
A Framework for Evaluating Mobile App Repackaging
Detection Algorithms

Heqing Huang, Sencun Zhu, Peng Liu, and Dinghao Wu

The Pennsylvania State University,
{hhuang,szhu}@cse.psu.edu, {pliu,dwu}@ist.psu.edu

Abstract. Because it is not hard to reverse engineer the Dalvik bytecode used
in the Dalvik virtual machine, Android application repackaging has become a
serious problem. With repackaging, a plagiarist can simply steal others’ code
violating the intellectual property of the developers. More seriously, after repack-
aging, popular apps can become the carriers of malware, adware or spy-ware for
wide spreading. To maintain a healthy app market, several detection algorithms
have been proposed recently, which can catch some types of repackaged apps
in various markets efficiently. However, they are generally lack of valid analysis
on their effectiveness. After analyzing these approaches, we find simple obfus-
cation techniques can potentially cause false negatives, because they change the
main characteristics or features of the apps that are used for similarity detections.
In practice, more sophisticated obfuscation techniques can be adopted (or have
already been performed) in the context of mobile apps. We envision this obfusca-
tion based repackaging will become a phenomenon due to the arms race between
repackaging and its detection. To this end, we propose a framework to evaluate
the obfuscation resilience of repackaging detection algorithms comprehensively.
Our evaluation framework is able to perform a set of obfuscation algorithms in
various forms on the Dalvik bytecode. Our results provide insights to help gauge
both broadness and depth of algorithms’ obfuscation resilience. We applied our
framework to conduct a comprehensive case study on AndroGuard, an Android
repackaging detector proposed in Black-hat 2011. Our experimental results have
demonstrated the effectiveness and stability of our framework.

Keywords: Mobile apps, reverse engineering, repackaging, obfuscation resilience, mal-
ware

1 Introduction

In the past years, mobile phone sales have grown extremely fast and Android [8] has
become the dominant of the mobile device market. This gives a burst of new applica-
tions pushed into the Android Market. In the end of 2012, the number of apps reached
700,000; however, Google provides little vetting on these apps to prevent it from pla-
giarism or malicious repackaging.

There are mainly two motivations for app repackaging. First, dishonest developers
may repackage others’ apps under their own names or embed different advertisements,
and then republish them to the app market to earn monetary profit. Second, malware



writers modify a popular app by inserting some malicious payload into the original
program. The purpose is to take over mobile devices, steal users’ private information,
send premium SMS text messages stealthily, or purchase apps without users’ aware-
ness. They leverage the popularity of the original program to increase the propagation
of the malicious one. Both types of repackaging are severe threats to the app markets.
Even without consideration of code obfuscation, it has been found that about 5% to
13% of apps in third party app markets are the plagiarism of applications in the official
Android market [29]. Besides, according to a recent study [30], among the analyzed
1260 malware samples, the authors found that 1083 of them (or 86.0%) were repack-
aged versions of legitimate apps with malicious payloads, indicating repackaging is a
favorable vehicle for mobile malware propagation. However, as the commercial mo-
tivation grows, nothing prevents plagiarizers and repackagers using code obfuscation
techniques to evade detection. Moreover, since users can download applications from
both official market Google Play and third party markets in different countries (e.g.,
Anzhi, a big Chinese Android app market), the repackaging problem can appear both
inter- and intra- market, which increases the scale and challenge for repackaging detec-
tion.

Due to the very large number of applications in the market and easiness for reverse
engineering and manipulation of Dalvik bytecode, several researchers have proposed
detection schemes based on static analysis on DEX file [29], [19], [23]. Static code
analysis based detection is more efficient than the dynamic ones. However, in practice,
sophisticated code obfuscations can be easily applied to evade static analysis based
detections [28], and such obfuscation techniques can be easily adapted to mobile appli-
cations scenario. When applied to mobile applications, they can greatly increase false-
negative rates of the existing detection algorithms. Moreover, in these works, manual
inspections are often used to check the false positives in their results. In general, all
the detection algorithms currently pay more attention to the computational efficiency
of their algorithms and are lack of a comprehensive analysis on algorithm accuracy.
Hence, they can be very vulnerable against obfuscation based repackaging.

In this work, we propose a framework to automate the evaluation of repackaging
detection algorithms against various obfuscation techniques. Our paper makes the fol-
lowing contributions:

1. We perform a survey study on the existing major repackaging detection algorithms,
their evaluation methods, and provide insights on their pros and cons;

2. We take the first step in this field to provide an evaluation framework to measure
the obfuscation resilience of detection algorithms;

3. We design our framework by gluing seamlessly all the bytecode conversion and
obfuscation tools together. The effectiveness and stability of current framework are
fully tested and evaluated;

4. To measure the obfuscation resilience of detection algorithms in a comprehensive
way, in our framework, we propose the notion of broadness and depth analysis.
We perform a case study with our tool on an open source detection algorithm An-
droGuard [20] from Blackhat 2011. Our evaluation results show that while Andro-
Guard demonstrates reasonable strength against many obfuscation techniques, it
is very vulnerable to obfuscation relevant to control flow manipulation performed



on the method granularity, and multiple obfuscations when combined can further
decrease its detection capability.

