
Quantitative Assessment on the Limitations of Code Randomization for Legacy
Binaries

Pei Wang∗†
Independent Researcher

Santa Clara, USA
uraj@apache.org

Jinquan Zhang
The Pennsylvania State University

University Park, USA
jxz372@psu.edu

Shuai Wang†
HKUST

Hong Kong, China
shuaiw@cse.ust.hk

Dinghao Wu
The Pennsylvania State University

University Park, USA
dinghao@psu.edu

Abstract—Software development and deployment are gener-
ally fast-pacing practices, yet to date there is still a signif-
icant amount of legacy software running in various critical
industries with years or even decades of lifespans. As the
source code of some legacy software became unavailable, it is
difficult for maintainers to actively patch the vulnerabilities,
leaving the outdated binaries appealing targets of advanced
security attacks. One of the most powerful attacks today is
code reuse, a technique that can circumvent most existing
system-level security facilities. While there have been vari-
ous countermeasures against code reuse, applying them to
sourceless software appears to be exceptionally challenging.

Fine-grained code randomization is considered to be
an effective strategy to impede modern code-reuse attacks.
To apply it to legacy software, a technique called binary
rewriting is employed to directly reconstruct binaries without
symbol or relocation information. However, we found that
current rewriting-based randomization techniques, regard-
less of their designs and implementations, share a common
security defect such that the randomized binaries may re-
main vulnerable in certain cases.

Indeed, our finding does not invalidate fine-grained code
randomization as a meaningful defense against code reuse
attacks, for it significantly raises the bar for exploits to be
successful. Nevertheless, it is critical for the maintainers of
legacy software systems to be aware of this problem and
obtain a quantitative assessment of the risks in adopting
a potentially incomprehensive defense. In this paper, we
conducted a systematic investigation into the effectiveness of
randomization techniques designed for hardening outdated
binaries. We studied various state-of-the-art fine-grained
randomization tools, confirming that all of them can leave a
certain part of the retrofitted binary code still reusable. To
quantify the risks, we proposed a set of concrete criteria to
classify gadgets immune to rewriting-based randomization
and investigated their availability and capability.

Index Terms—legacy software, code-reuse attack, code ran-
domization, binary rewriting, risk assessment

1. Introduction

To date, there are still many critical legacy software
systems serving the aviation industry, the healthcare in-

∗Pei Wang is now a software engineer at Google LLC.
†Most of the work was done when the authors were graduate students
at The Pennsylvania State Unviersity.

dustry, governments, military agencies, and financial in-
stitutes [11], [8]. Many of these systems already have 15 to
30 years of life span [6], and the failures of these systems
can easily cause considerably severe financial losses. An
example of still active legacy software is DECOR, a
Windows 3.1 program used to assist airplane takeoff and
landing. In 2015, a failure of DECOR caused an airport
in Paris to shut off for a day [12].

Maintaining legacy software systems and hardening
them to resist emerging security threats is extremely im-
portant for both software vendors and users. As more
and more sophisticated cyberattack methods are being
invented, legacy software has become increasingly attrac-
tive targets of those attacks. One of the most threatening
attacks is code reuse, a technique that allows attackers
to execute malicious code with the victim programs’
own constructs. Primitive defenses such as coarse-grained
binary randomization (i.e., Address Space Layout Ran-
domization [10]) provided by modern operating systems
are no longer adequate to impede these attacks [72], [41].
Therefore, techniques that randomize binaries at a more
fine-grained level are gaining more and more attention.
DARPA’s Cyber Fault-tolerant Attack Recovery (CFAR)
project has shown a special interest in protecting legacy
binaries by randomization [1] with millions of dollars of
investment [5].

Despite that fine-grained randomization is in general
much more capable of preventing advanced code reuse
attacks, the defense is not directly applicable to legacy
software systems, for their source code is either unavail-
able or incompatible with modern compilers. In certain
cases, maintainers may not even be able to confirm or
trust the correlation between the historic source code
and deployed legacy binaries. As such, one of the few
options left for maintainers is to directly reconstruct the
legacy binaries without source code. Many fine-grained
code randomization techniques have been proposed on
the basis of binary rewriting such that legacy software
can be hardened without source code or other auxiliary
information [48], [80], [63], [38], [30]. However, we no-
ticed that these rewriting-based randomization techniques
can be problematic due to some fundamental technical
challenges.

One of the major difficulties originates from the fact
that for many legacy binaries, their program elements
became unrelocatable at the time when the binaries were
linked and stripped, meaning the addresses of these pro-
gram elements cannot be easily changed. To circumvent

this problem, rewriting-based randomization techniques
rely on address translation mechanisms which map the
original addresses of randomized targets to their new ad-
dresses at run time. These mechanisms make it feasible to
randomize binary code at a much finer granularity without
relocation information, but certain parts of the retrofitted
binaries conceptually remain unrandomized because the
address translation is also available to code-reuse attack-
ers. At this point, technical barriers make this translation
indispensable to correctness. By exploiting those address
translation mechanisms, attackers can access a subset of
program elements in the randomized copies with their
original addresses.

We believe that the risks imposed by the aforemen-
tioned problem should not be neglected. We have ana-
lyzed various existing fine-grained randomization defenses
based on legacy binary rewriting and confirmed that they
are truly vulnerable to code reuse attacks, regardless of
the design and implementation of each technique. To
help maintainers of legacy software better understand the
potential hazard of deploying an impotent defense, we
propose a systematic method to quantitatively assess the
chance of a rewritten and randomized binary still being
exploitable by code-reuse attacks. The assessment results
allow security engineers to make more informed decisions
when they seek to protect their legacy software systems.

In summary, we made the following contributions in
this research,

• We are the first to identify and systematically ana-
lyze a critical security defect carried by fine-grained
code randomization techniques built on top of legacy
binary rewriting. With this defect, the randomized
binaries may remain vulnerable to code-reuse attacks,
even if the randomization granularity is refined to the
instruction level. We are the first to investigate this
long overlooked problem in depth.

• We developed a systematic methodology to quanti-
tatively assess the potential risks of deploying fine-
grained randomization defenses for legacy binaries
against code-reuse attacks.

• We applied our risk assessment to the DARPA Cy-
ber Grand Challenge binaries and several widely
deployed real-world applications. Our assessment
indicates that the effectiveness of rewriting-based
randomization can significantly differ for different
binaries, suggesting that it is crucial to understand
the potential risks before such defenses are deployed.

For the remainder of the paper, we first introduce
relevant background knowledge in Section 2. We then
explain in detail why fine-grained randomization is vul-
nerable if based on legacy binary rewriting in Section 3.
The threat model is in Section 4. Section 5 presents a
classification for usable gadgets in regards to the defect
of rewriting-based randomization. Section 6 reviews pre-
viously proposed code-reuse attacks and examine whether
they conform our threat model and criteria for usable gad-
gets. The methodology for conducting the risk assessment
is introduced in Section 7, followed by the assessment
results for a set of widely deployed real-world binaries
in Section 8. Section 9 discusses some important topics
related to the assessment. We review related research in
Section 10 and conclude the paper in Section 11.

2. Technical Background

2.1. Code-Reuse Attacks

Code reuse is an attack technique that aims to perform
malicious computation within a program by exploiting
memory vulnerabilities like buffer overflow and hijacking
the normal control flows. Different from code-injection
attacks, code-reuse attacks do not need to place new
instructions into the program’s address space, thus cannot
be stopped by Data Execution Prevention (DEP).

A code-reuse attack is commenced by executing a
chain of the victim program’s own code snippets, each of
which ends with an indirect control transfer instruction.
The target addresses of these instructions are controlled
by attackers so that the execution follows an unintended
path crafted for malicious purposes. Each reused code
snippet is called a gadget. For hardware architectures that
encode instructions with varied lengths of bytes, e.g., x86,
the address of instruction fetching is not forced to be
aligned. Therefore, it is possible to interpret the memory
byte sequence from an offset that is not intended to be
the beginning of an legit instruction. A gadget obtained
in this way is called an unintended gadget. Otherwise,
it is intended. Early code-reuse attacks use unintended
gadgets [71], but it was later revealed that they are not
necessary [25], [58],

On x86, there are three kinds of indirect transfers,
i.e., function returns, indirect branches, and indirect calls.
Depending on which kind of instructions are used to chain
different gadgets, the corresponding code-reuse scheme
is called return-oriented programming (ROP) [71], jump-
oriented programming (JOP) [28], [22], or called call-
oriented programming (COP) [46], respectively.

2.2. Code Randomization

To hinder code-reuse attacks, code randomization is
proposed to make the addresses of instructions unpre-
dictable at run time, such that attackers cannot effectively
construct the attack payload to connect each gadget.

Coarse-grained code randomization [10] permutes
gadget addresses by loading code modules into non-
deterministic locations in the address space. In contrast,
fine-grained randomization [45], [44], [80], [48], [63] not
only mutates gadget addresses with more entropy but
also destroys certain gadgets. Therefore, fine-grained ran-
domization is much more difficult to compromise. Basic
methods of fine-grained randomization include function
reordering, basic block reordering, instruction reordering,
and register reassignment. There are two major approaches
to achieving fine-grained randomization—by specialized
compilation [19], [53], [49], [35], [20], [15] and by bi-
nary rewriting [48], [80], [63], [38]. Some fine-grained
randomization takes place at load time, but still requires
support from compilers [53], [15].

3. Limitations of Current Defenses

3.1. Fundamental Cause

The re-engineering of legacy binaries faces many chal-
lenges, such as binary disassembly and function slic-
ing [17], [82]. One of the most fundamental challenges

add 0x8f, %esi

0xa080x8f:

unrelocatable binary

.text
add 0x8f, %esi

.data
;symbol missing
.long 0xa08

disassemble

code missing symbol definitions

.text
add Var, %esi

.data
Var:
.long 0xa08

assemble

relocatable code

add 0x8f, %esi

0xa08

?

malfunctioning binary

0x8f:

assemble

Figure 1. The relocation problem in binary rewriting.

is the lack of relocation information, as discussed by
Wang et al. [79] and Wang et al. [78]. They indicated
that one of the major obstacles forbidding straightforward
binary reconstruction is the lack of relocation information
in legacy binaries.

The problem can be illustrated by Figure 1, which
shows a case of trivial binary rewriting. In the example,
a binary is disassembled and immediately reassembled
back without any semantics modification. What makes
this process flawed is that during the disassembly process,
the first operand of the add instruction, i.e., the concrete
address 0x8f, is not lifted to a symbolic value. Since
there is no guarantee that the linker will keep the data
at address 0x8f when reassembling the binary, the same
add instruction in the reassembled copy will likely fetch
the wrong data.

