
The Pennsylvania State University

The Graduate School

ADVANCED SOFTWARE OBFUSCATION TECHNIQUES AND

APPLICATIONS

A Dissertation in

Information Sciences and Technology

by

Pei Wang

c© 2018 Pei Wang

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

August 2018

The dissertation of Pei Wang was reviewed and approved∗ by the following:

Dinghao Wu

Associate Professor of Information Sciences and Technology

Dissertation Advisor, Chair of Committee

Peng Liu

Professor of Information Sciences and Technology

Sencun Zhu

Associate Professor of Information Sciences and Technology

Associate Professor of Computer Science and Engineering

Danfeng Zhang

Assistant Professor of Computer Science and Engineering

Andrea Tapia

Associate Professor of Information Sciences and Technology

Director of Graduate Programs

∗Signatures are on file in the Graduate School.

ii

Abstract

Obfuscation is an important software protection technique that prevents auto-
mated or human analyses from revealing the internal design and implementation
details of software. There has been a strong demand for advanced obfuscation tech-
niques from software vendors to confront threats like intellectual property thefts
and cybersecurity attacks. This dissertations approaches the software protection
problem through obfuscation in three different aspects, i.e., techniques, applica-
tions, and experiences.

The dissertation first introduces translingual obfuscation, a novel software ob-
fuscation technique that makes programs obscure by “misusing” certain features
of programming languages derived from highly abstract computation theories. For
programs written in imperative languages, which are popular but relatively easy to
reverse engineer, translingual obfuscation translates part of a program to another
language which has a much more complicated programming paradigm and execu-
tion model, thus increasing program complexity. The evaluation shows that this
advanced obfuscation technique is suitable for protecting software in desktop and
server computation environments. It provides effective and stealthy obfuscation
effects with only modest performance cost, compared to one of the most popular
commercial obfuscators on the market.

As for mobile software, its development, deployment, and execution are sig-
nificantly different from those of traditional desktop software, while must less is
known about the practice of software protection on this emerging platform. There-
fore, the dissertation takes a first step to systematically studying the applications
of software obfuscation techniques in mobile app development. With the help of
an automated but coarse-grained method, we computed the likelihood of an app
being obfuscated for over a million app samples crawled from Apple App Store.

iii

We then inspected the top 6600 most likely obfuscated instances and managed to
identify 601 obfuscated versions of 539 iOS apps. By analyzing this sample set with
intensive manual effort, we made various observations that help reveal the status
quo of mobile obfuscation in the real world. As such, the dissertation can provide
insights into understanding and improving the situation of software protection on
mobile platforms.

Finally, the dissertation reports field experience of applying obfuscation to mul-
tiple commercial mobile apps, each of which serves millions of users. In this case
study, we leveraged the knowledge learned from the empirical study. The disser-
tation discusses the challenges of software obfuscation on the iOS platform and
our efforts in overcoming these obstacles. This report can benefit many stakehold-
ers in the mobile ecosystem, including developers, security service providers, and
administrators of mobile software ecosystems such as Apple and Google.

iv

Table of Contents

List of Figures ix

List of Tables xi

Acknowledgments xii

Chapter 1
Introduction 1
1.1 Demand for Software Protection . 2
1.2 Advanced Software Obfuscation Techniques 7
1.3 Obfuscation in Mobile Software Development 10
1.4 Contributions . 12

Chapter 2
Related Work 15
2.1 Software Obfuscation . 15

2.1.1 Cryptography Obfuscation 15
2.1.2 Heuristic Obfuscation . 16

2.2 Software Deobfuscation . 18
2.3 Programming Language Translation 19
2.4 Empirical Studies on Mobile Apps and Software Obfuscation 20

Chapter 3
Advanced Obfuscation for Desktop Software 22
3.1 Overview . 22
3.2 Threat Model . 26
3.3 Misusing Prolog for Obfuscation . 27

v

3.3.1 Prolog Basics . 27
3.3.2 Obfuscation-Contributing Features 28

3.3.2.1 Unification . 28
3.3.2.2 Backtracking . 30

3.4 Technical Challenges . 32
3.4.1 Control Flow . 32
3.4.2 Memory Model . 32
3.4.3 Type Casting . 33

3.5 C-to-Prolog Translation . 33
3.5.1 Control Flow Regularization 33

3.5.1.1 Control Flow Cuts 34
3.5.1.2 Loops . 35

3.5.2 C Memory Model Simulation 36
3.5.2.1 Supporting C Memory-Access Operators 36
3.5.2.2 Maintaining Consistency 37

3.5.3 Supporting Other C Features 39
3.5.3.1 Struct, Union, and Array 39
3.5.3.2 Type Casting . 40
3.5.3.3 External and Indirect Function Call 40

3.5.4 Obfuscating Translation . 40
3.6 Implementation . 41

3.6.1 Preprocessing and Translating C to Prolog 42
3.6.2 Combining C and Prolog . 44
3.6.3 Customizing Prolog Engine 45

3.7 Evaluation . 45
3.7.1 Potency . 47
3.7.2 Resilience . 49

3.7.2.1 Resilience to Semantics-Based Binary Diffing . . . 50
3.7.2.2 Resilience to Syntax-Based Binary Diffing 51
3.7.2.3 Comparing Babel with Code Virtualizer 53

3.7.3 Cost . 54
3.7.4 Stealth . 56

3.8 Discussion . 58
3.8.1 Generalizing Translingual Obfuscation 58
3.8.2 Multithreading Support . 59
3.8.3 Randomness . 59
3.8.4 Defeating Translingual Obfuscation 60

vi

Chapter 4
Status Quo of Obfuscation in Mobile Development 62
4.1 Background . 65

4.1.1 The ARM Architecture . 65
4.1.2 The iOS Mobile Operating System 66
4.1.3 The Objective-C and Swift Programming Languages 66
4.1.4 Technical Challenges of the Study 67

4.1.4.1 Obfuscation Detection and Analysis 67
4.1.4.2 Static Third-Party Libraries 68

4.1.5 Inferring Developer Intentions 69
4.2 Methodology . 69

4.2.1 Considered Obfuscations . 70
4.2.2 Mining Obfuscated iOS Apps 72
4.2.3 Per-App Inspection . 73

4.2.3.1 Detecting Obfuscation 74
4.2.3.2 Identifying Obfuscated Third-Party Libraries . . . 75

4.2.4 Cross-Validation . 75
4.3 Detecting Symbol Obfuscation . 76

4.3.1 An NLP-Based Detection Model 76
4.3.2 Implementation . 77

4.4 Findings . 79
4.4.1 Characteristics of Obfuscated Apps 79
4.4.2 Obfuscation Patterns . 84
4.4.3 Impact of Distributor Code Review 90
4.4.4 Effectiveness of Obfuscation 93

4.5 Implications of the Results . 94

Chapter 5
A Case Study on Real-World Mobile Obfuscation 97
5.1 Tools . 98
5.2 Obfuscation Algorithms . 99
5.3 Implementation Pitfalls . 104

5.3.1 Inline Assembly . 104
5.3.2 Heterogeneous Hardware . 106
5.3.3 App Maintainability . 106

5.4 Evaluation . 107
5.4.1 Resilience . 107
5.4.2 Overhead . 110

5.4.2.1 Size Expansion . 111
5.4.2.2 Execution Slowdown 112

vii

5.5 Discussion . 113
5.5.1 Dilemma of Security and Transparency 113
5.5.2 Other Protections . 114

Chapter 6
Conclusion 116

Appendix A
Additional Potency Evaluation Data For Babel 118

Appendix B
Publications During Ph.D. 121

Bibliography 124

viii

List of Figures

1.1 Decompiling an open source iOS app [14] with IDA Pro 3
1.2 Programmatically controlling massive iOS devices as a service (http:

//shemeitong.com/index.php/anli/show/46.html). . . . 6

3.1 Overivew of translingual obfuscation 23
3.2 Comparing translingual obfuscation and virtualization-based obfus-

cation. 24
3.3 Example of memory representation of terms in Prolog 29
3.4 Differences between C and Prolog control flows 30
3.5 Memory operations affecting the correctness of C source code SSA

renaming. 38
3.6 Semantic-preserving SSA renaming on C source code with the pres-

ence of pointer operations. 39
3.7 Definition of Babel’s C-to-Prolog translation 43
3.8 The context for executing obfuscated code in Babel. 44
3.9 Distributions of similarity scores between the original and Babel-

obfuscated functions in the evaluated programs. 52
3.10 Distributions of similarity scores between the original and CV-

obfuscated functions in the evaluated programs. 54
3.11 Instruction distributions of SPECint2006 programs (mean and stan-

dard deviation) and Babel-obfuscated integer programs. 56
3.12 Instruction distributions of SPECint2006 programs (mean and stan-

dard deviation) and CV-obfuscated programs 57

4.1 Illustration of obfuscation techniques considered in the study 70
4.2 Workflow for sampling obfuscated iOS apps 74
4.3 Origins of obfuscation in 539 obfuscated apps 80
4.4 Popularity of obfuscated third-party libraries 81
4.5 Distributions of apps regarding their categories 82

5.1 Obfuscation configuration examples 100

ix

http://shemeitong.com/index.php/anli/show/46.html
http://shemeitong.com/index.php/anli/show/46.html

5.2 Example of obfuscation utilizing LLVM IR inline assembly 103
5.3 Effectiveness of disassembly disruption 111

x

List of Tables

3.1 Programs used for Babel evaluation. 47
3.2 Program complexity before and after Babel obfuscation at 30%

obfuscation level . 47
3.3 Program complexity before and after Code Virtualizer (CV) obfus-

cation at 30% obfuscation level . 48
3.4 Function matching result from BinDiff on Babel-obfuscated pro-

grams . 53
3.5 Function matching result from BinDiff on CV-obfuscated programs 53
3.6 Time overhead introduced by Babel and Code Virtualizer (CV) . . 55

4.1 Obfuscated Libraries Grouped by Functionality 80
4.2 Numbers of Actively Obfuscated Apps Employing Different Obfus-

cation Patterns . 85
4.3 Numbers of Third-Party Libraries Employing Different Obfuscation

Patterns . 86

5.1 Performance of IDA Pro Function Recognition 108
5.2 Binary Size Expansion Due to Obfuscation 112

A.1 Program Complexity of Babel-Obfuscated Binaries at Different
Obfuscation Levels . 119

A.2 Program Complexity of CV-Obfuscated Binaries at Different Ob-
fuscation Levels . 120

xi

Acknowledgments

I would like to thank my advisor Dr. Dinghao Wu for his invaluable mentorship.
The knowledge and skills I learned from him not only supported my Ph.D. study
but will constantly help me make new progress in my future research career.

I would also like to thank Dr. Wei Tao and Mr. Zhaofeng Chen for their help
during my internship at Baidu X-Lab. A significant portion of the research pre-
sented in this dissertation would not happen without their input and collaboration.

I was lucky enough to work with a group of talented colleagues in Penn State.
I would not be able to achieve many of the results without the thoughtful and
inspiring discussions with them.

Finally, I would like to express my gratitude to my parents for supporting my
research career in a foreign country, far from my homeland. Thanks to them, I can
focus on my Ph.D. study for years without other concerns.

The dissertation is based on research supported in part by the National Science
Foundation (NSF) under grants CNS-1223710, CCF-1320605, and CNS-1652790,
and the Office of Naval Research (ONR) under grants N00014-13-1-0175, N00014-
16-1-2912, N00014-16-1-2265, and N00014-17-1-2894.1

1Findings and conclusions in this dissertation do not necessarily reflect the view of the funding
agencies.

xii

Chapter 1
Introduction

Software protection is critical in the software industry. According to a study [23] by

the Software Alliance, software piracy leaded to 52.2 billion dollars of unlicensed

software installation on desktop and server computers, in 2015. Since software

piracy is usually linked to malicious incidents, a total loss of 400 billion dollars

were caused, directly and indirectly, by software piracy in the same year. On

mobile platforms, the situation is even more severe. Concerns on security breaches

targeting mobile apps have kept rising in past years. It was reported that the

piracy rates of popular mobile apps can approach to 60–95% [21]. Research by

Gibler et al. found that a surprisingly large portion of mobile applications are

“copies” of others [73].

This introductory chapter discusses the motivation of the research in the dis-

sertation. In particular, we discuss the role of obfuscation techniques in software

protection and explain why advanced obfuscation techniques and their appropriate

deployment are critical to software developers. The chapter also summarizes the

contributions of the dissertation.

2

1.1 Demand for Software Protection

Besides these traditional intellectual property theft problems, the industry is also

facing new security threats as there are now many businesses heavily relying on

mobile devices to operate across the globe. In most cases, mobile software is easier

to reverse engineer than desktop software. Although, from the research point of

view, there exist various challenges in automated reverse engineering that cannot

be easily addressed, leading to beliefs that reverse engineering is not a realistic

threat to common mobile software vendors. In reality, however, many of such

challenges can be practically addressed or circumvented

Take iOS apps as examples. Since most iOS apps are built with the standard

toolchain provided by Apple, the shapes of their binary code are utterly uniform.

This is a highly desired situation for reverse engineering. By analyzing the common

code patterns and developing corresponding analysis heuristics, modern binary

analysis tools have grown reasonably proficient at decompiling iOS apps, making

reverse engineering much less laborious than before. Figure 1.1 is an example that

demonstrates the quality of the decompilation result for a popular open source iOS

app. The decompilation is done by IDA Pro [15], the most widely used reverse

engineering toolkit in industry. As can be seen, the generated pseudocode is almost

identical to the original source code, except for the language implementation details

which are implicit in the source code but recovered by the decompiler, e.g., the

self pointer. To experienced reverse engineers, these differences are negligible.

In addition to the support of increasingly mature analysis tools, reverse engi-

neering is made even more effective on iOS due to its development and production

environment. The majority of iOS apps are written in Objective-C, a C-like,

object-oriented, and fully reflexive programming language developed by Apple. In

Objective-C, method names are called selectors and method invocations are im-

plemented in a message forwarding scheme. When a method is called on an object,

the language runtime will dynamically walk through the dispatch table of the class

3

1 @implementation TSAnimatedAdapter
2 ...
3
4 − (BOOL)canPerformEditingAction:(SEL)action {
5 return (action == @selector(copy:)
6 | | action == NSSelectorFromString(@"save:"));
7 }
8
9 ...

10 @end

(a) Original Objective-C source code

1 // TSAnimatedAdapter − (bool)canPerformEditingAction:(SEL)
2 bool cdecl −[TSAnimatedAdapter canPerformEditingAction:]
3 (struct TSAnimatedAdapter ∗self, SEL a2, SEL a3) {
4 bool result;
5 if ("copy:" == a3)
6 result = 1;
7 else
8 result = NSSelectorFromString(CFSTR("save:")) == (QWORD)a3;
9 return result;

10 }

(b) Pseudocode obtained from decompiling the binary

Figure 1.1: Decompiling an open source iOS app [14] with IDA Pro

4

of the object to find a method implementation whose name matches with the se-

lector. If no match is found, the runtime will repeat the procedure on the object’s

base class. This process is similar to the prototype system of JavaScript, except

that the method name matching in Objective-C is conducted through class meta-

data while the similar process in JavaScript is conducted through the properties of

each object. Naturally, the message forwarding scheme requires the Objective-C

compiler to preserve all method names in program binaries. Method names are

extremely useful information when analyzing large software binaries, for it allows

human analysts to infer program semantics and quickly identify critical points

worth in-depth inspection among a huge amount of code.

On the Android platform, there is a similar problem since Java is also a fully

reflexive language. Having realized the potential risks, Google integrated a method

and class name scrambler into the Android development toolchain [24]. In contrast,

iOS developers do not get any support from Apple, leaving all code completely un-

protected by default. Furthermore, Apple now advises iOS developers to submit

apps in the form of LLVM intermediate representation, which is even less challeng-

ing to analyze than ARM machine code. Overall, reverse engineering iOS apps can

be made very effective if developers do not take actions of prevention.

The lack of technical challenges in analyzing unprotected mobile apps grants

adversaries strong reverse engineering capabilities and allows their malevolent at-

tempts of exploiting mobile apps for illegal benefits to succeed with a high chance.

App-specific vulnerabilities can certainly be devastating if their presences are

learned by attackers. For example, a previous version of Uber’s mobile app was

found vulnerable and therefore can be exploited to get unlimited free rides [1].

On the other hand, besides those specialized threats, there also exist attacks that

are generally applicable to many apps. We describe three common kinds of them,

besides the typical intellectual property theft problem.

5

Man-in-the-middle attacks. By tricking users into connecting mobile devices to

untrusted wireless networks or installing SSL certificates from unknown sources, at-

tackers can intercept and counterfeit the communication between apps and servers [80].

After analyzing how apps process the data exchanged with servers, attackers can

potentially control app behavior by forging certain server responses.

Repackaging. It has been reported that some cybercrime groups are able to

reverse engineer popular social networking apps and weaponize them for stealing

sensitive user information [48]. By developing information-stealing modules and

repackaging them into genuine apps, attackers managed to create malicious mobile

software with seemingly benign appearances and functionality. Contacts, chat logs,

web browsing histories, and voice recordings are common targets of theft.

Fraud, spam, and malicious campaigns. Nowadays, many apps employ anomaly

detection to identify suspicious client activities and prevent incidents like fraud,

spam, and malicious campaigns. This is usually achieved through collecting neces-

sary information about users and their devices and fitting the collected data into

anomaly detection models. Since the data are harvested on device, attackers can

reverse engineer the mobile apps and find out what kinds of data are being col-

lected. In this way, they may be able to mimic normal user behavior by fabricating

false data of the same kinds on rooted and jailbroken devices.

During the past few years, our industry collaborators have encountered many

incidents of categories described above, among which the most concerning ones are

the increasingly prevalent large-scale malicious campaigns. According to a report

on fraudulent campaigns conducted in China [5], the business of “click farming” has

formed a billion-dollar underground economy, in which hundreds of well organized

collusive groups have participated. The technological means used to support these

campaigns are also evolving quickly. Campaign runners can now programmatically

control hundreds of mobile devices without the involvement of human labor, while

6

Figure 1.2: Programmatically controlling massive iOS devices as a service (http:
//shemeitong.com/index.php/anli/show/46.html).

each device can host over 50 instances of the same mobile app. Figure1.2 shows

an example of such technology.

Since the third quarter of 2016, our collaborators in the mobile software indus-

try have captured a large-volume of suspicious activities being conducted around

the resources and services offered to mobile app users. Through information cross-

validation, we detected that there are millions of suspicious iOS devices, many

of which are virtually faked, constantly trying to log into the account system of

the apps, committing massive promotion operations like clicking links to a certain

product, posting comments to a certain page, and exhaustively collecting bonuses

provided to daily active users. Many of these activities have violated end user

terms and affected the quality of the services.

http://shemeitong.com/index.php/anli/show/46.html
http://shemeitong.com/index.php/anli/show/46.html

7

To detect the malicious campaigns and nullify their impacts, app developers

need to precisely identify those bot-like users through extensive data analysis.

Since data collection must strictly respect user privacy, only certain types of data

can be collected for this purpose, which attackers can easily guess out. For the

sake of data genuineness, we have to ensure that malicious groups cannot tamper

with the on-device data collection process through reverse engineering the corre-

sponding program logic, which requires effective software protection techniques to

be deployed.

1.2 Advanced Software Obfuscation Techniques

In general, obfuscation takes effect by hindering the program analysis capabilities

of adversaries, which are the basics of many malicious activities targeting com-

modity software. There are two types of obfuscation techniques, the first of which

originates from the research of cryptography and seeks to build mathematically

hard-to-analyze programs. Different notions have been proposed to formally de-

fine effective obfuscation. In general, however, theoretically secure obfuscation

algorithms are either impossible to craft or too expensive to be used for protecting

software in production, depending which notion is considered. The second type

of software obfuscation is based on heuristics rather than theoretical theorems.

Typically, heuristic-base obfuscation are semantics-preserving program transfor-

mations that aim to make a program more difficult to understand and reverse

engineer. In contrast to theoretical obfuscation, heuristic obfuscation has no guar-

anteed resilience and is potentially vulnerable to unknown attack methods. On

the other hand, it is much more practical than obfuscation based on cryptography

constructs and has been employed in real-world software development. The idea

of using obfuscating transformations to prevent reverse engineering can be traced

back to Collberg et al. [51, 52, 108]. Since then many obfuscation methods have

8

been proposed [94, 106, 116, 125, 45, 145]. On the other hand, malware authors

also heavily rely on obfuscation to compress or encrypt executable binaries so that

their products can avoid malicious content detection [129, 127].

Currently the state-of-the-art obfuscation technique is to incorporate with process-

level virtualization. For example, obfuscators such as VMProtect [28] and Code

Virtualizer [7] replace the original binary code with new bytecode, and a custom

interpreter is attached to interpret and execute the bytecode. The result is that

the original binary code does not exist anymore, leaving only the bytecode and

interpreter, making it difficult to directly reverse engineer [77]. However, recent

work has shown that the decode-and-dispatch execution pattern of virtualization-

based obfuscation can be a severe vulnerability leading to effective deobfusca-

tion [54, 126], implying that we are in need of obfuscation techniques based on

new schemes.

To help the software production community withstand the threats from ma-

licious reverse engineering, this dissertation delivers research results that can ad-

vance the status quo of software protection by obfuscation. The research is two

fold. Firstly, we propose a novel and practical obfuscation method called translin-

gual obfuscation, which possesses strong security strength and good stealth, with

only modest cost. The key idea is that instead of inventing brand new obfuscation

techniques, we can exploit some existing programming languages for their unique

design and implementation features to achieve obfuscation effects. In general,

programming language features are rarely proposed or developed for obfuscation

purposes; however, some of them indeed make reverse engineering much more chal-

lenging at the binary level and thus can be “misused” for software protection. In

particular, some programming languages are designed with unique paradigms and

have very complicated execution models. To make use of these language features,

we can translate a program written in a certain language to another language which

9

is more “confusing”, in the sense that it consists of features leading to obfuscation

effects.

In this dissertation, we obfuscate C programs by translating them into Pro-

log, presenting a feasible example of the translingual obfuscation scheme. C is

a traditional imperative programming language while Prolog is a typical logic

programming language. The Prolog language has some prominent features that

provide strong obfuscation effects. Programs written in Prolog are executed in

a search-and-backtrack computation model which is dramatically different from

the execution model of C and much more complicated. Therefore, translating C

code to Prolog leads to obfuscated data layouts and control flows. Especially, the

complexity of Prolog’s execution model manifests mostly in the binary form of the

programs, making Prolog very suitable for software protection.

Translating one language to another is usually very difficult, especially when

the target and source languages have different programming paradigms. However,

we made an important observation that for obfuscation purposes, language trans-

lation could be conducted in a special manner. Instead of developing a “clean”

translation from C to Prolog, we propose an “obfuscating” translation scheme

which retains part of the C memory model, in some sense making two execution

models mixed together. We believe this improves the obfuscating effect in a way

that no obfuscation methods have achieved before, to the best of our knowledge.

Consequently in translingual obfuscation, the obfuscation does not only come from

the obfuscating features of the target language, but also from the translation it-

self. With this new translation scheme we manage to kill two birds with one stone,

i.e., solving the technical problems in implementing translingual obfuscation and

strengthening the obfuscation simultaneously.

We have implemented translingual obfuscation in a tool called Babel. Babel

can selectively transform a C function into semantically equivalent Prolog code and

compile code of both languages together into the executable form. Our experiment

10

results show that translingual obfuscation is obscure and stealthy. The execution

overhead of Babel is modest compared to a commercial obfuscator. We also

show that translingual obfuscation is resilient to one of the most popular reverse

engineering techniques.

1.3 Obfuscation in Mobile Software Development

Apart from developing new obfuscation techniques, the dissertation also aims to

advance the application and deployment of software protection particularly on the

emerging mobile platform. The prosperity of smartphone markets has raised new

concerns about software security on mobile platforms, leading to a growing de-

mand for effective software obfuscation techniques. Although software obfuscation

has been intensively studied for the traditional desktop computing environment,

the status of mobile application obfuscation is yet to be reviled. As far as we

have learned, little emphasis is put on investigating how benign software authors

take obfuscation as part of their development process in the real world, which is

critical for software obfuscation techniques to be practical. Therefore, both the

academia and the industry are interested in a comprehensive study on the latest

status of mobile app obfuscation so that the strength of mobile software protection

techniques can be understood and improved. This dissertation aims to fulfill this

demand.

The mobile ecosystem is currently dominated by two major platforms, i.e.,

iOS and Android. The two systems are very distinguishable with respect to the

development, deployment, and execution of mobile applications. iOS applications

are written in C and C-like programming languages and compiled to native machine

code before installed and executed on devices. In contrast, Android applications are

mostly written in Java and compiled to byte code. Before Android 5.0, Android

applications are executed in a managed environment called the Dalvik virtual

11

machine. Starting from 5.0, application bytecode will be further compiled into

native code right before being installed onto the devices. Either way, Android

developers cannot directly obfuscate their applications on the native code level. In

general, obfuscating Android application is more specific to the Java programming

language, which is a unique research topic [65, 153].

In this dissertation, we focus on studying the iOS mobile system. By the time

of this research being conducted, there are more than one million iOS applications

published. By analyzing the latest versions of this large set of applications, we are

able to get a comprehensive understanding of how software obfuscate is practiced

in the iOS ecosystem, where millions of developers and hundreds of millions of

users are involved.

As a step forward to investigating the applications of obfuscation techniques in

real-world software development, we collaborate with mobile app developers in the

industry and develop obfuscators to protect multiple commercial iOS apps with

millions of users, leveraging the knowledge obtained from the empirical study. The

dissertation reports our experience of obfuscating multiple commercial iOS apps

with millions of active users. To date, there exist various supposedly effective

obfuscation techniques that may fulfill the demand of the mobile software indus-

try. However, the techniques themselves do not automatically lead to effective and

practical software protection, especially for mobile apps. Oftentimes, the hardware

and software environments of mobile platforms impose harsh restrictions on the

types and configurations of obfuscations that can are applied to mobile apps. Ad-

ditionally, obfuscation must not affect the regular development, distribution, and

maintenance of mobile apps, which usually requires further customization to be

made for the adopted obfuscation techniques.

12

1.4 Contributions

In summary, we make the following contributions in this dissertation:

• On developing novel software obfuscation techniques,

– We proposed a new obfuscation method named translingual obfuscation.

Translingual obfuscation is novel for utilizing exotic language features

instead of ad-hoc program transformations to protect programs against

reverse engineering. Our new method has a number of advantages over

existing obfuscation techniques, which will be discussed in depth in later

chapters.

– We implemented translingual obfuscation in a tool called Babel which

translates C to Prolog at the scale of subroutines, i.e., from C functions

to Prolog predicates, to obfuscate the original programs. Language

translation is always a challenging problem, especially when the target

language has a heterogeneous execution model.

– We evaluated Babel with respect to all four evaluation criteria pro-

posed by Collberg et al. [52]: potency, resilience, cost, and stealth, on a

set of real-world C programs with quite a bit of complexity and diversity.

Our experiments demonstrate that Babel provides strong protection

against reverse engineering with only modest cost.

• On investigating the status of software obfuscation application in real-world

mobile software development,

– We are the first to conduct a comprehensive empirical study targeting

mobile software obfuscation. Our research focuses on iOS, an influ-

ential mobile platform that did not receive enough attention from the

academia in contrast to Android.

13

– We developed a scalable detection algorithm to estimate the likelihood

of an iOS app being obfuscated and applied it to a large quantity of

apps crawled from App Store. After manually analyzing the 6600 most

likely obfuscated instances, we identified 539 truly obfuscated iOS apps

with a total of 601 different versions. As far as we know, this is the first

scientifically collected sample set of obfuscated iOS mobile apps. We

plan to share these samples with the community in the future.

– To overcome the limitations of existing automated software analysis on

obfuscated binaries, we invested over 600 man-hours in manually exam-

ining the obfuscated iOS apps, extracting detailed information about

how these apps are protected by different obfuscation algorithms. The

human effort assured the accuracy of our analysis and therefore the

credibility of our findings.

– We made various observations about the characteristics of obfuscated

apps, the obfuscation patterns applied, and their resilience to reverse

engineering. Our findings can shed light on future research on mobile

software protection.