The remainder of the paper is structured as follows. Section 2 provides a study
on a number of obfuscation detection algorithms. According to our observation from
the study, an evaluation framework on the algorithms’ obfuscation resilience has been
proposed in Section 3. Section 4 describes the current setup of our framework. Then our
experimental result of using the framework to conduct one case study on AndroGuard
has been presented. We review related works in Section 5 and conclude with Section 6.

2 Study of existing repackaging detection algorithms

In this section, we first explain with a toy example how to conduct the Dalvik bytecode
manipulation. Then we perform a study on several recently proposed algorithms for
Android application repackaging detection, including Fuzzy Hashing based detection
[29], Program Dependence Graph (PDG) based detection [19] and Feature Hashing
based detection [23].

2.1 Background on Dalvik bytecode
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Fig. 1. An example of Dalvik bytecode manipulation

An Android application package is called .apk file, which must contain the pro-
gram’s Dalvik bytecode, resources and a XML manifest file. Each Android application
is initially developed as a Java program. It is compiled into Dalvik bytecode, and then
packaged into the classes.dex file as a Dalvik EXecutable (DEX file) to be executed in



Dalvik Virtual Machine (DVM) [2]. The whole compiling process includes two phases:
(1) Java code compiled into an intermediary representation (IR), the Java bytecode for-
mat, which produces a set of .class files; (2) the IR code is further compiled into Dalvik
bytecode by a utility called “dx tool”, which produces classes.dex, the DEX file.

During the reverse engineering process, a plagiarist first unpacks the .apk file of
the downloaded Android application and extracts the classes.dex file that includes the
actual bytecode for execution. Classes.dex can be dissembled by Baksmali [12] into
IR format. After manipulation and obfuscation, it is finally assembled back into an
updated classes.dex by Smali. Dalvik bytecode contains more semantic information
and provides a higher programming abstraction for the developer than machine code
instructions, (e.g., x86 assembly code). Therefore, it is easy for human analysis, reverse
engineering and manipulation.

In Figure 1, we show an example on semantic preserving manipulation of Dalvik
bytecode. The dissembled bytecode snippet is from the Skype app for Android platform,
and it is a representative function invocation. Similar code patterns can be identified
all over the program. We manipulate it by using extra virtual parameter registers v3
and v4. The corresponding output bytecode is shown in the lower part of Figure 1.
This code manipulation is semantic preserving, as the value in registers v1 and v2 are
moved into the two extra registers and restored after the execution of opcode [invoke-
interface]. The [invoke-interface] is executed using the extra virtual registers, instead
of v1 and v2 originally. All these manipulations have no side-effect on the current and
following context of the program that might use v1 and v2. The dissembled Dalvik
bytecode contains lots of similar function invocation code patterns, so this type of noise
instructions can be inserted with a very high frequency throughout the program.

2.2 Fuzzy hashing based detection

In order to measure the similarity between plaintiff and repackaged applications, Droid-
MOSS [29] leverages specialized hashing technique, called fuzzy hashing. Instead of
computing a hash over the entire program instruction set, a hashing value is computed
for each local unit of opcode sequence of the classes.dex. It uses a reset point to split
long opcode sequences into small units and then concatenate all the hash values into a
whole. In this way, it can localize the modification caused by repackaging. Also, Droid-
MOSS focuses on instructions’ opcode part in order to be resilient against “oprand
string literal” based obfuscation. DroidMOSS can efficiently identify those pieces that
were not touched by the repackager and works well when code manipulation was only
performed at a few interesting points, e.g., hard coded URLs. For this particular type of
repackaging, DroidMOSS has a very high true positive rate.

Among all the detection algorithms we studied, only DroidMOSS has a measure-
ment on its false negative rate through experiments. Two major reasons were reported
to lead to potential false negatives. One is that some repackaging cases insert a large
chunk of code as noise into the original app and the other fact is that the incomplete
white-list of the ad libraries, which produces lots of noise into the opcode sequence. All
the noise can result in considerable difference in the final fingerprints.

In Figure 1, we demonstrate that adding extra semantic preserving noise opcodes
is not hard. For instance, if one performs the similar code manipulation frequently, the



concatenated hashing value in DroidMOSS can be changed dramatically. Since local
hashing value of code snippet unit [ invoke-static → move-result-object → const-string
→ invoke-interface] and the corresponding manipulated opcode unit [invoke-static →
move-result-object → move-object → const-string → move → invoke-interface → move
→ move-object] are very different, by concatenating all the different pieces into a final
hash result, the detection can be evaded. The reset points DroidMOSS they uses to split
the whole opcode sequence into small opcode units are semantically irrelevant, that is
not depending on basic blocks, or other semantic information of the program. Therefore,
the detection can be further evaded by carefully crafting the code manipulation pattern
and make the inserted opcode hit the predefined reset points. In this way, the overall
opcode structure of the fuzzy hashing computation is much modified, but the semantic
of the Dalvik bytecode is still preserved.