While it is not difficult to fix the error in Figure 1
caused by unrelocatable disassembly, the problem is ex-
ceedingly challenging in general. Recovering the reloca-
tion information is equivalent to solving the following type
inference problem: given a pointer-size data chunk in the
binary, the rewriting algorithm needs to decide whether
it is used as a pointer. For binary rewriting, the type
inference problem has to be solved with both soundness
and completeness to ensure the rewritten binary does not
malfunction. In this context, soundness means no pointers
are inferred as non-pointers and completeness means all
inferred pointers are actually pointers.

Historically, researchers [85], [84] have developed var-
ious heuristics to recognize code pointers in the data sec-
tions of stripped binaries, some of them achieving 100%
accuracy for certain binaries [79], [78]. However, all of
existing methods in theory can pledge only soundness but
not completeness, thus the correctness cannot be assured.

3.2. Address Translation Mechanisms

By the time of paper writing, all rewriting-based
randomization techniques known to us circumvent the
relocation problem by introducing run-time address trans-
lation mechanisms. The basic idea is to leave binary data
unmodified and instrument indirect control-flow transfer
instructions so that the transfer target can be redirected
to the correct address. In this way, rewriters are only
required to identify code pointers with soundness but not
completeness. Address translation in rewritten binaries can
be abstracted as Figure 2. We argue that this address trans-
lation mechanism is exactly the Achilles’ heel of rewriting-
based randomization. Regardless of the design and imple-
mentation of a rewriting-based randomization technique,
the address translation mechanism has to be bundled into
the rewritten binary. By exploiting the translation as a

Instrumented
Indirect Transfer

Binary Code (Retrofitted)

Address-Translation
Black Box

Code Pointer

Binary Data (Preserved)

Target
Original Address

New Address

Figure 2. Abstraction of address translation mechanisms in binary rewrit-
ing.

black box, attackers can reliably locate certain gadgets
in randomized binaries by inspecting their addresses in
unrandomized copies.

3.3. Examples

To deliver a concrete understanding of the address
translation mechanisms discussed above, we introduce two
examples of fine-grained randomization techniques based
on binary rewriting. We use two examples to illustrate the
security issue discussed above.

3.3.1. Static Randomization: Binary Stirring. Binary
stirring [80] is a representative fine-grained randomization
technique that supports the hardening of legacy binaries.
Binary stirring addresses the relocation issue by reserv-
ing the address space occupied by the original binary
code sections and placing “stubs” at a set of addresses
which overapproximates the set of all indirect control-
flow transfer targets in the program. Take Figure 3 as an
example. A segment of the original binary is in Figure 3a
and the corresponding segment of the stirred binary is in
Figure 3b. The stirred binary has two parts—the .told
section which lives in the exactly same address space as
.text, and the .tnew section which is a randomized
version of .text.

Of these two parts, .tnew is the code that will be
actually executed, while .told now serves as read-only
data. Binary stirring makes three notable changes to the
binary in order to preserve the original semantic:

1) Modify the targets of direct control flow transfers,
i.e., the operand of the jmp instruction (framed in
Figure 3b). 1

2) Replace the bytes at the original address of a potential
transfer target with a special stub byte f4 (the opcode
of halt that should not appear in normal programs)
followed by the little-endian encoding of the random-
ized address of that target. In the example of Figure 3,

1. In this example the encoding of the instruction is unmodified
because the near jmp uses a PC-relative address as its operand.

.text:
080483f3: c7 45 f8 0a 84 04 08 mov

::::::::
$0x804840a,-0x8(%ebp)

080483fa: c7 45 fc 13 84 04 08 mov
::::::::
$0x8048413,-0x4(%ebp)

08048401: 8b 45 08 mov 0x8(%ebp),%eax
08048404: 8b 44 85 f8 mov -0x8(%ebp,%eax,4),%eax
08048408: ff e0 jmp *%eax
0804840a: 83 45 0c 04 add $0x4,0xc(%ebp)
0804840e: 8b 45 0c mov 0xc(%ebp),%eax
08048411: eb 07 jmp 0x804841a
08048413: 8b 45 0c 05 add $0x5,0xc(%ebp)
08048417: 8b 45 0c mov 0xc(%ebp),%eax
0804841a: c3 ret

(a) Original binary

.told:
080483f3: c7 45 f8 0a 84 04 08 c7 45 fc 13 84 04 08 8b 45
08048403: 08 8b 44 85 f8 ff e0 f4 11 84 04 09 45 0c eb 07
08048413: f4 1a 84 04 09 45 0c c3

.tnew:
090483f3: c7 45 f8 0a 84 04 09 mov

::::::::
$0x804840a,-0x8(%ebp)

090483fa: c7 45 fc 13 84 04 09 mov
::::::::
$0x8048413,-0x4(%ebp)

09048401: 8b 45 08 mov 0x8(%ebp),%eax
09048404: 8b 44 85 f8 mov -0x8(%ebp,%eax,4),%eax
09048408: 80 38 f4 cmpb $0xf4,(%eax)
0904840b: 0f 44 40 01 cmove 0x1(%eax),%eax
0904840f: ff e0 jmp *%eax
09048411: 8b 45 0c 05 add $0x5,0xc(%ebp)
09048415: 8b 45 0c mov 0xc(%ebp),%eax
09048418: eb 07 jmp 0x9048421
0904841a: 83 45 0c 04 add $0x4,0xc(%ebp)
0904841e: 8b 45 0c mov 0xc(%ebp),%eax
09048421: c3 ret

(b) Stirred binary

Figure 3. An example of the address translation mechanism in binary
stirring.

the two wavily underlined immediate numbers are
recognized as potential indirect transfer targets. Two
stubs are inserted at the addresses indicated by the
underlined bytes in .told.

3) Instrument every indirect jump and indirect call in-
struction by inserting two instructions ahead, as un-
derlined in Figure 3b. These two instructions check
the first byte at the control-flow transfer target; if it is
f4 then replace the target with the value stored right
after the f4 stub. In this way, the control flow will
be correctly directed to the randomized addresses.

Note that the set of inserted f4 stubs is precisely
the pre-computed mapping from original addresses to ran-
domized addresses. This technique is called “trampolin-
ing” and has been widely adopted by previous research
on binary retrofitting [48], [85], [39].

3.3.2. Static and Dynamic Randomization: Isomeron.
Isomeron [38] is another example of rewriting-based fine-
grained randomization. Different from binary stirring that
provides static randomness, Isomeron introduces random-
ness dynamically throughout the program’s lifetime. Bi-
naries protected by Isomeron have two copies of code
sections, one of which is the original and the other is pro-
cessed by in-place randomization [63]. Isomeron employs
the dynamic instrumentation system Pin [59] to trap every
indirect control-flow transfer. Whenever such a transfer
occurs, Isomeron randomly redirects the target to one of
the two code copies. This makes the traditional gadget
chaining techniques almost surely fail, because the chance
that a code-reuse attack follows the designed sequence
decreases exponentially with respect to the number of
gadgets used.

TABLE 1. TOOLS AND TECHNIQUES EMPLOYING RUN-TIME
ADDRESS TRANSLATION

Tool/Technique Translation Type

In-Place Randomization [63] Identity
Remix [31] Identity

Isomeron [38] Linear
CodeArmor [30] Linear

ILR [48] Non-Linear
Binary Stirring [80] Non-Linear

Reins [81] Non-Linear
MULTIVERSE [18] Non-Linear

To implement such run-time behavior, Isomeron needs
an address translation mechanism that maps the target
addresses in one copy of the code to the corresponding
addresses in the other copy. Isomeron employs in-place
randomization and the offset between the corresponding
basic blocks in the two copies is a constant. As such,
the translation can be made very efficient. Note that this
address translation is not specific to Pin. Switching to
other similar systems like Dynamo [16] does not resolve
the issue.

3.4. Validation of Analysis

Despite holding different views on the severity, our
analysis on the defects of rewriting-based randomization
is in alignment with the conclusions of some previous
work [48], [80], [30]. For further validation, we manually
applied the idea of binary stirring2 to a small binary com-
piled from a vulnerable C program written by ourselves.
Regarding this binary, we have composed a code-reuse
exploit as a minimal working example to demonstrate the
impact of the vulnerability.

3.5. Affected Defenses

Table 1 is a list of security tools and techniques
featuring run-time address translations, thus affected by
the problem discussed above. As far as we know, there
are three types of address translation mechanisms. The
identity translation is more of a theoretical concept for
lacking an actual implementation, which is employed by
randomization techniques that do not mutate basic block
addresses [63]. The linear translation is for techniques
that randomize the address of the entire code section as
a whole [38], [30]. The most flexible translation type is
the non-linear one, which can implement arbitrary address
mappings [48], [80].

4. Threat Model and Assumptions

Our research aims to undertake an in-depth assessment
of the potential risks caused by the previously discussed
vulnerability. We first describe a threat model to regulate
factors that need to be considered by the assessment.

2. Neither binary stirring nor Isomeron is available for evaluation.
While we are not able to perform real-world tests on these systems,
our analysis shows that any method employing the address translation
mechanism is subject to this vulnerability.

Legacy Binaries. All defenses considered in the assess-
ment must be designed for legacy binaries with only min-
imal symbol and relocation information. Indeed, releasing
fully relocatable binaries becomes more and more com-
mon in recent years for the benefits of ASLR on modern
operating systems [83]. However, as we emphasized in the
introduction, legacy systems with unrelocatable binaries
are still running in production environments, despite that
the source code of these systems are no longer available
or maintainable.

Code Randomization. We suppose binaries are pro-
tected by a fine-grained code randomization technique
providing strictly better defenses than ASLR. The random-
ization is able to shuffle the layout of binary code at the
function [45], [19], [53], basic block [80], and instruction
level [48], [63]. It can also alter the content of the binary
code with semantics-equivalent transformations [63]. This
randomization technique should be based on legacy binary
rewriting and must not require program source code or
binary relocation information. Some research on binary
randomization assumes that binaries contain relocation
information [73], [15], [55], [65], [82], leaving them out
of our consideration.

Adversary Capabilities. We assume that typical pro-
tections provided by a modern operating system are
available and activated. Particularly, data execution pre-
vention (DEP) is in effect and attackers cannot directly
launch code-injection attacks. For exploit initiation, at-
tackers should be able to find certain types of memory
vulnerabilities to start with. There are many defensive
techniques preventing attackers from exercising memory
corruption so that code-reuse attacks are nipped in the
bud, but it is widely believed that no mitigation, to date,
is fully comprehensive with acceptable cost for practi-
cal deployment [52], [76]. We assume that the attacked
programs contain vulnerabilities that allow attackers to
inject malicious payload at the desired address in the
memory and manipulate certain memory content so that
the target of an indirect function call can be hijacked.
These vulnerabilities are generally necessitated by code-
reuse attacks based on call-oriented programming [46],
[68], [43]. Additionally, we assume attackers can statically
inspect or guess the layout of an unrandomized copy of
the binary they aim to attack. However, attackers are not
allowed to disclose binary code layouts at run time. Such
attempts can be thwarted by defensive techniques that
prevent code disclosure [14], [38], [30].