• For applying obfuscation to iOS apps with large user bases, we help mobile

developers form a deeper understanding of software obfuscation and avoid

common pitfalls that may appear when obfuscating iOS apps, we discuss our

learned lessons on the following topics,

– Why iOS apps are in urgent need of the protection of software obfusca-

tion, from an industrial point of view,

– What restrictions are imposed by the iOS platform on obfuscation tech-

niques,

– How the centralized app distribution process can impact practice of

obfuscation, and

14

– How to balance obfuscation and app maintenance.

The report will benefit both mobile app developers, distributors, and re-

searchers aiming to develop advanced obfuscation techniques applicable to

mobile software.

Chapter 2
Related Work

This chapter reviews historical work related to the topics discussed in this disser-

tation. We introduce the related work in four aspects, i.e., software obfuscation

techniques, the corresponding deobfuscation techniques, programming language

translation methods, and studies on mobile software development.

2.1 Software Obfuscation

2.1.1 Cryptography Obfuscation

There are different notions of secure obfuscation in the theoretical sense. The

most comprehensive definition known to date is called virtual black-box (VBB)

obfuscation, proposed and studied by Hada [78] and Barak et al. [35]. Semi-

formally, an effective VBB obfuscator is a program transformation algorithm O,

where given any program P , O(P) computes the same function f ∈ F as P does;

meanwhile, for any non-trivial function property φ : F → S and any program

analyzer Aφ that tries to efficiently compute φ, if φ(f) is intractably hard given

only black box access to P as an oracle, the result of Aφ(O(P)) is no better than

randomly guessing φ(f).

16

Unfortunately, it has been proven by Barak et al. [35] that VBB obfuscation is

theoretically impossible for general programs. In response to this finding, Barak

et al. also defined a weaker notion of obfuscation called indistinguishability ob-

fuscation. Garg et al. [70] developed an algorithm based on multi-linear maps to

realize indistinguishability obfuscation for all circuits, but evaluation results [30]

show that the technique is yet unpractical for actual deployment.

There exists a line of work that specially considers obfuscating memory access

patterns for programs that are vulnerable to memory-based side channel attacks.

The so-called Oblivious RAM (ORAM) is an obfuscation technique that hides the

external memory access patterns of programs, proposed by Goldrech and Ostro-

vksy [76]. A large volume of follow-up work has tried to make ORAM implemen-

tations practical, including Tiny ORAM [64] and GhostRider [95].

2.1.2 Heuristic Obfuscation

Most obfuscation techniques that are practically used in the real world are based

heuristics. Although they lack theoretical guarantees about their resilience to all

possible program analysis methods, it has been shown empirically that they can

raise the bar of reverse engineering.

Heuristic-based obfuscation can be on either source level or binary level. Early

work on obfuscation is more source-code oriented. For source code obfuscation,

Wang et al. [133] proposed to convert functions into single switch statements to

hide logical links among basic blocks. The technique is called control flow flattening

and frequently seen in practical software obfuscation tools. A conceptually similar

technique called class hierarchy flattening writes the class inheritance relations of

programs written in object-oriented programming languages to hinder both human

and automated analysis [66]. Sharif et al. [125] encrypted equality conditions that

depend on input data with some one-way hash functions. The evaluation shows

that it is virtually impossible to reason about the inputs that satisfy the equality

17

condition with symbolic execution. Moser et al. [106] demonstrate that opaque

predicates can effectively hide control transfer destination and data locations from

advanced malware detection techniques.

Obfuscation-oriented program transformations can also be performed at the

binary level. The most basic form of binary obfuscation is to eliminate certain

common code patterns, typically introduced by compilers, such that reverse engi-

neers cannot easily reconstruct source-level structures by experience. For example,

there has been an x86 binary obfuscation technique that replaces call instruc-

tions with a combination of push and ret instructions to hide calling contexts

from analyzers [87].

More complicated binary obfuscations usually takes the whole binary into con-

sideration rather than considering local code snippets. Popov et al. [116] obfuscate

programs by replacing control transfers with exceptions, implementing real control

transfers in exception handling code, and inserting redundant junk transfers after

the exceptions. Mimimorphism [145] transforms a malicious binary into a mimicry

benign program, with statistical and semantic characteristics highly similar to the

mimicry target. As a result, obfuscated malware can successfully evade statisti-

cal anomaly detection. Chen et al. [45] propose a control-flow obfuscation method

making use of Itanium processors’ architectural support for information flow track-

ing. In detail, they utilize the deferred exception tokens in Itanium processor regis-

ters to implement opaque predicates. Domas [59] developed a compiler which gen-

erates a binary employing only the mov family instructions, based on the fact that

x86 mov is Turing complete. There are other binary obfuscation methods which

heavily relies on compression, encryption, and virtualization [77, 101, 120]. Among

these obfuscation techniques, binary packers using compression and encryption can

be vulnerable to dynamic analysis because the original code has to be restored at

some point of program execution. As for virtualization-based obfuscation, most

current approaches are implemented in the decode-dispatch scheme [128]. Recent

18

effort [119, 126] has identified the characteristics of the decode-dispatch pattern

in the virtualization-obfuscated binaries so that they can be effectively reverse

engineered.

2.2 Software Deobfuscation

As for countering heuristic-based obfuscation, most recent work focuses on attack-

ing virtualization-based obfuscation. Sharif et al. [126] has developed an outside-in

approach which first reverse engineers the virtual machine and then decodes the

bytecode to recover the protected program. This approach heavily relies on some

assumptions about the structure and working process of he virtual machine. If

the virtualizer does meet these assumptions, the deobfuscator is likely to fail. An-

other deobfuscation method presented by Coogan et al. [54] chooses the inside-out

method which utilizes equational reasoning to simplify the execution traces of pro-

tected programs. In this way, the deobfuscator extracts instructions which are

truly relevant to program logic. A very recent method proposed by Yadegari et

al. [152] improved the inside-out approach with more generic control flow simpli-

fication algorithms that can deobfuscate programs protected by nested virtualiza-

tion. Without access to these tools, we cannot directly test Babel’s resilience

to them. However, since Babel completely reforms C programs’ data layout and

reconstructs the control flows with a much different programming paradigm, we

are very confident with Babel’s security strength against these approaches.

Binary diffing is another widely used reverse engineering technique that takes

program obfuscation into account. Binary differs identify the syntactical or se-

mantic similarity between two different binaries, and can be used to detect pro-

gramming plagiarism and launch similarity-based attacks [40]. BinDiff [4] and

CoP [97], the two differs we use for evaluating Babel’s resilience, are currently

the state of the art. Other examples of binary differs include DarunGrim2 [10], Bd-

19

iff [3], BinHunt [69], and iBinHunt [104]. Although these tools can defeat certain

types of program obfuscation, none of them are designed to handle the complexity

of translingual obfuscation.

Recent research efforts have also shown interest in countering obfuscation in

terms of revealing software author identity instead of understanding the logic and

properties of the code. Caliskan-Islam et al. [43] used machine learning techniques

to establish code stylometry for anonymized source code, via which the identities

of code authors can be reliably guessed out. Latest progress [42] showed that code

de-anonymization is possible even for obfuscated binary code.

2.3 Programming Language Translation

Translingual obfuscation is a technique that relies on the feasibility of translat-

ing one programming language to another, so it is essential to discuss histori-

cal work on language translation. Programming language translations have been

proven useful for for software portability, software re-engineering, and security

hardening purposes. The source-to-source translation from C/C++ to Java is

one of the most extensively explored topics in this field, leading to tools such

as C2J [86], C++2Java [6], and Cappuccino [41], etc. Trudel et al. [132] devel-

oped a converter that translates C to Eiffel, another object-oriented programming

language. A tool called Emscripten can translate LLVM intermediate representa-

tion to JavaScript [154]. Since C/C++/Objective-C source code can be compiled

into LLVM intermediate representation, Emscripten can also be used as a source-

to-source translator without much additional effort. The C-to-Prolog translation

introduced in this dissertation is partial since we need to keep the original C exe-

cution environment; however, our translation is for software obfuscation and being

partial is not a limitation. Instead, we later show that for our purpose, many

20

technical issues commonly seen in programming language translation can be either

addressed or circumvented.

2.4 Empirical Studies on Mobile Apps and Soft-

ware Obfuscation

To the best of our knowledge, most historical work on mobile app analysis targets

the Android platform. The Android Malware Genome project is among the earliest

research efforts that perform large-scale analysis on mobile app repositories [156].

By working on over 1200 samples, the authors managed to develop a systematic

characterization for existing Android malware. According to this research, mobile

malware authors by then had already started to apply obfuscation to bypass anti-

virus analysis. Besides malware that harms users, mobile app repackaging that

harms the interest of developers has also drawn attention. Various tools and sys-

tems have been developed to detect and analyze cloned mobile applications with

both accuracy and scalability [73, 46, 134, 155]. Researchers have also worked on

examining third-party libraries used by mobile developers. Tools like LibRadar [99]

and LibD [91] were developed to detect third-party libraries in Android apps and

classify them. Research by Chen at al. [47] detects libraries potentially harmful to

user security and privacy for both Android and iOS.

Despite the progress in mobile app analysis, most studies of this kind either ig-

nored or spent very limited effort in handling the presence and influence of software

obfuscation. One of the few studies that systematically investigated the impact of

obfuscation on mobile development is from Linares-Vásquez et al., who researched

how obfuscation can affect the detection of Android code cloning [93]. Similar

to our work, Linares-Vásquez et al. spent extensive manual work in identifying

obfuscated code, but their analysis only covered 120 apps and did not consider

obfuscation methods other than identifier scrambling. CodeMatch is a similar

21

project that focuses on obfuscation-resilient Android library detection [75]. Xue et

al. [149] proposed adaptive unpacking of Android apps to recover dex code, which

can potentially enable obfuscation-resilient clone or library detection.

There is also research effort empirically analyzing code obufscation on platforms

other than mobile. Xu et al. conducted a study [148] on obfuscated JavaScript

code considered malicious by the online malware detection service VirusTotal [27].

Same as our study, their research started with manual sample collection due to the

lack of a previously established data set. The sampling mostly relied on manual

analysis since there was no publicly known automatic tools that detects obfuscation

in JavaScript code with reliable accuracy. The study investigated the use of four

pre-selected categories of obfuscation algorithms and measured their resilience to

different malware detectors. Still, the focus of this study is exclusively on code

that adopts obfuscation for malicious purposes. Our research, on the other hand,

considers obfuscation to be part of common software engineering practices.

Chapter 3
Advanced Obfuscation for

Desktop Software

This chapter introduces Translingual Obfuscation, an advanced software obfusca-

tion technique designed for protecting desktop and server software.

3.1 Overview

The basic idea of translingual obfuscation is that some programming languages

are more difficult to reverse engineer than others. Intuitively, C is relatively easy

to reverse engineer because binary code compiled from C programs shares the

same imperative execution model with the source code. For some programming

languages like Prolog, however, there is a much deeper gap between the source

code and the resulting binaries, since these languages have fundamentally differ-

ent abstractions from the imperative execution model of the underlying hardware.

Starting from this insight, we analyze and evaluate the features of a foreign pro-

gramming language from the perspective of software protection. We also develop

the translation technique that transforms the original language to the obfuscat-

The work of this chapter is published in Proceedings of the 1st IEEE European Symposium
on Security and Privacy, 2016 [136].

23

Source code
in language A

Source-Code
Obfuscation

Binary

Binary
Obfuscation Deobfuscation

Developer Side Attacker Side

Source code
in language A

Source code
in language B (and A)

Source-Code
Obfuscation

Translingual
Obfuscation

Binary

Binary
Obfuscation Deobfuscation

Figure 3.1: Translingual obfuscation is a new protection layer complementary to
existing obfuscation methods, pushing the frontier forward in the battle with re-
verse engineering.

ing language. Only with these efforts devoted, translingual obfuscation can be a

practical software protection scheme.

We view translingual obfuscation as a new layer of software protection in the

obfuscation-deobfuscation arms race, as shown in Figure 3.1. Different from pre-

vious obfuscation methods which either work at the binary level or perform same-

language source-to-source transformations, translingual obfuscation translates one

language to another. Therefore, translingual obfuscation can be applied after

source-code obfuscation and before binary obfuscation without affecting the appli-

cability of existing obfuscation methods.

The virtualization-based obfuscation is currently the state of the art in bi-

nary obfuscation. Some features of translingual obfuscation resemble the idea of

virtualization-based obfuscation, but we want to emphasize a significant differ-

ence here. Currently, most implementations of virtualization-based obfuscation

24

Translingual
Obfuscation

Virtualization-Based
Obfuscation

Exotic Language
Features

+
VirtualizationBabel

(GNU Prolog,
native code and
no interpreter)

VMProtect,
Code Virtualizer,

etc.

Exotic Language Features
(heterogeneous

programming paradigms)

Virtualization
(byte code interpretation)

Figure 3.2: Comparing translingual obfuscation and virtualization-based obfusca-
tion.

tend to encode original native machine code with a RISC-like virtual instruction

set and interpret the encoded binary in a decode-dispatch pattern [128, 119, 72],

which has been identified as a notable weakness of security and can be exploited

by various attacks [126, 54, 152]. Translingual obfuscation, however, gets most

of its security strength by intentionally relying on obfuscation-contributing lan-

guage features that comes from a heterogeneous programming model. Essentially,

translingual obfuscation does not have to re-encode the original binary as long as

the foreign language employed supports compilation into native code. Figure 3.2

shows the relationship and key differences between the two methods. Our translin-

gual obfuscation implementation Babel and virtualization-based obfuscation do

not overlap.

Translingual obfuscation can provide benefits that cannot be delivered by any

single obfuscation method developed before, to the best of our knowledge:

25

• Translingual obfuscation provides strong obfuscation strength and more ob-

fuscation variety by introducing a different programming paradigm. If there

exists a universally effective and automated method1 to nullify the obfus-

cation effects, namely the additional program complexity, introduced by a

programming language’s execution model, that would mean it is possible to

significantly simplify the design and implementation of that language, which

is very unlikely for mature languages.

• Translingual obfuscation can be very stealthy, because programming with

multiple languages is a completely legit practice. Compared with virtualization-

based obfuscation which encodes native code into bytecode that has an exotic

encoding format, translingual obfuscation introduces neither abnormal byte

entropy nor deviant instruction distributions.

• Translingual obfuscation is not just a single obfuscation algorithm but a gen-

eral framework. Although we particularly utilizes Prolog in this dissertation,

there are other languages that can be misused for translingual obfuscation.

For example, the New Jersey implementation of ML (SML/NJ) [31] does not

even include a run-time stack. Instead, it allocates all frames and closures

on a garbage-collected heap, potentially making program analysis much more

difficult. Another example is Haskell, a pure functional language featuring

lazy evaluation [90] which can be implemented with a unique execution model

that greatly differs from the traditional imperative computation [100].

All these benefits make us believe that translingual obfuscation could be a new

direction in software protection.

1As mentioned earlier, for every obfuscation method, there exists a program such that a
reverse engineering method, maybe with manual effort, can effectively deobfuscate that particular
obfuscated program.

26

3.2 Threat Model

For attackers who try to reverse engineer a program protected by obfuscation,

we assume that they have full access to the binary form of the program. They

can examine the static form of the binaries with whatever method available to

them. They can also execute the victim binaries in a monitored environment with

arbitrary input, thus can read any data that has lived in the memory.

Do note that although we assume attackers have unlimited access to program

binaries, they should not posses any knowledge about the source code in our threat

model. Assuming attackers can only examine the obfuscated program at the bi-

nary level is important, because that would mean any implementation detail of

the language used in translingual obfuscation contributes to the effectiveness of

obfuscation. As for the particular case of employing Prolog in translingual obfus-

cation, since Prolog is a declarative programming language, there is a much deeper

semantic gap between its source code and binaries, which is highlighted as one of

the major sources of translingual obfuscation’s protection effects.

Finally, we explicitly clarify that in this work, attackers are assumed to try to

reveal the logical structure of the binaries so that they can reproduce the algo-

rithms by themselves. In practice there are different levels of reverse engineering

objectives. Sometimes understanding what a program achieves is sufficient for

attackers to fulfill their goals, but in our case attackers need a more thorough

understanding on the semantics of the victim binaries.

Our threat model may seem too coarsely defined. However, we believe it is

quite realistic, since reverse engineering could be a very ad-hoc process in practice.

Actually, lack of specifications makes it difficult for us to design and evaluate a

new obfuscation technique in a fully comprehensive manner, because we cannot

make further assumptions on the methods or tools that attackers may make use

of.

27

3.3 Misusing Prolog for Obfuscation

In this section we briefly introduce the Prolog programming language and explain

why we can misuse its language features for obfuscation.

3.3.1 Prolog Basics

The basic building blocks of Prolog are terms. Both a Prolog program itself and

the data it manipulates are built from terms. There are three kinds of terms:

constants, variables, and structures. A constant is either a number (integer or real)

or an atom. An atom is a general-purpose name, which is similar to a constant

string entity in other languages. A structure term is of the form f(t1, · · · , tn),

where f is a symbol called a functor and t1, · · · , tn are subterms. The number

of subterms a functor takes is called its arity. It is allowed to use a symbol with

different arities, so the notation ‘f/n’ is used when referring to a structure term

f with n subterms.

Structure terms become clauses when assigned semantics. A clause can be a

fact, a rule, or a query. A predefined clause is a fact if it has an empty body,

otherwise it is a rule. For example, “parent(jack,bill).” is a fact, which

could mean that “jack is a parent of bill.” One the other hand, a rule can be like

the following line of code:

grandparent(G,C):-parent(G,P),parent(P,C).

This rule can be written as the following formula in the first-order logic:

∀G,C, P.grandparent(G,C)← parent(G,P) ∧ parent(P,C)

Clauses with the same name and the same number of arguments define a relation,

namely a predicate. With facts and rules defined, programmers can issue queries,

which are formulas for the Prolog resolution system to solve. In accordance with

28

our previous examples, a query could be grandparent(G,bill) which is basi-

cally asking “who are bill’s grandparents?”

A Prolog program is a set of terms. The Prolog resolution engine maintains an

internal database of terms throughout program execution, trying to resolve queries

with facts and rules by logical inference. Essentially, computation in Prolog is

reduced to a searching problem. This is different from the commonly seen Turing

machine computation model but the theoretical foundation of logic programming

guarantees that Prolog is Turing complete [130].

3.3.2 Obfuscation-Contributing Features

3.3.2.1 Unification

One of the core concepts in automated logic resolution, hence in logic programming,

is unification. Essentially it is a pattern-matching technique. Two first-order terms

t1 and t2 can be unified if there exists a substitution σ making them identical, i.e.,

tσ1 = tσ2 . For example, two terms k(s(g), Y) and k(X, t(k)) are unified when X is

substituted by s(g) and Y is substituted by t(k).

Unification is the basics of computation in Prolog and we explain this with a

straight example. The following clause defines a simple “increment-by-one” pro-

cedure:

inc(Input,Output):-Output is Input+1.

Now for a query inc(1,R), the Prolog resolution engine will first try to unify

inc(1,R) with inc(Input,Output), which means Input should be unified

with 1 and Output should be unified with R. Once this unification succeeds, the

original query is reduced to a subgoal Output is Input+1. Since Input is

now unified with 1, Input+1 is evaluated as 2. Finally Output gets unified with

2 (is/2 is the evaluate-and-unify operator predicate), making R unified with 2 as

well.

29

STR f/4

REF

REF

INT 1

REF

REF

STR g/1

FLT 3.2

Meaning of the tags

REF: reference (variable)

STR: structure

INT: integer

FLT: floating point

Figure 3.3: An example memory representation of term f(X,Y,1,g(3.2)) in
Prolog, where both X and Y are unified with another variable which itself is un-
unified.

To support unification, Prolog implement terms as vertices in directed acyclic

graphs. Each term is represented by a <tag,content> tuple, where tag indi-

cates whether the type of the term and content is either the value of a constant

or the address of the term the variable is unified with. Figure 3.3 is an example

showing how Prolog may represent a term in memory [33].

Unification makes data shapes in Prolog program memory dramatically differ-

ent from C and much more obscure. The graph-like implementation of unification

poses great challenges to binary data shape analyses which aim to recover high-

level data structures from binary program images [81, 71, 121, 55]. Even if some

of the graph structures can be identified, there is still a gap between this low-level

representation and the logical organization of original data, which harshly tests

attackers’ reverse engineering abilities. Unification also complicates data access.

To retrieve the true value of a variable, the Prolog engine has to iterate the entire

unification list. It is well known that static analysis is weak against loops and

indirect memory access. Also, the tags in the term tuples are encoded as bit fields,

meaning that bit-level analysis algorithms are required to reveal the semantics

of a binary compiled from Prolog code. However, achieving bit-level precision is

another great technical challenge for both static and dynamic program analyses,

mainly because of scalability issues [124, 84, 60, 151].

30

int foo(int sel,
int x, int y)

{
int ret;
if(sel==1)
ret=x;

else
ret=y;

return ret;
}

foo(sel,x,y)

if(sel == 1)

ret = x ret = y

return ret

true false

pfoo(Sel,X,Y,R) :-
(Sel =:= 1 ->

R is X);
(R is Y).

pfoo(Sel,X,Y,R) Sel =:= 1

Unification:
R is X

Next Clause

Resolution
Failure Handler

Unification:
R is Y

Fail

true

fail

false

succeed

succeed

fail

Figure 3.4: Different control flows of C and Prolog binaries implementing the same
algorithm, due to different execution models. In the Prolog graph, dashed lines
indicate indirect jumps and arrows with the same pattern indicate feasible paths
through the resolution failure handler. Both control flow graphs are summarized
from post-compilation binaries.

3.3.2.2 Backtracking

Different from Prolog unification which mainly obfuscates program data, the back-

tracking feature obfuscates the control flow. Backtracking is part of the resolution

mechanism in Prolog. As explained earlier, finding a solution for a resolvable for-

mula is essentially searching for a proper unifier, namely a substitution, so that the

substituted formula can be expanded to consist of only facts and other formulas

known to be true. Since there may be more than one solution for a unification

problem instance, it is possible that the resolution process will unify two terms in

the way that it makes resolving the formula later unfeasible. As a consequence,

Prolog needs a mechanism to roll back from an incorrect proof path, which is called

backtracking.

To make backtracking possible, Prolog saves the program state before taking

one of the search branches. This saved state is called a “choice-point” by Prolog

and is similar to the concept of “continuation” in functional programming. When

31

searching along one path fails, the resolution engine will restore the latest choice-

point and continue to search through one of the untried branches.

This search-and-backtrack execution model leads to a totally different control

flow scheme in Prolog programs at the low level, compared to programs in the same

logic written by C. Figure 3.4 is an example where a C function is transformed

into a Prolog clause by our tool Babel (with manual edits to make the code

more readable), along with the program execution flows before and after Babel

transformation. The real control flow of the Prolog version of the function is much

more complicated than presented, and we have greatly simplified the flow chart for

readability. In the Prolog part of Figure 3.4, a choice point is created right after the

execution flow enters the predicate pfoo which is a disjunction of two subclauses.

The Prolog resolution routine will first try to satisfy the first subclause. If it fails,

the engine will backtrack to the last choice-point and try the second subclause.

Due to the complicated backtracking model, a large portion of control flow

transfers in Prolog are indirect. The implementation of backtracking also involves

techniques such as long jump and stack unwinding. Clearly, Prolog has a much

more obscure low-level execution model compared to C, and imperative program-

ming in general, from the perspective of static analysis. Different from some other

control flow obfuscation techniques that inject fake control flows which are never

feasible at run time, Prolog’s backtracking actually happens during program exe-

cution, making translingual obfuscation also resilient to dynamic analysis. Most

importantly, after the C-to-Prolog translation the original C control flows are re-

formed with a completely different programming paradigm, which is fundamentally

different from existing control-flow based obfuscation techniques.

32

3.4 Technical Challenges

To make use of Prolog’s execution model for obfuscating C programs, we need

a translation technique to forge the Prolog counterpart of a C function. At this

point, there are various challenges to resolve.

3.4.1 Control Flow

As an imperative programming language, C provides much flexibility of crafting

program control flows almost with language key words such as continue, break, and

return. Prolog programs, however, have to follow the general evaluation procedure

of logical formulas, which inherently forbids some “fancy” control flows allowed by

C.

3.4.2 Memory Model

In C programming, many low-level details are not opaque to programmers. As

for memory manipulation, C programmers can access almost arbitrary memory

locations via pointers. Prolog lacks the semantics to express direct memory access.

Moreover, the C memory model is closely coupled with other sub-structures of

the language, e.g., the type system. C types are not only logical abstractions

but are also implications on low-level memory layouts of the data. For instance,

logically adjacent elements in a C array and fields in a C struct are also physically

adjacent in memory. Therefore, some logical operations on C data structures can

be implemented as direct memory accesses which are semantically equivalent only

with the C memory modeling. Below is an example.

struct { int a, b; } s[2];

/* Equivalent to s[0].a=s[0].b=s[1].a=0;

* with many compilers and architectures */

33

memset((void*)s, 0, 3*sizeof(int));

Translating the code snippet above into pure Prolog could be difficult because the

translator will have to infer the logic effects of the memset statement.

3.4.3 Type Casting

C type casting is of full flexibility in the sense that a C programmer can cast any

type to any other type, no matter the conversion makes sense or not. This can be

realized by violating the load-store consistency, namely storing a variable of some

type into a memory location and later loading the content of the same chunk of

memory into a variable of another type. The C union type is a high-level support

for type castings that breaks the load-store consistency, but C programmers can

choose to use pointers to directly achieve the same effect. Imitating this type

casting system could be a notable challenge for other languages.

3.5 C-to-Prolog Translation

This section explains how we address the challenges mentioned in the previous

section. Considering the many obstacles for developing a complete translation

from C to Prolog, we do not seek to obtain a pure Prolog version of the original

C program. The section explains how we address the challenges mentioned in the

previous section and how we develop a partial C-to-Prolog translation method,

which is suitable for translingual obfuscation.

3.5.1 Control Flow Regularization

There has been a large amount of research on refining C program control flows,

especially on eliminating goto statements [85, 117, 142]. For now, we consider that

goto elimination is a solved problem and assume the C programs to be protected

34

do not contain goto statements. Given a C function without goto statements,

there are two control flow patterns that cannot be directly adopted by Prolog

programming, i.e., control flow cuts and loops. We call these patterns irregular

control flows.

3.5.1.1 Control Flow Cuts

Control flow cuts refer to the termination of control flows in the middle of a C

function, for example:

int foo (int m, int n) {

if(m)

return n; // Flow of if branch ends

else

n=n+1;

n=n+2;

return n; // Flow of else branch ends

}

The C language grants programmers much freedom in building control flows,

even without using goto statements. In Prolog, however, control flows have to

be routed based on the short-circuit rules in evaluating logical expressions. With

short-circuit effects, parallel statements can be connected by disjunction and se-

quential statements can be connected by conjunction. To show why the control flow

pattern in the C code above cannot be implemented by only adopting short-circuit

rules, consider a C function with body {if(e) {a;} else {b;} c;}. Natu-

rally, it should be translated into a Prolog sentence (((e->a);b),c), where ->

denotes implication, ; denotes disjunction, and , denotes conjunction. However,

this translation is not semantics-preserving when a is a return statement, because

if the clause a is evaluated, at least one of b and c has to be evaluated to decide

the truth of the whole logic formula.

35

We fix control flow cuts by replicating and/or reordering basic blocks syntac-

tically subsequent to the cuts. For example, we rewrite the previously shown C

function into the following structure:

int foo (int m, int n) {

if(m)

return n;

else {

n=n+1;

{ n=n+2; return n; }

}

}

After the revision, the C code is naturally translated into a new Prolog clause

(e->a);(b,c), which is consistent with the original C semantics.

3.5.1.2 Loops

Most loops cannot be directly implemented in Prolog. The fundamental reason is

that Prolog does not allow unifying a variable more than once. We can address

this problem by transforming loops into recursive functions, but in-loop irregular

control flows complicates the situation. The irregularity comes from the use of

keywords “continue” and “return.” A continue statement cuts the control flow

in the middle of a loop, bringing up a problem similar to the aforementioned

asymmetric returns in functions. As such, irregular control flows resulting from

continue statements can be regularized in the same way, i.e., replicating and/or

reordering basic blocks syntactically subsequent to continue statements.

