analysis
frameworks such as abstract interpretation [121]. Implementation defect of one
single component could lead to the mal-functionality of the whole framework, which
could unavoidably counteract the use of Uroboros in practice.

For the next step, we seek to lift the intermediate representation of Uroboros
into the IR designed by the LLVM community. In some sense, binary code analysis
will be directly bridged with the LLVM compiler framework where a rich set of
analysis algorithms and utilities are furnished already. In general, both research
and engineering efforts need to be committed to lifting our customized low-level
representation into the more abstract LLVM IR. Typical research challenges could
include the recovery of local variables, abstract stack frames as well as function
prototypes. In addition, while our study in Section 2 has shed light on the surprising
finding that no tool (including existing work which lifts binary code into LLVM
IR [24]) can deliver reassembleable disassembling, we follow the same design principle
to make the LLVM IR outcome “re-compilable”.
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Chapter 8 |
Conclusion

We have presented Uroboros, a tool that can disassemble stripped binaries and
produce reassembleable assembly code in a fully automated manner. The key
technique implemented in Uroboros is named reassembleable disassembling, in
which assembly program is recovered into a relocatable format. Moreover, we
have extended Uroboros into a general purpose binary reverse engineering and
retrofitting platform that delivers complete, easy-to-use, transparent, and efficient
instrumentation. Uroboros provides a rich API and utilities to support analysis
and transformations on program internal representations and control flow structures.
Our experiments show that reassembled programs by Uroboros can preserve
the original functionality and only incur negligible execution overhead. We also
evaluate Uroboros by comparing it with the state-of-the-art static instrumen-
tation tool regarding several commonly-used instrumentation tasks. Evaluation
results show that Uroboros outperforms the existing tools in terms of lower cost
instrumentation and more flexible applications.

We also illustrate the versatility of the Uroboros instrumentation facilities
by developing multiple binary retrofitting and analysis applications for software
protection and high-level program representation recovery. We first present FID, a
semantics-based function recognition tool in binary code. FID leverages symbolic
execution to extract assignment formulas and memory access behaviors. The
acquired information will then be used to train a function recognition model
with well-performing data mining techniques. Our evaluation shows that FID is
comparable with the state-of-the-art tools on normal binaries, and outperforms
them on obfuscated binary code.
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Software diversification produces different variants of a program, which can
effectively defeat code reuse attack and patch-based exploit generation. We initiate
a new focus on this area, i.e., composite software diversification. Our in-depth study
shows that composite diversification can outperform single-pass diversification in
terms of better performance. We believe our study can provide useful guidelines
for practitioners to design diversification tools in the future.
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