2.3 PDG based detection

invoke-static {v1}

move-result-object v1

var v1

invoke-interface {v0, v1, v2}

var v1

const-string v2, 

var v2

invoke-static {v1}

move-result-object v1

var v1

move-object v3, v1

var v1

invoke-interface {v0, v3, v4}

var v3

move-object v1, v3

var v3

const-string v2, 

move v4, v2

var v2

var v4

move v2, v4

var v4

Fig. 2. The example of Data Dependency Graph (Top : original; Below : manipulated)

In DNADroid [19], the dex file of Android application is converted to Jar through
a tool called dex2jar, so that they can leverage WALA [14] to compute the static data
dependency graph (DDG) of every method. DDG is considered as the main character-
istic of the apps for similarity comparison. DNADroid compares the DDGs within a
pre-computed cluster of Android apps using graph isomorphism based algorithms.



Specifically, each vertex in a DDG is a bytecode instruction and each edge initiate
from one source instruction to one destination instruction. For example in Figure 2,
the instruction [move-object v3, v1] is considered as the source instruction for both
destination instructions [invoke-interface v0, v3, v4 ] and [move-object v3, v]. Since the
source assignment instruction (v3 := v1) has a side effect on a variable v3, and also that
v3 is used later in the following destination instructions, based on their algorithm, we
should link the source instruction to both destination instructions by outgoing edges.

In general, static DDG is resilient against several control flow obfuscations and
noisy code insertion attacks that do not modify the data dependency. However, the false
positive rate is not evaluated. Indeed, some specific data dependency obfuscations can
be designed to evade this approach. Figure 1 shows the data dependency graphs of
the toy example in Figure 2 before and after code obfuscation. By comparison, we
can observe a dramatic change of data dependency relationship between instructions.
This side-effect free manipulation has the potential to evade the graph isomorphism
algorithm based detection.

2.4 Feature hashing based detection

Juxtapp [23] is a code-reuse detection scheme based on feature hashing. Similar to
DNADroid, the unlabeled classes.dex files of apps are grouped based upon some
predefined criteria, to reduce the comparison overhead. k-grams of various opcode se-
quence patterns within each basic block of the program are considered as features. For
example, they choose 5-gram as a moving window of size 5, which moves within each
basic block to map and flag the features into a m bit vector. Then the bit vectors are
further combined into a feature metric to fingerprint each app. Juxtapp currently uses
various predefined opcode sequences as features. For instance, when [new-instance →
const-string projectSpinnerPos → invoke-direct → iget-object → invoke-static ] ap-
peared in a particular basic block sequentially (with a window size of five), the corre-
sponding feature bit in the bit-vector indicating this opcode sequence feature is flagged
with one. This detection scheme is able to effectively detect various code reuse cases,
including piracy and code repackaging, malware existence, vulnerable code; however,
this work does not perform evaluation on the tool’s false negative rate.

By using the code manipulation shown in Figure 1, it can potentially destruct the
normal opcode pattern of Dalvik bytecode in a very dense fashion. The special features
of the program can be normalized by inserted instructions, creating lots of fake feature
bits. Both can lead to a high false negative rate of their detection algorithm. Note that
although Juxtapp can reduce the noise-injection caused false negatives by decreasing
the size of its sliding window for feature definition, this on the other hand reduce the
whole feature space and lead to more false positives. To the extreme, Juxtapp can choose
window size of one and use [new-instance] as one of the features. Then every basic
block unit from different apps will probably have this opcode appeared at least once.
Thus lots of similar feature metric can be produced for independently developed apps.

In general, we consider it will be very beneficial to tune Juxtapp against various
obfuscation techniques and find an optimal way to define the size of its sliding window
and the unique feature set.



3 Evaluation framework
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Fig. 3. A Framework for evaluating the obfuscation resilience of repackaging detection algo-
rithms

Our study indicates that while each detection algorithm excels at detecting some
types of repackaging efficiently and effectively, there is a lack of false negative anal-
ysis for all of them. Given the huge number of Android apps in different markets and
the easiness in applying obfuscation techniques during repackaging, it becomes a very
difficult problem to ensure both efficiency and accuracy of the repackaging detection
algorithms. Therefore, we propose a general framework to help comprehensively eval-
uate the obfuscation resilience of such algorithms. The outcome of evaluation based on
our framework can be used as a guidance to enhance the obfuscation-resilience of a de-
tection algorithm through, for example, fine tuning of parameters and adding/removing
certain heuristics.

The proposed framework is illustrated in Figure 3, which contains three major com-
ponents. The first component is called Dalvik Bytecode Pre-processor, which dissem-
bles and transforms the Dalvik EXecutable (DEX) into an intermediary representation
(IR) code format. By using an IR format, code manipulation and obfuscation can be per-
formed easily. The second component is an IR Code Obfuscator, which works directly
on the output IR format of the original program. In the real world scenario, various
obfuscators can be applied in different ways by plagiarists to evade the detection. By
applying a set of obfuscation algorithms in various ways, the IR Code Obfuscator tries
to mimic the real-world obfuscation based repackaging process. Hence, this component
outputs a set of obfuscated versions from the original input dex file. During this pro-
cess, we must ensure all the code manipulation and obfuscation actions are semantics-
preserving transformations. After the obfuscation, the semantics equivalent IR code is
converted back into Dalvik bytecode by IR2Dex Repackager, so that it is compatible
with most detectors, which take dex files as input.

