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Abstract We introduce a novel concurrent software monitoring technology, called
software cruising. It leverages multicore architectures and utilizes lock-free data
structures and algorithms to achieve efficient and scalable security monitoring.
Applications include, but are not limited to, heap buffer integrity checking, kernel
memory cruising, data structure and object invariant checking, rootkit detection, and
information provenance and flow checking. In the software cruising framework, one
or more dedicated threads, called cruising threads, are running concurrently with the
monitored user or kernel code, to constantly check, or cruise, for security violations.
We believe the software cruising technology would result in a game-changing
capability in security monitoring for the cloud-based and traditional computing and
network systems.

We have developed two prototypical cruising systems: Cruiser, a lock-free
concurrent heap buffer overflow monitor in user space, and Kruiser, a semi-
synchronized non-blocking OS kernel cruiser. Our experimental results showed that
software cruising can be deployed in practice with modest overhead. In user space,
heap buffer overflow cruising incurs only 5 % performance overhead on average for
the SPEC CPU2006 benchmark, and the Apache throughput slowdown is only 3 %
maximum and negligible on average. In kernel space, it is negligible for SPEC, and
3.8 % for Apache. Both technologies can be deployed in large scale for cloud data
centers and server farms in an automated manner.
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1 Introduction

Existing security-related software monitoring techniques could be roughly broken
down into two categories: control-receiving monitoring and non-control-receiving
monitoring. Control-receiving monitoring is well captured by the classic concept of
reference monitors. A reference monitor defines a set of requirements that governs
the reference validation mechanism. As stated by Schneider [50], “A reference
monitor is guaranteed to receive control whenever any operation in some specified
set is invoked.” This category can be further classified into several classes. For
examples,

• Operating system kernels as a reference monitor for operations on system objects
(e.g., files and processed).

• Memory mapping hardware as a reference monitor (for accesses to memory
pages).

• Processors as a reference monitor. Using tagging memory support, enforce-
ment of information flow security policies could be pushed into the processor
itself [81].

• Inlined reference monitors such as Software-based Fault Isolation (SFI) [75] and
Jif [35]. Through static instrumentation, SFI can monitor a distrusted module
writing or jumping to an address outside its fault domain. Enforced at both
compile time and run time, Jif can impose information flow control and access
control.

• Dynamic taint analysis (DTA) as a reference monitor [37]. Through static or
dynamic instrumentation, or a combination of static and dynamic instrumenta-
tion, DTA can monitor data flows among instructions at byte-level granularity.

Non-control-receiving monitoring is not always bounded with control receiving.
Due to various reasons (e.g., performance overhead), quite a few classes of
monitoring do not expect to receive any control. Their primary goal is to obtain
some specified awareness of the system being protected. Control-receiving moni-
toring is active monitoring; in contrast, non-control-receiving monitoring is passive
monitoring. For examples,

• OS level monitors can collect system call traces for intrusion detection [23] and
backtracking purposes [28].

• Calling context monitors can obtain the calling context information of an
application for performance analysis and debugging purposes.

• Memory performance (e.g., memory leak) monitors can obtain awareness about
certain memory leak problems.

• Architecture level monitors (e.g., shadow gates [67]) could be added to track
information flows.

Fine-grained software monitoring or security enforcement, such as inlined
reference monitor, is often inlined, which delays the execution of the protected
programs. In addition, inlined monitor code runs in the same address space as the
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program being monitored. This could cause safety and security issues. The inlined
code may introduce security holes or cause robustness problems. If the monitor
code fails, the original program will fail as well. If the monitor code is blocked, the
original program is often blocked as well. Furthermore, it is difficult to monitor or
enforce concurrency properties with inlined code since the monitor code is scattered
and often needs additional synchronization.

It is quite challenging to parallelize control-receiving monitoring. An example
is dynamic taint analysis, for which parallel monitoring is still not very practical
primarily due to the pervasive data and control dependence among the monitor
and normal program execution. This has been a main cause of high performance
overhead, a major obstacle to adopt concurrent software monitoring in practice.