Like a continue statement, a return statement also cuts the control flow in a

loop, but its impact reaches outside because it cuts the control flow of the function

enclosing the loop. Hence, a recursive Prolog predicate transformed from a loop

36

needs an extra argument to carry a flag indicating whether an in-loop return has

occurred.

3.5.2 C Memory Model Simulation

As stated in Chapter 3.4, the C memory model is closely coupled with other parts

of the language and it is hard to separate them. However, translingual obfusca-

tion keeps the original C memory model, making preserving semantic equivalence

much easier. In our design, the Prolog runtime is embedded in the C execution

environment, so it is possible for Prolog code to directly operate memories within

a program’s address space.

The way we handle C memory simulation illustrates the advantage of develop-

ing language translations for obfuscation purposes. Unlike tools seeking complete

translation from C to other languages, translingual obfuscation does not have to

mimic C memory completely with target language features (e.g., converting C

pointers to Java references [57]), meaning we can reduce translation complexity

and circumvent various limitations. That being said, partially imitating the C

memory model in Prolog is still a non-trivial task.

3.5.2.1 Supporting C Memory-Access Operators

The fist step to simulating the C memory model is to support pointer operations.

We introduce the following new clauses into our target Prolog language:

rdPtrInt(+Ptr, +Size, -Content)

wrPtrInt(+Ptr, +Size, +Content)

rdPtrFloat(+Ptr, +Size, -Content)

wrPtrFloat(+Ptr, +Size, +Content)

These clauses are implemented in C. rdPtrInt/3 and rdPtrFloat/3 allow

us to load the content of a memory cell (address and size indicated by Ptr and

37

Size, respectively) into a Prolog variable Content. Similarly, wrPtrInt/3 and

wrPtrFloat/3 can write the content of a Prolog variable into a memory cell.

These four clauses simulate the behaviors of the “pointer dereference” operator

(*) in C.

In addition to read-from-pointer and write-to-pointer operations, C also has the

“address-of” operator which takes an lvalue, i.e., an expression that is allocated

a storage location, as the operand and returns its associated storage location,

namely address. There is no need to explicitly support this operator in Prolog

because the address of any lvalue in C has a static representation which is known

by the compiler.2 We can obtain the results of “address-of” operations in the C

environment and pass those values into the Prolog environment as arguments.

We also handle several C syntax sugers related to memory access: “subscript”

([]) and “field-of” (. and ->). We convert these operators into equivalent combi-

nations of pointer arithmetic and dereference so that we do not need to coin their

counterparts in Prolog. This conversion requires assumptions on compiler imple-

mentation and target architecture to calculate type sizes and field displacements.

3.5.2.2 Maintaining Consistency

It is a natural scheme that a C-to-Prolog translation maps every C variable to

a corresponding Prolog variable. Prolog does not allow variable update, but we

can overcome this restriction by transforming C code into a form close to static

single assignment (SSA), in which variables are only initialized at one program

location and never updated. In the strict SSA form, variables can only be statically

initialized once even if the scopes are disjoint. Prolog does not require this because

the language checks re-unification at run time, meaning variables can be updated

2For example, a local variable is usually allocated on the stack and the compiler will have
a static expression of its address. On x86, the expression is likely to be $offset(%ebp) or
$offset(%esp), where $offset is a constant. Compilers can also decide how to statically
represent the addresses of global variables.

38

a=0;
p=&a;// p points to a
a=1; // a gets 1
b=*p;// b gets a(1)

c=0;
p=&c;
c=1; // c gets 1

*p=3;// c gets 3
d=c; // d gets c(3)

(a) Original

a1=0;
p1=&a1;// p1 points to a1
a2=1; // a2 gets 1
b1=*p1;// b1 gets a1(0)

c1=0;
p2=&c1;// p2 points to c1
c2=1; // c2 gets 1

*p2=3; // c1 gets 3
d1=c2; // d1 gets c2(1)

(b) Renamed

Figure 3.5: Memory operations affecting the correctness of C source code SSA
renaming.

in exclusively executed parts of the program, e.g., the “then” and “else” branches

of the same if statement. Therefore, we do not need to implement the φ function

in our SSA transformation.

The SSA transformation can be implemented by renaming variables. The chal-

lenging part is that simply renaming variables in the original C code could break

program semantics because of side effects caused by memory operations, i.e., vari-

able contents can be accessed without referring to variable names. This is the

consistency problem we have discussed earlier. Figure 3.5 shows an instance of the

problem.

To address this issue, we keep the addresses of local variables and parameters if

they are possibly accessed via pointers. Then we flush variable contents back to the

memory before a read-from-pointer operation and reload variable contents from the

memory after a write-to-pointer operation. Inter-procedural pointer dereferences

are also taken into account. When callee functions accept pointers as arguments,

we do variable flush before function calls and do variable reload after. The flush

makes sure that changes made by Prolog code are committed to the underlying

C memory before they are read again. Similarly, the reload assures that values

39

a=0;
p=&a;
a=1;

b=*p;

c=0;
p=&c;
c=1;

*p=3;

d=c;

(a) Original

pa=&a;
pc=&c;

a=0;
p=&a;
a=1;

*pa=a;// Flush
b=*p;

c=0;
p=&c;
c=1;

*p=3;
c=*pc;// Reload
d=c;

(b) With flush and reload

pa=&a1;// const pointer
pc=&c1;// const pointer

a1=0;
p1=&a1;
a2=1; // a2 gets 1

*pa=a2;// a1 gets a2(1)
b1=*p1;// b1 gets a1(1)

c1=0;
p2=&c1;
c2=1;

*p2=3; // c1 gets 3
c3=*pc;// c3 gets c1(3)
d1=c3; // d1 gets c3(3)

(c) Renamed

Figure 3.6: Semantic-preserving SSA renaming on C source code with the presence
of pointer operations.

unified with Prolog logical variables are always consistent with the content in C

memory. We perform a sound points-to analysis to compute the set of variables

that need to be reloaded or flushed at each program point. After inserting the flush

and reload operations, the SSA variable renaming no longer breaks the original

program semantics. Figure 3.6 illustrates our solution based on the example in

Figure 3.5.

3.5.3 Supporting Other C Features

3.5.3.1 Struct, Union, and Array

In Chapter 3.4, we showed that C data types like struct and array can be manip-

ulated via memory access. Since we have already built support for the C memory

model in Prolog, the original challenge now becomes a shortcut to supporting C

struct, union, and array. We simply transform the original C code and implement

all operations on structs, unions, and arrays through pointers. After this transfor-

40

mation the primitive data types provided by Prolog are enough to represent any

C data structure.

3.5.3.2 Type Casting

With our C memory simulation method, supporting type castings performed via

pointers does not require additional effort, even if they may violate the load-store

consistency. As for explicit castings, e.g., from integers to floating points, we utilize

the built-in Prolog type casting clauses like float/1.

3.5.3.3 External and Indirect Function Call

Since the source code of library functions is usually unavailable, translating them

into Prolog is not an option. In general, translations of translingual obfuscation can

support external subroutine invocation with the help of foreign language interfaces.

As for C+Prolog obfuscation, most Prolog implementations provide the interface

for calling C functions from a Prolog context. The same interface can also be used

to invoke functions via pointers.

3.5.4 Obfuscating Translation

Our translation scheme fully exploits the obfuscation-contributing features intro-

duced in Chapter 3.3.2, generally because:

• The conversion from C data structures to Prolog data structures happens by

default, and every C assignment is translated to Prolog unification.

• Intra-procedural control-flow transfers originally coded in C are now imple-

mented by Prolog’s backtracking mechanism. This significantly complicates

the low-level logic of the resulting binaries.

Especially, we would like to highlight the method we use to support the C

memory model in Prolog. At the high level, the original C memory layout is kept

41

after the translation. However, the behavior of the C-part memory becomes much

different from the original program. To maintain the consistency between the C-

side memory and Prolog-side memory, we introduce the flush-reload method which

disturbs the sequence of memory access. In this way, the memory footprint of the

obfuscated program is no longer what it was during program execution.

We believe our translation method is one of the factors that make translingual

obfuscation resilient to both semantics-based and syntax-based binary diffing, as

will be shown in Chapter 3.7.2.

3.6 Implementation

Babel is our translingual obfuscation prototype. The workflow of Babel has

three steps: C code preprocessing, C-to-Prolog translation, and C+Prolog com-

pilation. The preprocessing step reforms the original C source code so that the

processed program becomes suitable for line-by-line translation to Prolog. The

second step translates C functions to Prolog predicates. In the last step, Babel

combines C and Prolog code together with a carefully designed interface.

We choose GNU Prolog [58] as the Prolog implementation to employ in Babel.

Like many other Prolog systems, GNU Prolog compiles Prolog source into the

“standard” Warren Abstract Machine (WAM) [141] instructions. What is desirable

to us is that GNU Prolog can further compile WAM code into native code. This

feature makes Babel more distinguishable from virtualization-based obfuscation

tools which compile the original program to bytecode and execute it with a custom

virtual machine.

42

3.6.1 Preprocessing and Translating C to Prolog

Before actually translating C to Prolog, we need to preprocess the C code first.

The preprocessing includes the following steps, which is done with the help of the

CIL library [110].

1. Simplify C code into the three-address form without switch statements and

ternary conditional expressions.

2. Convert loops to tail-recursive functions.

3. Eliminate control flow cuts.

4. Transform operations on global, struct, union, and array variables into pointer

operations.

5. Perform variable flush and reload whenever necessary.

6. Eliminate all memory operators except pointer dereferences.

7. Rename variables so that the C code is in a form close to SSA.

After preprocessing, we can translate C to Prolog line by line. The translation

rules are listed in Figure 3.7. Note that by the time we start translating C to

Prolog, the preprocessed C code does not contain any switch and loop statements,

because they are transformed into either nested if statements or recursive functions.

As discussed in Chapter 3.5.1, we do not consider goto statements.

We take translating arithmetic and logical expressions as a trivial task, but

that leads to a limitation in our translation. Due to the fact that Prolog does

not subdivide integer types, integer arithmetics in Prolog are not equivalent to

their C counterparts. For example, given two C variables x and y of type int

(4 bytes long) and their addition x+y, the equivalent expression in Prolog should

be (X+Y)/\0xffffffff, assuming that X and Y are the corresponding logical

variables of x and y. Therefore, if a C program intentionally relies on integer

43

(foo=e;)T → (Pfoo is eT)
(p2=p1+intVal;)T → (σ(p2) is σ(p1)+SizeOf(*p1)*σ(intVal))
(foo=*p;)

T → rdPtr(σ(foo),SizeOf(*p),σ(p))
(*p=foo;)

T → wrPtr(σ(p),SizeOf(*p),σ(foo))
({})T → (true)
({s1 · · · sn})T → (sT1 , · · ·, sTn)
(if (e) {bthen} else {belse})T → (eT ,{bthen}T ;{belse}T)
(ret=fun(a1, · · ·,an);)T → pred(σ(a1),· · ·,σ(an),σ(ret))
(ret=funptr(a1,· · ·,an);)T → predInd(σ(funptr),σ(a1),· · ·,σ(an),σ(ret))
(return e;)T → (R is eT)
(fun(T1 a1,· · ·,Tn an){bbody})T → pred(σ(a1),· · ·,σ(an)):-bTbody.

Figure 3.7: Definition of T , Babel’s C-to-Prolog translation. e, s, b, and T
denote C expressions, statements, blocks, and types, respectively. σ is the bijective
mapping from C identifiers to corresponding Prolog identifiers. R denotes the
Prolog identifier used to hold the returned value in the translated predicate. pred
can be either a real Prolog predicate or a wrapper of a foreign C function, depending
on whether the target function is translated or not. predInd is a wrapper for a
special foreign C function which further calls into funptr with given arguments.

overflows or underflows, there is a chance that our translation will fail. However,

fully emulating C semantics incurs significant performance penalty.

Previous work on translating C to other languages faces the same issue, and

many of them chose to ignore it [41, 102, 132]. The C-to-JavaScript converter

Emscripten provides the option to fully emulate the C semantics [154]. It also has

a set of optional heuristics to infer program points where full emulation is necessary,

but that method is not guaranteed to work correctly. We do not particularly take

this issue into account when implementing Babel. However, we expect Babel’s

translation to have a low failure chance thanks to the employment of write-to-

pointer operations in Prolog and the variable flush-reload method. Since the write-

to-pointer operation specifies data sizes, the truncation automatically takes place

whenever an integer variable is flushed and reloaded. In GNU Prolog on 64-

bit platforms, all integers are represented by 61-bit two’s complement (3 bits are

occupied by a WAM tag), which is large enough to hold most practical integer and

pointer3 values.

3Most 64-bit CPUs only implement a 48-bit virtual address space.

44

int main() {
...

}

int bar() {
...
x = foo(a);
...
y = foo(b);
...

}

int foo
(int arg) {
s1;
s2;
...
sn;
return ret;

}

Function To

Be Obfuscated

Original C Code

Obfuscated Code (C + Prolog)

int main() {
...

}

int bar() {
...
x = foo(a);
...
y = foo(b);
...

}

int foo(int arg) {
Declare C Local Variables;
Initialize Prolog Arguments;
Start Prolog Query (foo babel);

Read Prolog Return Value;

return ret;
}

foo_babel(Ret, Arg)
:- p1,

p2,
...,
pn.

C-to-Prolog Wrapper

Prolog Predicate

(translated from

the original foo)

Figure 3.8: The context for executing obfuscated code in Babel.

3.6.2 Combining C and Prolog

Babel combines the C and Prolog runtime environments together, and the pro-

gram starts from executing C code. When the execution encounters an obfuscated

function (which is now a wrapper for initiating queries to the corresponding Pro-

log predicate), it setups a context prior to evaluating the Prolog predicate. In the

setup process the wrapper allocates local variables whose addresses are referred

to in the preprocessed C function. The wrapper then passes the addresses along

with function arguments to the Prolog predicate through the C-to-Prolog inter-

face provided by GNU Prolog. Figure 3.8 illustrates how the two languages are

combined.

45

3.6.3 Customizing Prolog Engine

Although GNU Prolog has some nice features that make it a mostly adequate

candidate for implementing Babel, it still does not fully satisfy our requirements,

thus requiring some customization. A notable issue about GNU Prolog is that its

interface for calling Prolog from C is not reentrant. This is critical because by

design, users of Babel can freely choose the functions they want to obfuscate. To

support this, it is in general not possible to avoid stack traces that interleave C

and Prolog subroutines. We found that the non-reentrant issue results from the

use of a global WAM state across the whole GNU Prolog engine. We fixed it by

maintaining a stack to save the WAM state before a new C-to-Prolog interface

invocation and restore the state after the call is finished.

Another issue is that GNU Prolog does not implement garbage collection; there-

fore memory consumption can easily explode. This problem is not as severe as it

looks because we do not have to maintain a heap for Prolog runtime throughout

the lifetime of the program. Because we know that the life cycles of all Prolog

variables are bounded by the scope of predicates, we can safely empty the Prolog

heap when there are no pending Prolog subroutines during the execution. Since

GNU Prolog implements the heap as a large global array and indicates heap usage

with a heap-top pointer, we can empty the heap by simply resetting the heap-top

pointer to the starting point of the heap array, which is very efficient.

3.7 Evaluation

Collberg et al. [52] proposed to evaluate an obfuscation technique with respect

to four dimensions: potency, resilience, cost, and stealth. Potency measures how

obscure and complex the program has become after being obfuscated. Resilience

indicates how well programs obfuscated by Babel can withstand reverse engi-

neering effort, especially automated deobfuscation. Cost measures the execution

46

overhead imposed by obfuscation. Stealth measures the difficulty in detecting the

existence of obfuscation, given the obfuscated binaries. We evaluate Babel and

observe to what extent it meets these four criteria.

To show that our tool can effectively protect real-world software of different

categories, we apply Babel to six open source C programs that have been widely

deployed for years or even decades. Among the six programs, four are CPU-

bound applications and the other two are IO-bound servers. The CPU-bound

applications include algebraic transformation (bzip2), integer computation (mcf),

state machine (regexp), and floating-point computation (svm light). The two IO-

bound servers cover two of the most popular network protocols, i.e., FTP (oftpd)

and HTTP (mongoose). We believe that our selection is a representative evaluation

set covering a wide range of real-world software. Table 3.1 presents the details of

these programs.4

We define the term obfuscation level as the percentage of functions obfuscated

in a C program. For example, an obfuscated bzip2 instance at the 20% obfuscation

level is a bzip2 binary compiled from source code consisting of 80% of the original

functions in C and Prolog predicates translated from the other 20% C functions by

Babel. We achieve all obfuscation levels by randomly selecting candidates from

all functions that can be obfuscated by Babel, but note that this random selection

scheme is just for avoiding subjective picking in our research. In practice, Babel

users should decide which functions are critical and in need of protection. This is

the same as popular commercial virtualization-based obfuscation tools [7, 28].

In the evaluation, we compare Babel with one of the most popular commer-

cial obfuscators, Code Virtualizer (CV) [7], which is virtualization based and has

4We notice that some previous work [45] on obfuscation employed the SPEC benchmarks or
GNU Coreutils, which are also widely used in other research, for evaluation. Unfortunately, these
two software suites use very complicated build infrastructures. Since Babel needs to compile
C and Prolog together, a specialized build procedure is required. Currently our prototypical
implementation of Babel cannot automatically hook an existing build system, so we are not
able to include SPEC or GNU Coreutils into our evaluation.

47

Table 3.1: Programs used for Babel evaluation.

Program Description LoC # of Func.
bzip2 Data compressor 8,117 108
mcf Vehicle scheduler 2,685 25
regexp Regular expression engine 1,391 22
svm light Support vector machine 7,101 103
oftpd Anonymous FTP server 5,211 96
mongoose Light-weight HTTP server 5,711 203

Table 3.2: Program complexity before and after Babel obfuscation at 30% obfus-
cation level

Program
of Call Graph Edges # of CFG Edges # of Basic Blocks Cyclomatic Number Knot Count

Original Babel Ratio Original Babel Ratio Original Babel Ratio Original Babel Ratio Original Babel Ratio
bzip2 353 5964 16.9 5382 19771 3.7 3528 17078 4.8 1856 2695 1.5 3120 12396 4.0
mcf 78 5449 69.9 854 14233 16.7 583 13086 22.4 273 1149 4.2 153 8792 57.5
regexp 72 5276 73.3 855 13290 15.5 591 11802 20.0 266 1490 5.6 1135 9530 8.4
svm 511 6739 13.2 5375 20752 3.9 3545 18533 5.2 1832 2221 1.2 2972 11521 3.9
oftpd 455 5810 12.8 2035 15501 7.6 1667 14422 8.7 370 1081 2.9 1277 9911 7.8
mongoose 1027 6762 6.6 2788 17115 6.1 2086 16079 7.7 704 1038 1.5 493 9491 19.3

Geom.Mean. 279.2 5972.7 21.4 2220.4 16555.5 7.5 1570.2 14987.8 9.5 633.0 1502.4 2.4 1002.3 10199.1 10.2

been on the market since 2006. The comparison covers all the four dimensions

of evaluation, but some of the evaluation methodologies we designed for Babel

may not be suitable for evaluating Code Virtualizer. For those evaluations that

we consider not suitable for CV, we will explain the reasons and readers should be

cautious in interpreting the data.

3.7.1 Potency

We use two groups of static metrics to show how much complexity Babel has

injected into the obfuscated programs. The first group consists of basic statistics

about the call graph and control-flow graph (CFG), including the number of edges

in both graphs and the number of basic blocks. These metrics have been used to

evaluate obfuscation techniques in related work [45].

In addition to basic statistics, we also calculate two metrics used to quantify

program complexity, proposed by historical software engineering research. The

measures are the cyclomatic number [103] and the knot count [143]. Both metrics

reflect Gilb’s statement that logic complexity is a measure of the degree of decision

48

Table 3.3: Program complexity before and after Code Virtualizer (CV) obfuscation
at 30% obfuscation level

Program
of Call Graph Edges # of CFG Edges # of Basic Blocks Cyclomatic Number Knot Count
Original CV Ratio Original CV Ratio Original CV Ratio Original CV Ratio Original CV Ratio

bzip2 353 261 0.7 5382 3868 0.7 3528 2826 0.8 1856 1044 0.6 3120 713 0.2
mcf 78 34 0.4 854 461 0.5 583 329 0.6 273 134 0.5 153 68 0.4
regexp 72 66 0.9 855 525 0.6 591 377 0.6 266 150 0.6 1135 603 0.5
svm 511 357 0.7 5375 3267 0.6 3545 2358 0.7 1832 911 0.5 2972 302 0.1
oftpd 455 390 0.9 2035 1727 0.8 1667 1435 0.9 370 294 0.8 1277 542 0.4
mongoose 1027 585 0.6 2788 2063 0.7 2086 1638 0.8 704 427 0.6 493 442 0.9

Geom.Mean. 279.2 190.4 0.7 2220.4 1489.0 0.6 1570.2 1117.0 0.7 633.0 365.9 0.6 1002.3 358.3 0.3

making within a system [74]. They also have been considered for evaluating obfus-

cation effects [52]. The cyclomatic number is defined as e−n+2 where e and n are

the numbers of edges and vertices in the CFG. Intuitively, the cyclomatic number

represents the amount of decision points in a program [53]. The knot count is the

amount of edge crossings in the CFG when all nodes are placed linearly and all

edges are drawn on the same side.

Table 3.2 shows the comparison between binaries with and without Babel ob-

fuscation on the complexity measures we have chosen, at the obfuscation level of

30%. Readers can refer to Appendix for potency evaluation data at other obfusca-

tion levels, i.e., from 10% to 50%. To be conservative, by the time of measurement

we have stripped the code belonging to GNU Prolog runtime itself, so the extra

complexity (if there is any) should be purely credited to Babel’s obfuscation. We

use IDA Pro [15], an advanced commercial reverse engineering tool, to disassemble

the binary and generate call graphs and control-flow graphs. As can be seen, the

obfuscated binaries have a significant advantage on all metrics. The geometric

mean of all six programs shows that Babel can vastly increase program complex-

ity. Note that different from static complexity produced by obfuscation methods

using opaque predicates, the additional control-flow branches injected by Babel

are “real” in the sense that all branches can be feasible at run time.

Our potency evaluation is not an ideal methodology for measuring the same

aspect of Code Virtualizer. The reason is that Code Virtualizer transforms binary

instructions into bytecode and the reverse engineering tool we use, i.e., IDA Pro,

49

is incapable of handling this situation. Table 3.3 shows the complexity of binaries

with and without Code Virtualizer obfuscation, obtained in the same way as Ta-

ble 3.2. The data suggests that after Code Virtualizer is applied, the complexity

of the protected binaries has a notable decrease compared to the original ones.

In reality, this is a consequence of the aforementioned issue. Because IDA Pro

is unable to analyze the re-encoded functions, the potency evaluation inevitably

misses a significant portion of the complexity.

3.7.2 Resilience

In general, the resilience of an obfuscation technique is hard to assess because

reverse engineering can be a very ad-hoc process. On the other hand, very few

practical deobfuscation tools are publicly available to the community. Because of

these difficulties, some previous work on software obfuscation failed to evaluate

resilience properly. In our evaluation, we choose binary diffing to assess Babel’s

resilience after intensive investigation, although it does not mean binary diffing is

the only deobfuscation technique.

Binary diffing is a commonly used reverse engineering technique which calcu-

lates the similarity between two binaries. We consider binary diffing a deobfusca-

tion technique because it reveals the connection from an obfuscated program to

its original version. Given a program binary and its obfuscated version, if a binary

diffing tool reports high similarity score for the comparison (ignoring potential false

positives), then in some sense the differ has successfully undone the obfuscation

effect, Most historical work on deobfuscation known to us uses similarity-based

metrics to evaluate the effectiveness of their techniques [126, 54, 152]. Deciding

the similarity of untrusted programs, especially binaries, has been such an im-

portant topic in computer security that DARPA has initiated the four year, $43

million Cyber Genome Program to support related research [9].

50

Binary similarity can be calculated based on either syntax or semantics. The

syntax mostly refers to the control flows of the binary and syntax-based binary

diffing usually takes a graph-theoretic approach which compares the call graphs

of two binaries and further the control flow graphs of pairs of functions between

two binaries, looking for any graph or subgraph isomorphism. The intuition is, if

two binaries have similar call graphs, the functions located at corresponding nodes

in the call graph isomorphism are likely to be similar ones; if two functions have

similar control flows, they are likely to implement the same computation logic.

On the other hand, semantics-based binary diffing focuses more on the ob-

servable behavior of the binaries. There are various ways to describe program

behavior, e.g., the post- or pre-condition of a given chunk of code and certain ef-

fects the code commits such as system calls. If two binaries have matched behavior,

a semantics-based binary diffing tool will consider them similar.

In general, syntax-based similarity is less strict than semantics-based similarity.

Relatively, syntax-based differs tend to report more false positives while semantics-

based differs tend to get more false negatives. To avoid bias as much as possible

in the evaluation, we pick binary differs of both kinds to test Babel’s resilience

to reverse engineering. We employ CoP [97] and BinDiff [4], of which CoP is a

semantics-based binary differ and BinDiff is syntax based [63, 131]. To measure

Babel’s resilience to a differ, we randomly pick 50% functions from each program

in Table 3.1, obfuscate them with Babel, and then launch the differs to calculate

the similarity between the original and obfuscated functions.

3.7.2.1 Resilience to Semantics-Based Binary Diffing

CoP, a “semantics-based obfuscation-resilient” binary similarity detector [97], is

currently one of the state-of-the-art semantics-based binary diffing tools. The

detection algorithm of CoP is founded on the concept of “longest common subse-

quence of semantically equivalent basic blocks.” By constructing symbolic formu-

51

las to describe the input-output relations of basic blocks, CoP checks the semantic

equivalence of two basic blocks with a theorem prover. It is reported that this new

binary diffing technique can defeat many traditional obfuscation methods. CoP

is built upon several cutting-edge techniques in the field of reverse engineering,

including the binary analysis toolkit BAP [39] and the constraint solver STP [68].

CoP defines the similarity score as the number of matched basic blocks divided by

the count of all basic blocks in the original function.

Figure 3.9 is the box plot showing the distribution of similarity scores. For

all programs, the third quartile of the scores is below 20%. Considering that

the original paper of CoP reports over 70% similarity in most of their tests on

transformed or obfuscated programs, the scores calculated from Babel-obfuscated

functions are not convincing evidence of similarity. One may notice that there are

a few outliers in Figure 3.9, i.e., the similarity scores for some functions can reach

100%. These functions are all “simple” ones, namely they have only one basic

block and very few lines of C code. With the presence of false positives, it is

very likely that the binary differ can report 100% similarity for these functions,

according to CoP’s similarity score definition.

3.7.2.2 Resilience to Syntax-Based Binary Diffing

BinDiff is a proprietary syntax-based binary diffing tool which is the de facto in-

dustrial standard with wide availability. It has motivated the creation of several

academia-developed binary differs such as BinHunt [69] and its successor iBin-

Hunt [104].

Given two binaries, BinDiff will give a list of function pairs that are considered

similar based on a set of different algorithms. In addition to the similarity level like

CoP reports, BinDiff also reports its “confidence” on the results, based on which

algorithm is used to get that score. It is not completely clear to us how each of

BinDiff’s algorithms works and how BinDiff ranks the confidence level. Therefore,

52

 0

 20

 40

 60

 80

 100

bzip2 mcf regexp svm_light oftpd mongoose

S
im

ila
rit

y
S

co
re

 (
%

)

Figure 3.9: Distributions of similarity scores between the original and Babel-
obfuscated functions in the evaluated programs.

we report how many obfuscated functions are correctly matched to their originals

by BinDiff regardless of the similarity score and the confidence. This makes sure

Babel does not take any unfair advantage over its opponent in the evaluation of

performance. In other words, the results reported here indicate a lower bound of

Babel’s resilience to syntax-based binary diffing.