3.1 Dalvik bytecode pre-processor

The preprocessing phase performed on the Dalvik bytecode is to reverse it to an IR
code format, so that it can be further manipulated easily and directly. Several intermedi-
ary representation candidates can be leveraged, including smali format, Java bytecode
format or other similar representation, like Jasmin. In our current framework design,
we choose Java bytecode format as the IR, since a tool called Dare [25] can directly
translate the Dalvik bytecode into Java bytecode with a high success rate. In Android



platform, the type information for some specific Java bytecode instructions used in Java
Virtual Machine is thrown away when dx tool compiles Java bytecode down to Dalvik
bytecode in Android platform. However, the missed type information is inferred by
Dare using strong constraint solving and backward slicing. The experiment in Dare
shows that the information incompleteness between the converted Dalvik bytecode and
Java bytecode is reduced to a tolerable rate. It achieves a total of 99% of verifiable
code on average for thousands of tested methods from various Android apps. We will
elaborate some interesting observations on using Dare in our experiments in Section 4.

3.2 IR code obfuscator

This component is designed to mimic the real world scenarios where a plagiarist makes
basic modifications or uses various obfuscation techniques for repackaging detection
evasion. Since our motivation is trying to provide a general evaluation framework, we
consider two pieces of information are very important to report. First is the broadness
analysis result, which shows the general weakness and strength for an evaluated detec-
tion algorithm against a broad range of obfuscation techniques. We decide to perform
obfuscation algorithms individually and collect a set of detection results for the test-
ing algorithm. This result will provide a wide range of analysis, to reveal the detec-
tion algorithm’s strength and weakness against each type of obfuscation algorithm. The
broadness analysis result provides insights to improve the detection algorithm. Second
is the depth analysis result, which shows the overall obfuscation resilience against deep
code manipulation by serializing a set of obfuscation techniques. In this analysis, the
detection algorithm is tested against repackaged applications that have been obfuscated
multiple times. For example, an application may be obfuscated by variable renaming,
followed by noise injection and/or control-flow flattening. With depth analysis, we can
test the robustness of detection algorithms against more sophisticated obfuscation at-
tacks.

Specifically, because there already exist some comprehensive obfuscation tools,
such as e.g., SandMarks [17] and Zelix KlassMaster [9], which target at Java byte-
code, by leveraging them we can save some engineering effort by avoiding the re-
implementation of a large set of obfuscation algorithms. The open source SandMarks
is a very comprehensive tool, which implements 39 obfuscation algorithms. Klass-
Master implements some control flow obfuscation techniques, making it a heavy duty
obfuscator. We currently take both as our candidate obfuscators. However, our IR code
obfuscator is not restricted to Java bytecode obfuscation tools. Whenever the obfusca-
tion community provides better tools for Dalvik bytecode obfuscation or other similar
IR format obfuscation tools, we will try to include them in our framework. Therefore,
our framework can be incrementally updated for more comprehensive obfuscation re-
silience measurement.

3.3 IR2Dex repackager

In general, most detection algorithms take Dalvik bytecode of the Android program,
namely the dex file, as the initial input, based on the assumption that no availability of
source code. Therefore it is necessary to convert the obfuscated IR code back into the



dex file by the IR2Dex Repackager component. In this way, we can build a standard
framework, which is compatible for most detection algorithms that target Dalvik byte-
code. For this component, we currently leverage a solid tool named dx tool from the
Android platform.

An important criteria for the repackager component is that it must preserve the
effects of obfuscation performed on our IR code during the conversion. After analyzing
the source code [7] of dx tool, we find dx tool provides very little optimization, except
for some dead code removing and a few minor optimizations on register usage. We will
further discuss our analysis on the behavior of dx tool in Section 4, which indicates that
it satisfies the criteria for a repackager component.

3.4 Practical concern

To the best of our knowledge, currently no repackaging detection algorithm is based
on dynamic analysis of Android applications. Due to the requirement of intensive user
interactions through the touch-based UI for Android OS, it becomes very hard to auto-
mate the input feeding process for dynamic analysis of applications from a large-scale
prospective. The other possible reason that static analysis is a better option is that a pla-
giarist can easily manipulate the GUI of an app and completely defeat dynamic based
detection algorithms. Hence, in our current framework we do not aim at guaranteeing
that obfuscated applications should be completely runnable. To make a repackaged ap-
plication completely runnable is only a must requirement for the plagiarists, so that it
can be published in the app market again. However, we relax this constraint in our eval-
uation framework so that we can provide a more comprehensive framework for static
analysis based detectors. In other words, our framework indeed offers advantages to the
attacker even if in reality he may not be able to apply these obfuscation algorithms eas-
ily. We consider the obfuscated classes.dex file from our evaluation framework valid
as long as it is the valid syntax of Dalvik bytecode, contains the equivalent program
semantics of the original one, and can be accepted by Dalvik bytecode dissemblers and
other static analysis tools. After all, if needed, our framework can be refined later to
produce completely runnable apps for dynamic analysis based repackaging detection
algorithms.