The performance overhead of concurrent monitors comes from two sources:
logging/monitoring and synchronization between the monitored code (logging)
and monitor threads (monitoring). The latter has implicit blocking cost if the
synchronization primitives used are lock-based. When the monitor threads are
blocked due to external events, such as IO and OS preemptive scheduling, the
threads being monitored will also be blocked in a lock-based synchronization style
even if the monitor threads are not monitoring.

Our key insight is that we can explore multicore architectures for concur-
rent security monitoring using novel lock-free (non-blocking) data structures and
algorithms1 to eliminate blocking cost and thus make the concurrent monitoring
extremely attractive in terms of performance and scalability. Since the synchroniza-
tion between the original program and the monitor is non-blocking, this also makes
the monitoring system monitor kill-safe; that is, the original program won’t fail even
if the monitor is blocked or crashed.

2 Software Cruising

Software Cruising is a novel concurrent software monitoring technology that
migrates security enforcement from the monitored code, either in user or kernel
space, to a concurrent monitor thread. The technology leverages multicore and
multiprocessor architectures and uses lock-free data structures and algorithms
to achieve non-blocking and efficient synchronization between the monitor and
monitored code.

1Technically speaking, lock-free and non-blocking are related, but different concepts. Here, we do
not distinguish the difference and rather use them interchangeably to mean that it is not traditional
lock-based and not blocking.
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Fig. 1 The software cruising architecture

2.1 Architecture

In the software cruising framework, one or more dedicated threads, called cruising
threads, are running concurrently with the monitored user- or kernel- code to
constantly check, or cruise, for security violations. Figure 1 shows the architecture.
It leverages the increasingly popular multicore architectures and lock-free (non-
blocking) synchronizations.

The lock-free data structure is used to log information necessary for security
monitoring. The monitored code in either user or kernel space and the monitor
threads do not communicate directly, but rather through the lock-free data structures
using non-blocking synchronization primitives. The key is to use lock-free data
structures and algorithms to achieve the non-blocking property between the monitor
and the code being monitored. The monitor thread(s) are always checking (cruising),
possibly in spare cores on multicore processors, for security violations, but the
user/kernel threads’ executions are not blocked.

2.2 Features

The proposed software cruising technology has a number of distinct features that
make it very attractive.

Leveraging Multicore Architectures for Concurrent Security Monitoring

The software cruising technology leverages multicore architectures with lock-free
and non-blocking synchronization for security monitoring and enforcement. As the
monitor threads running on separate cores, the execution of the original program
is not largely affected, with loose coupled lock-free synchronization. With the
increasingly popular multicore and multiprocessor architectures, this can minimize
the performance overhead on the program being monitored. This also makes
deployment in the cloud environment easier and more flexible since the monitor
code can be run in separate virtual machines.
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Protecting Monitor Threads from Malware

Malware, e.g., compromised user/kernel threads or untrusted kernel extensions
hosting rootkits, could poison a monitor thread. To protect monitor threads, we
could apply a new technology we developed recently [78]. Via HAP (hardware-
assisted paging), this technology forces different subjects (e.g., user/kernel threads,
monitor threads, untrusted kernel extensions, trusted kernel extensions, kernel core)
to use different sets of page tables. The set of pages used by the monitor threads
and the lock-free data structures can be flagged as unreadable, unwritable, or
unexecutable as needed so that it can be protected from other threads running in the
protected mode. Moreover, to prevent the monitor from being tampered and provide
guaranteed performance isolation, we can utilize the virtualization technology and
apply the SIM framework [58] to run the monitor process out of the monitored VM,
while collecting heap memory allocation information inside the monitored VM in a
secure and efficient way.

Non-blocking and Lock-Free

Our design is completely non-blocking between the monitor and the monitored
program. Even if the monitor is blocked due to external IO events or OS preemptive
scheduling, the program execution can still make progress without waiting. One of
our designs for user-space heap buffer overflow monitoring adopts lock-free data
structures. Our design of kernel cruising is semi-synchronized, but ensures correct-
ness and non-blocking. Advantages of the lock-free and semi-synchronized designs
include efficiency, scalability, deadlock-free, and kill-safe (see next paragraph on
kill-safe).