Table 3.4 shows how many obfuscated functions in each program are matched

(although some of them get low similarity scores or confidence). Since BinDiff can

match functions solely based on their coordinates in the call graphs, two func-

tions can be matched even if they have totally different semantics. This explains

why BinDiff can achieve a relatively high matching rate for mongoose, because

mongoose has the largest number of functions and potentially has a more iconic

call graph. Nevertheless, only 26.22% of the obfuscated functions are matched by

BinDiff over all six programs. Note that matching does not yet imply success-

53

Table 3.4: Function matching result from BinDiff on Babel-obfuscated programs

Program # of Obfuscated # of Matched Match Rate
bzip2 54 6 11.11%
mcf 13 7 53.85%
regexp 11 3 27.27%
svm light 52 10 19.23%
oftpd 48 4 8.33%
mongoose 102 39 38.24%

Overall 280 69 24.64%

Table 3.5: Function matching result from BinDiff on CV-obfuscated programs

Program # of Obfuscated # of Matched Match Rate
bzip2 54 7 12.96%
mcf 13 4 30.77%
regexp 11 0 0.00%
svm light 52 1 1.92%
oftpd 48 2 4.17%
mongoose 102 11 10.78%

Overall 280 25 8.93%

ful deobfuscation or recovery of program logic, especially for syntax-based binary

differs. In that sense, we believe Babel’s performance is satisfying.

3.7.2.3 Comparing Babel with Code Virtualizer

We present Code Virtualizer’s resilience to CoP and BinDiff in Figure 3.10 and

Table 3.5, respectively. The data are obtained in experiments of which the set-

tings are consistent with the resilience evaluation on Babel. Based on the data,

it seems that Code Virtualizer is more resilient to CoP and BinDiff than Babel.

However, as aforementioned in the potency evaluation, reverse engineering bina-

ries protected by virtualization-based obfuscators like Code Virtualizer requires

specialized approaches. Since neither CoP nor BinDiff is made aware of the fact

that the obfuscated parts of the binaries have been transformed from code to data,

their poor performance is not a surprising result. After all, a major weakness of

virtualization-based obfuscation is that although the original program may be well

54

 0

 20

 40

 60

 80

 100

bzip2 mcf regexp svm_light oftpd mongoose

S
im

ila
rit

y
S

co
re

 (
%

)

Figure 3.10: Distributions of similarity scores between the original and CV-
obfuscated functions in the evaluated programs.

obfuscated, the virtual machine itself is still exposed to attacks. By reverse engi-

neering the logic of the virtual machine and revealing the encoding format of the

bytecode, attackers can effectively deobfuscate the protected binaries [126, 152].

3.7.3 Cost

We measure execution slowdown introduced by Babel from the obfuscation level

of 10% to 50%. We use the test cases shipped with the obfuscated software as

the performance test input for CPU-bound applications. For FTP server oftpd,

we transfer 10 files ranging from 1KB to 128MB. For HTTP server mongoose, we

sequentially send 100 quests for a 2.5KB HTML page. We conduct the experiments

on a desktop with Xeon E5-1607 3.00GHz CPU and 4GB memory running 64-bit

Ubuntu 12.04 LTS, over a 1Gbps Ethernet link. We run each test 10 times and

report the average slowdown. For servers, time spent on network communication

is included by our measurement.

55

Table 3.6: Time overhead introduced by Babel and Code Virtualizer (CV)

Program
10% obfuscated 20% obfuscated 30% obfuscated 40% obfuscated 50% obfuscated

Coverage
Slowdown

Coverage
Slowdown

Coverage
Slowdown

Coverage
Slowdown

Coverage
Slowdown

Babel CV Babel CV Babel CV Babel CV Babel CV
bzip2 0.00% 1.5 1.9 0.00% 1.5 1.9 27.78% 8.0 × 33.34% 100.9 × 33.34% 105.8 ×
mcf 0.66% 1.0 12.0 4.30% 6.9 52.4 15.54% 65.8 × 69.33% 135.9 × 83.33% 169.3 ×
regexp 18.33% 138.5 660.9 19.74% 173.8 834.8 19.74% 198.7 1122.2 28.91% 285.9 × 28.91% 288.8 ×
svm light 13.33% 1.0 58.0 20.00% 4.0 × 26.67% 4.1 × 26.67% 4.1 × 33.33% 11.8 ×
oftpd - 1.0 1.0 - 1.1 1.1 - 1.1 1.1 - 1.1 × - 1.1 ×
mongoose - 1.0 1.4 - 1.2 8.8 - 1.6 9.3 - 1.7 × - 2.1 ×

Coverage denotes the percentage of CPU time taken by the obfuscated functions in the execution of the original

programs (not available for IO-bound servers). The percentage is a lower bound because some functions may be

inlined into others. × indicates that the corresponding test failed due to program crash or incorrect output.

Unlike potency and resilience, we can easily conduct a fair comparison between

Babel and Code Virtualizer on execution overhead. In the comparison, we con-

figure Code Virtualizer to minimize obfuscation strength and maximize execution

speed. The implication of our comparison setting is that, if Babel can achieve

comparable or better performance than a mature commercial product, the run-

time overhead introduced by Babel should be acceptable for practical use. To

show that the functions we obfuscate are non-trivial, we use gprof to get their

performance coverage, i.e., the percentage of CPU time taken by the obfuscated

functions in the execution of the original programs. Note that the percentage we

obtain is just a lower bound because some functions may be inlined and gprof

will contribute their execution time to other functions. We are only able to get

the coverage data for the four CPU-bound applications, because the CPU time

spent by the two original server programs is too short for meaningful profiling.

Profiling server programs usually requires dedicated profilers and we are unaware

of the existence of such tools for the two server programs we picked.

Table 3.6 gives the experiment results, showing that Babel outperforms Code

Virtualizer in most of the cases we tested. In particular, Babel’s obfuscation is

more reliable in the sense that the obfuscated programs exit normally and give

correct output on test input, while Code Virtualizer fails to provide reliable obfus-

cation on most of the tested programs when obfuscation level reaches 40%. Both

Babel and Code Virtualizer impose considerably high performance overhead after

56

 0.01

 0.1

 1

 10

 100

add
and

call
cm

ov

cm
p
div

jm
p
jm

p.cond

lea
leave

m
ov
m

ul
neg

nop
not

or pop
push

rep
ret

set
shift

sse
sub

test
xchg

xor

P
e
rc

e
n
ta

g
e
 o

f
In

st
ru

ct
io

n
s

(L
o
g

 S
ca

le
)

SPECint2006
Babel

Figure 3.11: Instruction distributions of SPECint2006 programs (mean and stan-
dard deviation) and Babel-obfuscated integer programs.

the obfuscation level reaches 30%, for many of the CPU-bound applications. This

is expected, because in general such heavy-weight obfuscation methods should be

avoided when protecting program hot spots [22]. In the evaluation, the coverage

of many applications exceeds 30% after the obfuscation level reaches 50%, which

is rarely the case if Babel and Code Virtualizer are to be deployed in practice.

Regardless, the key point of this evaluation is to demonstrate that Babel’s per-

formance cost is lower than a industry-quality obfuscator which shares certain

similarity with Babel.

3.7.4 Stealth

By evaluating stealth we investigate whether Babel introduces abnormal statisti-

cal characteristics to the obfuscated code. In stealth evaluation, we pick the 30%

obfuscation level.

Some previous work measures obfuscation stealth by the byte entropy of pro-

gram binaries [145], for byte entropy has been used to detect packed and encrypted

binaries [98]. Since Babel does not re-encode original binary code, possessing nor-

57

 0.01

 0.1

 1

 10

 100

add
and

call
cm

ov

cm
p
div

jm
p
jm

p.cond

lea
leave

m
ov
m

ul
neg

nop
not

or pop
push

rep
ret

set
shift

sse
sub

test
xchg

xor

P
e
rc

e
n
ta

g
e
 o

f
In

st
ru

ct
io

n
s

(L
o
g

 S
ca

le
)

SPECint2006
Code Virtualizer

Figure 3.12: Instruction distributions of SPECint2006 programs (mean and stan-
dard deviation) and CV-obfuscated programs

mal byte entropy may not be a strong evidence of stealth. Therefore, we employ

another statistical feature, the distribution of instructions, to evaluate Babel.

This metric has also been employed by previous work [116, 45]. To tell whether

Babel-obfuscated programs have abnormal instruction distributions, we need to

compare them with normal programs. Since the scale of programs used in our

evaluation is relatively small, we select the SPEC2006 benchmarks as the repre-

sentatives of normal programs. We group common x86 instructions into 27 classes

and calculate the means and standard deviations of percentages for each group

within SPEC2006 programs. Since integer programs and floating-point programs

have different distributions, we only compare bzip2, mcf, regexp, oftpd, and mon-

goose with SPECint2006.

Figure 3.11 presents the comparisons for integer programs. For the majority of

instruction groups, their distributions in Babel-obfuscated programs fall into the

interval of normal means minus/plus normal standard deviations. There are some

exceptions such as mov, call, ret, cmp, and xchg. However, their distributions

are still bounded by the minimum and maximum of SPEC distributions (not shown

58

in the figure). Hence, we believe these exceptions are not significant enough to

conclude that Babel-obfuscated programs are abnormal in terms of instruction

distribution.

Meanwhile for binaries obfuscated by Code Virtualizer, the instruction distri-

butions are significantly more deviant, as shown by Figure 3.12. It should be

noted that when we tried to disassemble binaries processed by Code Virtualizer,

the disassembler reports hundreds of decoding errors, presumably because Code

Virtualizer transforms legal instructions to bytecode which cannot be correctly de-

coded by the disassembler. Nevertheless, this disassembly anomaly itself can also

be strong evidence of obfuscation. Overall, the experiments indicate that Babel

has better stealth performance than Code Virtualizer.

There may be of a concern that solely the existence of a Prolog execution

environment can be the evidence of obfuscation. This can be tackled by developing

a customized Prolog engine. Previous work has shown that a Prolog engine can

be implemented with less than 1,000 lines of Pascal or C code [83, 144].

3.8 Discussion

3.8.1 Generalizing Translingual Obfuscation

Although it is usually quite challenging to translate programs in one language

to another language with very different syntax, semantics, and execution models,

many of the obstacles can be circumvented when the translation is for obfuscation

purposes and not required to be complete. In our translation from C to Prolog,

we designate the task of supporting C memory model, which is one of the most

challenging issues in translating C, partially to the C execution environment itself.

This solution is not feasible in general-purpose language translations. Meanwhile,

some of our translation techniques are universally applicable to a class of target

languages that share certain similarities. For example, the control flow regulariza-

59

tion methods we proposed can be adopted when translating C to many declarative

programming languages. We believe that translingual obfuscation has the potential

to be made a general framework that supports various source and target languages.

3.8.2 Multithreading Support

Our current implementation of Babel does not support C multithreading, and the

main reason is that some components of GNU Prolog are not thread safe. Since

GNU Prolog is a Prolog implementation for research and educational use, some

language features are not supported. However, many other Prolog implementations

that are more mature can indeed support multithreading well [26]. By investing

enough engineering effort, we should be able to improve the implementation of

GNU Prolog and ensure that it supports concurrent programming. Therefore, we

do not view the current limitation as a fundamental one.

3.8.3 Randomness

Some obfuscation techniques improve the security strength by introducing ran-

domness. For example, the virtualization-based obfuscators usually randomize the

encoding of their virtual instruction set [62] so that attackers cannot crack all

randomized binaries by learning the encoding of a single instance. Although this

randomization is ineffective once attackers learned how to systematically crack the

virtual machine itself, the idea of randomization does have some value.

Our current design of translingual obfuscation does not explicitly feature any

randomness. However, since translingual obfuscation is orthogonal to existing ob-

fuscation techniques, it can be stacked with those techniques that do introduce

randomness. Translingual obfuscation itself has the potential to feature random-

ness as well. One promising direction could be making some of the foreign language

compilation strategies undeterministic. Previous research [61] has shown that mu-

tating compilation configurations can effectively disrupt some deobfuscation tools.

60

3.8.4 Defeating Translingual Obfuscation

In general, translingual obfuscation is open design and does not rely on any secrets,

although it can be combined with other secret-based obfuscation methods. All of

our justification on the security strength of translingual obfuscation assumes that

attackers do possess the knowledge that we have translated C into Prolog. Indeed,

with this knowledge attackers can choose to convert the binary to Prolog first rather

than directly getting back to C. Either way, attackers will face severe challenges.

We would like to emphasize again that we do not argue it is impossible to defeat

translingual obfuscation. Instead, we argue that Prolog is more difficult to crack

than C, in the translingual obfuscation context. As long as a Babel-translated

Prolog predicate is compiled as native code, recovering it to a high-level program

representation faces all the difficulties encountered in C reverse engineering, includ-

ing the hardness of disassembly and analysis [139]. In Chapter 3.3 we revealed the

deep semantics gap between Prolog source code and its low-level implementation.

Thanks to this gap, we expect that recovering the computation logic of native code

compiled from Prolog-translated C source code will consume a significant amount

of reverse engineering effort.

What makes defeating translingual obfuscation even more challenging is that,

the obfuscated code is not only a plain combination of normal Prolog plus normal

C but a tangled mixture of both. The execution of obfuscated programs will switch

back and forth between the two language environments and there will be frequent

interleaving of different memory models (see Chapter 3.5). This also imposes

challenges to reverse engineering.

There is another point that grants translingual obfuscation the potential to

significantly delay reverse engineering attacks. As stated in Chapter 3.1, translin-

gual obfuscation is not limited to Prolog. There are many other programming

languages that we can misuse for protection. By mixing these languages in a

61

single obfuscation procedure, the difficulty of reverse engineering will be further

increased.

Chapter 4
Status Quo of Obfuscation in

Mobile Development

Although obfuscation-related research topics have been intensively studied for

decades, most previous work focused on in-lab technical analysis of the effectiveness

of new obfuscation techniques [136, 115, 140, 88, 146] or countermeasures against

obfuscation when it is misused by malware writers [152, 37]. As far as we have

learned, little emphasis is put on investigating how benign software authors take

obfuscation as part of their development process in the real world, which is critical

for software obfuscation techniques to be practical. To push this line of research

forward, we aim to investigate the answers to the following important research

questions:

• RQ1: What are the characteristics of obfuscated mobile apps?

• RQ2: In what patterns are mobile apps typically obfuscated?

• RQ3: How does app review affect the adoption of obfuscation?

The work of this chapter is published in Proceedings of the 40th International Conference on
Software Engineering, 2018 [135].

63

• RQ4: How resilient are the obfuscated apps to malicious reverse engineer-

ing?

To develop meaningful conclusions, it is most adequate to conduct an empir-

ical study on a reasonably large set of recently developed and supposedly benign

mobile apps obfuscated by their vendors. Unfortunately, there is no such a data

set available for public access, so we decided to collect samples independently.

There are currently two major platforms in mobile software markets, i.e., iOS and

Android. Although they share many common characteristics, there are also no-

table differences. Some previous research has indirectly or implicitly touched the

topic of mobile app obfuscation, but the focus is mostly on Android. For example,

the study by Zhou and Jiang on Android malware revealed some obfuscated sam-

ples [156]. Linares-Vásquez et al. [93] and Glanz et al. [75] investigated Android

app repacking, with the potential disturbance of obfuscation considered. On the

other hand, the iOS platform received notably less attention which mismatches

its share in the market. With over a billion iOS mobile devices sold, there are

reportedly millions of software programmers working on iOS app development.

Previous research on mobile software engineering revealed that obfuscation has

been a common practice on Android [156, 93, 91], yet the figure for iOS is mostly

missing. Since iOS is typically considered a more secure system than Android

for being more closed, it may be susceptible that obfuscation on iOS could be as

prevalent as on Android. However, some recent security incidents have shown that

with the help of production-quality binary analysis tools like IDA Pro [15], iOS

reverse engineering is not as difficult as it is generally recognized. For example, it

is found that iOS developers similarly suffer from severe software piracy issues like

Android developers [21]. It is also reported that there have been popular iOS apps

being repackaged with malicious payload for stealing sensitive user data [48]. To

help iOS developers counter these threats, some reputed software security solution

providers have launched their iOS app obfuscation services [25].

64

In this study, we chose to work on iOS for a dual purpose of filling in the blank

of empirical studies on mobile app obfuscation and enriching scientific research on

this important mobile platform. For more secure iOS software engineering, it is

imperative to obtain a thorough understanding about the current practice of ap-

plying obfuscation in iOS app development. The benefits of such an understanding

are two-fold: vendors of obfuscation tools can better tune their development based

on the status quo, while researchers interested in analyzing iOS app repositories

can grasp a sense about when and how obfuscation may affect their analysis. A

comprehensive study on iOS apps should be promisingly informative to audience

in both the academia and industry.

To obtain a representative sample set, we crawled 1, 145, 582 free iOS app in-

stances from the official Apple App Store. We then estimated the likelihood of

each instance being obfuscated based on a variant of a statistical language model

previously proposed for studying software source code [79, 96]. We picked the

top 6600 most likely obfuscated samples and identified 539 that are truly obfus-

cated with manual verification. For each sample, we further conducted in-depth

investigations to understand how obfuscation was applied. In general, effectively

analyzing a large amount of obfuscated binary code can be extremely difficult,

since most existing program analysis techniques have either scalability or accu-

racy issues regarding obfuscated code. Moreover, analyzing iOS apps has its own

unique challenges, one of which is caused by the wide use of statically linked third-

party libraries [47]. To overcome these obstacles altogether, our study combined

automated analysis with a considerable amount of manual effort from knowledge-

able software reverse engineers with industry experience. After examining all the

samples, we formulated 8 findings regarding the proposed research questions.

65

4.1 Background

This section introduces background knowledge about the ARM architecture and

iOS mobile operating system, emphasizing platform features that make mobile

software obfuscation a problem different from desktop software obfuscation. The

section further elaborates on the technical challenges faced by the study.

4.1.1 The ARM Architecture

The ARM processors are currently the most widely used processing units on smart-

phones. ARM is a RISC architecture, meaning it has a much smaller instruction

set compared to the x86 or x64 architectures, which are the major architectures

used for desktops. Like most RISC instruction sets, ARM implements a fixed-

with encoding for its instructions, making binary disassembly very reliable. For

x86 and x64 applications, one of the most effective and widely used obfuscation

techniques is manipulating binary layouts so that disassemblers are disrupted by

interleaved data and instructions, overlapping instructions, and misleading control

flow branches, etc. For ARM applications, however, these anti-disassembly tricks

are mostly unfeasible.

There are still some anti-assembly techniques available for 32-bit ARM applica-

tions, since ARM processors supports both 32-bit and 16-bit instruction encodings

in 32-bit mode and can switch back and forth at run time. By leveraging this fea-

ture, it still possible to fool disassemblers by interleaving two kinds of differently

encoded instructions. However, such methods are not feasible for 64-bit ARM

applications, because ARM processors requires all instructions executed in 64-bit

mode to be 32-bit long and 32-bit aligned. Since most iOS devices currently on

the market are powered by 64-bit processors, anti-disassembly obfuscation is not

as effective as it is for protecting x86 and x64 software.

66

4.1.2 The iOS Mobile Operating System

The iOS operating system is the system deployed for most Apple mobile devices,

including iPhones, iPads, and Apple Watches. By 2015, over 1 billion iOS devices

have been sold world wide.

Most iOS applications are written in C, C++, Objective-C, and Swift. Un-

like Android, iOS applications can be directly compiled to native ARM code be-

fore submitted to Apple App Store and installed on the devices.1 Therefore, iOS

developers can apply obfuscation techniques to source code, LLVM intermediate

representation (IR), and binary code simultaneously.

In addition to the underlying hardware, obfuscating iOS software is also subject

to iOS security policies, which are much more restrictive than desktop systems like

Windows and Linux. One of the prominent iOS security features is code signing.

This policy requires every executable page of an iOS application to be statically

signed before the application is run on iOS devices, meaning any obfuscation tech-

nique featuring self-modification is prohibited for iOS software.2 The code-signing

policy invalidates packing obfuscation, which is considered one of the most power-

ful obfuscation methods in the desktop environments.

4.1.3 The Objective-C and Swift Programming Languages

Objective-C and Swift are the recommended programming languages for iOS appli-

cation development. These two languages get official technical support from Apple,

including the toolchain and standard libraries. Similar to C and C++, Objective-

C and Swift are static languages and programs written in them are compiled to

1Apple Watch applications can only be submitted in the form of LLVM intermediate repre-
sentation. This requirement can be waived for iPhone and iPad applications

2Certain applications with Apple-only entitlement can utilize dynamic code-signing to gen-
erate executable code at run time. For example, Safari is allowed to execute JavaScript with a
just-in-time compiler.

67

native code. For that reason, iOS applications can be effectively obfuscated at the

binary level.

On the other hand, Objective-C and Swift have unique features that make

them different from traditional static languages like C and C++, from the per-

spective of program obfuscation. Essentially, Objective-C is a dynamically typed

language with optional static typing. Objects in Objective-C uses a mechanism

called message passing to call its member methods. This message passing mecha-

nism resembles the run-time reflection feature in Java, which means class members

are accessed and invoked through their names. To implement message passing, the

Objective-C compiler has to keep the names of all class members in the binary.

These names, however, can be a strong hit to human reverse engineers when they

try to understand the program and pinpoint the critical part. Swift, as the latest

major development language for iOS, is designed to be fully compatible with its

predecessor Objective-C. Therefore, programs written in Swift also need to keep

certain symbol names as strings in binaries.

4.1.4 Technical Challenges of the Study

Despite both being mobile platforms, iOS and Android are drastically different in

many technical aspects. As a result, our study faces unprecedented challenges that

need not to be considered by similar work targeting Android.

4.1.4.1 Obfuscation Detection and Analysis

Detecting and analyzing obfuscated binaries has long been an open research prob-

lem and is still being actively studied [105, 36, 118]. To date, the accuracy of auto-

mated obfuscation detection is not satisfying enough to fit our demand. Therefore,

we decided to undertake manual analysis as the major research methodology of the

study, with some light-weight automated methods as assistance.

68

Unlike Android developers that can use an app obfuscator embedded into the

official development toolchain [24], iOS developers do not get any receive official

support, thus having to rely on third-party tools or self-made obfuscators. Con-

sidering the large number of obfuscation techniques potentially available, it is im-

practical for an empirical study relying on manual effort to cover all of them. This

poses another challenge, requiring us to identify a group of obfuscation techniques

analyzable with our limited labor yet representative enough.

4.1.4.2 Static Third-Party Libraries

Third-party libraries have been an indispensable part of mobile apps. It is possi-

ble that an app “accidentally” got obfuscated due to the inclusion of obfuscated

libraries without the awareness of app developers. Our analysis needs to capture

such situations to avoid drawing biased conclusions.

Due to Apple’s security policies, iOS apps cannot use dynamic libraries from

other vendors until iOS 8, meaning all third-party libraries have to be statically

linked into app executables. As a result, each object of an iOS library is scattered

in the entire binary. This differs from Android apps whose third-party libraries are

usually grouped as packages as a whole. The consequence is that there is no clear

boundary between library code and an app’s own code, making library detection

in iOS apps a unique challenge [47, 113]. This is completely different from the

library identification problem on Android, where application code is naturally as-

sorted through the Java package hierarchy. Previous work on Android app analysis

typically relies on Java package information to dissect an app into different parts

and identify third-party libraries among them [134, 99, 91]. These methods are

not applicable for iOS apps. At this point, distributing static libraries is still the

mainstream practice for iOS library providers for legacy and compatibility reasons.

Again, we will need manual effort to address this issue.

69

4.1.5 Inferring Developer Intentions

The primary goal of this research is to learn factors when and how obfuscation

is applied to mobile apps, which is ultimately decided by developers subjectively.

A survey-based qualitative study can provide direct evidence about developer in-

tentions. However, the information about obfuscation, and software security in

general, is very sensitive for most software vendors. Since no obfuscation technique

is resilient to extensive reverse engineering [51, 35], learning the details about how

obfuscation is performed grants the deobfuscation side significant advantages in

the arms race. Our preliminary attempts to reaching developers known to apply

obfuscation to their mobile apps mostly failed. As such, a large-scale qualitative

study directly targeting developers is extremely difficult.

As such, our study is mainly quantitative and developer intentions have to be

inferred through the binary code they distributed. When such cases are inevitable,

we try to make as few assumptions as possible when deducing conclusions.

4.2 Methodology

We adopted a three-step process to conduct the empirical study. The first step

is to select a representative collection of obfuscation techniques to consider, for

reasons explained in Chapter 4.1.4.1. The second step is to search for a reasonably

large set of iOS apps that are obfuscated before release. To date, there is no such

a publicly available data set. Mining obfuscated samples from benign iOS apps is

one of the major contributions of our work. For the third step, we inspect each

obfuscated app in more depth and aggregate the harvested information to deduce

empirical findings.

Although the study heavily relies on manual analysis of experienced reverse

engineers, we indeed developed some automated techniques to assist the researchers

in both sample collection and per-app examination. It should be noted that these

70

@interface Person: NSObject
@property NSString *name;
@property int age;
@property NSString *addr;
@end

@interface AlJi09: NSObject
@property NSString *KJihad;
@property int z9kmV;
@property NSString *Nm23d;
@end

(a) Symbol renaming

const char *str1 = "A plain string";

// string xor masked by 0xab
const char *str1 =

"\xea\x8b\xdb\xc7\xca\xc2\xc5\x8b"
"\xd8\xdf\xd9\xc2\xc5\xcc\x85";

void decode(const char *s, char *d)
{
while(*s) *d++ = *s++ ˆ 0xab;

*d = 0;
}

(b) Exotic string encoding

(c) Decompilation disruption

1

2 3
4

switch

2 31 4

(d) Control flow flattening

Figure 4.1: Illustration of obfuscation techniques considered in the study

techniques are mainly for reducing the workload of our reverse engineers. The

performance of these techniques may not be ideal on their own, yet they served

our design purposes well and their imperfection should not affect the validity of

the final results.

4.2.1 Considered Obfuscations

After decades of development, there are now numerous obfuscation techniques

available. A comprehensive review by Schrittwieser et al. [122] included 22 classes

of obfuscation methods proposed by previous research. For this study, we would

like to focus on obfuscations popular among mobile developers and therefore wor-

thy of in-depth investigation. We used Google to search for commercial and open

source tools that can obfuscate iOS applications. By studying the statements

71

and technical white papers of the top 10 results, we identified four families of ob-

fuscations that are most widely supported, i.e., symbol renaming, exotic string

encoding, control flow flattening, and decompilation disruption. Compared to all

known obfuscation algorithms, this is a relatively small set, with the major reason

being that the unique hardware and software environment on iOS devices imposes

strict restrictions on the form of executable code. For example, iOS does not allow

normal user applications to dynamically generate executable code, rendering self-

modifying obfuscation technically impossible to implement. It is also a set quite

different from commonly studied Android obfuscations [75], due to the differences

of the program languages and execution environments between the two platforms.

For instance, the fake type obfuscation available for Android apps, which are writ-

ten in Java, simply does not apply to iOS software. A graphical illustration of

the four obfuscation algorithm families is given by Figure 4.1 while the technical

details are briefly introduced as follows.

Symbol Renaming. It is recommended by common software engineering

practices that programmers should make sensible names for functions and variables

symbols. The preferred programming languages for developing iOS apps, i.e.,

Objective-C and Swift, are reflective or partially reflective. Therefore, names of

many global symbols have to be retained in the distributed binaries to support by-

name function dispatching at run time. Symbol renaming scrambles these names

to prevent information leakage.

Exotic String Encoding. String literals sometimes disclose important in-

formation about the software. Some obfuscation algorithms convert string literals

into representations that are not understandable by humans. The converted strings

are decoded before use during run time.

Decompilation Disruption. It is common for obfuscations to prevent the re-

covery of high-level program structures from binary code. Typical methods of this

kind include interleaving code and data to disturb disassembly, inserting opaque

72

predicates to forge invalid control flows, and employing certain machine instruction

patterns in unconventional ways to confuse decompilers.

Control Flow Flattening. This technique “flattens” the original control flow

graph of a function by rewriting the procedure into a huge switch-like structure [89].

This makes the logical links between basic blocks obscure.