4 Experiment

In the framework setup, we choose SandMarks as the obfuscator component, which
has a comprehensive and powerful collection of obfuscation algorithms for Java byte-
code manipulation and all of these obfuscation techniques are well documented. It
meets the requirements from both the broadness and depth analysis aspects. Also, Dare
and dx tool are leveraged for bytecode reverse engineering and repackaging, respec-
tively. To fully automate the experiment, we write shell-scripts to glue the command-
line version of SandMarks and other components, Dare and dx tool together. Each
component’s output is fed into the next component as input and all the tasks in our
framework are then pipe-lined. Thereafter, we test the success rate of producing obfus-
cated dex files under various obfuscations and also conduct one case study with an open
source Android application repackaging detection tool, Androguard [20].



4.1 Framework setup

Preprocessing Android applications The preprocessing tool Dare that we currently
use is one of the most accurate Dex-to-Jar converter, as most of the converted code can
be verified by the Oracle Labs Maxine VM verifier [10]; however, some ambiguous type
inference problem cannot be completely solved even after performing the constraint
solving algorithms for ambiguous type inference. We relieve this problem by two pro-
cedures. First, we turn on the -c option from Dare, which leverages the optimization
provided by Soot [13] for the reversed Java bytecode. This step can help remove the
unnecessary Java bytecode and reduce the possibility of invalid bytecode instructions.
Second, we relax the strict type checking performed during the SandMarks prepro-
cessing phase by modifying the latest source code of SandMarks. After analyzing its
source code, we find the strict type checking is performed in SandMarks preprocess-
ing phase by using the BCEL libraries [15]. Therefore, after relaxing the type checking
from BCEL libraries, we are able to make SandMarks accept all the Jar files output
from Dare and run them through various obfuscation algorithms.

Applying obfuscation algorithms For the broadness analysis, we try to perform
all the 39 obfuscation algorithms in SandMarks separately; however, some obfus-
cation algorithms can not proceed successfully. For example, “Array Splitter”, “Array
Folder” and “Integer Array Splitter” are not able to complete. After further analysis,
we find it is because of the missing type information during the backward conversion
from Dalvik bytecode to Java bytecode.Dalvik bytecode does not contain the type in-
formation for the array relevant instructions. For instance, in DVM, it generally uses
“aget and aput” for both int and float arrays and “aget-wide and aput-wide” for both
long and double arrays. However, when trying to convert them into Java bytecode, the
above opcode “aget and aput” need to be type inferred and mapped into “iaload, ia-
store, faload and fastore” strictly. It is the same case for “aget-wide and aput-wide”,
which should be mapped to “laload, lastore, daload and dastore” strictly. Even after
Dare’s inference of the relevant ambiguous typing from program context by leveraging
strong constraint solving and backward slicing, it is still not able to resolve type ambi-
guity cases completely. In our work we do not solve this problem, as we consider this
is one of the fundamental limitation of the conversion from Dalvik bytecode into Java
bytecode. Fortunately, this does not hurt other obfuscation algorithms.

Another problem appears when trying to perform the depth analysis. Theoretically
speaking, it is possible to perform a series of obfuscation algorithms on a program to
obtain a deeply obfuscated program. However, some obfuscation algorithms can cause
conflicts, due to the limitations of their underlining implementation. Instead of blind-
ingly attempting various permutations of all the algorithms, we first group the obfusca-
tion algorithms into different categories, including Layout Obfuscation, Control Obfus-
cation and Data Obfuscation, labeled in the score column of Table 4.2 as “L”, “C” and
“D”, respectively. Then based on the result of broadness analysis, we try the combi-
nation among the most effective individual obfuscation algorithms from each category,
so as to maximize the overall effectiveness of multiple obfuscation techniques while
minimizing the opportunity of conflicts and the experiment space.



Table 1. The successful output benchmark for the framework

Dare Preprocessor SandMarks Obfuscator Android dx tool
input# output# input# output# input# output#
20.dex 20 .jar 20 .jar 720 .jar 720 .jar 720 .dex

100% 92.5% 100%
Total Successful Rate 92.5% = 100% * 92.5% * 100%

Framework stability Currently, we have comprehensively tested 20 Android appli-
cations downloaded from Android Official Market with 36 (out of 39) obfuscation al-
gorithms provided by SandMarks and output 36*20 obfuscated classes.dex files. As
discussed previously, three obfuscation algorithms that are relevant to array manipula-
tion cannot be performed completely. Both the Dare and dx tool components perform
well, except for few ambiguous type information cases caused by information loss in the
first pre-processing component. By gluing these three components together, we reach
a total success rate of 92.5% for the tested apps, which demonstrates the stability of
our framework on performing the broadness analysis. On the other hand, when apply-
ing blindingly various combinations of the obfuscation algorithms , SandMarks tends
to throw errors. After our grouping of relevant obfuscation techniques, we are able to
perform four interesting serialization of obfuscation with a high success rate. We will
provide detailed observations in Section 4.2.

4.2 Case study

In order to test the effectiveness of our framework for evaluating obfuscation resilience,
we perform a case study with AndroGuard [20], which is an advanced Android ap-
plication repackaging detection algorithm presented in Blackhat 2011. It can directly
perform similarity comparison between a pair of classes.dex files from different apps.
AndroGuard describes the an Android application as regular expression string, which
can capture the control flow structure of the program very efficiently and effectively.
Then pair-wise comparisons on the method units between two similar applications are
conducted by leveraging the similarity distance computation algorithm based on Nor-
malized Compression Distance (NCD). Then based on the threshold specified in the
algorithms, AndroGuard can identify method relevant metric, including “new method”,
“diff method” and “match method”. The final similarity score is derived based on the
metric.