Monitor Kill-Safe

Since our design is non-blocking and lock-free, it is safe to kill the monitor and
any other cruising threads. We call this feature monitor kill-safe. In large-scale
distributed systems such as cloud computing, hardware and software could fail
frequently. The monitor kill-safe feature is particularly attractive in such scenarios.

Efficiency

The program being monitored incur very low performance overhead because (1)
the monitoring code is in separate threads (possibly) running on separate cores, and
(2) all communications are non-blocking so that even if the monitor is blocked due
to external IO events or OS preemptive scheduling the program execution can still
make progress without waiting.
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Scalability

As software becomes more and more concurrent with more cores from hardware, the
synchronization cost is more likely to become a bottleneck. The software cruising
framework scales much better in this scenario since cruisers and user programs are
running concurrently in a lock-free non-blocking manner.

One-to-One and One-to-Many Virtual Machine (VM) Monitoring

Software cruising can be deployed in large-scale (cloud) data centers and server
farms. The software cruising framework has very flexible deployment options such
as one-to-one and one-to-many monitoring. The one-to-one scheme is that one
monitor corresponds to one virtual machine cruising, while the one-to-many is
that one monitor cruises for multiple virtual machines. The one-to-many scheme
is especially attractive for monitoring large-scale clouds.

2.3 Applications

With these distinct features, we sketch out a number of applications of software
cruising. Software cruising can be applied to both user-space and kernel-space
software monitoring. We have conducted two cases studies, one in user space and
the other in kernel space. The security property we choose to monitor is heap buffer
overflow. In user space, we developed Cruiser, a lock-free concurrent heap buffer
overflow monitor (See Sect. 3 for more details). In kernel space, we developed
Kruiser, a semi-synchronized non-blocking OS kernel cruiser (See Sect. 4 for more
details).

Software cruising has flexible deployment options. It can be applied to appli-
cation and system software running in a single computer, as well as large-scale
distributed and networked systems such as data centers in the cloud computing
environment. In such scenario, the monitor can be run in separate virtual machines
with different protection level and makes the cruising system more scalable and
more secure.

Other applications of software cruising include, but are not limited to, data struc-
ture and object invariant checking, rootkit detection, and information provenance
and flow checking. For some good engineering reasons, low-level system code
often contains features, e.g. custom linked list, that are hard to abstract and verify
statically [11,13,31]. Instead, we can apply software cruising to dynamically check
invariants; that is, we cruise to check that the data structure in memory is a well-
formed.
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3 Cruiser: Lock-Free Concurrent Heap Buffer
Overflow Monitoring

In this section, we introduce the design of Cruiser, a lock-free concurrent heap
buffer overflow monitor in user space. Interested readers are referred to Zeng, Wu,
and Liu [82] for more technical details.

3.1 Introduction

Buffer overflow attacks are often the first step taken by multistage exploits. For
example, the multistage attack example shown in MulVAL [40] starts with either
CVE-2002-0392 [71] or CVE-2003-0252 [72], both are buffer overflow related
vulnerabilities. Despite many counter measures developed, buffer overflow based
attacks are still a great threat.

As a case study, we have applied software cruising to the heap buffer overflow
problem and developed a novel dynamic heap buffer overflow detector, called
Cruiser. The key ideas are (1) to create a dedicated monitor thread, which runs
concurrently with user threads to cruise over, or keep checking constantly, dynami-
cally allocated buffers against overflows; and (2) to utilize lock-free data structures
and non-blocking algorithms, through which user threads communicate with the
monitor thread with minimum overhead and without being blocked. The first idea
leverages increasingly popular multicore architectures for security monitoring, and
the second minimizes the communication and synchronization cost by removing the
blocking overhead.