Control-Flow Integrity. Control-flow integrity (CFI)
prevents indirect transfers that are not intended by normal
program execution. A shadow stack, which is a particular
kind of CFI enforcement, records every function call
and return to make sure a function always returns to its
caller [13]. CFI is essentially a category of defenses differ-
ent from code randomization. Since our analysis focuses
on fine-grained randomization alone, we assume that there
is no dedicated CFI protection deployed; however, we later
(in Section 5.2 and Section 5.3) show that the defenses
considered by our threat model possess a probabilistic
defensive effect equivalent to coarse-grained CFI and a
shadow stack. In recent literature and this paper, being
coarse-grained means the CFI policy maintains a universal
set of valid targets for all call sites.

5. Gadget Analysis

Gadgets are the basic building blocks of code reuse
attacks. Fine-grained code randomization blocks code-
reuse attacks by eliminating code sequences that can be
potentially used as gadgets, or making the addresses of
such sequences unpredictable. We hereby propose three
criteria to measure the usability of gadgets.

• Stability indicates whether gadgets can be preserved
after randomizing transformations are applied.

• Trackability indicates whether attackers can still lo-
cate the gadgets after randomization.

• Connectivity describes a gadget’s capability of trans-
ferring the control flow to the next gadget.

By definition, connectivity depends on the trackability of
other gadgets. We call gadgets with stability and tracka-
bility the Randomization-Resilient (RR) gadgets. If an RR
gadget also has connectivity, it is called an RR* gadget.

5.1. Gadget Stability

In our consideration, the key to gadget stability is
whether the high-level semantics of the gadget are re-
tained. To find out how gadgets can withstand random-
ization transformations, we reviewed existing fine-grained
randomization implementations. In general, the transfor-
mations can be classified into the following categories
based on the smallest program elements to which the
transformations can be applied:

• Instruction transformation which randomizes indi-
vidual instructions, e.g., atomic instruction substitu-
tion [67], [63].

• Basic block transformation that preserves basic
block semantics, e.g., basic block address shuf-
fling [45], [80] and instruction reordering within
basic blocks [23], [63].

• Function transformation that may alter the semantics
of individual basic blocks but preserve the semantics
of functions, e.g., register preservation code reorder-
ing [63] and register reassignment [33], [66], [63],
[35], [24]

The three types of transformations can be stacked to-
gether. Theoretically, it is also possible to perform inter-
procedural transformations that randomize the application
binary interfaces (ABI). To the best of our knowledge,
such transformations, if there exists any, are not widely
available at this point. Therefore, we do not consider
randomization transformations that manipulate program
semantics across function boundaries.

Instruction transformations are effective against un-
intended gadgets which strictly depends on instruction
encoding. Basic block transformations have a high chance
to eliminate intended gadgets that are incomplete frag-
ments of basic blocks. Function-level transformations fur-
ther destroy gadgets that do not confine the boundaries
of inter-procedural control-flow transfers, i.e., function
entries (invocations) and function exits (returns).

It should be noted that, besides the constraints above,
whether a gadget is stable also depends on how it is
used in the attack chain. If the attacker tries to reuse the
high-level semantics intended by the source code from

which the gadget is compiled, stability will be guaran-
teed. However, in case the attacker reuses a gadget for
its machine-level semantics or certain side effects, e.g.,
moving a particular constant into a particular register,
the stability cannot be preserved. For example, one of
the function transformations, register preservation code
reordering, randomizes the order of register save (push)
and restore (pop) sequences in a function [63]. With
this transformation applied, attacks relying on a partic-
ular sequence of push and pop operations instead of the
high-level function semantics will fail. The same analysis
applies to other existing transformations such as register
reassignment. In the rest of this paper, we assume it is the
high-level semantics that attackers intend to reuse.

5.2. Gadget Trackability

As explained in Section 3.1, rewriting-based random-
ization techniques develop address-translation techniques
to dynamically redirect code pointers loaded from bi-
nary data because rewriters cannot correctly identify code
pointers in binary images without source code. Consider-
ing the translation mechanism as a mathematical function,
its domain is exactly the set of the pre-randomization
addresses of all trackable gadgets.

In general, address translators can be activated only
through indirect control-flow transfers because direct con-
trol transfer targets can be correctly relocated by current
techniques. Additionally, state-of-the-art binary rewriters
have been able to safely rewrite pointers in code sec-
tions of a binary in most practical cases. Therefore, it
is sufficient for address-translation components to exclu-
sively redirect the addresses of legitimate indirect transfer
targets whose addresses have possibly appeared in the
binary data sections. If the given address is not one of
such kind, the behavior of the translator may be undefined
and therefore unpredictable to attackers. In that sense, a
control-flow integrity policy is enforced. This integrity,
however, is coarse grained, because address translators
treat all indirect call sites in the same manner.

Consider the examples in Section 3.3. Binary stirring
decides whether an address should be translated by look-
ing for the f4 stubs and only legitimate indirect transfer
targets identified by the rewriter are marked with the stubs.
Without the f4 stubs, the translation will not happen. For
Isomeron, the translation can always be triggered, but it
preserves the semantics only if the given address points to
a legitimate indirect transfer target in the original binary.

5.3. Gadget Connectivity

Either return instructions [71] or indirect jump/call
instructions [22], [46] can be used to connect different
gadgets in code-reuse attacks. However, return-oriented
programming (ROP) is not effective when attacking
rewriting-based randomization, for the address-translation
mechanism is not necessarily available for return instruc-
tions. The reason is that a return address is dynami-
cally generated by the hardware before the control flow
switches to another context. There is no need to translate
return addresses since they already correctly point to the
randomized return sites. From the perspective of attackers,

Gadget Universe

Intended Gadgets

Address-Stored
Targets

Call-Ended
Gadgets

(G1) Unintended gadgets

(G2) Gadgets starting from a target not
recorded in binary data

(RR) Return-ended gadgets

(RR*) Resilient to randomization

Figure 4. Gadget classification in code-reuse attacks. G1, G2, and
RR refer to the differences between the enclosing and enclosed sets,
respectively.

TABLE 2. GADGET RESILIENCE TO FINE-GRAINED
RANDOMIZATION BASED ON BINARY REWRITING

Gadget Class Stability Trackability Connectivity

G1
G2 3†

RR 3 3
RR* 3 3 3

† G2 gadgets only have limited stability.

this is equivalent to a shadow stack. Therefore, only gad-
gets ended with indirect jumps and calls have connectivity.

5.4. Summary

Based on the previous analysis, the universe of code-
reuse gadgets can be divided into four classes, as shown in
Figure 4. The characteristics of each class are summarized
by Table 2.

G1 gadgets, i.e., the unintended ones, can be easily
smashed by various randomization transformations. G2
gadgets are non-trackable gadgets starting from an in-
struction which is intended but not recognized as indi-
rect targets by binary rewriters, including all instructions
whose addresses are not stored in binary data sections.
These gadgets can survive instruction transformations but
not necessarily basic block and function transformations.

Randomization-resilient (RR) gadgets are those start-
ing from legitimate function entries whose addresses can
be found in binary data sections (address-stored targets)
and ending with return instructions. RR gadgets are fully
stable and trackable, meaning they can be located by
attackers and reused for their retained semantics. However,
RR gadgets lack connectivity since ROP is ineffective as
explained in Section 5.3. For this reason, a RR gadget
can only achieve “one step” during an attack. In case the
attack goals are complicated and single-gadget attack is
not feasible, attackers will need other methods to chain
different RR gadgets together.

RR* gadgets are those same as RR gadgets in all
aspects except that they end with indirect call instructions.
RR* gadgets are completely stable, trackable, and can be
used to connect other stable and trackable gadgets.

6. Effective Attacks

To better understand the risks caused by gadgets that
are immune to rewriting-based randomization, we discuss

what code-reuse attack schemes can fully utilize them.
If there exists such an attack, we can assess the risks
by considering the feasibility of the attack regarding a
particular binary. We emphasize that an attack scheme
being feasible within our threat model does not mean it
is suitable for risk assessment, because the conditions for
launching such an attack may be too strict such that the
actual risks may be under-estimated.

In the past, many code-reuse attack techniques have
been proposed in response to different defensive measures.
A natural research question is that whether any of these
existing attacks fully matches the criteria of exploiting
the vulnerability of rewriting-based randomization. We
examined nine code-reuse techniques presented during the
last two decades. Our analysis indicates that none of them
can be considered as the precise model of adversary when
assessing the potential risks of rewriting-based random-
ization. They either lead to over-estimation of the risks
for utilizing gadgets that do not fit our usability criteria,
or lead to under-estimation for excluding some of the
usable gadgets in order to breach defenses other than code
randomization. The analysis results are summarized by
Table 3. This further suggests that the fundamental risks
residing in current rewriting-based randomization tech-
niques have not been systematically considered before.

The traditional ROP uses unintended gadgets and does
not particularly take address-stored targets as gadget en-
tries, thus breaking stability and trackability premises.
It also relies on return instructions for gadget chaining,
which violates connectivity as well. JOP is similar to ROP,
except that it uses indirect jump for connecting gadgets.

The “Control-Flow Bending” [26] and StackDefiler
attacks [34] partially rely on ROP, leading to the loss of
gadget connectivity. Gadgets used by these two attacks
likely lack trackability, but we do not have enough in-
formation to confirm it. The “Out of Control” attack [46]
employs gadgets belonging to a super set of usable gadgets
in our scenario and the proof-of-concept exploit presented
in the paper lacks gadget connectivity. Like StackDefiler,
the trackability of their gadgets is also questionable. The
just-in-time (JIT) code reuse [74] and blind return-oriented
programming (BROP) [21] need to read the code sections
of the attacked binaries in order to search for usable gad-
gets at run time, thus hindered by disclosure prevention.

“Control Jujutsu” [43] is an attack exploiting the in-
completeness of pointer alias analysis and the difference
between the call graph enforced by a control-flow integrity
policy and the actual call graph. “Control Jujutsu” is
based on source code analysis and also uses call-oriented
programming, so the gadgets employed respect stability
and connectivity. Trackability, however, is not fulfilled
because “Control Jujutsu” selects gadgets according to
their reachability in call graphs which is a source code
level property, while trackability requires all gadgets to
be address-stored targets and can only be observed at
the binary level. As shown by the NGINX case study in
Section 8.3, at least one of the proof-of-concept attacks
will be rejected by our threat model.