It is almost surely certain that obfuscation methods considered in the research

do not include all available techniques. Nevertheless, the primary focus of our study

is to investigate existing software engineering practices that can form lessons in-

teresting to common developers as well as academic researchers. For that purpose,

we have covered a good range of publicly available information when surveying

obfuscation techniques accessible by general developers, Although it is possible

that some developers can spend extensive effort in developing completely new ob-

fuscation algorithms themselves, we expect that they are not the majority in the

industry.

4.2.2 Mining Obfuscated iOS Apps

To obtain a reasonably large sample set without being biased, our collection starts

with the entire Apple App Store. However, it should be noted that we do not aim

to find all obfuscated apps in the store.

From February to October in 2016, we crawled 1, 145, 582 free iOS app in-

stances, including different versions of the same app. We then try to identify

apps that are obfuscated by at least one of the four families of algorithms in

Chapter 4.2.1. Ideally, we could run automated detection over all the crawled

apps for each obfuscation technique subsumed by the four families. However,

obfuscation detection itself is a non-trivial task and is still being actively re-

searched [111, 114, 32, 105]. For many obfuscation algorithms considered by our

study, it is prohibitively expensive, if possible at all, to automatically detect their

presence in over a million instances.

73

To tackle this problem, we identify a baseline obfuscation algorithm which is

supposed to be the most widely adopted in mobile development. If developers

indeed consider protecting their products, it is very likely that more than one

obfuscation algorithm will be employed. In such cases, detecting the baseline

obfuscation can help us identify the heavily obfuscated samples. Based on this

insight, we developed an automated method to identify scrambled symbol names,

since symbol renaming is considered by a large volume of previous research the

most prevalent obfuscation method on mobile platforms [93, 37, 91]. In practice,

symbol name scrambling imposes little execution cost while being highly effective

in disturbing manual analysis.

Details of the detection algorithm are presented in Chapter 4.3. After running

the algorithm for all crawled app instances, we obtained the likelihood of each

app being obfuscated by symbol name scrambling. Based on the available man-

labor, we examined the top 6600 most likely obfuscated samples, of which 601 are

conformed to be true positives by manual verification. These samples, which can

be further grouped into 539 applications identified by a unique ID assigned by App

Store, are taken as the data set for subsequent study. This sampling process is

illustrated by Figure 4.2. We again emphasize that these 601 samples should not

be regarded as all the obfuscated apps among the 1, 145, 582 crawled instances. We

set the cut off at 6600 to bound the manual work within a manageable amount.

4.2.3 Per-App Inspection

In addition to symbol scrambling, we need to further confirm what other obfusca-

tion techniques were applied to the apps. This step needs to be conducted man-

ually to achieve the highest possible accuracy. To assure the consistency across

the results from different inspectors, we developed a set of elaborate protocols to

standardize the inspection process.

74

Crawl Apps from App Store

1,145,582 instances

Automated Baseline Obfuscation Detection

pick top 6600 positives†

Manual Verification

601 versions of 539 apps

†The 6600 cut off is based on the maximum labor available for manual verification

Figure 4.2: Workflow for sampling obfuscated iOS apps

4.2.3.1 Detecting Obfuscation

To detect the presence of anti-decompilation obfuscation techniques, we use IDA

Pro [15], a commercial integrated reverse engineering environment that has been

widely regarded as the de facto industry standard for analyzing binary code. IDA

Pro can automatically dissect a binary executable into functions and translate the

assembly code of each function to a high-level representation similar to C. We

consider that a binary is protected by anti-decompilation techniques if IDA Pro

reports too many failures. All results were manually validated.

To identify flattened control flows, we developed a binary analysis framework to

disassemble app binaries and construct the control flow graph (CFG) of each func-

tion in a binary. If a CFG is flattened, most of its basic blocks will be included by

a single loop, which can be captured by a standard loop detection algorithm [107].

Also, the “diameter” of the loop, which is defined as maximum length of the short-

est path from the loop header to other basic blocks, should be of the logarithmic

order of the total number of all basic blocks in the loop. Based on these two

characteristics, we can find functions with flattened control flows.

75

For exotic string encoding, it is hard to develop automatic detection methods

since there is no standard implementation of such techniques. In iOS executable

binaries, string literals are stored in dedicated regions. We scan these regions for

character sequences that cannot be decoded, or those that can be normally decoded

but do not seem to possess reasonable meanings. We then manually investigate

how these sequences are utilized in the code and see if they are transformed by an

ad hoc decoding procedure at certain program points.

4.2.3.2 Identifying Obfuscated Third-Party Libraries

As introduced in Chapter 4.1.4.2, we need additional manual effort to identify

third-party libraries in the examined iOS apps if the library code contains any

obfuscation by themselves. We decide if an obfuscated code region belongs to

some third-party library by observing whether there are similar code patterns

appearing in multiple samples developed by different vendors. Typical signatures

of code patterns include control flow graphs, special algorithms, and uncommon

data structures. Once a library is detected, we try to identify its origin through

public information searching, with clues such as names of library APIs and special

string literals, e.g., strings used for logging and generating crash reports. Some

libraries do not provide even the most subtle information that can help reveal their

identities. In such cases, we extracted the semantic signatures of obfuscated code,

e.g., control flow patterns and unique data structures, and check if they appear in

different apps.

4.2.4 Cross-Validation

To ensure the accuracy and consistency of manual analysis, the two authors per-

forming per-app inspections were first asked to independently examine the same

50 app instances in the sample set and compare their results. Divergences among

results from different authors were discussed until an agreement was reached. The

76

two authors then independently analyzed another 25 apps, based on the regula-

tions made in the previous discussions. For the second round, the inspection results

were consistent for all 25 apps. In this way, we established a highly accurate and

cross-validated protocols for the manual analysis on obfuscated iOS apps.

4.3 Detecting Symbol Obfuscation

In practice, obfuscation tends to replace human-made symbols with randomly gen-

erated gibberish which can be detected by natural language processing (NLP) tech-

niques. Previous research discovered that human-written source code is “natural”

in the sense that it can be described by statistical language models [79]. Based on

this insight, “unnatural” symbol names are possibly obfuscated.

4.3.1 An NLP-Based Detection Model

In NLP, the perplexity measure is used to quantify how “surprising” it is for a

sequence of words to appear within a statistical language model. Oftentimes, the

log-transformed version of perplexity, called cross-entropy, is more preferable in

the literature. Given a word sequence s = x1 · · ·xk of length k and a language

model M, the cross-entropy of s within M is defined as

HM(s) = −1

k

k∑
i=1

log2 P (xi|x1, · · · , xi−1) (4.1)

We use cross-entropy to capture the naturalness of an identifier. Intuitively,

lower HM(s) means s is more natural within M. In particular, we adopt the n-

gram language model that assumes the word sequences suit an (n−1)-order Markov

process. Historically, n-gram has been utilized in various software engineering

applications, including automated code completion [79] and bug detection [138].

Within an n-gram model, the definition of cross-entropy can be further formulated

77

as

Hn-gram(s) = −1

k

k∑
i=1

log2 P (xi|xi−(n−1), · · · , xi−1) (4.2)

A notable difference between our method and previous work is that our sta-

tistical language model is applied to individual identifiers rather than sequences

of terms. As a consequence, we need to first segment an identifier into several

parts before fitting it to an n-gram model. Naturally, we adopt the segmentation

that makes most sense within the n-gram model by enumerating all possibilities.

Therefore, the likelihood of an identifier I being “surprising”, or obfuscated, can

be defined by the following formula

L(I) = min
s∈SI

Hn-gram(s) (4.3)

where SI is the set of all possible word sequences obtained by segmenting I in dif-

ferent ways. Given an empirically decided threshold H, we deem I as an obfuscated

symbol name if L(I) > H.

4.3.2 Implementation

Considering that identifiers are usually not too lengthy, we can efficiently compute

L(I) in equation (4.3) using the Viterbi algorithm with the complexity of O(nl2),

where n is length of the identifier and l is the length of the longest possible word in

the language [123]. In fact, the worst cases can often be avoided, since most normal

symbol names are already naturally segmented by programmers with underscores

or the camel case scheme. We first compute the cross-entropy of an identifier by

assuming the symbol is naturally segmented. If the entropy computed this way is

already low enough, we can skip the relatively expensive Viterbi segmentation.

Our n-gram corpus contains two parts, i.e., the natural language corpus and

the software source code corpus. Most identifiers in the crawled apps are named

in English, but there are also many written in Chinese pinyin or even a mixture

78

of English and Chinese. For English, we use a portion of the Google web trillion

word corpus introduced by Franz and Brants [67] and derived by Norvig [112].

For Chinese, we employ the Lancaster Corpus of Mandarin Chinese (LCMC) [19].

As for the source code part, we crawled all identifiers appearing in iOS official

APIs, which are all naturally segmented. Each identifier is then turned into a

word sequence, thus forming a n-gram corpus.

The probability of occurrence for an n-gram is defined as the average of its

probabilities in three corpora. If an n-gram does not appear in any corpus, we

assign it a low probability penalized by its length. This is a necessary heuristic

since there are a large number of unlisted words in program identifiers. Formally,

the occurrence probability of an n-gram s is defined as

p(s) =

pEN(s) + pCN(s) + pcode(s)

3
pEN(s) + pCN(s) + pcode(s) > 0

20−(|s|−1) · 2−(H+1) pEN(s) + pCN(s) + pcode(s) = 0

(4.4)

where |s| is the number of characters in the n-gram and H is the threshold defined

earlier in this section.

When deciding the value of n, we observed that patterns of word sequences

in different applications are quite unique and rarely occur in the corpus. The

consequence is that any n greater than one leads to too many false positives.

Therefore, the best option for the problem is to set n to 1, namely to adopt the

unigram model.

In this study, the threshold H is set to 32.5. With this configuration, a to-

tal of 6600 positives were reported. Potentially, we could find more positives by

employing a larger H, but the results then will exceed the maximum number of

samples we can afford to verify. After manually examining symbols in the 6600

initial positives, we confirmed that 601 of them are truly obfuscated. The false

positives are mostly caused by uses of non-English language and out-of-vocabulary

79

abbreviations. After all, our purpose is to find a fairly large sample set of obfus-

cated apps as the tarting point of the empirical study rather than identifying all

the true positives.

4.4 Findings

In this section we present 8 findings of our empirical study, grouped by their

relevance to research questions raised at the beginning of the chapter.

4.4.1 Characteristics of Obfuscated Apps

We first discuss what factors might lead to the adoption of obfuscation in mobile

app development.

Finding A.1. A considerable portion of apps containing obfuscation are “pas-

sively” obfuscated due to the inclusion of obfuscated third-party libraries.

As previously mentioned, we paid special attention to third-party libraries when

inspecting the obfuscated apps. The examination shows that these libraries indeed

make a major source of obfuscation. In total, we captured 35 third-party libraries.

The major functionality of each library, inferred by analyzing their code and re-

trieving publicly available information on the Web, is presented in Table 4.1.

Figure 4.3 shows the breakdown of the origins of obfuscated code in the samples.

Among the 539 apps employing obfuscation, 404 (75%) of them include at least one

obfuscated third-party library. In particular, for 344 (63.8%) apps, the obfuscation

is solely introduced by libraries. The popularity of these libraries can be further

demonstrated in two aspects. Figure 4.4a shows for each library the number of

including apps and Figure 4.4b shows the distribution of apps including obfuscated

third-party libraries regarding the number of libraries.

Figure 4.3 indicates that the occurrences of obfuscation are mainly caused

by the practice of depending on third-party libraries rather than app developers

80

Table 4.1: Obfuscated Libraries Grouped by Functionality

Functionality Count Including Apps

Advertising & Promotion 9 259
Security & Authentication 7 17
Digital Right Management 6 53
Payment & Banking 5 101
Location 2 11
Visualization 2 11
Analytics 1 19
Fraud Detection 1 17
Peripheral Control 1 3
Speech-to-Text 1 8

App Only
Third-Party Libs Only
App and Third-Party Libs

135
(25%)

344
(63.8%)

60
(11.1%)

Figure 4.3: Origins of obfuscation in 539 obfuscated apps

actively considering software protection. Based on the observation, we believe

that it is important to consider the impact of third-party libraries for empirical

software engineering research whenever app obfuscation is involved. To distinguish

different sources of obfuscation, we henceforth call an app is actively obfuscated if

its obfuscation is not entirely contributed by third-party libraries; otherwise it is

called passively obfuscated.

The most notable kind of third-party libraries is for advertising purposes with

both metrics being the highest in Table 4.1. Our preliminary analysis on some of

these libraries shows that the obfuscated parts are used for communicating with

the back-end ad servers. It is known that mobile advertising has been bothered

by reverse engineering, through which a malicious party instruments advertising

libraries to forge fake advertisement display or user clicks and tricks ad providers

into paying in vain [92]. For ad providers, obfuscating their libraries is a reasonable

response to such malicious attempts.

81

Youmi

MBJoy

imopan

AdMob

AM3
AmAd

Qianka

ChartBoost

izhuanpan

SecurityGuard

SealSign

Metaforic

SecurID

VGuard

Webroot

Fancyfon

PlayReady

Poison

CyperGuard

VGDrm

PrimeTime

Deezer

MTAWXO

UPPayment

Encap
CMPay

PayU
Flurry

iovation

Structure

Estimote

iFly
Zeemote

BlueDot

VVidget

100

101

102

N
um

be
r o

f i
nc

lu
di

ng
 a

pp
s Advertising Security DRM Payment Others

(a) Number of apps including each third-party library

0 50 100 150 200 250 300 350
Number of applications

0

1

2

3

N
um

be
r o

f i
nc

lu
de

d
lib

ra
rie

s

(b) Distribution of apps regarding the number of obfuscated libraries included

Figure 4.4: Popularity of obfuscated third-party libraries

Finding A.2. The likelihood of apps and libraries being obfuscated is strongly

correlated to their categories of functionality.

We found that in contrast to the distribution of all apps in App Store regarding

their categories, the distribution of obfuscated apps has a vastly different pattern.

This pattern varies further when the impact of third-party libraries is considered.

Figure 4.5 shows the differences between these distributions, leading to the follow-

ing key observations:

• The proportions of obfuscated apps in certain categories are exceptionally

high compared to the shares of all apps in these categories across App Store,

82

Others
Shopping

Medical
News

Social Networking
Sports

Reference
Photo & Video

Finance
Music

Productivity
Food & Drink

Health & Fitness
Book

Travel
Utilities

Entertainment
Lifestyle

Education
Business

Games

3.15%

1.29%

1.88%

1.99%

2.11%

2.19%

2.22%

2.22%

2.23%

2.55%

2.61%

2.86%

2.98%

3.04%

3.93%

4.88%

6.12%

8.36%

8.47%

9.88%

25.04%

2.05%

2.05%

5.13%

2.05%

1.03%

0.51%

0.51%

1.54%

20.00%

6.15%

3.59%

0.00%

3.08%

1.03%

4.10%

13.85%

5.13%

6.67%

1.54%

7.18%

12.82%

3.53%

2.78%

2.60%

1.48%

0.74%

1.48%

0.56%

2.23%

15.77%

4.27%

2.23%

0.37%

1.67%

2.04%

3.53%

8.35%

9.28%

7.42%

3.53%

5.38%

20.78%

Actively Obfuscated
Actively and Passively
Obfuscated
App Store

Actively Obfuscated
Actively and Passively
Obfuscated
App Store

Data for App Store from Statista [2]

Figure 4.5: Distributions of apps regarding their categories

no matter whether passive obfuscation is taken into account. These cate-

gories are Finance (20.00%/15.77% vs. 2.23%), Utilities (13.85%/8.35% vs.

4.88%), Music (6.15%/4.27% vs. 2.55%), and Medical (5.13%/2.60% vs.

1.88%). According to our investigation, most of the obfuscated Music apps

provide streaming services for copyrighted musical contents. The inspected

Utilities apps are mainly toolkit software providing assistance to daily activ-

ities, the majority of which regularly record user data that may be closely

tied to personal privacy or enterprise secrets.

• For some other categories, the situation is flipped, namely the proportions

of apps carrying obfuscated code are significantly lower than the store-wide

ratios. Categories of such include Education (1.54%/3.53% vs. 8.47%), Book

83

(1.03%/2.04% vs. 3.04%), Food & Drink (0.00%/0.37% vs. 2.86%), and

Reference (0.51%/0.56% vs. 2.22%).

• The distributions of obfuscated apps in the Games, Finance, and Utilities

categories are heavily influenced by obfuscated third-party libraries. Apps

in the Games category are easily passively tainted by libraries. The Finance

and Utilities apps, on the other hand, have a relatively higher rate for being

actively obfuscated.

The first two points suggest that mobile apps related to health, finance, privacy,

and intellectual property safety are more likely to get obfuscated, both actively or

passively. Despite being a fairly expected phenomenon, it informs us that software

obfuscation at this point is still not a general interest to mobile development. We

may infer that although developers working on security-sensitive business sectors

do view malicious reverse engineering as a non-neglectable threat, the obfuscation

applied to their works is mostly for protecting the information encapsulated in the

apps rather than the design and implementation of the software.

Regarding the third point, it turns out that among the 112 Games apps with

obfuscation, 87 are passively obfuscated and 82 of them are solely tainted by

obfuscated advertising libraries. The statistics fit the general perceptions of the

mobile game business model in which publishing third-party advertisements is the

major monetization method for free game apps. For Finance and Utilities apps,

the fractions of passively obfuscated ones are comparatively lower (46 out of 85 and

18 out of 45, respectively), suggesting that software protection is more seriously

considered in these sectors.

84

4.4.2 Obfuscation Patterns

Before presenting our findings regarding RQ2, we first present an overview on

the obfuscation patterns extracted from the samples. We studied the pattern of

obfuscation in three aspects:

• How many and what kinds of obfuscation techniques are found in the code;

• In what scopes the obfuscation algorithms are applied to the code, i.e., at

the function level, class level, or module3 level;

• Whether multiple obfuscation methods are applied to the same code region

to achieve a synergy effect, which we call synergistic obfuscation.

We performed this pattern analysis on actively obfuscated apps and obfuscated

third-party libraries separately. The results are presented in Table 4.2 and Ta-

ble 4.3, respectively.

Due to limited space, we only list categories with significant relevance to the

discussions in Finding A.2. It may cause confusion that a small number of apps or

libraries do not employ symbol renaming even though it is the baseline obfuscation

method in sample collection. The reason is that we detect symbol scrambling in

obfuscated app instances as a whole. In some cases we “accidentally” detect ob-

fuscated apps or libraries without scrambled symbols because they are “mingled”

with obfuscated parts developed by others that indeed contain such symbols. Nev-

ertheless, such cases are rarely seen among actively obfuscated apps (9 out of 195).

Interestingly, all five third-party libraries that did not scramble their sym-

bols are developed by Internet giants like Google, Amazon, Yahoo, Tencent, and

Alibaba, suggesting that large-scale enterprises and smaller mobile development

teams may favor quite different obfuscation patterns, which is worth further inves-

tigation.

3A module is defined as functionality-related classes coupled through method calls.

85

Table 4.2: Numbers of Actively Obfuscated Apps Employing Different Obfuscation
Patterns

C
a
te
g
o
ry

T
o
ta

l
A
p
p
lie

d
O
b
fu
sc
a
tio

n
F
a
m
ilie

s
#

o
f
F
a
m
ilie

s
S
c
o
p
e
o
f
O
b
fu
sc
a
tio

n
S
y
n
e
rg

ic

O
b
fu
sc
a
tio

n
S
y
m
b
o
l

S
trin

g
A
n
ti-D

e
c
o
m
p
.

F
la
tte

n
in
g

1
2

3
4

F
u
n
c
tio

n
C
la
ss

M
o
d
u
le

F
in
a
n
c
e

3
9

3
9

1
7

1
2

0
1
9

1
1

9
0

4
1
0

2
5

1
8

U
tilitie

s
2
7

2
7

1
0

2
3

1
5

1
0

1
1

2
4

2
1

4
G
a
m
e
s

2
5

2
2

7
6

0
1
5

1
0

0
0

2
3

2
0

3
M

u
sic

1
2

1
1

4
1

0
9

2
1

0
1

0
1
1

3
M

e
d
ic
a
l

1
0

9
2

0
0

9
1

0
0

2
7

1
0

O
th

e
rs

8
2

7
8

1
8

6
2

6
6

1
1

4
1

1
6

3
5

3
1

9

A
ll

1
9
5

1
8
6

5
8

2
7

5
1
3
3

4
5

1
5

2
2
7

5
9

1
0
9

3
7

86

Table 4.3: Numbers of Third-Party Libraries Employing Different Obfuscation
Patterns

C
a
te
g
o
ry

T
o
ta

l
A
p
p
lie

d
O
b
fu
sc
a
tio

n
F
a
m
ilie

s
#

o
f
F
a
m
ilie

s
S
c
o
p
e
o
f
O
b
fu
sc
a
tio

n
S
y
n
e
rg

ic

O
b
fu
sc
a
tio

n
S
y
m
b
o
l

S
trin

g
A
n
ti-D

e
c
o
m
p
.

F
la
tte

n
in
g

1
2

3
4

F
u
n
c
tio

n
C
la
ss

M
o
d
u
le

A
d
v
e
rtisin

g
9

7
3

2
0

6
3

0
0

1
1

7
2

S
e
c
u
rity

7
6

5
1

2
2

3
2

0
0

0
7

3
D
R
M

6
6

2
1

1
4

1
0

1
1

2
3

1
P
a
y
m
e
n
t

5
4

3
1

0
2

3
0

0
1

1
3

1
O
th

e
rs

8
7

3
0

0
6

2
0

0
2

1
5

1

A
ll

3
5

3
0

1
6

5
3

2
0

1
2

2
1

5
5

2
5

8

87

Finding B.1. Mobile apps are mostly obfuscated at a large scale, suggesting a wide

adoption of automated obfuscation tools.

In theory, obfuscation can be manually conducted without the aid from auto-

mated tools [16]. Nevertheless, we believe this is not the case in mobile develop-

ment. For actively obfuscated apps, the proportion of those employing module-

level obfuscation is 55.90% (109 out of 195). For third-party libraries, the rate

is even higher, reaching 71.43% (25 out of 35). Compared to function-level and

class-level obfuscation, the workload of protecting one or more modules is signif-

icantly heavier, implying that most mobile developers rely on automated tools for

obfuscation.

On the other hand, it is extremely rare that an entire app or library is obfus-

cated. Throughout the inspection, we only identified two actively protected apps

that are fully covered by symbol scrambling obfuscation. For all other apps and li-

braries, the obfuscation covers only a small portion of the code. This phenomenon

shows that applying obfuscation to mobile software comes with non-negligible cost

even if the process can be automated. Presumably, the cost of obfuscation can

include but not limited to,

• Increased configuration effort, increased compilation time, and run-time per-

formance penalty,

• Additional cost of software crash forensics due to scrambled symbol names

and obscure control flows, and

• Risks of apps being rejected by software publisher for bloated or unanalyzable

code (see Finding C.1 for more discussions).

Although it is hard to confirm these items without contacting the developers, we

can still get some hints by analyzing other aspects of the obfuscation patterns, as

demonstrated by the following finding.

88

Finding B.2. The popularity of obfuscation method families decreases as the im-

plementation and performance cost grows.

It is made clear by Table 4.2 and 4.3 that the popularity of the four obfuscation

families vastly differs. The number of apps and libraries containing decompilation

disruption and control flow flattening is remarkably smaller than the number of

apps and libraries protected with scrambled symbol names and exotic string encod-

ing. Due to our sampling methodology, symbol scrambling is naturally the most

popular obfuscation technique across the data set. However, even without symbol

scrambling considered, it is still true for the other three families of techniques that,

the more costly it is to implement and deploy an obfuscation algorithm, the less

widely it is adopted. To elaborate on this trend, we roughly discuss the difficulty of

automating obfuscation each method and their impacts on run-time performance,

in an increasing order.

Automatically scrambling symbol names is relatively easy and can be imple-

mented through various options like preprocessor macros, compiler instrumenta-

tion, and even binary rewriting. Renaming symbols can be implemented in a way

that it causes almost no performance degradation during program execution.

Re-encoding string literals in an automated manner requires more effort since

it changes program semantics. However, the obfuscation only needs to operate on

strings and therefore light-weight program transformations are sufficient. At run

time, the obfuscated strings need to be decoded before use, but it is one-time cost

and only manifests when programs launch.

Compared with the first two families of obfuscation, decompilation disruption

is significantly more difficult to implement, for obfuscator writers need reverse

engineering experience to understand how to disrupt a decompiler. It is hard to

analyze the run-time cost of this obfuscation since techniques in this family can

vary a lot. Nevertheless, the performance penalty is not constant and will keep

accumulating as programs run.

89

Implementing control flow flattening requires deep customization of the com-

piler which falls out of the skill sets of most common mobile developers. Same

as decompilation disruption, each execution of flattened control flows takes an ad-

ditional amount of time. It is also worth noting that control flow flattening can

increase the size of obfuscated binaries significantly.

Currently, we are unable to confirm whether the difference of popularity re-

sults from exact one of the two factors, i.e., implementation cost and performance

penalty, or both of them. Theoretically, if the obfuscation is conducted with third-

party tools, the technical challenges in implementing each obfuscation method

should not be a problem, leaving performance to be the primary concern. Oth-

erwise, if the intention of apply software protection is really blocked by technical

issues, there will be many opportunities for obfuscation toolkit providers to improve

their products and attract more mobile developers to embed advanced obfuscation

techniques into their apps and libraries. It would be interesting future work to

investigate which is the case.

Finding B.3. Apps and libraries of certain categories tend to adopt more compli-

cated obfuscation patterns than others.

Finding A.2 shows that apps serving life-, money-, and privacy-critical purposes

are more likely to be obfuscated. It is further suggested by Table 4.2 and Table 4.3

that the security strength of obfuscation applied to apps and libraries of these

kinds is also notably stronger. In general, the Finance, Utilities, Games, and Music

apps, if obfuscated, are more willing to employ expensive obfuscation techniques,

i.e., decompilation disruption and control flow flattening. These apps also tend

to employ more different families of obfuscation techniques. For example, over

half (20 out of 39) of the actively obfuscated Finance apps contain plural kinds

of obfuscation. Moreover, in many cases (18 out of 20), these different methods

were applied to the same part of the code, achieving synergistic obfuscation. Also,

90

the scope of obfuscation in these apps is often larger, mostly reaching module-level

protection.

The observation above applies to obfuscated third-party libraries as well. Over-

all, the obfuscation patterns found in libraries are very similar to those in actively

obfuscated apps in most aspects. Therefore, it can be difficult to distinguish ac-

tively and passively obfuscated mobile apps by simply analyzing their obfuscation

patterns.

Finding B.4. An increasing number of mobile apps start to integrate obfuscation

into the development process.

As aforementioned, our sample crawling was continuous and lasted for nine

months. For apps getting version updates during the crawling period, we were

able to analyze the temporal evolution of their obfuscation patterns. With these

historical versions and some additional examinations, we confirmed that 27 of the

195 actively obfuscated apps were unobfuscated at the beginning of the crawling

period. It is very likely that developers of these apps were newly attracted by the

benefits of software protection and started to employ it as part of their software

engineering routines. Note that 27 is a possibly untight lower bound because

the recorded version histories may be incomplete because of the limited workload

capacity of our crawler.

Unfortunately, the same analysis does not apply to passively obfuscated apps,

since they may include different third-party libraries in different versions. The

change of obfuscation status in these apps may not reflect the intention of their

developers. The analysis is also not applicable to third-party libraries, because we

were unable to obtain the development dates of each version of the same library.

4.4.3 Impact of Distributor Code Review

Centralized software distribution usually features a vetting process in which an

app must be reviewed by the distributor before allowed for publication. Through

91

this vetting process, software publishers aim to filter out malicious or misbehaving

applications that can hurt user experience or security, thus affecting the healthiness

of the ecosystem. Both iOS and Android employ this centralized model.

Hypothetically, this mandatory app review process can affect developer incen-

tive to obfuscate their products in two opposite ways. Firstly, although software

obfuscation is a legit approach to protecting apps from undesired reverse engineer-

ing, it hinders distributor reviews as well. If the reviewer acts conservatively and

considers unanalyzable code malicious, the obfuscated apps may be constantly re-

jected, making developers reluctant to adopt heavy-weight obfuscation algorithms.