3.2 Design

Our method is canary-based [15]. Each dynamically allocated buffer is surrounded
by two canary words; as long as a canary is found corrupted, an overflow is
detected. Buffer addresses are collected in a lock-free data structure efficiently
without blocking user threads. By traversing the data structure, buffers on heap are
under constant surveillance of the concurrent monitor thread.

Cruiser Architecture

To efficiently maintain dynamic memory allocation information, we design the
cruiser architecture such that the communication between the original program and
the monitor is loosely coupled and non-blocking. As shown in Fig. 2, malloc calls
are intercepted to allocate additional space for canary and place the allocated buffer
information onto a list of ring data structures. There is one ring per user thread so
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Fig. 2 The cruiser architecture

that there is no race conditions between two malloc calls. The malloc calls then
return promptly, and one or several deliver threads move the metadata from rings to
a custom lock-free linked list. The monitor thread cruises over the segmented list to
check buffer overflows.

Ring

The ring data structure is based on the single-producer single-consumer FIFO wait-
free ring buffer proposed by Lamport [32]. This algorithm allows a producer and
a consumer to operate concurrently, with very low synchronization overhead as the
producer and the consumer are synchronized via simple read/write instructions on
the two control variables, the ring head and tail.

Segmented Lock-Free Linked List

Our custom lock-free linked list is segmented. The list consists of segments, each
of which is a linked list itself. We construct one segment for each user thread to
minimize the race conditions on list operations. Each segment has a dummy node
head which is never removed. Also, the first non-dummy node will not be deleted
until a new node is inserted before it. Thus the lock-free node insertion after the
dummy node can be simply implemented using an atomic compare-and-swap (CAS)
instruction. The buffer release and node deletion in the lock-free linked list is more
complicated and we refer readers to our Cruiser paper [82] on the technical details.
This custom lock-free linked list is very efficient and has the following distinct
features: (1) Wait-free access and zero-contention; (2) No ABA problem [25]; and
(3) No need to use special memory reclamation such as reference counters or hazard
pointers [33].
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3.3 Results

We evaluated Cruiser on its effectiveness, execution overhead, and scalability with
varying number of threads.

Effectiveness

We tested the effectiveness of Cruiser on the SAMATE Reference Dataset
(SRD) [38], as well as a set of well-known real-world exploits (wu-ftpd [51],
Sudo [52], CVS [53], libHX [55], Lynx [56], and Firefox [54]). The experiments
show that Cruiser can detect all the overflows, duplicate and invalid buffer frees.

Performance Overhead

We evaluated the performance overhead of Cruiser with the SPEC CPU2006 Integer
benchmark suite. The results show that Cruiser incurs very low execution overhead:
5 % on average for the eager buffer release option and 12.5 % for the lazy option.

Scalability

We also evaluated Cruiser on the multithreaded setting. We configured the Apache
web server with different number of concurrent requests (from 1 to 110) and
tested Cruiser’s scalability. The experimental results show that Cruiser scales well.
The maximum slowdown of the Apache throughput is about 3 % and the average
slowdown is negligible.

4 Kruiser: Semi-synchronized Non-blocking
OS Kernel Cruising

In this section, we introduce the design of Kruiser, a semi-synchronized non-
blocking OS kernel cruiser. Interested readers are referred to Tian et al. [66] for
more technical details.

4.1 Introduction

It is desirable to adopt software cruising to monitor OS kernel memory integrity
and other safety and liveness properties. The lock-free and non-blocking properties
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of software cruising are especially attractive in kernel space since there are many
tasks, events, and execution threads working simultaneously in kernel. If we use
lock-based synchronizations for monitoring, it is likely that it will affect the kernel
performance and execution characteristics.

Cruiser, as presented in the previous section, cannot be directly applied to
monitor kernel buffer overflows due to the following reasons: (1) user- and kernel-
space heap management schemes are quite different; (2) the runtime execution
characteristics of kernel is quite different from user programs; and (3) OS kernel
usually is not just one standalone program like typical user-space programs.