It has been known that programs written in object-
oriented languages can be vulnerable to code-reuse at-
tacks. By abusing dynamic function dispatching, attack-
ers can conduct code reuse through injected malformed
objects, using a technique called property-oriented pro-

RR* gadget k−1

RR* gadget k

RR* gadget k+1

Fetch arguments set by gadget k − 1

Computation intended by attackers. A
number of RR gadgets may be called.

Prepare arguments for gadget k + 1

Call gadget k + 1

Figure 5. Basic RR Gadget chaining. Gray parts indicate operations for
connectivity.

gramming (POP). POP has been developed for many
programming languages, including Python [4], Java [56],
and PHP [42], [37]. Counterfeit object-oriented program-
ming (COOP) is a case of POP specialized for the C++
programming language. Although not directly applicable
to C programs, COOP may fit all premises at its best
effort when attacking C++ binaries. However, at least one
of the exploits originally presented by COOP does not
fulfill gadget trackability for directly employing a system
function which is relocatable and thus cannot trigger
address translation planted by binary rewriting. On the
other hand, we have a case study on GCC (Section 8.3)
showing that the infeasibility of COOP does not imply
that the binary is safe from code-reuse exploits.

Given that none of the previously known attacks are
suitable as benchmark for assessing the risk we dis-
covered, we now describe an attack scheme that is a
generalization of effective attacks on rewriting-based ran-
domization. Similar to other memory-based exploits, we
assume that the attack can be initiated by hijacking the
control flow through an indirect function call with its
target manipulated by attackers. Basically, an attack is
a connected sequence of RR and RR* gadgets, among
which the RR* gadgets are the key connecting hops. An
RR* gadget can call some RR gadgets of their choice,
but eventually the control flow is passed to the next RR*
gadget. Conceptually, the code-reuse process should pro-
ceed in a manner illustrated by Figure 5. At the behavioral
level, this way of chaining gadgets is similar to the so-
called continuation-passing style (CPS) [75] in functional
programming, which is theoretically as expressive as the
direct or common programming style. Therefore, the lack
of return instructions do not prevent attackers from per-
forming complicated malicious tasks. Note that this is
not the only feasible attack scheme. In certain cases,
the connectivity of RR* gadgets are not necessary for
launching a successful attack. We will further discuss this
in Section 8.3.

7. Risk Assessment

Although rewriting-based randomization is unsound
to prevent code-reuse attacks in general, it is possible
that the defense is comprehensive for particular binaries.
Therefore, a systematic approach to evaluating the poten-
tial risks of the vulnerability will be useful for deciding
whether the defense should be adopted to protect a certain
binary.

Constructing successful code-reuse attacks is heavily
dependent on 1) exploiting one or multiple memory errors
to initiate the exploit and 2) finding appropriate gadgets

TABLE 3. EFFECTIVENESS OF DIFFERENT CODE-REUSE ATTACKS AGAINST REWRITING-BASED FINE-GRAINED RANDOMIZATION

Attack Effective Against Disclosure Gadget Gadget Gadget
Prevention Stability Trackability Connectivity

Traditional ROP [71] Data execution prevention 7 7 7
JOP [22] Shadow stack, return-less binaries 7 7

Control-Flow Bending [26] Fine-grained CFI without shadow stack 7 7

StackDefiler [34] Fine-grained CFI and shadow stack 7? 7

Out of Control [46] Coarse-grained CFI without shadow stack 7? 7
JIT Code Reuse [74] Fine-grained randomization 7

BROP [21] Conceptually fine-grained randomization 7
Control Jujutsu [43] Fine-grained CFI and shadow stack 7

COOP [68] Coarse-grained CFI and shadow stack 7?

7 means the attack violates the premise by design or fails to consider it. 7? indicates either i) the attack likely violates the premise but we are unable to verify it due to
the lack of information, or ii) the attack may choose to respect the premise but one or more proof-of-concept exploits reported by the authors violate it.

to achieve the malicious purpose. As a clarification, eval-
uating the severity and impact of memory errors is out of
the scope of this paper. Instead, our assessment focuses
on measuring the availability and capability of gadgets
immune to binary rewriting, i.e., RR and RR* gadgets
introduced in Section 5.

It is true that the existence of usable gadgets alone
does not always ensure successful exploits, since the
success of code-reuse attacks also depends on many other
factors. Nevertheless, gadget availability and capability
are both indicators of confidence and prerequisites for
further assessment. Since one single effective attack can
be devastating enough, we always try to be conservative in
the assessment and consider it dangerous to underestimate
any potential risks.

7.1. Assess Gadget Availability

Our assessment takes a two-step approach when count-
ing usable gadgets. The first step is to get the total number
of RR gadgets and RR* gadgets, which are the only
two kinds of gadgets having stability and trackability.
Since the union of RR and RR* gadgets is essentially
all address-stored functions, identifying them is equivalent
to identifying code pointers in the data sections of the
examined binary. Although there are different methods to
excavate code pointers in legacy binaries, most of them
are based on heuristics and can be inaccurate. In general,
different randomization techniques make different over-
approximations on the set of indirectly called targets.

Our assessment method is designed for scenarios
where the deployed randomization technique can be either
known or unknown. Therefore, we propose two strategies
for counting RR and RR* gadgets. In case a known
randomization technique is considered, the assessment can
simply adopt the identification algorithm shipped with
that technique. Otherwise, the assessment falls back to a
default method widely used by previous work [85], [84],
[79], [30]. Briefly, this method scans all the data sections
of a binary and identifies all aligned pointer-size data as
code pointers, as long as their values are within valid
ranges of code sections and point to function entries.

The second step is to differentiate RR* gadgets from
RR gadgets. We deem a call site in a gadget steerable
if the target of that call site can be fully controlled by
the input to the gadget. An RR* gadget is therefore an
usable gadget with at least one steerable call site. We

perform static analysis to probe steerable call sites in
assessed binaries. Due to the inherent limitation of static
analysis, we develop both an aggressive analysis strategy
that potentially over-approximates the number of RR*
gadgets and a conservative one that possibly leads to
under-approximation.

7.1.1. Aggressive Assessment. We can aggressively
count every address-stored function containing an indirect
call instruction as an RR* gadget, yielding an upper
bound for the assessment. In some scenarios, this method
may be potent enough for estimating the availability of
RR* gadgets. In others, however, it may significantly
overestimate the potential risks. The reason is that, even
if the target of a call site is indirectly invoked, attackers
may not have full control over the destination. The code
snippet below illustrates one of such cases.

1 const void (*fptr_array[2])() = {
2 func1, func2
3 };
4
5 void gadget(unsigned int arg) {
6 fptr_array[arg % 2]();
7 }

In this example, regardless of the value of the argument
provided to the gadget function, the indirect call at line
6 can only invoke one of the two functions stored in the
constant array defined at line 1.

7.1.2. Conservative Assessment. In case the assessment
is expected to deliver a conservative estimate on the risks,
we devise a program analysis algorithm to rule out such
less capable gadgets.

Typically, a local value inside a gadget can be arbitrar-
ily set if the data flow to this value transitively depends
on attacker input only.3 If attackers can provide arbitrary
input to a gadget, the only values that cannot be fully con-
trolled are hard-coded constants and values dependent on
those constants. Therefore, we employ the reaching defini-
tion analysis to solve data dependencies. By constructing
the def-use chain for all instructions in a function, we can
solve the flow dependence problem which describes read-
after-write (RAW) dependencies [62]. If with this analysis

3. We do not consider program invariants. An artificial example is
“b=a-a;” where the value of b cannot be controlled through manip-
ulating the value of a. Finding program invariants is at least as hard
as detecting opaque predicates, which is still an open problem being
actively researched [60].

we find an indirect call instruction transitively depends on
a constant value, we conclude that attackers may not have
full control over the target of this instruction, meaning this
call site is not steerable in the conservative assessment
setting.

For a sound reaching definition analysis, we need
to handle memory aliasing. Since a definition may be
stored into memory and later extracted by memory loads,
it is imperative to find out which definitions a memory
access may refer to. In our implementation, we assume
any two memory accesses may refer to the same memory
cell, which is extremely conservative but correct. We also
need to derive the use and def sets for each x86 instruc-
tion, taking dependencies of CPU flags and implicitly
used operands into consideration. Overall, our reaching
definition analysis is sound, and typically leads to false
positives. However, we use the analysis result in the way
that whenever the definition of a constant value reaches
a call site target, we disqualify this call site from being
steerable. Therefore, all RR* gadgets identified by the
analysis will indeed have full connectivity.

7.2. Assess Gadget Capability

In typical code-reuse attacks, a gadget is used either
to connect another gadget or to maliciously modify the
state of the victim program. As such, we consider the
capability of a gadget in two aspects, corresponding to
the two different usages.

For an RR* gadget, its capability of chaining other
gadgets can be described by its capacity, defined as the
number of steerable call sites inside that gadget. 4 Since
each steerable call site can invoke another trackable gad-
get, the higher capacity an RR* gadget has, the more
complicated behavior it may be used to implement. RR*
gadgets with a non-trivial capacity, i.e., capacities greater
than one, can greatly enrich the behavior of an attack.
For example, if an RR* gadget includes a branch and
both paths of the branch has a steerable call site, attackers
may use this RR* gadget to implement the if-else logic.
A single-path RR* gadget with a capacity of n can call
at most (n − 1) RR gadgets before getting to the next
RR* gadget. Note that the capacity of an RR* gadget
can be decided either aggressively or conservatively, as
defined in the previous subsection. Since whether a call
site is steerable can be decided either aggressively or
conservatively, the capacity of an RR* gadget is also
subject to this difference.

Another dimension of the gadget capability is the
quantity and variety of sensitive functions invoked by the
gadgets. Typically, a code-reuse attack needs to invoke
certain system-provided functions to manipulate program
states. According to our observation, it is extremely rare
that these functions are called through indirect control-
flow transfers, meaning that the sensitive functions them-
selves are unlikely to be trackable gadgets. Therefore,
attackers will need to use a RR or RR* gadget to in-
voke such sensitive functions. Deciding what functions are
sensitive is subject to the analyzed binary, its deployment
environment, and user requirement.

4. Under this definition, RR gadgets can be viewed as RR* gadgets
with 0 capacity.

8. Experimental Assessment

To evaluate our risk assessment method, we imple-
mented it as a binary analysis framework with about 6700
lines of Java and Scala code plus about 1200 lines of
Python scripts. The implementation includes the default
code pointer identification algorithm and the conservative
data-flow analysis algorithm introduced in Section 7.1.
The framework currently only supports the x86 architec-
ture, which is the most common platform hosting legacy
production binaries.5 Based on this prototypical imple-
mentation, we assessed a set of carefully selected binaries.