On the other hand, some developers may be stimulated to obfuscate their code so

that they are able to circumvent certain checks, allowing their apps to possess fea-

tures forbidden by publisher policies. We have encountered two cases supporting

both possibilities, respectively. Although not qualified as solid evidence to vali-

date our hypotheses, these case studies can indeed provide valuable insight on the

problem.

Finding C.1. Code reviews enforced by mobile software publishers may influence

the adoption of obfuscation in different directions.

The first case is a heavily obfuscated app developed by a reputed commer-

cial iOS security service provider, which only published that single app in App

Store. Judged from the simplicity of its functionality, this app is merely a minimal

working example of iOS development, whereas it is protected by all four kinds of

obfuscation techniques considered by our study. Only two among the 195 actively

obfuscated apps are obfuscated in this pattern. We speculate that the security so-

lution provider submitted this app to address the concerns that their obfuscation

algorithms may cause distributor review alarms, to the detriment of the sales of

their services. It is known that App Store have various constraints on submitted

apps, some of which may not be clearly documented. For example, each slice of

an executable file in iOS apps must not exceed 60 MB [18] if the app is to be

92

compatible with older versions of iOS, limiting the use of code transformations

that bloat binary size too much. These constraints intrigue obfuscator writers to

test the boundaries of acceptable obfuscation techniques. This case suggests that

developing new mobile obfuscation algorithms has to take the app vetting process

into account to be practical.

In the second case, we found that a third-party advertising library contains

code for calling private iOS APIs, which is strictly forbidden by Apple App Store

security policies. To circumvent store reviews, the library writer uses the dlopen

system call to avoid direct linkage to internal iOS frameworks providing private

APIs. The library then uses exotic string encoding to obfuscate the string literals

provided to dlopen as parameters. In this way, Apple’s vetting analysis failed

to detect this violation. By searching related information on the Internet, we

learned that this library was once caught using private iOS APIs in 2015 [17], long

before we started crawling samples from App Store. Shortly after the incident

was reported, Apple announced that it had removed all apps contaminated by this

library from App Store. Yet our findings show that either authors of the library

managed to bypass the app review process for another time or Apple failed to

detect all apps including this library. Whichever is the case, this finding serves as

empirical evidence that obfuscation is not only employed to repel malicious reverse

engineering but also for infiltrating publisher inspection, even though this practice

is previously regarded as a signature of malware.

By nature, ad providers are impelled to collect as much client data as possible

for developing more effective ad distributing strategies, potentially placing them-

selves on the verge of infringing user privacy. Considering the large quantity of

obfuscated third-party advertising libraries and their wide spread in the sample

set, we are concerned by the possibility that abusing obfuscation to bypass pub-

lisher security policy enforcement is becoming a common practice for aggressive

adware on the mobile. Mobile apps falling within a “gray area” that are controver-

93

sially benign or malicious, aka. “grayware,” has drawn attention from the security

community [29].

4.4.4 Effectiveness of Obfuscation

We now present our findings regarding the effectiveness of real-world obfuscation

for mobile apps. It should be emphasized that our goal is not to access the secu-

rity strength of obfuscation techniques themselves like previous literature review

did [122] but to investigate whether iOS developers are able to appropriately utilize

these techniques and optimize the protection effects.

With limited labor, we cannot afford to conduct comprehensive penetration

tests for all apps in our sample set. Even though, we found that a modest amount of

reverse engineering effort is enough to reveal some information that possibly leads

to security breaches. We inspected the actively obfuscated apps in two aspects.

Firstly, we scanned all symbol names, searching for common key phrases related

to security, such as “private key” and “secret”. Secondly, during the detection of

exotic string encoding, we payed attention to string literals that are not obfuscated

and seem to leak sensitive information.

Finding D.1. A considerable portion of obfuscated apps remain vulnerable to low-

effort reverse engineering, which could have been avoided if the obfuscation was

performed more appropriately.

With preliminary reverse engineering effort, we found that among the 195 ac-

tively obfuscated apps, there are 33 that may leave certain sensitive information

unprotected due to lack of certain obfuscation techniques or insufficient coverage

by the right techniques. There are mainly three kinds of such information:

• Tokens assigned to apps for accessing third-party services. Some enterprise

entities provide APIs for mobile apps to retrieve proprietary information or

upload app usage data for analytics, usually at a price. Requests for accessing

94

these services has to be sent with tokens issued by service providers to prove

the identities of requesting clients. We found that some apps store these

tokens as plaintext in variables whose names are not scrambled.

• In-app secrets. Apps may encrypt their private data such as execution logs

and intermediate results before storing them on mobile devices. Some poorly

obfuscated apps store encryption keys in plaintext as string literals.

• Information about back-end servers connected with the apps and the corre-

sponding communication protocols. In particular, we found 4 apps, which

are the mobile clients of some financial institutions, leaking the URLs or IP

addresses of their back-end testing infrastructures. Surprisingly, accessing

these infrastructures does not require any authentication. The communi-

cation protocols and even internal documentations are exposed to anyone

knowing the URLs or IPs.

It is true that information leaked above does not necessarily lead to exploitable

security vulnerabilities. Per common software security principles, however, such

information should not be exposed to unauthorized parties in the first place. Al-

though leakages discovered by our study were caused by series of inappropriate

software engineering practices, the problem will be less severe if the apps are more

properly obfuscated. In our opinion, the current status of software protection on

mobile platforms is far from satisfactory. Both the academia and the industry

should invest some effort in improving the developer practices of utilizing obfusca-

tion techniques.

4.5 Implications of the Results

Through this empirical study, we learned that third-party libraries play a sig-

nificant role in iOS app obfuscation, which is consistent with the situation on

95

Android [91]. Being a major source of obfuscated code, third-party libraries affect

software attributes in various aspects without app developers being aware. We

urge that future studies on iOS app repositories to take obfuscated third-party

libraries into consideration and develop dedicated analysis techniques to handle

them.

We have found a posteriori evidence indicating the correlation between the

likelihood of mobile apps being obfuscated and their functionality. Particularly,

apps related to finance, privacy, intellectual properties, and monetization are more

likely to be obfuscated. It may be worthwhile for obfuscation service providers

to take an in-depth study on the characteristics of these apps and specialize their

products to better fit the demands of their vendors.

Our study suggests that the adoption of obfuscation on mobile platforms may

be affected by mandatory code reviews from app distributors. Since obfuscation

is inherently unfriendly to code reviews and may causes disapproval from the re-

viewer, app developers will likely face the dilemma between improved security

and shorter time to market of their products. This factor needs to be considered

when developing or advocating new obfuscation techniques for mobile platforms,

particularly iOS whose vetting process is much more strict that Android.

We noticed an increasing trend in the number of mobile apps getting obfus-

cated. For a notable portion of these apps, however, the obfuscation was not

appropriately conducted, leaving them still vulnerable to certain low-effort reverse

engineering techniques. As such, we believe that future efforts on software pro-

tection should not only focus on developing new obfuscation techniques but also

proposing accessible policies and strategies that can guide mobile developers to

maximize the efficacy of existing techniques.

In conclusion, we empirically investigated the status of software obfuscation in

the mobile software industry. We collected a large set of obfuscated iOS applica-

tions in the real world and performed in-depth analysis on these samples. With

96

the information gathered in the study, we revealed factors potentially affecting

the deployment of obfuscation techniques in mobile apps and typical obfuscation

patterns adopted by mobile developers. We believe that findings developed in this

research will shed light on future research that aims to understand and improve

the state of art of software protection.

Chapter 5
A Case Study on Real-World

Mobile Obfuscation

In Chapter 1.1, we discussed why iOS software is particularly vulnerable to reverse

engineering and the threats faced by enterprise iOS developers. In this chapter,

we apply our knowledge about advanced obfuscation techniques to protecting a

group of commercial iOS apps which serve millions of users. These apps span a

wide range of functionality categories, including news, utility, navigation, payment,

social networking, and shopping. To be specific, our objective is to protect a

common code base shared by these apps. The protected iOS code base consists

of 23K lines of Objective-C and C code, which roughly takes 0.5% to 2% of each

including app.

Practicability has been a major concern of research on new obfuscation tech-

niques. This dissertation shares the field experience of operationalizing obfuscation

as part of the real-world software engineering procedures. By analyzing the ben-

efits, pitfalls, and costs of obfuscation in massive production settings, we deliver

a deeper understanding on the role of obfuscation in secure software engineering,

particularly in the development of large-scale mobile software.

The work of this chapter is published in Proceedings of the 40th International Conference on
Software Engineering, the Software Engineering In Practice Track, 2018 [137].

98

5.1 Tools

iOS apps can be developed in several different programming languages, including

C, C++, Objective-C, and Swift. Apple provides different frontends for each

language, while all backends are based on the LLVM compiler infrastructure.1

Therefore, all source code in an iOS project is eventually translated into the LLVM

intermediate representation (IR). Most of the compiler assets for iOS development

have been made open source. This allows other software vendors to develop new

features for the compilers.

Considering the iOS app build process, we decided to implement our obfus-

cation tool as a series of LLVM IR transformation passes. Compared with other

options like source-level and binary-level obfuscation, the IR-level solution provides

multiple appealing benefits:

• IR obfuscation is language independent. A single IR transformation module

can process most part of an iOS app, which is not the case for source-level

obfuscation.

• Apple now advises app developers to submit their products in the form of

LLVM IR rather than binary. IR-level obfuscation fits this practice better

than binary-level obfuscation.

• A compiler-based obfuscator is mostly transparent to app developers, mini-

mizing the interference to the normal development process.

The current implementation of our obfuscator consists of about 3.8K lines of

C++ code,2 plus another 1K lines of third-party code for random number genera-

tion and security hashes. The obfuscator provides different obfuscation algorithms

1The swift compiler backend is based on a separately maintained LLVM version, thus slightly
different from the standard one.

2Code statistics in this chapter include comments and blanks.

99

that can be arbitrarily combined per developer demands. The granularity of ob-

fuscation is configurable through customized compiler flags and extended function

attributes. Figure 5.1 shows how app developers can control the granularity of ob-

fuscation at the compilation unit level and function level. In actual development,

each obfuscation algorithm can be configured separately.

5.2 Obfuscation Algorithms

Choosing the appropriate obfuscation algorithms is the first step to effective pro-

tection of iOS apps. In addition to effectiveness, obfuscation in real-world software

engineering also needs to take many other factors into account. On iOS, there are

several issues that may not exist on other platforms. We discuss these factors with

more details below.

Platform-wide security policies iOS is considered to be one of the most se-

cure mobile systems, for it enforces extremely restrictive security policies on its

apps. The policy affecting obfuscation the most is called code signing. To counter

software tampering, iOS ensures that every executable page owned by a third-party

app must be signed and checked for integrity before code in that page is executed

for the first time after the process starts. On the other hand, changing the execu-

tion permission of a memory page is not allowed for third-party apps. This means

self-modifying code is strictly prohibited on iOS, leaving dynamic code rewriting

obfuscation unfeasible. For this reason, many packer-based obfuscation techniques

that are popular on Android [153] are not viable options for iOS.

Binary size For apps that need to support all living iOS versions (including 7

and above), Apple imposes a 60 MB limit on the size of the code section in each

executable [20]. Since many popular apps have large code bases, this limit is very

tight. Even if the code to be obfuscated is only a small part of the apps, developers

100

1 // source.c, compiled with −obf flag
2
3 void foo() {
4 ...
5 }
6
7 void bar() {
8 ...
9 }

(a) Obfuscate the whole compilation unit

1 // source.c, compiled with −obf flag
2
3 attribute ((no obf)) void foo() {
4 ...
5 }
6
7 void bar() {
8 ...
9 }

(b) Obfuscate the whole compilation unit excluding foo

1 // source.c, compiled without −obf flag
2
3 attribute ((obf)) void foo() {
4 ...
5 }
6
7 void bar() {
8 ...
9 }

(c) Obfuscate only foo in the compilation unit

Figure 5.1: Obfuscation configuration examples

101

cannot afford obfuscation algorithms that bloat the software size too much. That

includes virtualization-based obfuscation [126, 54], which requires integrating a

full-fledged hardware emulator into the app.

LLVM IR compatibility Since our obfuscator operates on LLVM IR, it can

be challenging, if possible at all, to implement certain obfuscation algorithms that

require extensive manipulations of low-level machine instructions.

App review All iOS apps are reviewed by Apple App Store before allowed to

be published. This is a necessary procedure for minimizing the number of low-

quality and malicious apps delivered to users. While the details of app reviews

are kept confidential, it is likely that both humans and automated analyzers are

participating in the process. It is imperative that our obfuscation does not have

adverse impact on the review. In particular, we must make sure that the applied

obfuscation algorithms strictly abide by the iOS developer regulations [18].3

Considering the factors listed above, we made a careful selection of obfuscation

algorithms, listed as follows.

1. Symbol name mangling that turns understandable human-written identifiers

into strings that do not indicate program semantics.4

2. String literal encryption that hides the plaintext of the string literals stored

in the binary. The protected strings are decrypted at run time.

3. Disassembly disruption that confuses instruction decoding and function recog-

nition in binary analysis. Typical methods of disruption include interleaving

3 It is known that some iOS developers have tried to misuse obfuscation to disrupt and
mislead the review process such that the apps can secretly possess features disallowed by Apple.
We emphasize that techniques discussed in this chapter are not meant to advocate such behavior,
nor any app obfuscated by us ever seeks to bypass Apple’s review through obfuscation.

4 Although symbol name mangling was valid obfuscation on iOS by the time of writing, our
latest communication with Apple suggests that it may not be acceptable any more. Readers
interested in adopting this method should carefully consult with Apple about their possibly
undocumented regulations.

102

data with code and forging code patterns that code analyzers recognize as

special hints for disassembly.

4. Bogus control flow insertion that constructs unfeasible code paths guarded

by opaque predicates [52].

5. Control flow flattening that obscures the logic relations between program

basic blocks [49].

6. Garbage instruction insertion that injects garbage code that is irrelevant to

program functionality [50].

Among these obfuscations, symbol name mangling and string literal encryption

are mainly for misleading human perception while the others are meant to confuse

both humans and automated tools. The major focus of our solution is to impede

automated binary disassembly and decompilation, which are the early steps of

most malicious activities conducted by the practitioners of underground economy

targeting iOS apps.

We ensure that all selected obfuscation algorithms well abide by Apple’s se-

curity policies. By analyzing other obfuscated iOS apps found in the App Store,

we have confirmed that these algorithms or their variants have been previously

employed by legit app developers, indicating that they are unlikely to affect the

review process. Regarding the limit for binary size, obfuscation (1), (2), and (3)

barely introduces spatial overhead into the obfuscated binaries. For the other three

algorithms, the expanded binary size can be controlled within an acceptable rate

by carefully tuning the configurable obfuscation parameters, e.g., the ratio of in-

serted opaque predicates and garbage instructions to the amount of the original

code.

Through our implementation, we have confirmed that all selected algorithms are

fully compatible with LLVM IR, except for (3), which needs to directly manipulate

machine code. We partially addressed this problem with the use of inline assembly,

103

1 ; @foo: A function computing foo(a, b) = a + b
2 define i32 @foo(i32 %a, i32 %b) #0 {
3 entry:
4 ; %x: uninitialized 32−bit integer variable
5 %x = alloca i32, align 4
6 %0 = load i32, i32∗ %x, align 4
7 %1 = load i32, i32∗ %x, align 4
8 %add = add nsw i32 %1, 1
9 %mul = mul nsw i32 %0, %add

10 %rem = srem i32 %mul, 2
11 ; %tobool: opaque predicate ’x∗(x+1)%2 != 0’ (constantly false)
12 %tobool = icmp ne i32 %rem, 0
13 br i1 %tobool, label %if.then, label %if.else
14
15 ; %if.then: unreachable block guarded by %tobool
16 if.then:
17 ; insert 4−byte data 0xdeadbeaf with inline asm
18 call void asm sideeffect ".long 0xdeadbeaf", ""()
19 br label %if.end
20
21 if.else:
22 %add1 = add nsw i32 %a, %b
23 br label %if.end
24
25 if.end:
26 %2 = phi i32 [%x, %if.then], [%add1, %if.else]
27 ret i32 %4
28 }

Figure 5.2: Example of obfuscation utilizing LLVM IR inline assembly

a feature supported by many implementations of C-family languages and LLVM

itself. Figure 5.2 shows an example of interleaving data and code at the LLVM

IR level. The inserted data are used for disrupting disassembly. The data chunks

are guarded by an opaque predicate so that they are never reached and thus do

not compromise normal execution. In Chapter 5.3, we will discuss implementing

binary obfuscation at the IR level in more depth.

Many obfuscation methods we employed have reference implementations from

the open source community [13, 12, 82]. We intentionally made our implementa-

tion different from the public ones by altering code patterns and introducing new

features. Attackers will need more sophisticated techniques to nullify the mutated

104

obfuscation effects [146]. Indeed, most of the mutations we made are supplemen-

tary and it is questionable whether they render the obfuscations fundamentally

more difficult to defeat. Ideally, a reliable defensive measure should be secure even

if its technical details are known to attackers. This is however a standard not met

by most obfuscation techniques used in practice. As a consequence, keeping the

obfuscation details confidential is one of the few advantages that benign developers

can hold over adversaries. Regardless, the customized obfuscation techniques can

at least make reverse engineering much more tedious and frustrating, since reverse

engineers will have to undo the customization before reducing the mutated obfusca-

tion to its baseline form. Again, we would like to note that the main contribution

of this part of the dissertation is not developing or evaluating new obfuscation

methods, but maximizing the value of existing techniques in practical engineering.

5.3 Implementation Pitfalls

We have encountered a series of technical issues when trying to implement the

aforementioned algorithms, many of which are quite stealthy and lead to subtle

problems affecting the potency and practicality of our work. Some of the issues are

generally relevant to software obfuscation, but more of them are unique to iOS.

5.3.1 Inline Assembly

As previously mentioned, the inline assembly feature of LLVM allows IR transfor-

mations to manipulate machine instructions. To the best of our knowledge, this is

the only solution that makes binary-level obfuscation possible if we are to follow

the currently recommended iOS app development procedure.

Since directly manipulating or adjusting machine instructions after compiling

the source code is not possible, the capability of our solution is significantly limited.

In principle, inline assembly can only perform instruction insertion but not code

105

modification or deletion. Moreover, at the time of IR transformation, most ma-

chine code is not yet generated by the LLVM backend, making it extremely difficult

to construct complicated binary transformations solely with LLVM IR manipula-

tion. Another factor to consider is the characteristics of the ARM architecture.

Compared with the CISC architectures x86 and x64 where binary-level obfuscation

is quite prevalent, ARM is RISC and employs the fixed-length instruction encod-

ing. This invalidates many obfuscation techniques that exploit the variable-length

encoding of instructions, such as overlapping instructions [38].

According to our experience, the following obfuscation-oriented transformations

can be correctly implemented with LLVM inline assembly:

• Insert junk instructions.

• Interleave data and code in unreachable basic blocks.

• Perform control flow transfers that are consistent with the IR-level control

flows.

• Diversify stack frame layouts by manipulating the stack and frame pointer

registers.

It should be noted that the correctness of these transformations cannot be guaran-

teed for concurrent code, due to the lack of support for volatile inline assembly in

LLVM. In certain cases, aggressive compiler optimization may also make binary-

level obfuscation problematic. As such, it is extremely crucial to thoroughly test

the obfuscator in real app development and production settings. Because of this

potential instability of binary-level obfuscation in LLVM IR, developers should

take deliberation to make appropriate trade-offs among security, reliability, and

maintainability when designing an iOS obfuscator.

106

5.3.2 Heterogeneous Hardware

In contrast to Android, iOS runs on a very limited set of models of hardware,

therefore hardware fragmentation is much less of an issue for most iOS developers.

For obfuscation, however, heterogeneous architectures is still a factor that needs

to be considered, especially when obfuscation aims to hinder binary disassembly,

which is heavily architecture dependent.

iOS and its variants support both 32-bit and 64-bit ARM architectures. For

iPhone apps, 32-bit binaries are no longer supported since iOS 11, while other Ap-

ple mobile devices like smart watches and smart TVs will keep supporting 32-bit

binaries for a much longer time. If a developer intends to release its apps on all

active iOS devices and the code fragments to be protected are shared by apps on

different platforms, obfuscation should guarantee that code for the two architec-

tures are equally protected. If code for one architecture is less well obfuscated than

that for the other, attackers will simply choose to breach the weaker spot, leaving

the more effective protection on the other architecture meaningless.

5.3.3 App Maintainability

In most cases, when commodity software crashes, the only information available

to software developers for investigating the root causes are the core dumps and

stack traces collected at crash sites. This applies to iOS apps as well. Developers

can either embed a third-party crash reporting library into their apps or period-

ically receive diagnosis reports from Apple. In either case, the readability of the

stack traces will be affected by obfuscation, potentially making app maintenance

troublesome.

Obfuscation can render crash traces unreadable in two aspects. Firstly, the

symbol names appearing in the stack traces, especially the function names, are

scrambled into strings meaningless to humans. To undo this effect at the time of

crash analysis, the obfuscator need to memorize the mapping from original symbol

107

names to the mangled ones during app compilation and revert the obfuscated

names before app maintainers read crash reports. Secondly, obfuscation inserts

additional code into the software, which cannot be correlated to any location in

the source files. Ideally, if the obfuscator is correctly implemented, obfuscation-

specific code should not cause crashes. However, since iOS apps are mostly written

in unsafe programming languages that are prone to memory errors, faults caused

by defective genuine app code may propagate to surrounding locations, possibly

reaching code introduced by the obfuscator. To tackle this problem, we make the

obfuscator generate extra debug information for the inserted code. In order to

minimize the confusion caused to crash analysts, we adopt a “nearby principle”

that maps obfuscator-generated code to the source location of the nearest genuine

app code within the same lexical scope.

On iOS, the debug information of an executable is collected into a dedicated

metadata file and is only accessible to app developers. Therefore, enriching debug

information will not accidentally help reverse engineers better understand the app.

5.4 Evaluation

We now report the outcome of our obfuscation effort. The protected iOS code base

consists of 23K lines of Objective-C and C code, which roughly takes 0.5% to 2% of

each including app. We evaluated the obfuscation in two aspects, i.e., resilience and

overhead. According to the definition by Collberg et al. [52], resilience indicates

how well the obfuscation can withstand automated reverse engineering. As for

overhead measurement, we focus on binary size expansion and execution slowdown.

5.4.1 Resilience

Although software obfuscation has been actively researched for quite some time,

how to systematically assess the security strength of an obfuscator remains an open

108

Table 5.1: Performance of IDA Pro Function Recognition

T
a
rget

A
rch

itectu
re

N
u

m
b

er
o
f

F
u

n
ctio

n
s

O
rig

in
a
l

O
b

fu
scated

G
ro

u
n

d
T

ru
th

ID
A

R
ep

o
rted

F
a
lse

P
o
sitiv

es
G

ro
u

n
d

T
ru

th
ID

A
R

ep
orted

F
alse

P
ositives

A
R

M
v
7

(32
b

it)
99

3
1
1
5
2

1
5
9

1
0
6
9

3516
2447

A
A

rch
64

(64
b

it)
9
9
1

1
1
2
1

1
3
0

1
0
6
5

1778
713

109

problem. The theoretically solid evaluation methodology is to reduce deobfuscation

to a computational problem with provable or conjectural intractability. To date,

this has only been done for indistinguishability obfuscation [70], which is still not

practical for protecting real-world software [109]. On the other hand, evaluation

through empirical experiments always raise concerns about the possibility that the

obfuscation can be effectively nullified by some unknown or future deobfuscation

methods not considered by the evaluation. Some recent effort has tried to establish

standards for assessing the security strength of obfuscation techniques [34, 136,

115], but it remains unclear how well they can fit the demands of practical software

protection.

Practitioners in industry mostly evaluate the resilience of an obfuscation tech-

nique through white-hat penetration tests. Although the procedures of these tests

are exceedingly subjected to human intuition and experience [44, 34], the early

steps are fairly standard. Typically, the testers will first use automated reverse en-

gineering tools to reduce binary code into a form that is much more convenient for

humans to inspect. Our internal penetration test also follows this scheme. In the

section, we report the effectiveness of our obfuscator by showing its resilience to

IDA Pro, the de facto industrial standard of binary disassembler and decompiler.

Our obfuscation delivers two major disrupting effects on the efficacy of IDA Pro.

The first one is that IDA Pro will report significantly more false positives when

trying to recognize the starting addresses of functions in an obfuscated binary, due

to the confusing code patterns we inserted. Table 5.1 displays the true numbers

of functions, the numbers of functions recognized by IDA Pro, and the numbers of

false positives, counted before and after obfuscation. Note that the ground truths

of function numbers before and after obfuscation are slightly different because the

obfuscator inserted some helper functions during IR transformations.

The other disrupting effect is that IDA Pro will fail to disassemble a large

portion of the binary code, due to the garbage instructions, intrusive binary data,

110

and unfeasible control flows forged by the obfuscator. Figure 5.3 presents the

performance of IDA Pro regarding the original and obfuscated binaries in terms of

the proportion of successfully disassembled code. Before obfuscation, IDA Pro is

able to disassemble almost all binary code for both 32-bit and 64-bit architectures.

After obfuscation, the disassembler can only process 51.1% of the 32-bit binary

and 14.1% of the 64-bit binary.

As discussed in Chapter 5.3, it is crucial for an iOS obfuscator to protect bi-

naries of different architectures equally well. When interpreting the results in

Table 5.1 and Figure 5.3, it is important to note that the two metrics used in the

evaluation are complementary. Since a recognized function must have a body, more

falsely recognized functions naturally lead to more disassembled binary chunks.

Considering that IDA Pro reports much more false positives in 32-bit binary func-

tion recognition, a disassembly rate higher than the result for the 64-bit version is

plausible. In other words, despite that IDA Pro can disassemble more code in the

32-bit binary, the additionally decoded instructions are incorrectly promoted to

functions that do not exist in the source code, which actually has a negative effect

on further analysis. According to our internal penetration tests, although the two

versions of obfuscated binaries confused IDA Pro in different ways, the end effects

are about the same.

5.4.2 Overhead

To measure the obfuscation overhead, we implemented the evaluated code base as

a standalone iOS app by adding necessary initialization procedures and a minimal

GUI. The newly added code is negligible for the purpose of measurement. We

report both the spatial and temporal overhead caused by obfuscation. As discussed

at the beginning of this chapter, the protected part of the code is small compared

to apps including it. Since the routines provided by this part are mostly decoupled

from the main functionality of the apps and typically run in the background, the

111

ARMv7 AArch64

20

40

60

80

100
99.1 98.5

51.1

14.1

C
o
d

e
D

is
as

se
m

b
le

d
b
y

ID
A

P
ro

(%
)

Original Binary
Obfuscated Binary

Figure 5.3: Effectiveness of disassembly disruption

impact of obfuscation on the overall execution speed is expected to be modest. In

contrast, the bloated binary size is more of a concern due to the strict size limit

on the code segments of iOS apps.

5.4.2.1 Size Expansion

For most of our obfuscated apps, the 64-bit binaries suffer more from the limited

quota of binary size, because the 32-bit iOS binaries are usually smaller than

their 64-bit counterparts. The main reason is that 32-bit binaries are composed

of THUMB2 instructions whose encoding is more compact than that of 64-bit

instructions. Meanwhile, the size limits for the two architectures are the same,

meaning the obfuscated part by itself is allowed to consume more quota on the

32-bit platform.

112

Table 5.2 shows the code segment sizes of the original and obfuscated iOS apps.

As can be seen, the obfuscation can cause 3 to 4 times of binary inflation, suggesting

that whole-app obfuscation is likely inapplicable to large-sized iOS apps.