We have developed a prototype—called Kruiser, which stands for kernel cruis-
ing—that can monitor integrity of OS kernel memory. In kernel space, objects
(or buffers) with the same size (from kernel or user-space programs) are usually
allocated in the same page(s). Kruiser leverages this kernel memory management
characteristic information and cruises over pages at first level, and individual buffers
at the second level. Kruiser poses minimal changes to the existing OS kernel and
can be deployed in large-scale cloud data centers to monitor many virtual machines
scalably with the one-to-many virtual machine monitoring scheme.

4.2 Design

Kernel space presents new and more difficult challenges in designing software
cruising systems.

Challenges

Synchronization

Synchronization is vital to ensure the monitor process locate and check live buffers
efficiently and reliably without incurring false positives. To achieve highly efficient
concurrent monitoring, we explore page-level information and design a semi-
synchronized algorithm which introduces zero contention into kernel operations
and performs non-blocking heap monitoring without incurring false positives or
suspending the system.

Self-Protection

As a countermeasure against buffer overflow attacks, our component can become
an attack target itself. We rely on a monitor process that keeps checking
constantly—that is, cruising—the kernel heap integrity. This busy process can
be an explicit attack target. By killing the monitor process, attackers completely
disable the detection. Attackers can also tamper the data structure needed by our
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component to mislead or evade the detection. Thus we need to protect the safety of
the monitor process and ensure the integrity of related data structures. To address
this challenge, we apply the virtualization technology to deploy the monitor process

Monitor VM Monitored VM

Memory Mapper

App User

Kernel

VMM
(Xen)

Hardware

Kruiser App

Fig. 3 The Kruiser
architecture (using
virtualization and direct
memory mapping)

into a trusted environment. To ensure the same efficiency as in-the-box monitoring,
we leverage the Direct Memory Mapping (DMM) technique, which allows the mon-
itor process to access the monitored OS memory. To protect our data structure from
being overflowed or underflowed, we apply two write-protected pages surrounding
the data structure.

Architecture

Kruiser attaches one canary word at the end of each heap buffer and runs a separate
monitor process, which keeps scanning, or cruises, the canaries to detect buffer
overflows and runs concurrently with the monitored system. As shown in Fig. 3,
Kruiser, or the monitor process, is run in a separate VM than the monitored OS to
strengthen self-protection. The heap buffer metadata is kept in the monitored VM
to achieve efficient updating. The monitor cruises over the heap metadata via an
efficient technique called direct memory mapping. Once a kernel heap buffer canary
is found corrupted, an overflow is reported.

The design of Kruiser is based on Linux and the Xen hypervisor. The Kruiser
system can be divided into three parts: VMM, Dom0 VM, and DomU VM (the
monitored VM). Dom0 VM contains the monitor process and the custom driver,
which reside in user space and kernel space, respectively. The custom driver is used
to help the monitor process release memory but with its page tables retained. A tiny
component, namely Memory Mapper, inside the VMM is used to map the kernel
memory of the monitored VM to the page table entries retained by the custom driver.
A static array, called Page Identity Array (PIA), stores all the metadata at page level,
and the interposition code reside in the kernel space of DomU VM.
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Kernel Cruising

Kruiser keeps the metadata at page level and stores them in a static array called Page
Identity Array (PIA). This array, however, can incur a variety of race conditions
and atomicity issues. Introducing additional complex synchronization on PIA will
inevitably affect the kernel performance. Instead, we design a novel algorithm that
leverages kernel behavior to resolve the race conditions. To avoid race conditions
on concurrent PIA entry updates, we leverage the critical section that are already
exist in the kernel code that adds or removes a page from the page table to get a free
ride with negligible cost for the PIA array entry update. Concurrent PIA entry read
and write may cause inconsistent values being used. Instead of avoiding this read-
write race condition, we let it occur, but avoid using inconsistent values by detecting
inconsistent version numbers. Each PIA entry contains a version number which is
incremented whenever the page corresponding to the PIA entry is added or removed
from the heap page pool. The inconsistent values can be detected by comparing the
version numbers before and after the read.