8.1. Analyzed Binaries

Ideally, we should employ real-world legacy systems
that are still in production as evaluation objects. However,
such systems are mostly owned and operated by govern-
ments, military, and financial institutes and are typically
not accessible to outsiders. Fortunately, DARPA recently
launched an event called Cyber Grand Challenge (CGC)
which is the first competition aiming to create automated
systems that can analyze and patch the vulnerabilities of
legacy software [2]. Throughout the CGC event, DARPA
released a collection of challenge binaries which are
custom-made programs designed to intentionally contain a
wide spectrum of software flaws that may lead to security
breaches, including buffer overflow, use after free, and
type confusion, etc. The challenge binaries are meant to
approximate real legacy software so that they can be used
to evaluate existing binary analysis and transformation
techniques. Our evaluation thus took the challenge bina-
ries for experimental risk assessment.

In addition to binaries from the CGC competition, we
also selected nine popular open source applications. Al-
though these open source programs are neither legacy nor
created to mimic legacy systems, they are more realistic
than the CGC binaries in terms of code base scale and
complexity, thus a meaningful complementary to the CGC
binaries for evaluating our work.

8.1.1. Cyber Grand Challenge Binaries. Originally, the
challenge binaries were developed for the DECREE sys-
tem which is a simplified Linux variant. DECREE does
not support threads, shared memories, or signals. Only
seven system calls are available on DECREE, includ-
ing receive and transmit for socket communica-
tion, allocate and deallocate for memory mapping
management, fdwait for synchronous I/O multiplexing,
random for accessing the system’s entropy pool, and
_terminate for halting program execution. A group of
researchers have ported 241 challenge binaries to Linux
and Mac OS X [3]. Our evaluation uses the ported bina-
ries. A first look at these binaries showed that 34 of them
contain indirect function calls, which is the premise of
usable code-reuse gadgets being existent. As such, further
analysis only considered these 34 binaries. The names and
sizes of these binaries are listed in the first two columns
of Table 4. The sizes of the analyzed challenge binaries
vary from 16 KB to 19272 KB, with the average being

5. With additional engineering effort, the framework can be extended
to support other hardware architectures.

TABLE 4. ANALYZED CGC BINARIES AND GADGET STATISTICS

Name Size (KB) RR + RR* RR*

cap.=1 cap.>1

Accel 39 18 0, 0 0, 0
Azurad 69 10 0, 0 0, 0
CableGrind 9891 989 988, 0 0, 0
CableGrindLlama 1071 101 101, 0 0, 0
Childs_Game 29 1 0, 0 0, 0
CML 37 9 0, 0 0, 0
cyber_blogger 43 12 0, 0 0, 0
Divelogger2 48 8 0, 0 0, 0
ECM_TCM_Simulator 56 9 0, 0 0, 0
Enslavednode_chat 25 5 0, 0 0, 0
EternalPass 19272 16382 0, 0 0, 0
expression_database 27 8 1, 0 0, 0
FileSys 47 72 0, 0 1, 1
Filesystem_Command_Shell 43 10 0, 0 0, 0
Finicky_File_Folder 33 2 0, 0 0, 0
Fortress 40 1 0, 0 0, 0
FUN 182 4 0, 0 0, 0
Grit 45 17 1, 0 0, 0
middleware_handshake 69 3 0, 0 0, 0
Mixology 153 4 0, 0 0, 0
Network_File_System_v3 72 5 0, 0 0, 0
On_Sale 59 100 0, 0 0, 0
online_job_application 24 28 0, 0 0, 0
online_job_application2 24 26 0, 0 1, 1
pizza_ordering_system 52 45 0, 0 1, 1
RAM_based_filesystem 34 9 0, 0 0, 0
reallystream 667 5 0, 0 0, 0
SCUBA_Dive_Logging 36 8 0, 0 0, 0
Terrible_Ticket_Tracker 42 10 0, 0 0, 0
TVS 16 3 0, 0 0, 0
vFilter 27 3 0, 0 0, 0
Virtual_Machine 46 12 0, 0 0, 0
virtual_pet 21 15 0, 0 0, 0
XStore 41 1 0, 0 0, 0

The last two columns show the number of RR* gadgets with different capacities.
The pairs of numbers indicate the count of RR* gadgets found through
aggressive and conservative assessment, respectively. See Section 7.1 to review
the definitions of aggressive and conservative assessment.

952 KB. There are 14 of them written in C++ and the
other 20 were written in C.

8.1.2. Open Source Software Binaries. Table 5 lists the
open source software analyzed in the evaluation. Most of
them have been used by previous research for evaluating
the effectiveness of new code-reuse attacks and defenses.
While it is known that applications like browsers and
databases are commonly targeted by code-reuse attacks,
the security of programming toolchains has also been
a concern for decades [77]. A recent security incident
showed that compilers compromised by malicious parties
can cause devastating consequences [9]. All applications
are compiled by GCC 4.8 for x86 Linux. The objdump
disassembler from GNU Binutils is used to decode bina-
ries into assembly. We compiled the open source software
with “legacy settings” such that no relocation or debug
information is kept in the exectuables.

8.2. Gadget Statistics

In the experimental assessment, we used the default
code-pointer identification algorithm (review Section 7.1
for details) to locate RR and RR* gadgets in each ana-
lyzed binary, with both the aggressive and conservative
assessment strategies. The last three columns in Table 4
are the numbers of randomization resilient gadgets found

TABLE 5. ANALYZED OPEN-SOURCE APPLICATIONS

Software Version Category Binary Size (MB)

Chromium 42.0 Browser chrome 127.64
Firefox 36.0 Browser libxul 72.67

MongoDB 3.0.5 Database mongod 19.42
MySQL 5.7.8 Database mysqld 21.92
Clang 3.7.0 Compiler clang 51.43
GCC 5.2.0 Compiler cc1plus 19.57

VirtualBox 5.0.6 Hypervisor VirtualBox 10.05
QEMU 2.4.0 Emulator qemu-aarch64 6.48
NGINX 1.8.1 Web Server nginx 0.61

TABLE 6. STATISTICS OF USABLE GADGETS

Software RR + RR*
RR*

Aggressive Conservative

Count Ratio Count Ratio

Chromium 131492 30229 23.0% 17824 13.6%
Firefox 98299 16569 16.9% 11689 11.9%

MongoDB 10978 2203 20.1% 1188 10.8%
MySQL 12308 2632 21.4% 901 7.4%
Clang 8972 1448 16.1% 753 8.4%
GCC 5952 198 3.3% 51 0.9%

VirtualBox 6600 464 7.0% 201 3.0%
QEMU 931 40 4.3% 0 0.0%
NGINX 30 9 30.0% 4 13.3%

See Section 7.1 to review the definitions of aggressive and conservative
assessment.

in the CGC binaries, while Table 6 summarizes the results
for the real-world open source applications. Figure 6
additionally shows in each open source application binary
the distribution of RR* gadgets classified by capacity.

In general, RR and RR* gadgets are widely available
in the majority of the analyzed binaries, even with the con-
servative assessment strategy adopted. Indeed, since the
CGC binaries are much smaller in size than the real-world
applications, they contain much fewer usable gadgets.
However, even such few gadgets could lead to successful
security beaches. We show this later in Section 8.3.

For the open source applications, we further inspected
the sensitive functions invoked by the randomization-
resilient gadgets. Table 7 gives the number of RR and
RR* gadgets calling sensitive functions in each assessed
binary. In this evaluation, we only took low-level library
functions into account, including standard libc function,
POSIX APIs and their wrappers provided by third-party
utility libraries. These functions are grouped into six
classes. It can be seen that although the distributions of
sensitive functions in different applications are diverse,
many categories of sensitive functions are widely avail-
able through RR and RR* gadgets. We did not perform
the sensitive function inspection for CGC binaries, since
they were originally developed for the DECREE system
where only seven system calls are available. Moreover, the
CGC binaries are mostly proof-of-concept applications for
testing security analysis tools and the majority of them
rarely utilize any system-level functionality.

8.3. Case Studies

To demonstrate that the reported results can help soft-
ware maintainers understand the severity of potential risks,

TABLE 7. NUMBER OF RR AND RR* GADGETS CALLING SENSITIVE FUNCTIONS GROUPED BY FUNCTIONALITY

Process Management
(e.g., execv, fork)

Memory Management
(e.g., malloc,

memcpy)

String Utility (e.g.,
strcat, stpcpy)

File (e.g.,
fopen)

Network (e.g.,
send, recv)

Library Loading
(e.g., dlopen,

dlsym)

Chromium 2227 1635 342 221 43 3
Firefox 154 11176 178 438 35 19

MongoDB 207 2171 37 16 10 0
MySQL 591 3671 366 16 1 0
Clang 7 2967 687 4 0 0
GCC 19 84 40 49 0 0

VirtualBox 0 2384 1 0 0 0
QEMU 1 77 2 18 11 0
NGINX 0 3 0 1 5 0

 1

 10

 100

 1000

 10000

 100000

Chromium

Firefox
MongoDB

MySQL
Clang

GCC
VirtualBox

QEMU
NGINX

N
um

be
r

O
f G

ad
ge

ts

capacity=1
capacity>1

aggressive
conservative

Figure 6. Distribution of RR* gadgets with trivial and non-trivial ca-
pacities. See Section 7.1 for definitions of aggressive and conservative
assessment.

we undertook several case studies on the assessed binaries
to investigate if they are indeed exploitable within our
threat model. We studied 27 of the 34 CGC binaries. For
the open source applications, we studied Chromium, GCC,
and NGINX.

8.3.1. CGC Binaries. All CGC binaries are shipped with
proofs of vulnerabilities (PoV) that demonstrate how to
exploit the planted software flaws. There are two types of
PoVs. The type I PoVs can hijack the program counter
(the eip register) and control two general purpose reg-
isters. The type II PoVs can achieve arbitrary memory
read and write. Since code-reuse attacks are control flow
hijacking attacks, type I PoVs are more suitable for initiat-
ing the exploitation. A total of 27 analyzed CGC binaries
contain type I PoVs. Note that the PoVs only demonstrate
the feasibility of initiating attacks but not that attackers
can achieve meaningful goals after hijacking the control
flows, so further studies are required. We have verified
that exploiting these PoVs do not require the knowledge
of binary layout, meaning they are still exploitable even
if the binaries are randomized.

We considered two types of code-reuse exploits in this
case study. The first is to misuse the core functionality
of the attacked program, e.g., logging in without proper
authentication and tampering with the integrity of in-
memory data. The second type of exploits is to reach a
system call with malicious arguments. Our case studies
concluded that 15 of the 27 binaries are vulnerable to
core functionality misuse attacks and another five binaries
are vulnerable to system call misuse attacks. For the
remaining seven binaries, the contained gadgets are not
powerful or versatile enough to launch any meaningful
exploits.