Another observation is that the obfuscation bloats the 64-bit binary less than

the 32-bit version, in terms of proportion. As mentioned above, this is a some-

what desirable outcome since the size problem is more troublesome for 64-bit bi-

naries. We conducted a preliminary investigation to explore the causes of this

phenomenon. We found one of the reasons is that the 32-bit and 64-bit ARM

backends of LLVM handle relocatable memory addresses differently. Since ARM

is RISC and has a limited instruction length, loading a large constant integer into

a register usually takes more than one instruction to accomplish. According to our

observation, the 32-bit ARM backend of LLVM materializes relocatable memory

addresses by employing constant pools, while the 64-bit backend uses dedicated

instructions like adrp, which are slightly more efficient than the 32-bit solution

in terms of the total bytes of instructions generated. Since our obfuscator emits

a lot of large constants to represent basic block addresses, the difference between

the size efficiency of the two backends is significantly amplified.

Table 5.2: Binary Size Expansion Due to Obfuscation

Target Architecture
Code Segment Size in Bytes

Original Obfuscated Increase

ARMv7 (32 bit) 286304 1070656 784352 (+307%)
AArch64 (64 bit) 333376 1165456 832080 (+221%)

5.4.2.2 Execution Slowdown

We tested the decrease in execution speed after obfuscation on an Apple iPad Air,

an iOS device released in 2013, which has a 1.4 GHz dual-core ARM CPU and

1GB RAM. The obfuscated code performs both synchronous and asynchronous

tasks inside host apps. The asynchronous tasks are scheduled sparsely during

113

app execution and we did not detect any notable slowdown after obfuscation was

applied. As for the synchronous part, the execution penalty is from 5% to 10% for

both 32-bit and 64-bit builds,5 while the app-wide slowdown is mostly negligible.

This result indicates that performance degradation is not necessarily the primary

blocker that prevents obfuscation to be applied to real-world mobile apps.

5.5 Discussion

5.5.1 Dilemma of Security and Transparency

In our experience, one of the most challenging factor that prevents thorough soft-

ware protection on iOS, and potentially on all platforms featuring centralized soft-

ware distribution, is the conflict between seeking more securely obfuscated code

and retaining the transparency to app reviews. Naturally, the more effectively an

app is obfuscated, the more difficult it makes the distributor to review the func-

tionality of the code, even though the purpose of obfuscation is to prevent reverse

engineering only from the malicious parties. Since Apple does not provide offi-

cial support for iOS app protection, the developers will have to carefully take the

balance themselves.

An adequate solution to the dilemma is to let the app distributor perform

obfuscation after the review is completed and before the app is published. Indeed,

this solution will shift the burden of protection from iOS developers to App Store,

which may not be practical in the near future. However, we believe that it could

significantly benefit the entire iOS ecosystem in long terms.

Although it is unclear whether post-review obfuscation can be expected by iOS

developers at this stage, there are indeed other more realistic measures that iOS can

take to improve app code security. For example, some library developers would like

their products to be freely downloaded by any developers who are interested, yet

5The precise measurement results are confidential per app developer requirements.

114

they also wish to keep the actual content of the code confidential from potentially

malicious clients and competitors. Since iOS app code generation can now be

conducted remotely on Apple’s cloud, it is technically feasible for iOS to provide

encryption facilities for third-party library code such that only the programming

interface can be seen by other developers while the actual library content is only

revealed to Apple. Although this cannot prevent the code from being analyzed

after apps containing the libraries are released, it is still a step forward towards

more effective iOS software protection.

5.5.2 Other Protections

Obfuscation is not a panacea for combating the security threats targeting mobile

apps and there have been many deobfuscation techniques proposed [150, 147, 54,

105]. A comprehensive defense requires a synergy among various countermeasures.

At this point, obfuscation techniques available on iOS are mostly designed for

hindering static analysis, while reverse engineering can also be conducted dynami-

cally. Given a jailbroken iOS device, reverse engineers can tamper with an app by

injecting third-party code into its process. In this way, adversaries can debug the

app at run time to circumvent certain static protections provided by obfuscation.

Reverse engineering tools like cycript [8] and Frida [11] have made it quite conve-

nient to perform on-device debugging for arbitrary iOS apps. There are at least

two effective dynamic tampering attacks:

• Sensitive information pry. Depending on the objective of an attack, it is

sometimes sufficient for attackers to place hooks at critical program points

of an app and dynamically monitor what types of data are being exchanged.

Such information leakage is extremely severe for data-driven defenses like

anomaly detection.

115

• Replay attacks. On jailbroken devices, attackers is capable of dynamically

invoking arbitrary Objective-C methods of an app after injecting the debug-

ging module at run time, which allows them to replay certain communica-

tions between apps and servers. It is known that attackers have used replay

to counterfeit users clicks so that they can trick ad providers into paying

them for nothing [56].

Various techniques are available for preventing software from being dynami-

cally debugged by unauthorized parties. However, anti-debugging faces a problem

similar to obfuscation regarding its security guarantee. In the case of iOS, since

attackers are able to gain full control over the app and the system altogether, code

integrity can be easily breached. In theory, attackers can rewrite app binaries and

remove all anti-debugging facilities before dynamically inspecting them.

Although neither obfuscation nor anti-debugging is comprehensive by them-

selves, there is a chance that they can be combined to patch the weaknesses of

each other. To disable anti-debugging, attackers will have to gain certain knowl-

edge about the defenses in static means. On the other hand, before removing

the anti-debugging facilities, attackers cannot circumvent obfuscation via dynamic

analysis. Therefore, when obfuscation and anti-debugging are deployed together,

they can form an all round defense against reverse engineering.

Chapter 6
Conclusion

In this dissertation, we presented translingual obfuscation, a novel software obfus-

cation scheme based on programming language translation. By utilizing certain

unique features of the target language, we are able to protect the original program

against reverse engineering. We implemented Babel, a tool that translates part

of a C program into Prolog and makes use of Prolog’s highly abstract computa-

tion model and its implementation to turn program into a much more obscure

form. We evaluated Babel with respect to potency, resilience, cost, and stealth

on real-world C programs of different categories. The experiment results show that

translingual obfuscation is an adequate and practical software protection technique

in desktop environments.

We also empirically investigated the status of software obfuscation in the mo-

bile software industry. We collected a large set of obfuscated iOS applications in

the real world and performed in-depth analysis on these samples. With informa-

tion gathered from the study, we revealed the factors that potentially affect the

deployment of obfuscation techniques in mobile app development and typical ob-

fuscation patterns adopted by mobile developers. We believe that these findings

can shed light on future research that aims to understand and improve the state

of art of software protection.

117

Finally, we shared our experience with applying software obfuscation to iOS

mobile apps in realistic software development settings. In particular, we discussed

what efforts are required to make obfuscation a practical technique when applied

to complicated apps with large user bases. We summarized the major pitfalls that

may prevent iOS developers from utilizing obfuscation effectively and efficiently.

We then presented how we addressed these challenges when designing and imple-

menting an industry-quality iOS obfuscator, followed by quantitative evaluations

about the resilience and cost of the obfuscator. The evaluation was conducted on a

code base included by multiple commercial iOS apps, each of which serves millions

of users. The results show that software obfuscation, being an technique accessible

to common mobile developers, can indeed provide reasonably effective protection

against malicious reverse engineering with affordable cost.

Appendix A
Additional Potency Evaluation

Data For Babel

In this appendix, we present the program complexity at obfuscation levels of 10%,

20%, 30%, 40%, and 50%, for both Babel (Table A.1) and Code Virtualizer

(Table A.2). We would like to remind readers that for the Babel potency data,

all values are obtained by IDA Pro. Since Babel generates many indirect control

flow (see Chapter 3.3.2 and Figure 3.4), it is hard to evaluate how accurate IDA

Pro is when analyzing indirect control flows in our case, the reported values can

be interpreted as lower bounds of the corresponding metrics.

119

Table A.1: Program Complexity of Babel-Obfuscated Binaries at Different Ob-
fuscation Levels

Program
Obfuscation # of Call Graph Edges # of CFG Edges # of Basic Blocks Cyclomatic Number Knot Count

Level Value Ratio Value Ratio Value Ratio Value Ratio Value Ratio

bzip2

No Obf. 353 1.0 5382 1.0 3528 1.0 1856 1.0 3120 1.0
10% 5609 15.9 18539 3.4 15445 4.4 3096 1.7 12488 4.0
20% 5719 16.2 18909 3.5 15788 4.5 3123 1.7 12166 3.9
30% 5964 16.9 19771 3.7 17078 4.8 2695 1.5 12396 4.0
40% 6386 18.1 19630 3.6 17907 5.1 1725 0.9 12027 3.9
50% 6617 18.7 19829 3.7 18210 5.2 1621 0.9 12110 3.9

mcf

No Obf. 78 1.0 854 1.0 583 1.0 273 1.0 153 1.0
10% 5159 66.1 13352 15.6 11759 20.2 1595 5.8 8761 57.3
20% 5302 68.0 13500 15.8 12079 20.7 1423 5.2 8761 57.3
30% 5449 69.9 14233 16.7 13086 22.4 1149 4.2 8792 57.5
40% 5519 70.8 13922 16.3 12926 22.2 998 3.7 8739 57.1
50% 5697 73.0 14076 16.5 13464 23.1 614 2.2 8686 56.8

regexp

No Obf. 72 1.0 855 1.0 591 1.0 266 1.0 1135 1.0
10% 5053 70.2 13082 15.3 11447 19.4 1637 6.2 9675 8.5
20% 5101 70.8 12964 15.2 11428 19.3 1538 5.8 9491 8.4
30% 5276 73.3 13290 15.5 11802 20.0 1490 5.6 9530 8.4
40% 5309 73.7 13064 15.3 11704 19.8 1362 5.1 9405 8.3
50% 5375 74.7 13292 15.5 11940 20.2 1354 5.1 9393 8.3

svm

No Obf. 511 1.0 5375 1.0 3545 1.0 1832 1.0 2972 1.0
10% 5734 11.2 19156 3.6 15777 4.5 3381 1.8 11729 3.9
20% 6343 12.4 19912 3.7 17368 4.9 2546 1.4 11658 3.9
30% 6739 13.2 20752 3.9 18533 5.2 2221 1.2 11521 3.9
40% 7052 13.8 20680 3.8 19049 5.4 1633 0.9 11547 3.9
50% 7661 15.0 21119 3.9 20135 5.7 986 0.5 11552 3.9

oftpd

No Obf. 455 1.0 2035 1.0 1667 1.0 370 1.0 1277 1.0
10% 5541 12.2 14591 7.2 13011 7.8 1582 4.3 9856 7.7
20% 5710 12.5 15110 7.4 13812 8.3 1300 3.5 9923 7.8
30% 5810 12.8 15501 7.6 14422 8.7 1081 2.9 9911 7.8
40% 5853 12.9 15875 7.8 15086 9.0 791 2.1 9858 7.7
50% 6048 13.3 16493 8.1 16108 9.7 387 1.0 9954 7.8

mongoose

No Obf. 1027 1.0 2788 1.0 2086 1.0 704 1.0 493 1.0
10% 6288 6.1 15981 5.7 14262 6.8 1721 2.4 9495 19.3
20% 6525 6.4 16464 5.9 15102 7.2 1364 1.9 9474 19.2
30% 6762 6.6 17115 6.1 16079 7.7 1038 1.5 9491 19.3
40% 6784 6.6 17597 6.3 16924 8.1 675 1.0 9447 19.2
50% 7024 6.8 18470 6.6 18369 8.8 103 0.1 9450 19.2

120

Table A.2: Program Complexity of CV-Obfuscated Binaries at Different Obfusca-
tion Levels

Program
Obfuscation # of Call Graph Edges # of CFG Edges # of Basic Blocks Cyclomatic Number Knot Count

Level Value Ratio Value Ratio Value Ratio Value Ratio Value Ratio

bzip2

No Obf. 353 1.0 5382 1.0 3528 1.0 1856 1.0 3120 1.0
10% 424 1.2 4079 0.8 2962 0.8 1119 0.6 645 0.2
20% 385 1.1 3988 0.7 2906 0.8 1084 0.6 630 0.2
30% 261 0.7 3868 0.7 2826 0.8 1044 0.6 713 0.2
40% 248 0.7 3675 0.7 2684 0.8 993 0.5 699 0.2
50% 242 0.7 3652 0.7 2684 0.8 970 0.5 696 0.2

mcf

No Obf. 78 1.0 854 1.0 583 1.0 273 1.0 153 1.0
10% 36 0.5 531 0.6 377 0.6 156 0.6 71 0.5
20% 36 0.5 520 0.6 370 0.6 152 0.6 71 0.5
30% 34 0.4 461 0.5 329 0.6 134 0.5 68 0.4
40% 24 0.3 372 0.4 270 0.5 104 0.4 54 0.4
50% 33 0.4 308 0.4 223 0.4 87 0.3 46 0.3

regexp

No Obf. 72 1.0 855 1.0 591 1.0 266 1.0 1135 1.0
10% 69 1.0 589 0.7 410 0.7 181 0.7 619 0.5
20% 67 0.9 578 0.7 411 0.7 169 0.6 618 0.5
30% 66 0.9 525 0.6 377 0.6 150 0.6 603 0.5
40% 58 0.8 330 0.4 243 0.4 89 0.3 117 0.1
50% 57 0.8 326 0.4 253 0.4 75 0.3 117 0.1

svm

No Obf. 511 1.0 5375 1.0 3545 1.0 1832 1.0 2972 1.0
10% 403 0.8 3612 0.7 2576 0.7 1038 0.6 324 0.1
20% 382 0.7 3431 0.6 2460 0.7 973 0.5 313 0.1
30% 357 0.7 3267 0.6 2358 0.7 911 0.5 302 0.1
40% 337 0.7 3129 0.6 2259 0.6 872 0.5 293 0.1
50% 311 0.6 2971 0.6 2147 0.6 826 0.5 282 0.1

oftpd

No Obf. 455 1.0 2035 1.0 1667 1.0 370 1.0 1277 1.0
10% 444 1.0 1923 0.9 1582 0.9 343 0.9 1097 0.9
20% 411 0.9 1786 0.9 1454 0.9 334 0.9 1065 0.8
30% 390 0.9 1727 0.8 1435 0.9 294 0.8 542 0.4
40% 333 0.7 1500 0.7 1237 0.7 265 0.7 972 0.8
50% 307 0.7 1384 0.7 1158 0.7 228 0.6 944 0.7

mongoose

No Obf. 1027 1.0 2788 1.0 2086 1.0 704 1.0 493 1.0
10% 717 0.7 2489 0.9 1934 0.9 557 0.8 526 1.1
20% 644 0.6 2239 0.8 1786 0.9 455 0.6 462 0.9
30% 585 0.6 2063 0.7 1638 0.8 427 0.6 442 0.9
40% 532 0.5 1954 0.7 1555 0.7 401 0.6 430 0.9
50% 467 0.5 1787 0.6 1424 0.7 365 0.5 400 0.8

Appendix B
Publications During Ph.D.

• Protecting Million-User iOS Apps with Obfuscation: Motivations, Pitfalls,

and Experience. Pei Wang, Dinghao Wu, Zhaofeng Chen, and Tao Wei.

In the 40th International Conference on Software Engineering, the Software

Engineering In Practice Track, 2018. (ICSE ’18, SEIP)

• Software Protection on the Go: A Large-Scale Empirical Study on Mobile

App Obfuscation. Pei Wang, Qinkun Bao, Li Wang, Shuai Wang, Zhaofeng

Chen, Tao Wei, and Dinghao Wu. In the 40th International Conference on

Software Engineering, 2018. (ICSE ’18)

• Binary Code Retrofitting and Hardening Using SGX. Shuai Wang, Wenhao

Wang, Qinkun Bao, Pei Wang, XiaoFeng Wang, and Dinghao Wu. In the

2nd Workshop on Forming an Ecosystem Around Software Transformation,

2017. (FEAST ’17, co-located with CCS ’17)

• Lambda Obfuscation. Pengwei Lan, Pei Wang, Shuai Wang, and Dinghao

Wu. In the 13th EAI International Conference on Security and Privacy in

Communication Networks, 2017. (SecureComm ’17)

122

• Turing Obfuscation. Yan Wang, Shuai Wang, Pei Wang, and Dinghao

Wu. In the 13th EAI International Conference on Security and Privacy in

Communication Networks, 2017. (SecureComm ’17)

• Semantics-Aware Machine Learning for Function Recognition in Binary Code.

Shuai Wang, Pei Wang, and Dinghao Wu. In the 33rd IEEE International

Conference on Software Maintenance and Evolution, 2017. (ICSME ’17)

• Composite Software Diversification. Shuai Wang, Pei Wang, and Dinghao

Wu. In the 33rd IEEE International Conference on Software Maintenance

and Evolution, 2017. (ICSME ’17)

• CacheD: Identifying Cache-Based Timing Channels in Production Software.

Shuai Wang, Pei Wang, Xiao Liu, Danfeng Zhang, and Dinghao Wu. In

the 26th USENIX Security Symposium, 2017. (USENIX Security ’17)

• LibD: Scalable and Precise Third-party Library Detection in Android Mar-

kets. Menghao Li, Wei Wang, Pei Wang, Shuai Wang, Dinghao Wu, Jian

Liu, Rui Xue, and Wei Huo. In the 39th ACM/IEEE International Confer-

ence on Software Engineering, 2017. (ICSE ’17)

• CREDAL: Towards Locating a Memory Corruption Vulnerability with Your

Core Dump. Jun Xu, Dongliang Mu, Ping Chen, Xinyu Xing, Pei Wang,

and Peng Liu. In the 23rd ACM Conference on Computer and Communica-

tions Security, 2016. (CCS ’16)

• Translingual Obfuscation. Pei Wang, Shuai Wang, Jiang Ming, Yufei Jiang,

and Dinghao Wu. In the 1st IEEE European Symposium on Security and

Privacy, 2016. (EuroS&P ’16)

• Uroboros: Instrumenting Stripped Binaries with Static Reassembling. Shuai

Wang, Pei Wang, and Dinghao Wu. In the 23rd IEEE International Con-

123

ference on Software Analysis, Evolution, and Reengineering, 2016. (SANER

’16)

• Reassembleable Disassembling. Shuai Wang, Pei Wang, and Dinghao Wu.

In the 24th USENIX Security Symposium, 2015. (USENIX Security ’15)

Bibliography

[1] Anand Prakash: How anyone could have used Uber to
ride for free! http://www.anandpraka.sh/2017/03/
how-anyone-could-have-used-uber-to-ride.html.

[2] Apple: most popular app store categories 2017 — statis-
tic. https://www.statista.com/statistics/270291/
popular-categories-in-the-app-store/.

[3] Binary Diff (bdiff). http://sourceforge.net/projects/bdiff/.

[4] BinDiff. http://www.zynamics.com/bindiff.html.

[5] Black mirror investigation: A report on the bussiness of
“click-farming”. http://image.3001.net/uploads/pdf/
4aa87c46888173995c295a873c2aa682.pdf.

[6] C++ to Java converter. http://www.tangiblesoftwaresolutions.
com/Product_Details/CPlusPlus_to_Java_Converter_
Details.html.

[7] Code Virtualizer: Total obfuscation against reverse engineering. http:
//oreans.com/codevirtualizer.php.

[8] Cycript. http://www.cycript.org/.

[9] Darpa-baa-10-36, cyber genome program. https://www.fbo.gov/
index?id=d477d43219a5a189e02e190c6b81ac6a&_cview=1.

[10] DarunGrim: A patch analysis and binary diffing tool. http://www.
darungrim.org/.

[11] Frida · a world-class dynamic instrumentation framework. www.frida.
re/.

http://www.anandpraka.sh/2017/03/how-anyone-could-have-used-uber-to-ride.html
http://www.anandpraka.sh/2017/03/how-anyone-could-have-used-uber-to-ride.html
https://www.statista.com/statistics/270291/popular-categories-in-the-app-store/
https://www.statista.com/statistics/270291/popular-categories-in-the-app-store/
http://sourceforge.net/projects/bdiff/
http://www.zynamics.com/bindiff.html
http://image.3001.net/uploads/pdf/4aa87c46888173995c295a873c2aa682.pdf
http://image.3001.net/uploads/pdf/4aa87c46888173995c295a873c2aa682.pdf
http://www.tangiblesoftwaresolutions.com/Product_Details/CPlusPlus_to_Java_Converter_Details.html
http://www.tangiblesoftwaresolutions.com/Product_Details/CPlusPlus_to_Java_Converter_Details.html
http://www.tangiblesoftwaresolutions.com/Product_Details/CPlusPlus_to_Java_Converter_Details.html
http://oreans.com/codevirtualizer.php
http://oreans.com/codevirtualizer.php
http://www.cycript.org/
https://www.fbo.gov/index?id=d477d43219a5a189e02e190c6b81ac6a&_cview=1
https://www.fbo.gov/index?id=d477d43219a5a189e02e190c6b81ac6a&_cview=1
http://www.darungrim.org/
http://www.darungrim.org/
www.frida.re/
www.frida.re/

125

[12] GitHub - pjebs/Obfuscator-iOS: Secure your app by obfuscating all the
hard-coded security-sensitive strings. https://github.com/pjebs/
Obfuscator-iOS.

[13] GitHub - preemptive/PPiOS-Rename: Symbol obfuscator for iOS apps.
https://github.com/preemptive/PPiOS-Rename.

[14] GitHub - WhisperSystems/Signal-iOS: A private messenger for iOS. https:
//github.com/WhisperSystems/Signal-iOS.

[15] IDA: About. https://www.hex-rays.com/products/ida/.

[16] The international obfuscated C code contest. http://www.ioccc.org.

[17] iOS apps caught using private APIs. http://sourcedna.com/blog/
20151018/ios-apps-using-private-apis.html.

[18] iTunes connect developer guide. https://developer.apple.
com/library/content/documentation/LanguagesUtilities/
Conceptual/iTunesConnect_Guide/Chapters/About.html.

[19] The Lancaster corpus of mandarin Chinese. http://www.lancaster.
ac.uk/fass/projects/corpus/LCMC/.

[20] Maximum build file sizes. https://help.apple.com/itunes-
connect/developer/#/dev611e0a21f.

[21] Monument Valley apparently has a 95% piracy rate on Android, 60% on iOS.
https://goo.gl/TkfCIK.

[22] Protecting better with Code Virtualizer. http://www.oreans.com/
Release/ProtectBetter.pdf.

[23] Seizing opportunity through license compliance. http://globalstudy.
bsa.org/2016/downloads/studies/BSA_GSS_US.pdf.

[24] Shrink your code and resources — Android studio - Android de-
velopers. https://developer.android.com/studio/build/
shrink-code.html.

[25] Smart obfuscation for iOS apps — PreEmptive Protection. https://www.
preemptive.com/products/ppios.

[26] SWI-Prolog manual. http://www.swi-prolog.org/man/threads.
html.

[27] VirusTotal - free online virus, malware and URL scanner. https://www.
virustotal.com/.

https://github.com/pjebs/Obfuscator-iOS
https://github.com/pjebs/Obfuscator-iOS
https://github.com/preemptive/PPiOS-Rename
https://github.com/WhisperSystems/Signal-iOS
https://github.com/WhisperSystems/Signal-iOS
https://www.hex-rays.com/products/ida/
http://www.ioccc.org
http://sourcedna.com/blog/20151018/ios-apps-using-private-apis.html
http://sourcedna.com/blog/20151018/ios-apps-using-private-apis.html
https://developer.apple.com/library/content/documentation/LanguagesUtilities/Conceptual/iTunesConnect_Guide/Chapters/About.html
https://developer.apple.com/library/content/documentation/LanguagesUtilities/Conceptual/iTunesConnect_Guide/Chapters/About.html
https://developer.apple.com/library/content/documentation/LanguagesUtilities/Conceptual/iTunesConnect_Guide/Chapters/About.html
http://www.lancaster.ac.uk/fass/projects/corpus/LCMC/
http://www.lancaster.ac.uk/fass/projects/corpus/LCMC/
https://goo.gl/TkfCIK
http://www.oreans.com/Release/ProtectBetter.pdf
http://www.oreans.com/Release/ProtectBetter.pdf
http://globalstudy.bsa.org/2016/downloads/studies/BSA_GSS_US.pdf
http://globalstudy.bsa.org/2016/downloads/studies/BSA_GSS_US.pdf
https://developer.android.com/studio/build/shrink-code.html
https://developer.android.com/studio/build/shrink-code.html
https://www.preemptive.com/products/ppios
https://www.preemptive.com/products/ppios
http://www.swi-prolog.org/man/threads.html
http://www.swi-prolog.org/man/threads.html
https://www.virustotal.com/
https://www.virustotal.com/

126

[28] VMProtect software protection. http://vmpsoft.com.

[29] Andow, B., Nadkarni, A., Bassett, B., Enck, W., and Xie, T. A
study of grayware on google play. In Proceedings of the 2016 IEEE Workshop
on Mobile Security Technologies (2016), MoST ’16.

[30] Apon, D., Huang, Y., Katz, J., and Malozemoff, A. J. Implement-
ing cryptographic program obfuscation. Cryptology ePrint Archive, Report
2014/779, 2014. https://eprint.iacr.org/2014/779.

[31] Appel, A. W., and MacQueen, D. B. Standard ML of New Jersey. In
Proceedings of the 3rd International Symposium on Programming Language
Implementation and Logic Programming (1991), PLILP ’91.

[32] Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., and Rieck,
K. Drebin: Effective and explainable detection of android malware in your
pocket. In Proceedings of the 2014 Network and Distributed System Security
Symposium (2014), NDSS ’14.

[33] At-Kaci, H. Warren’s Abstract Machine: A Tutorial Reconstruction. MIT
Press, 1991.

[34] Banescu, S., Ochoa, M., and Pretschner, A. A framework for mea-
suring software obfuscation resilience against automated attacks. In Proceed-
ings of the 1st International Workshop on Software Protection (2015), SPRO
’15, pp. 45–51.

[35] Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai,
A., Vadhan, S., and Yang, K. On the (im)possibility of obfuscating
programs. J. ACM 59, 2 (May 2012), 6:1–6:48.

[36] Bardin, S., David, R., and Marion, J.-Y. Backward-bounded DSE:
Targeting infeasibility questions on obfuscated codes. In Proceedings of the
38th IEEE Symposium on Security and Privacy (2017), SP ’17, pp. 633–651.

[37] Bichsel, B., Raychev, V., Tsankov, P., and Vechev, M. Statisti-
cal deobfuscation of Android applications. In Proceedings of the 23rd ACM
SIGSAC Conference on Computer and Communications Security (2016),
CCS ’16, pp. 343–355.

[38] Bonfante, G., Fernandez, J., Marion, J.-Y., Rouxel, B.,
Sabatier, F., and Thierry, A. CoDisasm: Medium scale concatic disas-
sembly of self-modifying binaries with overlapping instructions. In Proceed-
ings of the 22nd ACM SIGSAC Conference on Computer and Communica-
tions Security (2015), CCS ’15, pp. 745–756.

http://vmpsoft.com
https://eprint.iacr.org/2014/779

127

[39] Brumley, D., Jager, I., Avgerinos, T., and Schwartz, E. J. BAP: A
binary analysis platform. In Proceedings of the 23rd International Conference
on Computer Aided Verification (2011), CAV ’11, pp. 463–469.

[40] Brumley, D., Poosankam, P., Song, D., and Zheng, J. Automatic
patch-based exploit generation is possible: Techniques and implications. In
Proceedings of the 29th IEEE Symposium on Security and Privacy (2008),
SP ’08.

[41] Buddrus, F., and Schödel, J. Cappuccino—A C++ to Java translator.
In Proceedings of the 1998 ACM Symposium on Applied Computing (1998),
SAC ’98, pp. 660–665.

[42] Caliskan, A., Yamaguchi, F., Dauber, E., Harang, R., Rieck,
K., Greenstadt, R., and Narayanan, A. When coding style survives
compilation: De-anonymizing programmers from executable binaries. In Pro-
ceedings of 25th Network and Distributed System Security Symposium (2018),
NDSS ’18.

[43] Caliskan-Islam, A., Harang, R., Liu, A., Narayanan, A., Voss,
C., Yamaguchi, F., and Greenstadt, R. De-anonymizing programmers
via code stylometry. In Proceedings of the 24th USENIX Security Symposium
(2015), USENIX Security ’15, pp. 255–270.

[44] Ceccato, M., Penta, M., Falcarin, P., Ricca, F., Torchiano, M.,
and Tonella, P. A family of experiments to assess the effectiveness and
efficiency of source code obfuscation techniques. Empirical Softw. Engg. 19,
4 (Aug. 2014), 1040–1074.