This non-blocking algorithm is constructed using simple reads, writes, and
memory barriers without complicated and expensive synchronization mechanisms.
The monitor process is lightly synchronized by reading version numbers twice,
while other processes manipulating heap pages make progress without being syn-
chronized or blocked by the monitor. In other words, the synchronization is one-way.
That is why we call it semi-synchronized non-blocking kernel cruising. It is semi-
synchronized in another sense. On the PIA entries, write-write is synchronized with
a free-ride from the existing kernel functions, while read-write is not synchronized.
It resolves the concern of a variety of subtle race conditions without the need to
freeze the entire system for recheck, but still does not incur any false positives.

4.3 Results

To evaluate Kruiser, we developed a prototype based on 32-bit Linux and the Xen
hypervisor.

Effectiveness

We conducted effectiveness tests on three vulnerabilities [47, 62] deliberately
introduced in the Linux kernel and two real-world heap buffer overflow vulnera-
bilities [69, 70] in Linux. Our experimental results indicate that Kruiser is effective
in defending against kernel heap buffer overflow attacks.

Performance Overhead

We evaluated the performance overhead of Kruiser on the SPEC CPU2006 bench-
mark. Our results showed that the average execution performance overhead is
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negligible. When the slab allocation is frequent, the performance overhead is a
little bit higher, such as in gcc, but the maximal performance overhead is still less
than 3 %.

Scalability

We also evaluated the scalability of Kruiser on the Apache server in a multithreaded
setting. The setup is similar to that of Cruiser (see Sect. 3.3). Our experimental
results showed that the average slowdown of the Apache throughput is 3.8 and 7.9 %
for a more secure Kruiser option.

5 Discussion

In this section, we discuss several advanced options and potential future application
of software cruising.

5.1 Detection Latency

Since our software cruising is non-blocking, our monitoring does not suspend the
system being monitored for detection. Thus, the detection latency becomes a critical
indicator of the detection effectiveness. The time it takes a software cruising system
to complete whole system monitoring once is called cruising cycle. It is important
to keep the cruising cycle short so that we can detect an exploit quick enough. For
the two applications we developed, the cruising cycles are both tunable; that is,
we can configure the software cruising systems make small cruising cycle. Cruiser
can achieve this with more than one monitor thread and keep the cruising list
short enough. Each monitor thread only cruises part of the linked list. This can
be achieved easily since the lock-free linked list is segmented. Kruiser can achieve
this in a similar way. We can logically divide the metadata data structure into several
segments and deploy equal number of monitor threads, so that each monitor thread
only needs to be responsible for one segment.

5.2 Guaranteed Detection

Our cruising systems race with attackers: As long as an exploit cannot succeed
within a cruise cycle after a canary is corrupted, it is bound to be prevented. In
addition, even an attacker has compromised the system by exploiting a (kernel)
heap buffer overflow vulnerability and enabled a remote shell with root privileges,
the canary corrupt should be detected before the attacker keys in the first command,
since a cruise cycle is normally less than a few milliseconds. In this sense, we “raised
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a bar” for attackers. However, automatic attack vectors such as worms can be fast
and advanced attacks may directly manipulate our data structures or try to recover
the corrupted canaries using the keys. Moving the data structures and keys to a
separate VM gains security but can lead to high performance overhead. Instead,
we combine Secure-In-VM (SIM) [58] and secure canary generation to prevent
attackers from recovering the corrupted canary, even after the system has been
compromised and entirely controlled by attackers.

With the In-VM protection and secure canary generation, attackers can not hide
their attacks in that: (1) The In-VM protection prevent attackers from manipulating
metadata; and (2) The canary generation based on the stream cipher guarantees
the difficulty for attackers to recover the corrupted canaries within one cruising
cycle. Therefore, the attacks are bound to be detected within one cruising cycle
after compromising the system, unless the attackers know the exact canary value
to be corrupted beforehand, which usually implies the overread and overrun
vulnerabilities overlap for exactly the same buffer area and which is very rare.