Applying single obfuscation algorithm We performed a Broadness analysis on An-
droGuard against all the obfuscation algorithms from SandMarks thoroughly using
our framework. This analysis is performed in a control way, as each time only one
obfuscation is applied and results are collected. Therefore, we can pinpoint the exact
weakness of the repackaging detection algorithm. In Table 4.2, the algorithm columns
indicate the names of the obfuscation algorithms applied in our framework. For the
score column, we first use AndroGuard’s detection algorithm to compute the similar-
ity score of a pair of original/obfuscated classes.dex files of each Android application.



Table 2. Average Similarity Score by AndroGuard for each Obfuscation Algorithm

Algorithm Score Algorithm Score
Non-obfuscated 1.00 (L)

Const Pool Reorder .92 (L) Split Classes .94 (L)
Static Method Bodies .88 (C) Class Encrypter .03 (D)

Method Merger .65 (C) Reorder Parameters .92 (D)
Interleave Methods .56 (C) Promote Prim Reg .92 (D)
Opaque Pred Insert .92 (C) Promote Prim Types .93 (D)

Branch Inverter .77 (C) Bludgeon Signatures .96 (D)
Rand Dead Code .92 (C) Objectify .83 (D)

Class Splitter .87 (C) Publicize Fields .91 (D)
Method Madness .43 (C) Field Assignment .86 (D)

Simple Opaque Pred .92 (C) Variable Reassign .85 (D)
Reorder Instructions .89 (C) ParamAlias .92 (D)

Buggy Code .67 (C) Boolean Splitter .85 (D)
Inliner .89 (C) String Encoder .87 (D)

Branch Insert .87 (C) Overload Names .91 (D)
Dynamic Inliner .84 (C) Duplicate Registers .89 (D)

Irreducibility .86 (C) Rename Registers .96 (D)
Opaque Branch Insert .85 (C) False Refactor .95 (D)

Exception Branch .81 (C) Merge Local Int .94 (D)

We then compute an average over all the score of the tested pairs of the 20 applica-
tions under the same obfuscation algorithm. Therefore, the average similarity score is
a good measurement on the average performance of AndroGuard against individual
obfuscation attack.

Applying single obfuscation algorithm In order to check the effect of the Dex2Jar
and Jar2Dex conversions on AndroGuard, we also use AndroGuard to compute the
similarity score for the original dex file and the “non-obfuscated” dex file that has
only been processed by Dare and dx tool.From Table 4.2, the entry “Non-obfuscated”
has the corresponding similarity score “1.00” from AndroGuard, which means it is
100% similar (the range of the similarity score is [0, 1]). This indicates that the two-
way conversions by Dare and dx tool can keep almost all the semantic information
of the code. Based on the classification in Collberg et al. [18], this transformation can
be categorized as Layout Obfuscation, we tag it as “L” in the corresponding score
column, as it touches very little semantic content of the code. All the other scores are
below “1.00”, which demonstrates that all the other obfuscation algorithms have more
or less effect on AndroGuard’s detection result.

The algorithms on the left side of the table have “C” tagged on the corresponding
scores, because they belong to the “control transformation” category, which tries to
obscure the control-flow of the code. The ones on the right side and tagged with “D”
belong to “data transformations”, which obscure the data structure used in the source
applications. Generally speaking, AndroGuard has better resilience to data structure



based obfuscations, since it does not take the detail data dependency or data structure
into account. However, the “Class Encrypter” obfuscator makes an exception in this
category, as this obfuscation reduces the similarity score to “.03”. By encrypting class
files and decrypting them at runtime, the “Class Encrypter” can completely change
the semantics of the string structure that AndroGuard uses to represent the Dalvik
bytecode.

The other obfuscation methods that have big impacts are “Method Merger”, “Inter-
leave Methods”, “Method Madness” and “Buggy Code”. To figure out the reason, we
analyze the source code of AndroGuard in the similarity comparison part. Basically, the
algorithm computes the Control Flow Graph (CFG) within each method, and represents
each CFG of each basic block by a predefined regular expression representation and
takes this string representation of each method as the core feature. By leveraging Nor-
malized Compression Distance (NCD) algorithm, they can aggregate the final score.
Since all the above four obfuscation algorithms are relevant to basic block and control
flow manipulation performed on the method granularity, they can reduce the chance
of repackaged apps being detected by their similarity measurement algorithm. Actu-
ally, these obfuscation algorithms directly obscure the core feature that AndroGuard
is trying to extract from the code for comparison and detection. From this result of the
broadness analysis, our framework is able to comprehensively measure the obfuscation
resilience of the detection algorithm and also pinpoints its weakness.

Serializing multiple obfuscation algorithms Practically, especially when detection
algorithms become more powerful, it is very possible that an attacker will try a com-
bination of various obfuscation algorithms. Therefore, our framework also wants to
mimic more complicated obfuscation behavior in the real world scenario. Besides the
broadness analysis performed on AndroGuard, we also perform advanced multiple-
obfuscation by serializing several algorithms for depth analysis. It is a deeper analysis
process on the obfuscation resilience of detection algorithms.