It may be surprising that there are so many exploitable
binaries, considering that most of the binaries do not
contain so many RR and RR* gadgets (see the last three
columns in Table 4). In particular, the lack of RR* gadgets
in some CGC binaries means that it may be difficult to
chain the gadgets together. Nonetheless, we found that
there are two cases where the CGC binaries can be
exploited without enough RR* gadgets.

The first case is that many CGC binaries are interactive
applications which periodically take user input. Every time
the input is taken, the vulnerability can be triggered. As
a consequence, the attacker can achieve its goal with
multiple rounds of attacks instead of constructing a single
lengthy gadget chain. In the second case, the binaries
are vulnerable to single-gadget attacks. In the On_Sale
binary, for example, functions used to update product
prices happens to be valid RR gadgets. Furthermore, the
two buffer overflow vulnerabilities in On_Sale allows us
to control a function pointer and its parameters. As such,
we can secretly update the price of any product to our
convenience.

8.3.2. Chromium. The assessment shows that Chromium
contains a large number of usable gadgets, with many of
them possessing strong capabilities of assessing and modi-
fying system states. This strongly indicates that Chromium
is not an appropriate target for rewriting-based random-
ization. To justify this statement, we constructed a proof-
of-concept exploit for Chromium.

To bootstrap the attack, we reintroduced a previ-
ously discovered but currently fixed vulnerability, re-
ported as CVE-2014-3176 6, into the inspected version of
Chromium. Starting with this vulnerability, we are able to
implement an exploit that complies with our threat model,
with which we can read (or write) an arbitrary file that
the attacked browser has access to.

The exploit is triggered by navigating the vulnerable
browser to an HTML page with malicious JavaScript
code embedded. CVE-2014-3176 is a buffer overflow
vulnerability that allows attackers to create a JavaScript
array whose recorded length is larger than its allocated
storage. Therefore, if another JavaScript object is allocated
right after the corrupted array, attackers will be able to
manipulate the meta data of that object and further trigger
various unintended behavior [7]. We define a JavaScript

6. CVE-2014-3176 has been used to build proof-of-concept exploits
by previous work [34]. We choose this vulnerability because it is one
of the most well documented.

function (JSFunction) object and store the reference
to this object into the overflowed part of the malformed
array, such that we can leak the address of this function
object and overwrite its pointer with the address of our
first gadget. We can then initiate the attack by calling the
function object in JavaScript with the payload and pointers
to the payload as arguments.

We reused three RR* gadgets and two RR gadgets
to build the attack chain. Each gadget is called exactly
once. One of the RR* gadgets has the capacity of two
while the others have the capacity of one. The attack
sequence can be briefly described as follows. The 2-
capacity RR* gadget serves as the first gadget and it calls
the one of the 1-capacity RR* gadgets, which prepares
necessary arguments for the first RR gadget and calls it.
The first RR gadget opens a file whose name is provided
by attack payload. The control flow then returns to the
2-capacity RR* gadget, which further calls another 1-
capacity RR* gadget with its second steerable call site.
The called 1-capacity RR* gadget invokes the second
RR gadget with arguments loaded from attack input. The
second RR gadget, which is the last hop of the attack,
reads (or writes) the previously opened file.

8.3.3. GCC. Many of the real-world applications we in-
spected have at least hundreds of usable gadgets, and it
is not surprising that they could be vulnerable to code-
reuse attacks. On the other hand, it is unclear whether
we can construct attacks with a shallow gadget pool.
To investigate this matter, we particularly studied the
cc1plus binary from GCC which has only 51 RR*
gadgets when the conservative assessment method is ap-
plied. We managed to build a proof-of-concept exploit
with which attackers can open an arbitrary file in the
system hosting the vulnerable cc1plus binary and writes
almost arbitrary textual content into that file, as long as
the attacked process is granted such permissions.

To initiate the attack, we follow an approach adopted
by previous work [68], i.e., injecting artificial memory
vulnerabilities into the software. The attack employs three
RR* gadgets and three RR gadgets, with a much more
complicated chaining process compared to the Chromium
exploit. In particular, we find it challenging to invoke
the required system functions. Although the research of
COOP has proposed several solutions to this problem, we
cannot find the corresponding gadget patterns described
by COOP.

8.3.4. NGINX. Only 30 usable gadgets are discovered
in NGINX even with the aggressive strategy applied.
With this small amount of potential gadgets, we were
able to afford a thorough study by manually inspecting
all of them. After the investigation, we believe that an
attack fitting our threat model is not possible. Therefore,
NGINX is unlikely to be vulnerable with the protection
of rewriting-based fine-grained randomization.

Since an earlier version (1.7.11) of NGINX has been
shown vulnerable to the “Control Jujustu” attack [43], we
particularly examined the two functions employed by that
exploit as gadgets. We found that although the addresses
of those functions are taken in the source code, they are
never stored in binary data due to compiler optimization,
making the attack unfeasible within our threat model. The

version difference is insignificant regarding this observa-
tion.

The case study on NGINX suggests that although
code randomization for legacy binaries is generally vul-
nerable, the vulnerability may not always manifest. It is
still reasonable to consider adopting the defense in certain
scenarios as long as the potential risks have been carefully
assessed and confirmed to be negligible.

9. Discussion

9.1. Implication of Assessment Results

For binaries that carry a notably large number of
usable gadgets identified by the assessment, users should
consider employing additional defenses to patch the se-
curity holes left by rewriting-based randomization. No
matter how many gadgets the randomization manages to
eliminate in the retrofitted binary compared with an un-
protected copy, attackers may still have more than enough
gadgets to construct severe exploits. In such situations,
if users do have access to the source code, they should
definitely consider adopting randomization techniques not
relying on legacy binary rewriting. Otherwise, users will
have to deploy defenses other than fine-grained random-
ization, even at a higher cost.

In case the assessment reports that only a relatively
small number of gadgets are still usable after the binary is
rewritten and randomized, the best option for users of this
binary is probably to ask professional security analysts to
inspect these usable gadgets and investigate if it is possible
to construct code-reuse attacks that can pose threats to
the production system. In such case, our risk assessment
can significantly narrow the scope of gadgets to manually
inspect and can provide helpful information about gadget
capability, and thus significantly reduce the workload of
the security analysts.

9.2. Potential Mitigations

Without relocation information, there are two potential
directions for developing mitigations for the vulnerability
caused by run-time address translation. The first is to limit
attackers’ access to address translation mechanisms while
the second is to develop new legacy binary rewriting tech-
niques without employing run-time address translation.
For the sake of improving binary randomization, the sec-
ond direction may be more meaningful. The reason is that
to follow the first direction, the retrofitted binaries need
to distinguish normal and malicious executions. However,
this ability, e.g., a more fine-grained CFI technique, makes
randomization lose its significance.

Although it is possible to improve binary randomiza-
tion through compiler assistance such that the rewriter can
rely on additional information [35], [36], the cost would
be the ability to protect legacy and proprietary binaries.
There are also attempts to cutting off code-reuse attack
initiation steps by eliminating memory vulnerabilities at
the first place, but this method is not specific to the
scenario which our assessment focuses on. Moreover,
it is generally believed that eliminating all possibilities
of memory corruption is not practical even for newly
developed software [76].

To the best of our knowledge, there is unlikely an
instant mitigation to the problem revealed by our research
at this point. The resolution of this problem requires
long-term effort from the research community, especially
breakthroughs in binary static analysis. Before that, our
assessment will remain meaningful and necessary.

10. Related Work

10.1. Code Randomization

One of the most widely deployed code randomization
practices is the coarse-grained ASLR [10] adopted by
most modern operating systems. It was shown that ASLR
can be defeated by brute force on 32-bit platforms [72]
and is extremely vulnerable to memory disclosures. Also,
ASLR requires support from the program loader. If the
program loader itself is buggy, the effect of ASLR can be
easily nullified [41].

Since coarse-grained randomization alone becomes
ineffective to mitigate code-reuse exploitation, defenders
started to improve randomization granularity. At first,
fine-grained randomization was achieved by transforming
the source code. Bhatkar et al. [19] proposed a source-
to-source transformation to randomize program address
space at the function level. Later development of similar
techniques can achieve code randomization at compile
time [36], link time [45], load time [53], [15], and even
run time for just-in-time compiled code [49].

To protect legacy and proprietary software, researchers
combined fine-grained randomization with binary rewrit-
ing. The binary stirring technique introduced by Wartell
et al. [80] can randomize stripped binaries at the ba-
sic block level. Binary stirring was later adopted by
O-CFI [61], a defensive technique that explicitly com-
bines fine-grained code randomization and coarse-grained
CFI. Another fine-grained randomization technique called
ILR [48] implemented the address-translation mechanism
with a per-process virtual machine trapping all indirect
control-flow transfers and redirecting the targets to ran-
domized addresses. Pappas et al. [63] proposed in-place
code randomization, transforming binary code to a differ-
ent form without moving basic blocks. Based on in-place
randomization, Isomeron [38] and CodeArmor [30] further
introduce probabilistic security at program run time.

10.2. Code-Reuse Attacks.

The idea of reusing the code of victim binaries can be
traced back to the return-to-libc attack [40] which reuses
a single function providing sensitive functionality. A sys-
tematic introduction to Turing-complete return-oriented
programming was given by Shacham [71]. Since then, the
scheme of ROP attacks has been specialized to be more ef-
fective in certain scenarios. For instance, Göktaş et al. [47]
presented an ROP attack using gadgets of much various
lengths so that they break the conventional assumption
on gadget size, which is the foundation of some ROP
defenses [64], [32]. Schwartz et al. [69] developed a code-
reuse attack “compiler” to automate the construction of
ROP attacks. Jump-oriented programming [28], [22] was
proposed later in response to defenses specific to ROP,

such as return-less binary [57]. Carlini and Wagner [27]
invented history-hiding ROP attacks to evade abnormal
branch detection.

Many of the attack techniques proposed more recently
are combined with new insights. Götas et al. [46] demon-
strated an attack which combines COP and ROP, resilient
to coarse-grained CFI without a shadow stack. Carlini
et al. [26] introduced control-flow bending, a code-reuse
technique with the capability of bypassing a most strict
fine-grained CFI implementation. Later shown by Evans
et al. [43] and Conti et al. [34], even fine-grained CFI
implemented with shadow stacks could be vulnerable to
code reuse in certain cases. Counterfeit object-oriented
programming [68] is able to bypass coarse-grained CFI
and code-pointer separation [54] on C++ binaries that
contain special virtual function invocation patterns.