Here we assume that the attacker does not reboot the system after a successful
exploit to evade detection. We can add an additional cruiser check, to see whether
the system has been compromised or not, in the system shutdown (reboot) routine
to relax this assumption. Combined with the checkpoints technique, this guarantee
enables a system to recover the nearest clean state.

5.3 Cloud Cruising

The software cruising approach leverages increasingly popular multicore architec-
tures; its efficiency and scalability show that it can be applied to data centers and
server farms in practice. Cruiser can be applied to shrink-wrapped software in an
automated manner with negligible cost. The scheme in our prototype Kruiser is
one-to-one monitoring on VMs. An advanced option in this design space is the one-
to-many scheme; that is, one VM (monitor) cruises over multiple VMs, especially
for the VMs that reside in the same physical machine. This is vital to the scalable
online monitoring for cloud data centers and server farms.

Large data centers using shipping-containers packed with thousands of
servers each are common nowadays. Therefore, scalable deployment is a critical
requirement for intrusion detection measures in data centers. Unlike traditional
interposition-based monitors, which may intervene normal functionalities
frequently, Kruiser imposes minimal interference and performs monitoring in
parallel with the monitored VM. Moreover, with the one-to-many option, one
Kruiser instance is able to monitor multiple VMs given an acceptable detection
latency much longer than the cruising cycle, without affecting the guaranteed
detection property. In addition, the performance isolation provided by the
underlying VMM ensures the monitor process and the monitored VM do not abuse
computing resources to interfere with each other, which is a desirable property for
users.
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With the popularity of multicore architectures, servers built with many cores are
more and more common. The hardware evolution trend embraces the concurrent
monitoring fashion, as the cost for a unit core running a monitor instance decreases
sharply, and the extra energy consumption by one core is relatively low for machines
with hundreds of cores. Therefore, the scalability and low cost properties imply that
Cruiser and Kruiser can be practically applied to large data centers and server farms,
as one of the intrusion detection instruments in practice.

6 Related Work

In this section, we present related work on buffer overflow detection, system
integrity, information flow integrity, and self-healing software.

6.1 Buffer Overflow Detection

Over the past few decades, there has been extensive research in this area, including
buffer bounds checking [2–4, 7, 18, 26, 36, 48, 68, 74], canary checking [15, 24, 46],
return address shadow stack or stack split [12, 21, 44, 64, 79], non-executable
memory [61, 65], non-accessible memory [20, 22, 73], randomization and obfus-
cation [6, 9, 14, 65], and execution monitoring [1, 10, 16, 29, 49].

Despite so many countermeasures, only a few of them, such as StackGuard [15],
ASLR (Address Space Layout Randomization) [9, 65], NX memory [61, 65], and
DieHard [8] and DieHarder [39], are widely deployed in production systems. In
Table 1, we compare Cruiser with those widely deployed tools and techniques.

Table 1 Comparison of some widely deployed tools and technologies with Cruiser

Stack-Guard ASLR NX
DieHard &
DieHarder Cruiser

Low performance overhead • • • ◦ •
Easy to deploy and apply • • • ◦ •
No false alarms • • • • •
Mainstream platform compatible • • • • •
Program semantics loyalty • • • • •
Legacy code compatible • • •
Binary code compatible • •
No need for recompilation • •
Able to locate corrupted buffers • •
Leveraging multicore architectures •
Guaranteed detection or prevention ◦ • ◦ •
Deployed to the field • • • • �

Legend: • means positive; ◦ means partially or almost; � means just open-sourced
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Software cruising shares many features with these techniques, including low
performance overhead, easiness to deploy and apply, no false alarms, compatibility
with mainstream platforms, and program semantics loyalty.

Cruiser bears many similar features with StackGuard [15]. Kruiser exhibits
excellent performance on system kernel integrity checking, with novel features
such as secure monitor protection and guaranteed detection (even after an initial
successful exploit). In addition, Software cruising systems also have the following
features: non-blocking and lock-free monitoring, monitor kill-safe, compatibility
with legacy code, no need for recompilation, i.e. working with binary executables,
ability to leverage multicore architectures, guaranteed detection of attacks (not
bypassable), secure monitor protection, and ability to precisely locate corrupted
buffers, which is critical for testing, debugging, and security monitoring.