We test various combinations of the effective individual obfuscation based on the
result of broadness analysis. When trying various permutations, only some of them can
be performed successfully for the testing applications and the output obfuscated DEX
files can be accepted by AndroGuard. We analyze four interesting cases below:

1. [Method Merger ⇒ Method Madness ⇒ Interleave Methods]
Average Similarity Score and Obfuscation Time of 18 apps : 0.33 and 19 min;

2. [Objectify ⇒ Method Merger ⇒ Method Madness]
Average Similarity Score and Obfuscation Time of 19 apps : 0.26 and 16 min;

3. [Method Madness ⇒ Objectify ⇒ Variable Reassign]
Average Similarity Score and Obfuscation Time of 20 apps : 0.35 and 11 min;

4. [Variable Reassign ⇒ Boolean Splitter ⇒ Objectify]
Average Similarity Score and Obfuscation Time of 20 apps : 0.80 and 6 min;

We record the average similarity score computed by AndroGuard and the average
total time needed for the whole process of serializing three obfuscation algorithms. All
the test cases reduce the average similarity scores to a point which is lower than any the



single obfuscation performed individually in the broadness analysis. The average total
time is the sum of the time for applying each obfuscation algorithm.

Case 1 leverages three heavy control transformation based obfuscations that tar-
get specifically at method level manipulations. We choose these top-three obfuscations
based on the broadness analysis result. This serialization further reduces the similarity
score down to a low point 0.33, which results in high false negatives in AndroGuard.
Generally, for AndroGuard, it will cause lots of false positives when setting the thresh-
old below 0.5 for the similarity score. This deep serialized obfuscation process requires
more time to perform, about 19 minutes on average for each application. Also there is
5% chance that the output dex file could not be accepted by AndroGuard, as 18 out of
20 can be successfully accepted by AndroGuard.

Case 2 is a serialization of one data transformation plus two control transforma-
tions. Based on the previous broadness analysis report, we try several combinations
with “Class Encrypter” as data transformation, and find no further decrease on the
similarity score. As “Class Encrypter” already brings the similarity score to a very
low level (0.03), the effects of other obfuscation algorithms cannot be directly reflected
in the score. Note all other possible obfuscations must be applied before “Class En-
crypter”, so that the actual effect of these obfuscations can be kept. “Objectify” is
another top data transformation based obfuscation, and we combine it with two top ob-
fuscation algorithms in the control transformation category, namely “Method Merger”
and “Method Madness”. This combination reduces similarity score to 0.26, which is
more effective than the combination of the three top control transformations in Case 1.
This is an indication that combining various obfuscations from different categories can
potentially produce more powerful obfuscations. Based on further analysis of the result
of Case 2, we find that using the obfuscations selected from different categories can
increase the number of methods that are considered not similar by AndroGuard be-
tween the original and obfuscated dex files. It is because the manipulations from differ-
ent obfuscation categories touch different parts of the code and produce the obfuscated
methods with less chance of overlapping with the original.

Case 3 serializes one control plus two data transformations, which also indicates
that obfuscations from different categories performs better. This two data obfuscations,
“Objectify” and “Variable Reassign” are only at a 0.8 level score when performed sep-
arately; however, after our serialization with the “Method Madness” on control trans-
formations, it performs well and even approximates the similarity score from case 1.
The whole transformation time is reduced to nearly half of the time spent in case 2 for
each application and we obtain a 100% success rate for output dex files by this serial-
ized obfuscation. All the 20 heavily obfuscated dex files are accepted by AndroGuard
successfully. The last case indicates by purely using the data transformation based ob-
fuscations. The average similarity score is further reduced but not as significant as case
2 and 3.

4.3 Discussions

Our experiment and case study demonstrate the effectiveness of our framework for
providing a comprehensive and deep measurement on the obfuscation resilience aspect
of a proposed repackaging detection algorithms. The broadness analysis measures the



obfuscation resilience of the detection algorithm comprehensively and points out its
exact strength and weakness. On the other hand, depth analysis can further attack the
detector under an advanced obfuscation scenario, which provides a better understanding
of its overall obfuscation resilience. We believe the insight from both analyses is helpful
to understand the detection algorithm and can serve as a guidance for its enhancement.

We use AndroGuard to perform the case study because it is currently the only pub-
licly available tool. However, the result from the case study can be applicable to all the
other detection algorithms. For example, the “Class Encrypter” obfuscation can prob-
ably have the same effect on other detection algorithms based on static code analysis.
Because it dramatically changes the original bytecode by encryption and only dynamic
decryption can help unpack the obfuscation. Hence, without adding special heuristic to
prevent this obfuscation, all the static code analysis based detection becomes ineffec-
tive. The case study result shows that AndroGuard is not very resilient against control
flow manipulation based obfuscation. However, we envision the opposite result will
probably be generated when using our framework to test DNADroid.