The just-in-time (JIT) code reuse was invented to
breach fine-grained code randomization, by searching for
gadgets in the victim program’s address space and con-
struct gadget chains on the fly [74]. JIT code reuse re-
quires the presence of memory disclosure vulnerabilities
or side channels [70] to first disclose the executable
memory of the attacked programs. This method was later
extended from attacking scripting environments to ex-
ploiting vulnerable network services that automatically
restart after crashes [21]. Data-oriented attack [29], [50],
[51] is a code-reuse scheme without gadget programming.
By manipulating non-control data, data-oriented attacks
manage to feed malicious arguments to sensitive functions
through perfectly valid control flows.

11. Conclusion and Call for Actions

We showed that current code randomization tech-
niques based on legacy binary rewriting are still vul-
nerable to code-reuse attacks. With an in-depth analysis
on this vulnerability, we proposed a systematic approach
to assessing the potential risks of deploying such inse-
cure defenses. We have assessed various binaries and
demonstrated that the exposed security defect is indeed
exploitable in certain cases. Through this work, we deliver
three implications and calls for actions:

• Universally effective protection for legacy binaries is
generally unfeasible at this point.

• For a particular binary, randomization is still a reli-
able security countermeasure if the risk assessment
finds very few randomization-resilient gadgets.

• In case there are a large number of gadgets detected,
users should consider more heavy-weight protections,
e.g., fine-grained CFI and reassemble disassembling,
even if that leads to considerable engineering cost or
run-time overhead.

We hope our work can shed light on future research
regarding binary retrofitting and fine-grained randomiza-
tion.

Acknowledgements

We thank the reviewers for their valuable feedback.
The work was supported in part by the National Science
Foundation (NSF) under grant CNS-1652790, and the
Office of Naval Research (ONR) under grants N00014-
16-1-2912, N00014-16-1-2265, and N00014-17-1-2894.

References

[1] “Cyber fault-tolerant attack recovery (cfar),” http://www.darpa.mil/
program/cyber-fault-tolerant-attack-recovery.

[2] “Cyber grand challenge,” https://www.darpa.mil/program/
cyber-grand-challenge.

[3] “Darpa challenges sets for linux, windows, and macos,” https://
github.com/trailofbits/cb-multios.

[4] “Exploiting misuse of Python’s "pickle",” https://blog.nelhage.com/
2011/03/exploiting-pickle/.

[5] “Galois awarded $10m DARPA contract to make legacy systems
more secure,” http://goo.gl/GSC63m.

[6] “Industrial control systems: What are the security challenges?”
http://goo.gl/DF4wHt.

[7] “Issue 386988 - chromium,” https://bugs.chromium.org/p/
chromium/issues/detail?id=386988.

[8] “Legacy systems continue to have a place in the enterprise,” http:
//goo.gl/mT9dfo.

[9] “Novel malware XcodeGhost modifies Xcode, infects Apple iOS
apps and hits App Store,” http://goo.gl/rYKeOF.

[10] “PaX address space layout randomization (ASLR),” http://pax.
grsecurity.net/docs/aslr.txt.

[11] “Study: US government spends $36 billion a year maintaining
legacy systems,” https://goo.gl/qnhjzu.

[12] “Windows 3.1 is still alive, and it just killed
a french airport,” https://news.vice.com/article/
windows-31-is-still-alive-and-it-just-killed-a-french-airport.

[13] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-
flow integrity,” in Proceedings of the 12th ACM Conference on
Computer and Communications Security, CCS ’05, 2005, pp. 340–
353.

[14] M. Backes, T. Holz, B. Kollenda, P. Koppe, S. Nürnberger, and
J. Pewny, “You can run but you can’t read: Preventing disclosure
exploits in executable code,” in Proceedings of the 21st ACM
SIGSAC Conference on Computer and Communications Security,
CCS ’14, 2014.

[15] M. Backes and S. Nürnberger, “Oxymoron: Making fine-grained
memory randomization practical by allowing code sharing,” in
Proceedings of the 23rd USENIX Security Symposium (USENIX
Security 14), USENIX Security ’14, Aug. 2014, pp. 433–447.

[16] V. Bala, E. Duesterwald, and S. Banerjia, “Dynamo: a transparent
dynamic optimization system,” in Proceedings of the 21st ACM
SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’00.

[17] T. Bao, J. Burket, M. Woo, R. Turner, and D. Brumley,
“BYTEWEIGHT: Learning to Recognize Functions in Binary
Code,” in Proceedings of the 23rd USENIX Security Symposium,
USENIX Security ’14, 2014, pp. 845–860.

[18] E. Bauman, Z. Lin, and K. W. Hamlen, “Superset disassembly:
Statically rewriting x86 binaries without heuristics,” in Proceedings
of the 25th Network and Distributed Systems Security Symposium,
NDSS ’18, 2018.

[19] S. Bhatkar, D. C. DuVarney, and R. Sekar, “Efficient techniques
for comprehensive protection from memory error exploits,” in
Proceedings of the 14th USENIX Security Symposium, USENIX
Security ’05, Aug. 2005, pp. 255–270.

[20] D. Bigelow, T. Hobson, R. Rudd, W. Streilein, and H. Okhravi,
“Timely rerandomization for mitigating memory disclosures,” in
Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, CCS ’15, 2015, pp. 268–279.

[21] A. Bittau, A. Belay, A. Mashtizadeh, D. Mazieres, and D. Boneh,
“Hacking blind,” in Proceedings of the 35th IEEE Symposium on
Security and Privacy, S&P ’14, 2014, pp. 227–242.

[22] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang, “Jump-oriented
programming: A new class of code-reuse attack,” in Proceedings
of the 6th ACM Symposium on Information, Computer and Com-
munications Security, ASIACCS ’11, 2011, pp. 30–40.

[23] J.-M. Borello and L. Mé, “Code obfuscation techniques for meta-
morphic viruses,” Journal in Computer Virology, vol. 4, no. 3,
2008.

[24] K. Braden, S. Crane, L. Davi, M. Franz, P. Larsen, C. Liebchen, and
A.-R. Sadeghi, “Leakage-resilient layout randomization for mobile
devices,” in Proceedings of the 2016 Network and Distributed
System Security Symposium, NDSS ’16, 2016.

[25] E. Buchanan, R. Roemer, H. Shacham, and S. Savage, “When good
instructions go bad: Generalizing return-oriented programming to
risc,” in Proceedings of the 15th ACM Conference on Computer
and Communications Security, CCS ’08, 2008, pp. 27–38.

[26] N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R. Gross,
“Control-flow bending: On the effectiveness of control-flow in-
tegrity,” in 24th USENIX Security Symposium, USENIX Security
’15, 2015.

[27] N. Carlini and D. Wagner, “ROP is still dangerous: Breaking
modern defenses,” in Proceedings of the 23rd USENIX Security
Symposium, USENIX Security ’14, Aug. 2014, pp. 385–399.

[28] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi,
H. Shacham, and M. Winandy, “Return-oriented programming
without returns,” in Proceedings of the 17th ACM Conference on
Computer and Communications Security, CCS ’10, 2010, pp. 559–
572.

[29] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer, “Non-
control-data attacks are realistic threats,” in Proceedings of the 14th
USENIX Security Symposium, USENIX Security ’05, 2005, pp.
177–191.

[30] X. Chen, H. Bos, and C. Giuffrida, “CodeArmor: Virtualizing the
code space to counter disclosure attacks,” in Proceedings of the 2nd
IEEE European Symposium on Security and Privacy, EuroS&P ’17,
2017.

[31] Y. Chen, Z. Wang, D. Whalley, and L. Lu, “Remix: On-demand
live randomization,” in Proceedings of the 6th ACM Conference on
Data and Application Security and Privacy, CODASPY ’17, 2016,
pp. 50–61.

[32] Y. Cheng, Z. Zhou, Y. Miao, X. Ding, and R. H. Deng, “ROPecker:
A generic and practical approach for defending against ROP at-
tack,” in Proceedings of the 21st Symposium on Network and
Distributed System Security, NDSS ’14, 2014.

[33] M. Christodorescu and S. Jha, “Testing malware detectors,” in
Proceedings of the 2004 ACM SIGSOFT International Symposium
on Software Testing and Analysis, ISSTA ’04, 2004, pp. 34–44.

[34] M. Conti, S. Crane, L. Davi, M. Franz, P. Larsen, C. Liebchen,
M. Negro, M. Qunaibit, and A.-R. Sadeghi, “Losing control: On
the effectiveness of control-flow integrity under stack attacks,”
in Proceedings of the 22nd ACM Conference on Computer and
Communications Security, CCS ’15, 2015.

[35] S. Crane, C. Liebchen, A. Homescu, L. Davi, P. Larsen, A.-R.
Sadeghi, S. Brunthaler, and M. Franz, “Readactor: Practical code
randomization resilient to memory disclosure,” in Proceedings of
the 36th IEEE Symposium on Security and Privacy, S&P ’15, 2015.

[36] S. J. Crane, S. Volckaert, F. Schuster, C. Liebchen, P. Larsen,
L. Davi, A.-R. Sadeghi, T. Holz, B. De Sutter, and M. Franz, “It’s
a TRaP: Table randomization and protection against function-reuse
attacks,” in Proceedings of the 22nd ACM Conference on Computer
and Communications Security, CCS ’15, pp. 243–255.

[37] J. Dahse, N. Krein, and T. Holz, “Code reuse attacks in PHP: Au-
tomated POP chain generation,” in Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security,
CCS ’14, 2014, pp. 42–53.

[38] L. Davi, C. Liebchen, A.-R. Sadeghi, K. Z. Snow, and F. Monrose,
“Isomeron: Code randomization resilient to (just-in-time) return-
oriented programming,” in Proceedings of the 22nd Network and
Distributed Systems Security Symposium, NDSS ’15, 2015.

[39] Z. Deng, X. Zhang, and D. Xu, “BISTRO: Binary Component
Extraction and Embedding for Software Security Applications,”
in Proceedings of the 18th European Symposium on Research in
Computer Security, ESORICS ’13, 2013, pp. 200–218.

[40] S. Designer, “return-to-libc attack,” Bugtraq, Aug 1997.

http://www.darpa.mil/program/cyber-fault-tolerant-attack-recovery
http://www.darpa.mil/program/cyber-fault-tolerant-attack-recovery
https://www.darpa.mil/program/cyber-grand-challenge
https://www.darpa.mil/program/cyber-grand-challenge
https://github.com/trailofbits/cb-multios
https://github.com/trailofbits/cb-multios
https://blog.nelhage.com/2011/03/exploiting-pickle/
https://blog.nelhage.com/2011/03/exploiting-pickle/
http://goo.gl/GSC63m
http://goo.gl/DF4wHt
https://bugs.chromium.org/p/chromium/issues/detail?id=386988
https://bugs.chromium.org/p/chromium/issues/detail?id=386988
http://goo.gl/mT9dfo
http://goo.gl/mT9dfo
http://goo.gl/rYKeOF
http://pax.grsecurity.net/docs/aslr.txt
http://pax.grsecurity.net/docs/aslr.txt
https://goo.gl/qnhjzu
https://news.vice.com/article/windows-31-is-still-alive-and-it-just-killed-a-french-airport
https://news.vice.com/article/windows-31-is-still-alive-and-it-just-killed-a-french-airport

[41] A. Di Federico, A. Cama, Y. Shoshitaishvili, C. Kruegel, and
G. Vigna, “How the ELF ruined Christmas,” in Proceedings of
the 24th USENIX Security Symposium, USENIX Security ’15.