[45] Chen, H., Yuan, L., Wu, X., Zang, B., Huang, B., and Yew, P.-C.
Control flow obfuscation with information flow tracking. In Proceedings of
the 42nd Annual IEEE/ACM International Symposium on Microarchitecture
(2009), MICRO ’42, pp. 391–400.

[46] Chen, K., Liu, P., and Zhang, Y. Achieving accuracy and scalabil-
ity simultaneously in detecting application clones on android markets. In
Proceedings of the 36th ACM/IEEE International Conference on Software
Engineering (2014), ICSE ’14, pp. 175–186.

[47] Chen, K., Wang, X., Chen, Y., Wang, P., Lee, Y., Wang, X., Ma,
B., Wang, A., Zhang, Y., and Zou, W. Following devil’s footprints:
Cross-platform analysis of potentially harmful libraries on Android and iOS.
In Proceedings of the 37th IEEE Symposium on Security and Privacy (2016),
S&P ’16, pp. 357–376.

128

[48] Chen, Z. iOS masque attack weaponized: A real world look.
https://www.fireeye.com/blog/threat-research/2015/
08/ios_masque_attackwe.html.

[49] Chow, S., Gu, Y., Johnson, H., and Zakharov, V. A. An approach
to the obfuscation of control-flow of sequential computer programs. In Pro-
ceedings of the 4th International Conference on Information Security (2001),
ISC ’01, pp. 144–155.

[50] Cohen, F. B. Operating system protection through program evolution.
Comput. Secur. 12, 6 (Oct. 1993), 565–584.

[51] Collberg, C., Thomborson, C., and Low, D. A taxonomy of obfus-
cating transformations. Tech. rep., The University of Auckland, 1997.

[52] Collberg, C., Thomborson, C., and Low, D. Manufacturing cheap,
resilient, and stealthy opaque constructs. In Proceedings of the 25th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(1998), POPL ’98, pp. 184–196.

[53] Conte, S. D., Dunsmore, H. E., and Shen, V. Y. Software Engineering
Metrics and Models. Benjamin-Cummings Publishing Co., Inc., 1986.

[54] Coogan, K., Lu, G., and Debray, S. Deobfuscation of virtualization-
obfuscated software: A semantics-based approach. In Proceedings of the 18th
ACM Conference on Computer and Communications Security (2011), CCS
’11, pp. 275–284.

[55] Cozzie, A., Stratton, F., Xue, H., and King, S. T. Digging for
data structures. In Proceedings of the 8th USENIX Conference on Operating
Systems Design and Implementation (2008), OSDI’08, pp. 255–266.

[56] Dave, V., Guha, S., and Zhang, Y. Measuring and fingerprinting click-
spam in ad networks. SIGCOMM Comput. Commun. Rev. 42, 4 (Aug. 2012),
175–186.

[57] Demaine, E. D. C to Java: converting pointers into references. Concur-
rency - Practice and Experience 10, 11-13 (1998), 851–861.

[58] Diaz, D., and Codognet, P. Design and implementation of the GNU
Prolog system. Journal of Functional and Logic Programming 2001, 6 (2001).

[59] Domas, C. Turning ‘mov’ into a soul-curshing RE nightmare. In Proceeding
of the 2015 Annual Reverse Engineering and Security Conference, REcon ’15.

https://www.fireeye.com/blog/threat-research/2015/08/ios_masque_attackwe.html
https://www.fireeye.com/blog/threat-research/2015/08/ios_masque_attackwe.html

129

[60] Drewry, W., and Ormandy, T. Flayer: Exposing application inter-
nals. In Proceedings of the 1st USENIX Workshop on Offensive Technologies
(2007), WOOT ’07.

[61] Egele, M., Woo, M., Chapman, P., and Brumley, D. Blanket ex-
ecution: Dynamic similarity testing for program binaries and components.
In Proceeding of the 23rd USENIX Security Symposium (2014), USENIX
Security ’14, pp. 303–317.

[62] Eilam, E. Reversing: secrets of reverse engineering. John Wiley & Sons,
2011.

[63] Flake, H. Structural comparison of executable objects. In Proceedings of
the 1st SIG SIDAR Conference on Detection of Intrusions and Malware &
Vulnerability Assessment (2004), DIMVA ’04, pp. 161–173.

[64] Fletcher, C. W., Ren, L., Kwon, A., Van Dijk, M., Stefanov, E.,
Serpanos, D., and Devadas, S. A low-latency, low-area hardware obliv-
ious RAM controller. In Proceedings of the 23rd IEEE International Sympo-
sium on Field-Programmable Custom Computing Machines (2015), FCCM
’15, pp. 215–222.

[65] Foket, C., Sutter, B. D., and Bosschere, K. D. Pushing java type
obfuscation to the limit. IEEE Transactions on Dependable and Secure Com-
puting 11, 6 (Nov 2014), 553–567.

[66] Foket, C., Sutter, B. D., and Bosschere, K. D. Pushing java type
obfuscation to the limit. IEEE Transactions on Dependable and Secure Com-
puting 11, 6 (Nov 2014), 553–567.

[67] Franz, A., and Brants, T. All our n-gram are belong
to you. https://research.googleblog.com/2006/08/
all-our-n-gram-are-belong-to-you.html.

[68] Ganesh, V., and Dill, D. L. A decision procedure for bit-vectors and
arrays. In Proceedings of the 19th International Conference on Computer
Aided Verification (2007), CAV’07, pp. 519–531.

[69] Gao, D., Reiter, M. K., and Song, D. BinHunt: Automatically find-
ing semantic differences in binary programs. In Proceedings of the 4th Inter-
national Conference on Information and Communications Security (2008),
ICICS ’08.

[70] Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., and
Waters, B. Candidate indistinguishability obfuscation and functional en-
cryption for all circuits. In 2013 IEEE 54th Annual Symposium on Founda-
tions of Computer Science (2013), FOCS ’13, pp. 40–49.

https://research.googleblog.com/2006/08/all-our-n-gram-are-belong-to-you.html
https://research.googleblog.com/2006/08/all-our-n-gram-are-belong-to-you.html

130

[71] Ghiya, R., and Hendren, L. J. Is it a tree, a DAG, or a cyclic graph?
A shape analysis for heap-directed pointers in C. In Proceedings of the 23rd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (1996), POPL ’96.

[72] Ghosh, S., Hiser, J., and Davidson, J. W. Replacement attacks
against vm-protected applications. In Proceedings of the 8th ACM SIG-
PLAN/SIGOPS Conference on Virtual Execution Environments (2012),
VEE ’12, pp. 203–214.

[73] Gibler, C., Stevens, R., Crussell, J., Chen, H., Zang, H., and
Choi, H. AdRob: Examining the landscape and impact of android applica-
tion plagiarism. In Proceeding of the 11th Annual International Conference
on Mobile Systems, Applications, and Services, MobiSys ’13, pp. 431–444.

[74] Gilb, T. Software Metrics. Winthrop computer systems series. Winthrop
Publishers, 1977.

[75] Glanz, L., Amann, S., Eichberg, M., Reif, M., Hermann, B.,
Lerch, J., and Mezini, M. CodeMatch: Obfuscation won’t conceal your
repackaged app. In Proceedings of the 11th Joint Meeting on Foundations of
Software Engineering (2017), ESEC/FSE ’17, pp. 638–648.

[76] Goldreich, O., and Ostrovsky, R. Software protection and simulation
on oblivious rams. J. ACM 43, 3 (May 1996), 431–473.

[77] Guo, F., Ferrie, P., and Chiueh, T. A study of the packer problem
and its solutions. In Proceedings of 11th International Symposium on Recent
Advances in Intrusion Detection (2008), RAID ’08, pp. 98–115.

[78] Hada, S. Zero-knowledge and code obfuscation. In Proceedings of the 6th
International Conference on the Theory and Application of Cryptology and
Information Security: Advances in Cryptology (London, UK, UK, 2000),
ASIACRYPT ’00, Springer-Verlag, pp. 443–457.

[79] Hindle, A., Barr, E. T., Su, Z., Gabel, M., and Devanbu, P. On the
naturalness of software. In Proceedings of the 34th ACM/IEEE International
Conference on Software Engineering (2012), ICSE ’12, pp. 837–847.

[80] Hubbard, J., Weimer, K., and Chen, Y. A study of SSL proxy attacks
on Android and iOS mobile applications. In Proceedings of the 11th IEEE
Consumer Communications and Networking Conference (2014), CCNC ’14,
pp. 86–91.

131

[81] Jones, N. D., and Muchnick, S. S. A flexible approach to interpro-
cedural data flow analysis and programs with recursive data structures. In
Proceedings of the 9th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (1982), POPL ’82, pp. 66–74.

[82] Junod, P., Rinaldini, J., Wehrli, J., and Michielin, J. Obfuscator-
LLVM – software protection for the masses. In Proceedings of the IEEE/ACM
1st International Workshop on Software Protection (2015), SPRO’15, pp. 3–
9.

[83] Kamin, S. N. Programming Languages: An Interpreter-Based Approach.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1990.

[84] Kettle, N., and King, A. Bit-precise reasoning with affine functions.
In Proceedings of the Joint Workshops of the 6th International Workshop on
Satisfiability Modulo Theories and 1st International Workshop on Bit-Precise
Reasoning (2008), SMT ’08/BPR ’08, pp. 46–52.

[85] Knuth, D. E., and Floyd, R. W. Notes on avoiding ‘go to’ statements.
Information Processing Letters 1, 1 (1971), 23–31.

[86] Laffra, C. C2J: A C++ to Java translator. Advanced Java: Idioms,
Pitfalls, Styles and Programming Tips (2001).

[87] Lakhotia, A., Boccardo, D. R., Singh, A., and Manacero, Jr.,
A. Context-sensitive analysis without calling-context. Higher Order Symbol.
Comput. 23, 3 (Sept. 2010), 275–313.

[88] Lan, P., Wang, P., Wang, S., and Wu, D. Lambda obfuscation. In
Proceedings of the 13th EAI International Conference on Security and Pri-
vacy in Communication Networks (2017), SecureComm ’17.

[89] László, T., and Kiss, Á. Obfuscating C++ programs via control flow
flattening. Annales Universitatis Scientarum Budapestinensis de Rolando
Eötvös Nominatae, Sectio Computatorica 30 (2009), 3–19.

[90] Launchbury, J. A natural semantics for lazy evaluation. In Proceedings
of the 20th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (1993), POPL ’93, pp. 144–154.

[91] Li, M., Wang, W., Wang, P., Wang, S., Wu, D., Liu, J., Xue,
R., and Huo, W. LibD: Scalable and precise third-party library detection
in Android markets. In Proceedings of the 39th ACM/IEEE International
Conference on Software Engineering (2017), ICSE ’17.

132

[92] Li, W., Li, H., Chen, H., and Xia, Y. AdAttester: Secure online
mobile advertisement attestation using TrustZone. In Proceedings of the
13th Annual International Conference on Mobile Systems, Applications, and
Services (2015), MobiSys ’15, pp. 75–88.

[93] Linares-Vásquez, M., Holtzhauer, A., Bernal-Cárdenas, C., and
Poshyvanyk, D. Revisiting android reuse studies in the context of code ob-
fuscation and library usages. In Proceedings of the 11th Working Conference
on Mining Software Repositories (2014), MSR ’14.

[94] Linn, C., and Debray, S. Obfuscation of executable code to improve
resistance to static disassembly. In Proceedings of the 10th ACM Conference
on Computer and Communications Security (2003), CCS ’03, pp. 290–299.

[95] Liu, C., Harris, A., Maas, M., Hicks, M., Tiwari, M., and Shi,
E. GhostRider: A hardware-software system for memory trace oblivious
computation. In Proceedings of the 20th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (2015),
ASPLOS ’15, pp. 87–101.

[96] Liu, H., Sun, C., Su, Z., Jiang, Y., Gu, M., and Sun, J. Stochastic
optimization of program obfuscation. In Proceedings of the 39th International
Conference on Software Engineering (2017), ICSE ’17, pp. 221–231.

[97] Luo, L., Ming, J., Wu, D., Liu, P., and Zhu, S. Semantics-based
obfuscation-resilient binary code similarity comparison with applications to
software plagiarism detection. In Proceedings of the 22Nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering (2014),
FSE ’14, pp. 389–400.

[98] Lyda, R., and Hamrock, J. Using entropy analysis to find encrypted and
packed malware. IEEE Security and Privacy 5, 2 (2007), 40–45.

[99] Ma, Z., Wang, H., Guo, Y., and Chen, X. LibRadar: Fast and accurate
detection of third-party libraries in Android apps. In Proceedings of the 38th
International Conference on Software Engineering Companion (2016), ICSE
’16 Companion, pp. 653–656.

[100] Marlow, S., Yakushev, A. R., and Peyton Jones, S. Faster laziness
using dynamic pointer tagging. In Proceedings of the 12th ACM SIGPLAN
International Conference on Functional Programming (2007), ICFP ’07.

[101] Martignoni, L., Christodorescu, M., and Jha, S. Omniunpack:
Fast, generic, and safe unpacking of malware. In Proceedings of the 23rd
Annual Computer Security Applications Conference (2007), ACSAC ’07,
pp. 431–441.

133

[102] Martin, J., and Muller, H. Strategies for migration from C to Java.
In Fifth European Conference on Software Maintenance and Reengineering,
2001 (2001), pp. 200–209.

[103] McCabe, T. J. A complexity measure. IEEE Trans. Softw. Eng. 2, 4 (July
1976), 308–320.

[104] Ming, J., Pan, M., and Gao, D. iBinHunt: Binary hunting with inter-
procedural control flow. In Proceedings of the 15th Annual International
Conference on Information Security and Cryptology (2012), ICISC ’12.

[105] Ming, J., Xu, D., Wang, L., and Wu, D. LOOP: Logic-oriented
opaque predicate detection in obfuscated binary code. In Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications Security
(2015), CCS ’15, pp. 757–768.

[106] Moser, A., Kruegel, C., and Kirda, E. Limits of static analysis for
malware detection. In Proceedings of the 23rd Annual Computer Security
Applications Conference (2007), ACSAC ’07.

[107] Muchnick, S. S. Advanced compiler design implementation. Morgan Kauf-
mann, 1997.

[108] Nagra, J., and Collberg, C. Surreptitious Software: Obfuscation, Wa-
termarking, and Tamperproofing for Software Protection. Pearson Education,
2009.

[109] Nayak, K., Fletcher, C., Ren, L., Chandran, N., Lokam, S., Shi,
E., and Goyal, V. HOP: Hardware makes obfuscation practical. In Pro-
ceedings of the 24th Annual Network and Distributed System Security Sym-
posium (2017), NDSS ’17.

[110] Necula, G. C., McPeak, S., Rahul, S. P., and Weimer, W. CIL:
Intermediate language and tools for analysis and transformation of C pro-
grams. In Proceedings of the 11th International Conference on Compiler
Construction (2002), CC ’02.

[111] Ngo, M. N., and Tan, H. B. K. Detecting large number of infeasible
paths through recognizing their patterns. In Proceedings of the the 6th Joint
Meeting of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on The Foundations of Software Engineering (2007),
ESEC-FSE ’07, pp. 215–224.

[112] Norvig, P. Natural language corpus data: Beautiful data. http:
//norvig.com/ngrams/.

http://norvig.com/ngrams/
http://norvig.com/ngrams/

134

[113] Orikogbo, D., Büchler, M., and Egele, M. CRiOS: Toward large-
scale iOS application analysis. In Proceedings of the 6th Workshop on Se-
curity and Privacy in Smartphones and Mobile Devices (2016), SPSM ’16,
pp. 33–42.

[114] Paleari, R., Martignoni, L., Roglia, G. F., and Bruschi, D. A
fistful of red-pills: How to automatically generate procedures to detect cpu
emulators. In Proceedings of the 3rd USENIX Workshop on Offensive Tech-
nologies (2009), WOOT ’09.

[115] Pawlowski, A., Contag, M., and Holz, T. Probfuscation: An obfus-
cation approach using probabilistic control flows. In Detection of Intrusions
and Malware, and Vulnerability Assessment, DIMVA ’16. Springer, 2016,
pp. 165–185.

[116] Popov, I. V., Debray, S. K., and Andrews, G. R. Binary obfuscation
using signals. In Proceedings of 16th USENIX Security Symposium (2007),
USENIX Security ’07.

[117] Ramshaw, L. Eliminating go to’s while preserving program structure. Jour-
nal of the ACM 35, 4 (1988), 893–920.

[118] Rasthofer, S., Arzt, S., Miltenberger, M., and Bodden, E. Har-
vesting runtime values in Android applications that feature anti-analysis
techniques. In Proceedings of 23rd Network and Distributed System Secu-
rity Symposium (2016), NDSS ’16.

[119] Rolles, R. Unpacking virtualization obfuscators. In Proceedings of the 3rd
USENIX Conference on Offensive Technologies (2009), WOOT ’09.

[120] Royal, P., Halpin, M., Dagon, D., Edmonds, R., and Lee, W.
Polyunpack: Automating the hidden-code extraction of unpack-executing
malware. In Proceedings of the 22nd Annual Computer Security Applications
Conference (2006), ACSAC ’06, pp. 289–300.

[121] Sagiv, M., Reps, T., and Wilhelm, R. Solving shape-analysis problems
in languages with destructive updating. ACM Trans. Program. Lang. Syst.
20, 1 (Jan. 1998), 1–50.

[122] Schrittwieser, S., Katzenbeisser, S., Kinder, J., Merzdovnik,
G., and Weippl, E. Protecting software through obfuscation: Can it keep
pace with progress in code analysis? 4:1–4:37.

[123] Segaran, T., and Hammerbacher, J. Beautiful data: the stories behind
elegant data solutions. ”O’Reilly Media, Inc.”, 2009.

135

[124] Sepp, A., Mihaila, B., and Simon, A. Precise static analysis of binaries
by extracting relational information. In Proceedings of the 18th Working
Conference on Reverse Engineering (2011), WCRE ’11, pp. 357–366.

[125] Sharif, M., Lanzi, A., Giffin, J., and Lee, W. Impeding malware
analysis using conditional code obfuscation. In Proceedings of 15th Network
and Distributed System Security Symposium (2008), NDSS ’08.

[126] Sharif, M., Lanzi, A., Giffin, J., and Lee, W. Automatic reverse
engineering of malware emulators. In Proceedings of the 2009 30th IEEE
Symposium on Security and Privacy (2009), SP ’09, pp. 94–109.

[127] Sikorski, M., and Honig, A. Practical Malware Analysis: The Hands-On
Guide to Dissecting Malicious Software. No Starch Press, 2012.

[128] Smith, J. E., and Nair, R. Virtual Machines: Versatile Platforms for
Systems and Processes. Morgan Kaufmann, 2005.

[129] Szor, P. The Art of Computer Virus Research and Defense. Addison-
Wesley Professional, February 2005.

[130] Tärnlund, S.-Å. Horn clause computability. BIT Numerical Mathematics
17, 2 (1977), 215–226.

[131] Thomas, D., and Rolf, R. Graph-based comparison of executable ob-
jects. In Proceedings of the Symposium sur la Securite des Technologies de
l’Information et des Communications (2005), SSTIC ’05.

[132] Trudel, M., Furia, C., Nordio, M., Meyer, B., and Oriol, M. C to
O-O translation: Beyond the easy stuff. In Proceedings of the 19th Working
Conference on Reverse Engineering (2012), WCRE ’12, pp. 19–28.

[133] Wang, C., Hill, J., Knight, J., , and Davidson, J. Software tamper
resistance: Obstructing static analysis of programs.

[134] Wang, H., Guo, Y., Ma, Z., and Chen, X. WuKong: A scalable and
accurate two-phase approach to Android app clone detection. In Proceed-
ings of the 2015 International Symposium on Software Testing and Analysis
(2015), ISSTA ’15, pp. 71–82.

[135] Wang, P., Bao, Q., Wang, L., Wang, S., Chen, Z., Wei, T., and
Wu, D. Software protection on the go: A large-scale empirical study on
mobile app obfuscation. In Proceedings of the 40th International Conference
on Software Engineering (2018), ICSE ’18.

136

[136] Wang, P., Wang, S., Ming, J., Jiang, Y., and Wu, D. Translingual
obfuscation. In Proceedings of the 1st IEEE European Symposium on Security
and Privacy (2016), EuroS&P ’16, pp. 128–144.

[137] Wang, P., Wu, D., Chen, Z., and Wei, T. Protecting million-user iOS
apps with obfuscation: Motivations, pitfalls, and experience. In Proceed-
ings of the 40th International Conference on Software Engineering: Software
Engineering in Practice (2018), pp. 235–244.

[138] Wang, S., Chollak, D., Movshovitz-Attias, D., and Tan, L. Bu-
gram: Bug detection with n-gram language models. In Proceedings of the
31st IEEE/ACM International Conference on Automated Software Engineer-
ing (2016), ASE ’16, pp. 708–719.

[139] Wang, S., Wang, P., and Wu, D. Reassembleable disassembling. In Pro-
ceedings of the 24th USENIX Security Symposium (2015), USENIX Security
’15.

[140] Wang, Y., Wang, S., Wang, P., and Wu, D. Turing obfuscation.
In Proceedings of the 13th EAI International Conference on Security and
Privacy in Communication Networks (2017), SecureComm ’17.

[141] Warren, D. H. D. An abstract Prolog instruction set. Tech. Rep. 309,
SRI International, October 1983.

[142] Williams, M. H., and Chen, G. Restructuring pascal programs contain-
ing goto statements. The Computer Journal 28, 2 (1985), 134–137.

[143] Woodward, M., Hennell, M., and Hedley, D. A measure of control
flow complexity in program text. IEEE Transactions on Software Engineer-
ing SE-5, 1 (Jan. 1979), 45–50.

[144] Wu, D., Appel, A. W., and Stump, A. Foundational proof checkers
with small witnesses. In Proceedings of the 5th ACM SIGPLAN International
Conference on Principles and Practice of Declaritive Programming (2003),
PPDP ’03, pp. 264–274.

[145] Wu, Z., Gianvecchio, S., Xie, M., and Wang, H. Mimimorphism: A
new approach to binary code obfuscation. In Proceedings of the 17th ACM
Conference on Computer and Communications Security (2010), CCS ’10,
pp. 536–546.

[146] Xu, D., Ming, J., and Wu, D. Generalized dynamic opaque predicates: A
new control flow obfuscation method. In Proceedings of the 19th Information
Security Conference (2016), ISC ’16, pp. 323–342.

137

[147] Xu, D., Ming, J., and Wu, D. Cryptographic function detection in
obfuscated binaries via bit-precise symbolic loop mapping. In Proceedings of
the 38th IEEE Symposium on Security and Privacy (2017), pp. 921–937.

[148] Xu, W., Zhang, F., and Zhu, S. The power of obfuscation techniques
in malicious JavaScript code: A measurement study. In Proceedings of the
7th International Conference on Malicious and Unwanted Software (2012),
MALWARE ’12, pp. 9–16.

[149] Xue, L., Luo, X., Yu, L., Wang, S., and Wu, D. Adaptive unpacking
of Android apps. In Proceedings of the 39th International Conference on
Software Engineering (2017), ICSE ’17, pp. 358–369.

[150] Xue, L., Luo, X., Yu, L., Wang, S., and Wu, D. Adaptive unpacking
of android apps. In Proceedings of the 39th International Conference on
Software Engineering (2017), ICSE ’17, pp. 358–369.

[151] Yadegari, B., and Debray, S. Bit-level taint analysis. In Proceedings of
the 14th IEEE International Working Conference on Source Code Analysis
and Manipulation (2014), SCAM ’14, pp. 255–264.

[152] Yadegari, B., Johannesmeyer, B., Whitely, B., and Debray, S.
A generic approach to automatic deobfuscation of executable code. In Pro-
ceedings of the 36th IEEE Symposium on Security and Privacy (2015), SP
’15.

[153] Yang, W., Zhang, Y., Li, J., Shu, J., Li, B., Hu, W., and Gu, D.
AppSpear: Bytecode decrypting and DEX reassembling for packed Android
malware. In Proceedings of the 18th International Symposium on Research
in Attacks, Intrusions, and Defenses (2015), RAID ’15, pp. 359–381.

[154] Zakai, A. Emscripten: An LLVM-to-JavaScript compiler. In Proceedings of
the ACM International Conference Companion on Object Oriented Program-
ming Systems Languages and Applications Companion (2011), OOPSLA ’11,
pp. 301–312.

[155] Zhang, F., Huang, H., Zhu, S., Wu, D., and Liu, P. ViewDroid:
Towards obfuscation-resilient mobile application repackaging detection. In
Proceedings of the 2014 ACM Conference on Security and Privacy in Wireless
and Mobile Networks (2014), WiSec ’14, pp. 25–36.

[156] Zhou, Y., and Jiang, X. Dissecting Android malware: Characterization
and evolution. In Proceedings of the 33rd IEEE Symposium on Security and
Privacy (2012), S&P ’12, pp. 95–109.

Vita

Pei Wang finished his Ph.D. at the College of Information Sciences and Technol-

ogy, The Pennsylvania State University. He was advised by Dr. Dinghao Wu. His

research interest subsumes computer security, software engineering, and program-

ming language. Before he went to Penn State, he received his master’s degree from

University of Waterloo (2012-2013) in Electrical and Computer Engineering, and

his bachelor’s degree from Peking University (2008-2012) in Computer Sciences

and Technology.

	List of Figures
	List of Tables
	Acknowledgments
	Introduction
	Demand for Software Protection
	Advanced Software Obfuscation Techniques
	Obfuscation in Mobile Software Development
	Contributions

	Related Work
	Software Obfuscation
	Cryptography Obfuscation
	Heuristic Obfuscation

	Software Deobfuscation
	Programming Language Translation
	Empirical Studies on Mobile Apps and Software Obfuscation

	Advanced Obfuscation for Desktop Software
	Overview
	Threat Model
	Misusing Prolog for Obfuscation
	Prolog Basics
	Obfuscation-Contributing Features
	Unification
	Backtracking

	Technical Challenges
	Control Flow
	Memory Model
	Type Casting

	C-to-Prolog Translation
	Control Flow Regularization
	Control Flow Cuts
	Loops

	C Memory Model Simulation
	Supporting C Memory-Access Operators
	Maintaining Consistency

	Supporting Other C Features
	Struct, Union, and Array
	Type Casting
	External and Indirect Function Call

	Obfuscating Translation

	Implementation
	Preprocessing and Translating C to Prolog
	Combining C and Prolog
	Customizing Prolog Engine

	Evaluation
	Potency
	Resilience
	Resilience to Semantics-Based Binary Diffing
	Resilience to Syntax-Based Binary Diffing
	Comparing Babel with Code Virtualizer

	Cost
	Stealth

	Discussion
	Generalizing Translingual Obfuscation
	Multithreading Support
	Randomness
	Defeating Translingual Obfuscation

	Status Quo of Obfuscation in Mobile Development
	Background
	The ARM Architecture
	The iOS Mobile Operating System
	The Objective-C and Swift Programming Languages
	Technical Challenges of the Study
	Obfuscation Detection and Analysis
	Static Third-Party Libraries

	Inferring Developer Intentions

	Methodology
	Considered Obfuscations
	Mining Obfuscated iOS Apps
	Per-App Inspection
	Detecting Obfuscation
	Identifying Obfuscated Third-Party Libraries

	Cross-Validation

	Detecting Symbol Obfuscation
	An NLP-Based Detection Model
	Implementation

	Findings
	Characteristics of Obfuscated Apps
	Obfuscation Patterns
	Impact of Distributor Code Review
	Effectiveness of Obfuscation

	Implications of the Results

	A Case Study on Real-World Mobile Obfuscation
	Tools
	Obfuscation Algorithms
	Implementation Pitfalls
	Inline Assembly
	Heterogeneous Hardware
	App Maintainability

	Evaluation
	Resilience
	Overhead
	Size Expansion
	Execution Slowdown

	Discussion
	Dilemma of Security and Transparency
	Other Protections

	Conclusion
	Additional Potency Evaluation Data For Babel
	Publications During Ph.D.
	Bibliography