Since the obfuscation algorithms are performed on the intermediary format, the
Java bytecode, which are later converted into classes.dex by the dx tool on instruction
level granularity, one may wonder whether the obfuscation effect has been preserved.
We randomly pick and manually analyze outputs of all the 36 obfuscation algorithms
and the corresponding serialized ones. According to the corresponding explanations
from SandMarks, the effect of most control flow obfuscation and data obfuscation
algorithms are preserved. The obfuscator is based on semantic preserving obfuscations
from SandMarks. Moreover, the dx tool keeps the program’s semantic of the input
Java bytecode, and converts the Java bytecode instructions into semantic equivalent
Dalvik bytecode instructions based on the predefined transformation rules. Therefore,
most of the obfuscation effect on our intermediary representation is preserved in the
output classes.dex file.

We also confirm that some class level obfuscations, e.g., “Class Splitter” and “Split
Classes”, need some modifications in the AndroidManifest.xml file, so that relevant class
information will be updated accordingly. We suggest users to simply turn them off when
performing the evaluation, if their detection algorithms try to leverage the information
in the AndroidManifest.xml. For those which do not need the information from An-
droidManifest.xml, they can still obfuscate classes.dex by using the obfuscations in
class level.

5 Related Work

Android application reverse engineering and code manipulation. Since Dalvik
bytecode contains more semantic information than machine code instructions, its re-
verse engineering and manipulation are also easier. Several tools, including Dex2jar
[4], ded [24] and Dare [25], can transform Dalvik bytecode to Java bytecode. Based
on the converted Java bytecode representation of dex files, many static analysis tools
on Java bytecode can be applied, e.g., WALA [14] and Soot [13]. In evaluation frame-
work, we also leverage this convenience to deploy SandMarks [17] and KlassMaster
[9] in our obfuscator component. Smali/baksmali [12], the assembler/disassembler



of classes.dex files, not only can reverse engineer Android applications but is able to
repackage the modified smali code back to Dalvik bytecode. Tools such as apktools
[1] integrate Smali/baksmali to help modify an application, sign with another devel-
oper key, and repackage it back into an apk file.

To counter reverse engineering, Android developers use obfuscation tools frequently
such as ProGuard [11], DexGuard [5] and dasho [3], to prevent the repackaging at the
initial stage. These obfuscation techniques rely on Java source code, Our evaluation
framework is trying to mimic the obfuscations performed by plagiarists, which is under
the assumption that there is no accessibility to Java source code.

Repackaging techniques can be leveraged to provide protection mechanisms, if used
in a proper way. Aurasium [27] reverse engineers and repackages the dex files to per-
form bytecode rewriting, so that protection code can be embedded into the Android
apps to specify policy enforcement within user-level sandboxing. In article [6], “Junk
byte injection”, a x86 architecture well-known obfuscation technique, is proved to be
applicable on Dalvik bytecode format to raise the bar of further malicious reverse engi-
neering on Dalvik bytecode.

Repackaging detection and evaluation. Paper [30] analyzes the evolution of the An-
droid malware and current status of the repackaging and obfuscation techniques that
have been used. We perform study from another prospective, that is trying to analyze
and measure the obfuscation resilience of repackaging detection algorithms in [29],
[19], [23].

Wang et al., [26] design a system call based software birthmark that represents the
unique characteristic of the run time behavior of a program, which can be used for
software theft detection. They measure their birthmark against various obfuscations
and also with different compiler setups. Jhi et al., [21] design a plagiarism detection
technique, which is resilient to various control and data obfuscation techniques. The
detection is based on an observation that some critical runtime values are hard to be re-
placed or eliminated by semantics preserving transformation techniques. They evaluate
the obfuscation resilience of the value-based method through SandMark, KlassMaster,
Thicket and Loco/Diablo.

The evaluation of the obfuscation techniques has been studied in [16], which as-
sesses how difficulty it is for an attacker to understand and modify obfuscated code
through controlled experiments involving human subjects. Karnick et al., [22] propose
a standard measurement to analyze and evaluate the strength of obfuscation tools. An
analytical metric is developed to quantify the performance of obfuscation in terms of
potency, resilience, and cost. Our work provides a general framework to measure the ob-
fuscation resilience of repackaging detection algorithms. We have evaluated our frame-
work using a case study on a real repackaging detection algorithm.

6 Conclusion

Due to the improved code manipulation techniques of code manipulation on Dalvik
bytecode, it is very important for repackaging detection algorithms to be obfuscation
resilient, so that more stealthy repackaging scenarios can be identified. In this work,



we propose a framework to help evaluate the obfuscation resilience of detection algo-
rithms in terms of broadness and depth. The framework provides a uniform obfuscation
resilience measurement for all the obfuscation detection algorithms that are based on
static analysis of Dalvik bytecode. Our experiments have demonstrated that our frame-
work is stable to create obfuscated classes.dex for the broadness analysis and also is
able to serialize multiple obfuscations together to perform the depth analysis. Our study
on the serialization of multiple obfuscations from different categories provides some un-
derstanding on how to make a stronger obfuscation. Our case study on Androguard,
shows that our framework can effectively pinpoint the exact strength and weakness of
the detection algorithm. The outcome of evaluation based on our framework can be used
as a guidance to enhance the obfuscation-resilience of a detection algorithm through,
for example, fine tuning of parameters and adding/removing certain heuristics.
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