[42] S. Esser, “Utilizing code reuse/ROP in PHP application exploits,”
BlackHat USA, 2010.

[43] I. Evans, F. Long, U. Otgonbaatar, H. Shrobe, M. Rinard,
H. Okhravi, and S. Sidiroglou-Douskos, “Control jujutsu: On the
weaknesses of fine-grained control flow integrity,” in Proceedings
of the 22nd ACM Conference on Computer and Communications
Security, CCS ’15, 2015.

[44] S. Forrest, A. Somayaji, and D. H. Ackley, “Building diverse
computer systems,” in Proceedings of the 6th Workshop on Hot
Topics in Operating Systems, HotOS ’97, May 1997, pp. 67–72.

[45] C. Giuffrida, A. Kuijsten, and A. S. Tanenbaum, “Enhanced op-
erating system security through efficient and fine-grained address
space randomization,” in Proceedings of the 21st USENIX Security
Symposium, USENIX Security ’12, 2012, pp. 475–490.

[46] E. Göktaş, E. Athanasopoulos, H. Bos, and G. Portokalidis, “Out of
control: Overcoming control-flow integrity,” in Proceedings of the
34th IEEE Symposium on Security and Privacy, S&P ’14, 2014,
pp. 575–589.

[47] E. Göktaş, E. Athanasopoulos, M. Polychronakis, H. Bos, and
G. Portokalidis, “Size does matter: Why using gadget-chain length
to prevent code-reuse attacks is hard,” in Proceedings of the 23rd
USENIX Security Symposium, USENIX Security ’14, 2014, pp.
417–432.

[48] J. Hiser, A. Nguyen-Tuong, M. Co, M. Hall, and J. W. Davidson,
“ILR: Where’d my gadgets go?” in Proceedings of 33rd IEEE
Symposium on Security and Privacy, S&P ’12, 2012, pp. 571–585.

[49] A. Homescu, S. Brunthaler, P. Larsen, and M. Franz, “Librando:
Transparent code randomization for just-in-time compilers,” in
Proceedings of the 2013 ACM SIGSAC Conference on Computer
& Communications Security, CCS ’13, 2013, pp. 993–1004.

[50] H. Hu, Z. L. Chua, S. Adrian, P. Saxena, and Z. Liang, “Automatic
generation of data-oriented exploits,” in Proceedings of the 24th
USENIX Security Symposium, USENIX Security ’15, 2015, pp.
177–192.

[51] H. Hu, S. Shinde, S. Adrian, Z. L. Chua, P. Saxena, and Z. Liang,
“Data-oriented programming: On the expressiveness of non-control
data attacks,” in Proceedings of the 35th IEEE Symposium on
Security and Privacy, S&P ’16, 2016, pp. 969–986.

[52] K. Johnson and M. Miller, “Exploit mitigation improvements in
windows 8,” Black hat USA, 2012.

[53] C. Kil, J. Jim, C. Bookholt, J. Xu, and P. Ning, “Address space
layout permutation (ASLP): Towards fine-grained randomization
of commodity software,” in Proceedings of the 22nd Annual Com-
puter Security Applications Conference, ACSAC ’06, 2006, pp.
339–348.

[54] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and
D. Song, “Code-pointer integrity,” in Proceedings of the 11th
USENIX Symposium on Operating Systems Design and Implemen-
tation, OSDI ’14, Oct. 2014, pp. 147–163.

[55] P. Larsen, A. Homescu, S. Brunthaler, and M. Franz, “SoK:
Automated software diversity,” in Proceedings of the 35th IEEE
Symposium on Security and Privacy, S&P ’14, May 2014, pp. 276–
291.

[56] G. Laurence and C. Frohoff, “Marshalling pickles,” AppSec Cali-
fornia, 2015.

[57] J. Li, Z. Wang, X. Jiang, M. Grace, and S. Bahram, “Defeating
return-oriented rootkits with "return-less" kernels,” in Proceedings
of the 5th European Conference on Computer Systems, EuroSys
’10, 2010.

[58] F. Lindner, “Cisco IOS router exploitation,” Black Hat USA, 2009.

[59] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: building cus-
tomized program analysis tools with dynamic instrumentation,” in
Proceedings of the 26th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI ’05, pp. 190–
200.

[60] J. Ming, D. Xu, L. Wang, and D. Wu, “LOOP: Logic-oriented
opaque predicate detection in obfuscated binary code,” in Pro-
ceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, CCS ’15, 2015, pp. 757–768.

[61] V. Mohan, P. Larsen, S. Brunthaler, K. Hamlen, and M. Franz,
“Opaque control-flow integrity,” in Proceedings of the 22nd Sym-
posium on Network and Distributed System Security, NDSS, 2015.

[62] S. S. Muchnick, Advanced Compiler Design and Implementation.
Morgan Kaufmann, 1997.

[63] V. Pappas, M. Polychronakis, and A. D. Keromytis, “Smashing
the gadgets: Hindering return-oriented programming using in-place
code randomization,” in Proceedings of the 2012 IEEE Symposium
on Security and Privacy, S&P ’12, 2012, pp. 601–615.

[64] ——, “Transparent ROP exploit mitigation using indirect branch
tracing,” in Presented as part of the 22nd USENIX Security Sym-
posium, USENIX Security ’13, 2013, pp. 447–462.

[65] M. Payer, A. Barresi, and T. R. Gross, “Fine-grained control-flow
integrity through binary hardening,” in International Conference
on Detection of Intrusions and Malware, and Vulnerability Assess-
ment, DIMVA ’15, 2015, pp. 144–164.

[66] M. Ros and P. Sutton, “A post-compilation register reassignment
technique for improving hamming distance code compression,” in
Proceedings of the 2005 International Conference on Compilers,
Architectures and Synthesis for Embedded Systems, CASES ’05.
ACM, 2005.

[67] M. E. Saleh, A. B. Mohamed, and A. A. Nabi, “Eigenviruses for
metamorphic virus recognition,” Information Security, IET, vol. 5,
no. 4, pp. 191–198, 2011.

[68] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi,
and T. Holz, “Counterfeit object-oriented programming: On the
difficulty of preventing code reuse attacks in C++ applications,” in
Proceedings of The 36th IEEE Symposium on Security and Privacy,
S&P ’15, 2015, pp. 745–762.

[69] E. J. Schwartz, T. Avgerinos, and D. Brumley, “Q: Exploit hard-
ening made easy,” in Proceedings of the 20th USENIX Conference
on Security, USENIX Security ’11, 2011, pp. 25–25.

[70] J. Seibert, H. Okhravi, and E. Söderström, “Information leaks with-
out memory disclosures: Remote side channel attacks on diversified
code,” in Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’14, 2014, pp. 54–
65.

[71] H. Shacham, “The geometry of innocent flesh on the bone: Return-
into-libc without function calls (on the x86),” in Proceedings of the
14th ACM Conference on Computer and Communications Security,
CCS ’07, 2007, pp. 552–561.

[72] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and
D. Boneh, “On the effectiveness of address-space randomization,”
in Proceedings of the 11th ACM Conference on Computer and
Communications Security, CCS ’04, 2004, pp. 298–307.

[73] E. Shioji, Y. Kawakoya, M. Iwamura, and T. Hariu, “Code shred-
ding: Byte-granular randomization of program layout for detecting
code-reuse attacks,” in Proceedings of the 28th Annual Computer
Security Applications Conference, ACSAC ’12, 2012, pp. 309–318.

[74] K. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and
A. Sadeghi, “Just-in-time code reuse: On the effectiveness of fine-
grained address space layout randomization,” in Proceedings of the
33rd IEEE Symposium on Security and Privacy, S&P ’13, 2013.

[75] G. J. Sussman and G. L. Steele Jr, “Scheme: A interpreter for
extended lambda calculus,” Higher-Order and Symbolic Computa-
tion, vol. 11, no. 4, pp. 405–439, 1998.

[76] L. Szekeres, M. Payer, T. Wei, and D. Song, “SoK: Eternal war in
memory,” in Proceedings of the 34th IEEE Symposium on Security
and Privacy, S&P ’13, 2013, pp. 48–62.

[77] K. Thompson, “Reflections on trusting trust,” Commun. ACM,
vol. 27, no. 8, pp. 761–763, Aug. 1984.

[78] R. Wang, Y. Shoshitaishvili, A. Bianchi, A. Machiry, J. Grosen,
P. Grosen, C. Kruegel, and G. Vigna, “Ramblr: Making reassembly
great again,” 2017.

[79] S. Wang, P. Wang, and D. Wu, “Reassembleable disassembling,”
in Proceedings of the 24th USENIX Security Symposium, USENIX
Security ’15, Aug. 2015.

[80] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin, “Binary stirring:
Self-randomizing instruction addresses of legacy x86 binary code,”
in Proceedings of the 19th ACM Conference on Computer and
Communications Security, CCS ’12, 2012, pp. 157–168.

[81] ——, “Securing untrusted code via compiler-agnostic binary
rewriting,” in Proceedings of the 28th Annual Computer Security
Applications Conference, ACSAC ’12, 2012, pp. 299–308.

[82] D. Williams-King, G. Gobieski, K. Williams-King, J. P. Blake,
X. Yuan, P. Colp, M. Zheng, V. P. Kemerlis, J. Yang, and W. Aiello,
“Shuffler: Fast and deployable continuous code re-randomization.”
in Proceedings of the 12th USENIX Symposium on Operating

Systems Design and Implementation, OSDI ’16, 2016, pp. 367–
382.

[83] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant,
D. Song, and W. Zou, “Practical control flow integrity and random-
ization for binary executables,” in Proceedings of the 34th IEEE
Symposium on Security and Privacy, S&P ’13, 2013.

[84] M. Zhang, R. Qiao, N. Hasabnis, and R. Sekar, “A platform
for secure static binary instrumentation,” in Proceedings of the
10th ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments, VEE ’14, 2014, pp. 129–140.

[85] M. Zhang and R. Sekar, “Control flow integrity for COTS binaries,”
in Proceedings of the 22nd USENIX Security Symposium, USENIX
Security ’13, 2013, pp. 337–352.