6.2 System Integrity

Existing OS integrity protection techniques can be broken down into three cate-
gories: (1) code integrity [45,57], (2) data integrity [5,63], (3) control flow integrity
and control data integrity [1, 42, 76, 77]. Software cruising for data structure and
object invariants in general falls into the third category. HookSafe [76] protects
kernel hooks by relocating them to a dedicated page-aligned memory space. In
contrast, software cruising does not do any hook relocating. The technique proposed
by Petroni and Hicks [42] detects kernel control flow attacks by identifying
persistent yet unexpected modifications of the kernel’s CFG. It does not use
any canaries. In contrast, software cruising can be applied to detect control flow
attacks by comparing linkages between canaries with the linkages between the
corresponding kernel data structures. Soft-Timer [77] uses soft timer interrupts
while software cruising does not use any interrupt.

6.3 Information Flow Integrity

Security models for information flow controls were studied many years ago [17].
Recently, Decentralized Information Flow Control (DIFC) [19, 30, 34, 80] has
attracted much interest. Compared to classic information flow control researches,
which are model-oriented, DIFC is targeting pragmatic, system-oriented infor-
mation flow control. DIFC projects have developed more practical and more
usable declassification measures and information flow tracking (also called “taint
tracking”) mechanisms. Although taint tracking has been implemented in design-
from-scratch DIFC systems such as HiStar [80], so far fine-grained information
flow tracking still cannot be made practical in commodity software systems. This
problem is a main motivation behind our plan to apply software cruising to
information provenance and flow integrity checking.
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6.4 Self-Healing Software

Self-healing (or self-fixing, self-repairing) software such as the Network Worm
Vaccine Architecture [27, 43, 60], ClearView [41], and SHADOWS [59], aims to
fix itself when something monitored goes wrong. However, runtime protection or
monitoring mechanisms are often too expensive in practice to be applied in large
scale. None of these solutions utilize non-blocking lock-free data structures and
algorithms to reduce monitoring overhead. The software cruising technology can
be combined with the self-healing software technology to make it more affordable
since to be self-healing it has to be self-monitoring first!

7 Conclusion

We have presented a novel concurrent software monitoring technology, called
software cruising. It leverages multicore architectures and utilizes lock-free data
structures and algorithms to achieve efficient and scalable security monitoring.
Applications include, but are not limited to, heap buffer integrity checking, kernel
memory cruising, data structure and object invariant checking, rootkit detection, and
information provenance and flow checking. In the software cruising framework, one
or more dedicated threads, called cruising threads, are running concurrently with the
monitored user or kernel code, to constantly check, or cruise, for security violations.
We believe the software cruising technology would result in a game-changing
capability in security monitoring for the cloud-based and traditional computing and
network systems.

We have developed two prototypical systems: Cruiser, a lock-free concurrent
heap buffer overflow monitor in user space, and Kruiser, a semi-synchronized
non-blocking OS kernel cruiser. Cruiser is legacy code compatible and can be
automatically applied to protect shrink-wrapped software and systems (source code
or binary executables) transparently, and thus can gain extra security with virtually
no cost for heap buffer overflow checking as StackGuard for stack buffers. Kruiser
has a novel algorithm on concurrent, but semi-synchronized non-blocking, kernel
heap integrity cruising. It is not fully synchronized, to reduce the performance
overhead, but still ensures correctness regarding race conditions, deadlocks, and
other typical concurrency issues.

Our preliminary results showed that software cruising can be deployed in practice
with modest overhead. In user space, heap buffer overflow cruising incurs only
5 % performance overhead on average for the SPEC CPU2006 benchmark, and the
Apache throughput slowdown is only 3 % maximum and negligible on average. In
kernel space, it is negligible for SPEC, and 3.8 % for Apache. Both technologies can
be deployed in large scale for (cloud) data centers and server farms in an automated
manner.
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